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Abstract. It is shown that the twistor connection of the local twistor theory can
be regarded as a gauge field whose Yang-Mills equations are equivalent to
Bach equations of gravity.

1. Introduction

It is well known that the affine connection of Einstein's theory of gravity can be
regarded as a gauge field. But consistent interpretation of the gravitation as a
gauge field leads, strictly speaking, to non-Einstein theory, since the affine
connection itself (not a metric tensor) turns out to be the basic field variable and the
most natural gravitational Lagrangian should be quadratic in Riemann's
curvature tensor [4]. Anyhow, two groups of field equations can be obtained in
this approach:

(1) variations of the gravitational Lagrangian for the connection lead to (so-
called) quasi-Maxwell equations for Riemann's curvature tensor (these are Yang-
Mills equations);

(2) variations of the gravitational Lagrangian for the metric tensor lead to (a
generalization of) Einstein's equations (gravity field equations).

It should be stressed that in the case of the affine connection Euler-Lagrange
equations of these variational principles (with any Lagrangian) are different, i.e.
Yang-Mills equations do not coincide with gravity field equations.

In this work it is shown that the local twistor covariant derivative may be
regarded as a gauge covariant derivative, resulting from the localization of the
subgroup of the twistor group SU(2,2), which describes transformations of the
local twistor components under conformal rescalings. In Sect. 2 the standard
gauge transformation law of the Yang-Mills formalism is slightly modified to treat
such cases, and in Sect. 4 it is proved that the twistor connection is a gauge field. In
Sect. 5 a twistor connection Lagrangian is constructed and it is shown that the
variational principle (1) (which gives sixty equations, fifty of which are zero
identically) and the variational principle (2) (which gives ten equations) lead to the
same conformally-invariant equations of gravity-vanishing of the Bach tensor.

The following index conventions are used: lower case Latin indices will be used
for tensors, upper case Latin indices for spinors, and Greek indices for twistors.
The sign convention for the curvature adopted here is that [Fc, Fd] Vb = Ra

bcdVa, and
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2. Gauge Transformations and Conformal Rescalings

Consider some Lagrangian L(gab, ip, Vaψ), where ψ is a section of some spinor
bundle over a 4-dimensional pseudo-Riemannian manifold (M, gfl5), and Va

denotes the metric-compatible covariant derivative operator. Let the Lagrangian
density be invariant under dilation of the metric (i.e. multiplication of the metric
tensor at each point by a constant factor k2) and action of some Lie group G:

y } (2.1)

To localize this symmetry1:

9ab-*Qab = ®(x)9ab> (2 2)

ψ^ψ = G(x)ψ, (2.3)

we may proceed as follows: for the invariance under independent actions of
transformations (2.2) and (2.3) two compensating (gauge) fields should be
introduced, but in the case of the invariance under simultaneous action of (2.2),
(2.3), only one gauge field. It is the latter case we are interested in.

According to a general scheme of the Yang-Mills theory for the localization of
this symmetry a gauge covariant operator is introduced [1]:

Vmψ=Vnψ + ̂ Jx)ψ9 (2.4)

where s$m(x) (called a gauge field or connection) is a set of functions on the
manifold M with values in the Lie algebra of the group G.

The transformation of the covariant derivative operator Va under conformal
rescalings can be represented in the form:

where 3&a(x) is a set of matrix-valued functions on the manifold M. From now on
possible spinor bundles and symmetry groups G are restricted by the requirement
that ίMa belong to the Lie algebra of the group G [the set of such bundles and
groups is non-empty, for example, the local twistor bundle and the group SU(2,2)].

Proposition. If under transformations (2.2), (2.3) the gauge field s/a(x) transforms
by the law:

\ (2.6)

and

VaG=VaG + \βa,G\, (2.7)

the gauge covariant derivative (2.1) transforms as follows:

VaΨ^Va(G(x)ψ) = G(x)Vaψ. (2.8)

The proof is straightforward.

1 Hereafter all quantities "living" on the pseudo-Riemannian manifold (M, gab) with the
rescaled metric (2.2) will be equipped with a tilde over a kernel symbol
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Remark. Under gauge transformations (2.2), (2.3), and (2.6) the Lagrangian density

afo Ψ> Vaψ)]/ — Q [because of property (2.1)] is invariant:

Ugab9G(x)ψ,Va(G

Later we shall show that the twistor connection transforms by the law (2.6) and can
be regarded as a gauge field in this sense.

3. Local Twistors

The formalism of local twistors was developed in [2, 3]. Here a few of the
important facts introduced in the just mentioned papers are merely summarized.

The local twistor space is by definition a complex vector bundle of range 4 over
space-time with the structure group SU(2,2), whose typical fibre is the space of
global (flat space-time) twistors. Each fibre may be thought of as the direct sum of a
spin space and a conjugate dual spin space, but the exact way in which the local
twistor splits to its spinor parts depends on the choice of the conformal scaling.
Thus a local twistor Zα at some point Q can be represented with respect to the
metric gab by a pair of spinors (ωΛ,πj) at Q. Under conformal rescaling (2.2) the
twistor Zα changes its spinor representation according to the law:

(3.1)
\πλ/ \11AB> O~A/ \πέ/

where 7AB=:Ω~1FABΩ. For more explicit description of the relationship between
twistors and spinors, projection and injection operators e% eaΛ, eaA, eA have been
introduced (analogs, in certain respects, of the Infeld-van der Waerdon symbols in
the spinor formalism) in terms of which a local twistor can be written

with the complex conjugate:

Z* = e*λώΛ + e£πA

The conformally invariant local twistor derivative has been defined by:

B ) , (3.2)

where2

PλίBMB = 2 Rmb ~~ 12 ^mb

In conformally flat space-time the equation VmZa = 0 has four linearly independent
solutions over the field of complex numbers which correspond to global twistors
[forming representation space for the pseudo-unitary group SU(2,2), this being
locally isomorphic with the restricted conformal group of flat space-time].

2 We adopt the abstract index conventions [2]
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4. The Local Twistor Connection as a Gauge Field

For present purposes it is more convenient to rewrite the local twistor derivative in
a matrix form:

A matrix-valued field (completely defined by the metric structure)

\ ~~ irMMBA U /

satisfies the following relations

Λrm% = 0, M^-JΪJ^ (4.3)

where the bar over ^ m ^ α denotes the twistor conjugation. Therefore matrices Jim

belong to su(2,2), the Lie algebra of SU(2,2), and (4.1) bears a formal resemblance
to (2.4) if one puts ψ = (ωA, π^) and sίm = Jίm.

Proposition. Under transformations (2.2) and (2.3) with

/see (3.1)7, (4.4)

the su(2,2)-valued field Jim{x) transforms as in (2.6) and G automatically satisfies
(2.7).

Proof. First of all it is necessary to find matrices &m(x), defined by relations (2.5)
which in the twistor space have the form [2]:

(
Thus the matrices J*m are

( 0

V 0 -Ϊ>BMΊAM)'

and belong to su(2,2). Since under conformal rescalings [2]

(4.7)

the proof is completed by a direct substitution of all necessary quantities into (2.6).
Therefore the twistor derivative (4.1) may be regarded as a gauge covariant

derivative and the matrix-valued field Jίm (called the twistor connection) as a
gauge field, insuring invariance under action of the subgroup of SU(2,2), which
describes the transformation of local twistor components under conformal
rescalings.

It should be pointed out that the transformation of the analogously obtainable
connection of another (torsion-free) conformally invariant twistor derivative
(introduced in [3]) cannot be represented in the form (2.6), and, therefore, it cannot
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be regarded as a gauge field. In this respect the derivative (3.2) is distinguished
among other possible definitions of the local twistor derivative (by the way, (3.2) is
distinguished also in producing global twistors in the extreme case of conformally
flat space-times [3]).

Since gauge transformations include rescalings of the metric, the standard form
of the gauge field curvature

PL Ξ VnJίn - VnJim + [^m, Jtά (4.8)

is not gauge covariant in our case.
But it is worth noting that the standard Yang-Mills equations for the curvature

(4.8) (also gauge non-invariant)

lead (after a short calculation) to the following equations:

Cab[cd; m] — 0 ?

i.e. to the vacuum Einstein equations and vacuum Bianchi identities. Thus the
gauge non-covariance of the standard Yang-Mills curvature (4.8) may be
interpreted as a conformal non-invariance of the Einstein theory of gravity (in
contradistinction to other zero mass fields).

As in the standard procedure of obtaining the gauge field curvature [1] the
commutator of gauge covariant derivative operators acting on some twistor
Z = (ωA,πj) is formed:

IK, Vn-\Z = [Vm, Vn-\Z+{VmJίn- VnJim + [_JimJίn-\)Z, (4.9)

from which it immediately follows that the twistor connection curvature differs
from the standard form (4.8) by the presence of the additional term 01mn

^mn = VmJΐn ~ VnJίm + \_Jίm, Jin-\ + Mmn , (4.10)

arising from the non-commutativity of Riemann's covariant derivative operators.
Making use of the following relations [3]:

L *MM? VNNΛ ω

L ̂ MM? T̂VivJ πΛ — \8NMΨ AMN + VIUPNMNA ~ ^N^MNMA) πB •>

the su(2,2)-valued field Mmn turns out to be of the form:

I MNΨ BMNVM*NBNMrVN*MBMN> ^ j (ΛλΛΛ

Substitution of (4.11) into (4.10) implies the following explicit form of the
curvature:

SMNΨ BMN ' 0

^Λ ΨRBMN + C V Ψ \ \ ~~ 8 Ψ J
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The local twistor C ^ , defined by

fiμσa ^M ~N ~μM ~σN cjp a
λρβ λ Q MMNN β '

coincides with the curvature twistor, introduced in [2,3]. Straightforward
calculations show that under gauge transformations (2.2) and (2.3) the twistor
connection curvature transforms as

5. The Yang-Mills Equations for the Twistor Connection

The Lagrangian of any gauge field must be a scalar, and the Lagrangian density, a
gauge invariant.

The Killing metric, defined on su(2,2) by

is a gauge invariant:

Since under conformal rescalings

it is easily seen that the integrand of the functional

4χ (5.1)

is a scalar and a gauge invariant. It has the same form as in the standard Yang-
Mills formalism (in contradistinction to the form of the curvature and the gauge
transformation law of the twistor connection).

There are two variational principles with the functional (5.1):
(1) We may vary (5.1) for the twistor connection Jlm, regarding it as being

independent of the metric tensor, i.e. S = S(Jίm);
(2) Taking into consideration the internal metric structure of the twistor

connection (4.2), we may vary (5.1) for the metric tensor, i.e. S = S(gmn). Let us start
with the first variational principle, since it is much more in the spirit of the Yang-
Mills theory. Though the twistor connection curvature differs from the usual one
by the presence of the term 31 mn, the latter will vanish under variations:

δ^mn = VJJίn - VnδJίm + \bMw Jίn-\ + \_MW δJίn~\ .

Hence a straightforward repeating of usual arguments [1] leads to

Proposition. The Euler-Lagrange equations of the variational principle (1) are

F m ^ + [ ^ m , ^ m J = 0 . (5.2)

Substitution of (4.12) into (5.2) leads to

0, 0>
U
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where

Therefore the gauge invariant Yang-Mills equations for the twistor connection
reduce to

B = O * + 0 = 0 (5 4)

Transformation of (5.4) from a spinor form to a tensor one results in the following
expression for the tensor Bab:

D Uc\7^(^ pcd/^
^ab v y ^cabd x ^cabd

The tensor Bab, called the Bach tensor [5], is algebraically independent of the Weyl
tensor:

D _ Y/mv? τ> _ l u Π Ώ _Π™Π p _|_ Ap pw _ „ p pmn
Dab—y V(aί^b)m 3 VaVbK V Vmrab^^ramΓb 9abrmnr >

and, as it is readily seen, all vacuum solutions of Einstein's equations of gravity
automatically satisfy Bach equations (5.4).

Under conformal rescalings (2.2) the Bach tensor transforms as a conformal
density of weight —2 [3]: Bab = Ω~2Bab. From the spinor representation of the
Bach tensor it is most easily seen that: Bab = B{ab), VaBab = 0.

For the realization of the second variational principle it is necessary to
substitute into the functional (5.1) explicit expressions of the twistor connection
curvature (4.12). In this case the Lagrangian will take the form:

where Cabcd is the Weyl tensor. This Lagrangian was used by Bach in his work [5],
where he showed that

9 δgab

Thus the extremal equations of both variational principles coincide (!) and lead to
conformally invariant equations of gravity.
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