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Abstract. We prove that for a bounded domain D CR”" with C? boundary and
geK*° (n23) if E¥exp [ q(x,)dt % co in D, then
0

™D
sup EXexp | g(x,)dt<+ oo ({x,}: Brownian motion).
xeD 0
zedD

The important corollary of this result is that if the Schrddinger equation
A
—2—u+qu=0 has a strictly positive solution on D, then for any D,C CD, there
exists a constant C=C(n,q,D,D,) such that for any feL'(dD,0), (o: area
measure on 0D) we have

sup [u ()| =C [ |f(¥lo(dy),
xeDo oD

where u, is the solution of the Schrédinger equation corresponding to the
boundary value f.
To prove the main result we set up the following estimate inequalities on
the Poisson kernel K(x, z) corresponding to the Laplace operator:
d(x, aD) d(xs aD)

C,———=<K(x,z)=C

<C,———= xeD zedD
Yx—z" T =7 x—2"’ ’ ’

where C, and C, are constants depending on n and D.

Let D be a bounded domain in R" (n=3) with C? boundary, (x,,t>0) be the
Brownian motion and t,=inf(:>0:x¢D). According to Doob [3], for any
positive harmonic function h on D, h-conditioned Brownian motion in D is
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20 Zhongxin Zhao
determined by the following transition probability density:

1
Ph(t,x,y)=mPD(t, x, Yh(y), t>0, x,yeD, (1)
where PP(t, x, y) is the density of the Brownian motion killed outside D (see [6]).
In this paper, we only consider h(x) as the Poisson kernel of D:K(x,z),
(xeD,zedD). For any xeD, K(x,-) is defined as the density of the harmonic
measure on 0D

K(x, z)o(dz) = P*(x(tp)edz). 2
According to the Green formula and smoothness of the boundary, K(x, z) can

also be defined as follows:

G
K(x,z)= o

(x,2), 3)

z

. . oG . . o
where G(-, -) is the Green function of D and is the internal normal derivative. G

on,
also has the following probabilistic meaning: (see [6])

feel

Glx, y)=[ P"(¢,x, y)dt. )
0
For any zedD, if we let h(-) be K(-,z) in (1), then the corresponding process is
called z-conditioned Brownian motion in D. Let P} and EZ denote respectively the
probability and expectation determined by z-conditioned Brownian motion
starting at x.
By (1) and (2), it is easy to check the following properties:
For any positive and F,_-measurable function @, we have
E[P(0)lx(tp)] = EY.,, (@) o)

x(tD)

For any stopping time T<7, and any positive, F,-measurable function @,

1

Exb(@)= K(x, z)

E*[®(w)K(xq,2)]. (6)

Let g be a Borel function belonging to the class K¢ (see [1,7]), i.e. g satisfies
the condition: for each R >0,

lqy)| -0

lim | sup In_zdy =0. (7

al0 ||x| =R |y—x| <« ly—x

t
Set e (1) =exp [ q(x,)ds, (t=0).
0
The main result in this paper is the following:
Theorem 1. If E*e (t,)% o0 in D, then

sup Elfe, (tp)] <+ 0.
xeD
zedD
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Remark 1. This result improves the main theorems in [1] by Aizenman and Simon,
in [4] by Falkner, and in [9] by Zhao.

Remark 2. By Theorem A.4.1 and Theorem A.49 in [1], the condition
E%e,(t,)=% 0 can be replaced by condition (A):

A4
sup [Spec <E + q)] ﬁelsc?()m

[ 7ol + [qu} <0
D

D

or condition (B): there exists a solution u of (5 +q)u=0 with a positive lower
bound on D.
Theorem 1 has the following important corollary:

Theorem 2. If (D, q) satisfies (A) or (B), then for any domain D, D, CD, there exists
a constant C=C(n,q, D, D,) such that for any fe L*(0D, ), we have

sup lu (x)| =C | |f(2)lo(dz),

xeDo oD
where u(x)=E[e/(tp)f(x,,)]. (u, is the solution of the Schrodinger boundary
problem corresponding to f.)
Proof. By the Harnack inequality, for D, C CD,

J,=sup K(x,z)< + 0.
xeDo
zedD

According to Theorem 1, J, =sup Eje (t,) < + oo. By definition and (5), we have
xeD
zedD

u(x)= f f(2)E e (tp)K(x, z)o(dz).
Hence
sup [u (=J,J, (;D [f(2lo(dz). O

To prove Theorem 1 we need some lemmas. The following lemma has inde-
pendent interest:

Lemma 1. There exist two constants C, and C,, which only depend on n and D, such
that

d(x) d(x)
g =K =C o

where d(x)=d(x, 0D).
Proof. By Theorem 2.3 in [8], there exists some C>0 such that

C,——" xeD, zedD, (8)

d(x) .
Gx, | £C——, x,yeD, i=1,...,n.
( y)' =] y
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0 _
Considering the continuity of E™ G(x,y) on D, we have
y.

d(x)

bx—z"

K(x,z)= % Glx,z2)= CW

The inequality on the right hand of (8) is proved.
Since D is of class C?, there exists r >0 such that for any ze€ dD, a ball of radius
r,B,CD and ze0B,.

Set D, = {xeD:d(x, D)< —;}

By the Harnack inequality, there exists a constant C >0 such that for all xe D\D,,
zedD,

K(x,z)=C. 9)
Then we have
crt d(x)
K(x,z)= i . N (10)

where d(D) is the diameter of D.
For xeD,, 3we dD such that d(x)=|w— x|. Let u, be the center of ball B, and

E(uw%) =(u:|u—u0|§g).

. . = r . . .
We consider the domain R=B,\B (uO;E) and introduce a function v as in

Lemma 3.4 in [5]:
2n
v(u):exp(— 72—|u~u0|2) —exp(—2n), ueR,

2 16n? 4pn?
Av(u):exp(—r—flu—u()IZ)( rZ Iu—uolz—%> =0, ueR.

C ) — . _
Set  e= xp(—1/2)— exp(— 2’ Since  B(uq;r/2)CD\D,, if u€dB(uy;r/2),

K(u,z) = C Z ev(u), (ze D). If ue 0B, v(u)=0. So for all uedR,
F (wy=ev(u)— K(u,2)£0.
On the other hand we have
AF (u)=¢edv(u) =0, ueR.

Now the maximum principle implies that
2n 2
K(x,z)zev(x)=¢esexp| — z (r—d(x))*| —exp(—2n)

2
= —;lgexp(—Zn)d(x), xeR.
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So we have
- 2nC
~ |rlexp(—n/2) —exp(—2n)]

Since the normal unit vectors n, are uniformly continuous with respect to z on
0D, there exists some b>0 such that if z,,z,€0D, |z, — z,| <b, then

K(x, z)

-exp(—2n)d(x)|, xeDy. (11)

. L(n,,mn,)

sin 5 <1/8, (12)

where / (-,-) denotes the angle between two vectors.
Take a=min(b/2,r/8). For any ze dD, set D,=(ueD :|u—z|<a). From (11), for
any xeD,\D,, we have
2nCa" exp(—2n) . d(x)
rlexp(—n/2)—exp(—2n)] |x—z*"
For xeD,, 3wedD such that |w—x|=d(x). Set D,=B,UB,,. Since D,CD, D,
and D, have the same normal direction at z, we have

K(x,2) 2K}, (x, 2). (14)

K(x,z)= (13)

Let 0, and o,, be the centers of B, and B,, respectively. Then we have

. n,,n,
Ioz—ow|§|z—wl+2rsm—4—(—z—).

Take a point uedB,n0B,,. Set 0= £ (o,u,0,,0,). Since

lz—=wW| Zlz—x|+|x—w| =2]x—z=2a<b

and (12),
sin% <1/8.
So we have
cos9=wga/r+sini;”wl <1/8+1/8=1/4. (15)

Fig. 1
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Take a=0— £/ (0,2,0,0,). We set up a polar coordinate system with principal
axis o,z. Set
S={y= ¢\ -0,_):e=r.@, <02}, §,=0B,NB,.

Obviously SCS,.
According to the harmonic property of the Poisson kernel and the Green
formula, we have

Kpy(x,2) 2 [1/w, (1] Sj Ky, (x, YK (y, 2)a(dy)

r2n—4 2 o 2 I.V Ol 16
gwn-l(r)(r x )flx Wiy — Zl"a(dy)’ 1e)

where w,_,(r)=0c[0B(0;r)].

When yeS§,
X=yISIx—zl+|y—2=2x—2,
ly—o.l*=r*+lo,~o0,*—2rlo,,—o0.| cos / (0,,3,0,0,),
lo,—o0,|=2rcosf, /(o0,y,0,0)<0—0/2. (17)
Then

1 —|y—o,|>=4r* cosO cos(0 — o/2) — 4r? cos 260
=8r% cosfsin (0 — o/4) sina/4. (18)
Set L=|z—o,|, A=cosd, B=cos(6 —a). Then we have
r*=lz—o/|*=|z—0,*+|o,—0,|*—2|z—0,||0,,— 0,| cos(6 — )
=L*—4r*cos*0—4LrcosOcos(0—a);
—4rABL—(4r?A%* —1r?*)=0;

19
L=2rAB+(4r*A*B*—4r? A2 +rH)V/?; (19)

_ (4r’A’B*—4r*A* +r?)—(r— 2rAB)?
(4r?A*B*—4r? A% + 112 +r—2rAB

B 4rA(B— A)
(1—4A4%+44%B*»)Y24+1—-24B

< 8rcosfsin(0—o/2) sino/2

- 2(1—-24)

<8rcosfsin(@—a/2)sina/2, (A=cos§=1/4);

[y—zI*=L*+r?—2Lrcoso,(y)
=(L—r)*+2Lr[1—cose,(y)] (L=2r)
S(L—r)?+4r*sin®@,(y). (20)
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By (17), (18) and (20), we have

r’—ly—ol?
[t

Sz ")

. 8r2 cos O sin(6 —«/4) sin(oc/4)j a(dy)
. 2x— 2" s[L—r?+4rsin?g, (]2 (21
{ o(dy) W (l)rSi"f"/z) u"" 2du
S[E—n7+47sin? o, )1~ 2 =P T = )
rsin(a/2)
an_z(l) Lj’ V" 2dy
L—r 0 (1 _+_41)2)n/2
< wn—z(l) 8cosOsin(0—a/2) v"_zdv .
(19)8r cos O sin (0 — o/2) sin(ct/2) o (1+40v2y2°
(22)
r*—|x—o,|*=rd(x); (23)
sin(x/4)
>
sin(a/2) ~ V. @4
By (14), (16), and (21)-(24), we have
2" 2d(x) sin (6 — o/4) sin (/A w,_ 5(1) 12 "2
K(x,z)= . ; )
w,_,(12"x—z|"sin(0— «/2) sin(2/2) § (1+4v?)"
n—1 1/2 n—2
> r i w,_,(1) v czivlz ‘ d(x) ‘ (25)
2w, (1) o (14+40%)"* [x—z"
So by (10), (13), and (25), if we take
. [ Cr 2nCa" exp(—2n) "o, (DYE U 2y
C,=min - > Am 22 |
d(D)2" rlexp(—n/2)—exp(—2n)]" 2'nw,_,(1) o (1+4v°)
we have
d(x)
K(x,z)gclm, for all xeD, zedD. [J
Lemma 2. There exists a constant Cy such that for all x, yeD,
d(x) 1
Gx,=Cy—— ——, 26
and
G(x,y)=C; d(x)d(y,,) . (27)
Ix—yl
Proof. 1t is known that
1 I'(n/2—1)
<4 - == )
|

25
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By Theorem 2.3 in [8], we have

d(x)

G(x, y)§C—,,T1-
Ix—yl

Since d(y) Zd(x)+|x— yl,

d(y)G(x, y) = d(x)G(x, y)+|x = JIG(x, y) = 4, d(x2~z +C d(xi—z-
Ix =l Ix—yl

(x) 1

d

Inequality (26) is proved.
For any x, ye D, take a point ze D such that |y—z|=d(y). Set

JO=6(Kx,z+t(y—2), 0=t=1.
G(x, ) =f()=f1)—f0)=10), 0=0=1)

- Y12 G2 -2

n

§Iy—2l{Z

i=1

a 2y1/2
6~y—iG(x,z+9(y—z))} }

d(x)
[x—(z+0(y—2)"

<n'2Cd(y) (since Theorem 2.3 in [5]).  (28)

If |x — y[>2d(y),
[x—(z+0(py—2)=|x—yl—I(y—2)(1-0)
Z|x—yl—dy)=3x—yl.

From (28), d( \il5)
X)a\y

G(x,y)<n'22"C £
Y x—yl

If |x— y| = 2d(y), also by Theorem 2.3 in [8],
dx) 2 d(x)d(y)

x—=y" P T Ix—yt

G(x,y)=C

Inequality (27) is proved. []

Similar to (4), we define the Green function corresponding the z-conditioned
Brownian motion as follows:

G.(% )= P.(t,x, )t (29)
0

So by (1) and (4), we have

G,(x,y)= G(x, »)K(y,2). (30)

1
K(x,z)
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Lemma 3. For any sub-domain D,CD such that 0D C0D,, we have
lgy)|

—y"?

sub | G,(x,y)lg(y)ldy<Csup |

D
zeaDo Do x€Dp Do l

where the constant C only depends on n and D.
Proof. For any given xe D, zedD, set
D, =(yeDy:ly—x|<|z—xl/2),
D,=(yeD,:ly—x|=|z—x|/2).
By Lemmas 1 and 2 and (30), we obtain

C,C, Ix—zI" d(x) d0y)
3, O a0y = = = ey | ey Ty 9O

GG, IX—ZI” | d(x)d(y) d(y)
C, dXx) p, lx=y" ly=2"

lq(y)ldy

c,C lgy)l d(y)? )

== 32"( y+

= Cv1 gll _y|n 2 j |n ‘Q(J/)l y
< GG ( lay)l lay)l )

2" —-dy + —d

= C, bfol =" Z 4 L{) z—y|" 2
C,C lg(y)l

< 2%3 An+1

= C 2 :Bz%ufo lx—yl”‘zdy' -

Now for any >0, set
D(0)=(xe D:d(x,0D)<9),
S(0)=(xeD:d(x,0D)=0),
B(d)=(xeD:d(x,0D)>J).

Lemma 4. There exists some 6, >0 such that for any 0<6=9,,

Slll)p EZe ,(Tpe) <4/3,
zedD

and
sup E¥e,(tp;)=4/3.

xeD(d)

Proof. For any xe D, measurable set D, CD and «>0, we have

j_ﬁl(_y_)Ldyé | 14w dy+a,,1_2jlq(y)ldy.

Do |x—)’ln_2 ]x—y[éalx—y'n—z

By definition (7), we can take some o >0 such that

lq)l
sup

xeD |x—y| <« lx_yln_z

dy=<1/(8C),

where C is given in Lemma 3.

27

(1)

(32

(33)

(34)
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[t is easy to see from (7) that {|g(y)ldy <+co. Then there exists some J,>0
such that for any 0<6=9J,. b

[ lg)ldy=e""2/(8C). (35)

D(J)
It follows from (33), (34), and (35) that
<140, (36)
xeD() D(3) [x—yl

By (29), Lemma 3, and (36), we have

TD(5)

sup EX | lqx)ldt< sup E [ [1p54(x,)ldt
0 xeD() 0

xeD(d)
ze0D zedD
=sup | G,(x,ylg(y)dy
xeD(d) D(3)
zedD
<Csup | Mdyél/‘L (37)

xeD(%) D(d) [x—yl"~ 2
For any xe D(), ze 0D, by the Markov property of z-Brownian motion and (37),
we have

Ele, (tpe)=1+ Y, E( ) lg(x, )l ...Iq(xtk)ldtl...dt,(>
k=1

0<t1<...<tx<TD()
s Y (/4)F=4/3.
k=0
Similarly, since

sup Ex<Dj6)|q(xt)|dt) < sup f G(x, y)lg(y)ldy

xeD(9) 0 xeD(3) D()

sup 4 Iq(—y)ldyél/4,

wen@) "o IXx—yI""?

IIA

for any xe D(d), we have
Exe|q|(71)(5))§4/3- O
Lemma S. If E¥e(tp)= 00 in D, then
u(x)=E%e(tp), xe D,

is a continuous function on D.
Proof. By Theorem 7 in [9], we have M = sup u(x) < + 0. Set

xeD

Glqu)(x)= | G(x, y)q(y)u(y)dy, xeD.

Since for any measurable set A CD,

£ G(x, y)lg(y)u(y)ldy =M £ G(x, y)lg(y)dy .,
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it follows from (7) and (33) that the integrals {f G(x, y)q(y)u(y)dy:ACD} are
A

uniformly absolutely continuous with respect to xe D. Hence it is easy to see that
G(qu)(+) is a continuous function on D.

Simulating the proof of Theorem 2.1 in [2], we have u= 14 G(qu). This shows
that u is continuous on D. [J

Lemma 6. If E¥e (1)) % o0, then there exists some 6,>0 such that for any 0=3<4,,
x€ B(6)\B(,), we have
2/3<E%e(tp;)=4/3.

Proof. Take an &>0 such that 2/3=(1—¢)/(1+¢)=(1+¢)/(1—¢e)<4/3. By
Lemma 5, there exists some §, >0 such that if xe D\B(J,), then

l1—esE%/(t;)<1+e.
For any 00 <4,, xe B(0)\B(6,),
I+ezE%e(tp)= E"{eq(‘th))E"(‘B“”)[eq(rD)]} 2(1—¢e)E%e (1),
1—e=< E%e (1) = E*{e (155) X[ (tp)1} = (1 +6)E¥e (Ty4) -

Honce a1/ +8) S e (tpp) S +0)(1—0)S4/3. O

Proof of Theorem 1. Set b=min(d,,6,), where J, and J, are given by Lemmas 4’
and 6, respectively. .
Since ¢(x)= P*[x(t )€ S(b)] is a continuous function on D(b) and ¢(z)=0 for
z€ 0D, there exists a number 0 <r<b such that for all xe D\B(r),
P*[x(tp,)eS(h)]<1/3. (38)

Set T, =0, .
T, =inf(t>0:x,¢B(r)),
T, =inf(t>T,,_, : x,¢D(b)),
2k. 2k—1 (kgl)
T2k+ 1 =111f(t> Tzk : x,¢B(r), Tzk <TD) :

We want to prove inductively that for any k=1,

sup E'e(Tyr 1) Tou <tp] <(8/9)". (39)

vesS(r)

Fig. 2




30 Zhongxin Zhao

When k=1, by Lemma 6, (38), and Lemma 4, (32), we have
sup E’le(Ty), T, <tp] = sup E’{e(T)E*"™[e(T,)], T, <t,}

veS(r) yeS(r)

<(4/3) sup E'e(T,), T, <tp]

yeS(r)

§(4/3){sup PXT,<tp)+ sup E’Ley(tpm)— 1]}

yeS(r)

<8/9.
Suppose (39) is true for k=1.
sup Ele Ty 3)s Thus 2<7pl

yeS(r)

= Sup E’{e,(T, )E"”“[e( Tos 1) Do <tpl, T, <tp}

<(8/9)" sup E’le(Ty), T,<1,]

§(8/9)"i L
By Theorem 7 in [9], M = ilelg E¥e (1)) < + 0.
For all xe B(r), by Lemma 6, we have
M2 Ee,ft,) = E¥{e,(T, BT, (1)1} 2 (2/3)E%e,(T,).

Then sup Ee,(T,)<(3/2)M (40)

xeB(r)

For all xe B(r), zedD, by Lemma 4, (31) and (6), we have

se (tp)= Z Efe,(tp) Tp=Tyl

8

> EX{e (T, - DENTar- 1)[eq(Tz)’ tp=T,1, Ty, <7p}

- k=1
<43 Y
k=1 K(x9 )
By the Harnack inequality, there exist two positive numbers b, and b, such that
for all xe B(r)uS(r), ze 0D, b, < K(x, z) = b,. Continuing the above inequalities and
using (39), (40),

( - KA Ty 1), 2), Tor— 5, <7p].

Ele (1)) = 2 Z E*le(Ty— 1), Th-,<7p]

1k1

é _3_ i T )EX(TI)[e ( 2k+ 1) T2k <TD]}
< ‘3‘— i (8/9)E*e,(T,)
4p 1
< %f(3/2)MW =18M(b,/b,). (41)
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For all xe D\B(r), ze 0D, by (41) and Lemma 4, (31), we have
Ele(t1p)=E;[e(Tpm) Tpe=Tp] +Eile,(1p), Tpp <7pl
S(4/3)+ EX{e (1) EXP e (tp)], Tpey <Tp}
<(4/3)+ 18M(b,/b,)E e (Tpp) Tom <Tpl
=(4/3)+24M(b,/b,). (42)
It follows from (41) and (42) that
sup Ele(t,)<+o00. [

zedD
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