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Abstract. We study the mass spectrum up to —7 (1 — ε) log/? of pure three-
dimensional lattice gauge theories with action β £ x(gP) for real irreducible χ

p

and small /?. Besides the lowest excitation mo~ — 4 log/?, we find two nearly
degenerate excited states mvm2 with m f ~ — 6log/? (i=l,2) and (mι—m2) at
least O(β).

1. Introduction

The existence of glueballs within QCD has been predicted already some time ago
by Fritzsch and Gell-Mann [1]. They are receiving increasing attention, in the
context of lattice gauge theories, since the pioneering work of Kogut et al. [2]. The
information concerning the mass spectrum in the lattice case has come mainly
from Monte Carlo calculations and strong coupling perturbation expansions. See,
e.g. [3, 4] and references given there. Using appropriate selection rules, excited
states have been obtained by locating the lowest excitation within each selection
sector, but the methods were not suitable to find states with the same quantum
numbers.

In two previous publications [5, 6], we started a nonperturbative study of the
glueball spectrum in pure gauge lattice models with the Wilson action

(1.1)
PCΛ

making the simplifying assumption that the character χ is real irreducible and the
space-time dimensionality is three (see Sect. 2 for notation). We found isolated one
particle states in the full energy-momentum spectrum of the theory, if β is small
enough. The particle mass mo(β) has the asymptotic behaviour mo(/?)~ — 4 log/? as
jβ->0 and is the only spectrum (besides the vacuum) up to the threshold
-6(l-ε)logj8.
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In the present paper, we investigate the mass spectrum up to the threshold
— 7(1 — ε)log/? and find precisely two excited states m^β), m2(β) with almost
degenerate masses: both mv m2 are asymptotic to — 6log/? as β-*0, and \m1—m2\
is at least O(β). The actual asymptotic behaviour of m1 — m2 is not determined in
this work although the methods developed here are suitable to calculate in
principle the power series expansion for the mass difference. These results are
derived under the same simplifying assumptions alluded to before but we believe
the methods can be adapted to handle more general cases.

We now explain briefly how the excited states are obtained. Precise statements
can be found in Sect. 2. The two-dimensional lattice quantum field theory
associated to the action (1.1) in three space-time dimensions has an obvious Z(4)
symmetry (corresponding to successive rotations R of π/2 around an axis parallel
to the time direction and through the center of a plaquette). This symmetry
induces a selection rule on the zero momentum states which can then be split into
a direct sum of four subspaces, each transforming according to the irreducible
representations of Z(4). We denote these representations by £, Av A29 A3. They
associate to the abstract group {R° = I,R,R2,R3}, respectively, {1,1,1,1},
{1, - 1,1, -1} , {1, i, -1, - i}9 and {1, - i, -1, i}. The methods developed in [5, 6]
are suitable to analyze only the lowest non-trivial excitation within each selection
sector. In this way, we show that there is no mass spectrum below —7(1 —ε)\ogβ
for vectors transforming according to A2 or A3. For vectors transforming as Av

there is exactly one excitation with mass m2(β\ asymptotic to — 6 log/? as β^O. On
the subspace corresponding to the identity representation, the method of [5, 6]
gives only the already known particle mo(β). To analyse excited states within this
subspace we implemented some ideas developed by Koch in the context of
continuum quantum field theories [7]. As it turns out, there is exactly one such
state [up to — 7(1— ε)log/Γ] with mass m^β), which is asymptotic to — 6 log/? as
β-+0; m^β) is obtained as the solution of a "perturbed" equation, whose
"unperturbed" solution is m2(β). The estimate on the mass difference given above
comes from this fact.

The organization of the paper is as follows. In Sect. 2, we give some definitions
and present the statements leading to the results above, without proofs. Almost all
of them require estimates on decay rates of appropriate Green's functions, which
were obtained by using the decoupling procedure of [5, 6] extended suitably to
handle the region of mass up to — 7(1 — ε) log β. The required theorems for this part
are given in Sect. 3. Finally, in Sect. 4, we give the missing proofs of Sect. 2.

2. Some Definitions and Main Results

We consider a d dimensional pure lattice theory with compact group G. A gauge
field configuration associates to each oriented bound tf = (xvx2) in TLd a group
element g^eG, with the convention gtf-i=gjx, where Z " 1 =(x29xί). If φ is a
continuous function depending only on a finite number of bond variables (φ has
"finite support)" we define the expectations

\Σ P ] Λ (2.1)
PCΛ
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where A C Zd is a finite set containing the support of φ and χ is a character from an
irreducible, unitary representation of G. The sum in the exponent is over all
plaquettes in A, and to each plaquette P we associate a complex number βp gP is
the oriented product of group elements along the boundary of P and dgΛ is a
product of Haar measures, one for each bond in A. ZΛ is a normalization factor,
such that <(l)(/t; {βP}) = 1. From the cluster expansion of Osterwalder and
Seiler [8], there are constants β0 (independent of A, φ) and Cφ (independent of A)
such that (2.1) is analytic and uniformly bounded by Cφ on \βP\<β(y Also,
truncated correlations have exponential decay rates: if the supports of φ, ψ are
separated by a distance d, then on |jβp| < β0,

Kφψ) (A {βp}) -<φXΛ; {βP})<ψ} (A {βp})\ :g C ^ ' M d (2.2)

for suitable constants M (independent of A, φ, ψ) and C'φtp (independent of A). In
addition, setting all βP = β, 0<β<βo the expectations (φ}(A;β) converge uni-
formly to (φ}(β) as A-^7Ld and define a probability measure dμ on the Baire
subsets Σ oϊ % = f\ G^ (infinite product of G with itself, one factor for each bond

t?CZd

in Έd). The "interacting measure" dμ is translation and time reflection invariant, so
that these operations are implemented on the "path space" $ = L2(!%,Σ,dμ) by
unitary operators, denoted U(x\ xeΈd and θ, respectively. The physical Hubert
space is the time zero "slice" of $, i.e. ^f = l}(9£, Σo, dμ), where Σo is generated by
continuous φ of finite support in the time zero hyperplane of Zd and a Feynman-
Kac formula holds for gauge invariant functions. Thus, for any φ.ψeJ^ gauge
invariant writing x = (xo,x) with xoeΈ, *

(φ, U(xo,x)ψ), = (φ9 U(-xo,x)ψ)< = (φ,e-HMe>* *ψ)*9 (2.3)

where H and P are the energy and momentum operators, respectively. See [6]
for more details on this formalism.

In the sequel, we only deal with gauge invariant functions of finite support in
the time zero hyperplane. We define

Gw(x) = {φ, U(x)ψ),-(φ, ί)/l,ψ)t, (2.4)

and

Gφψ(Po)=ΣGφψ(x0)eipoxo, (2.6)
xo

so that Gφψ(p0) is the usual Fourier transform of Gφψ(x) at zero momentum. From
(2.2), there exists a constant Cφψ such that for 0<β<βo,

φ ψ φ ψ (2.7)
X

Also, from (2.3), Gφψ(p0) has the integral representation

, (2.8)
(0,00) ( - π . π ] * " 1 COSnA0—COS/?0
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where dE(λo,λ) is the joint energy-momentum spectral measure. Thus, the
singularities of (2.8) are located at the spectrum of the energy operator at zero
momentum (plotted in the imaginary axis), the poles corresponding to particles. It
is the goal of this work to find the possible singularities of Gφψ(p0) up to the
threshold |Imp o | :g — 7(1 — ε)logβ, for arbitrary φ. The analysis can be carried out
due to the existence of selection rules operating on the zero momentum states. We
assume the space-time dimensionality d = 3 from now on.

From the invariance of the interacting measure under rotations of π/2 around
an axis parallel to the time direction and through the center of a plaquette, it
follows that

Gφφ(x0, x) = GR^ RJx0, Rx), (2.9)

where Ra denotes rotation along an axis through a and Rx is x rotated by π/2
around the origin. Thus, Gφψ(x0) = GRaψRaψ(x0). Actually,

Gφψ(x0) = GRaφtRbΨ(x0) (2.10)

for arbitrary a, b. This is because Rh = RaU(z) provided z = (a1—a2 + b2 — bv

a1+a2 — bί — b2) and so,

^Raφ, Rh\p\Xθ) = ^Raφ, RaU(z)ψ(Xθ) = Gφt U(z)ψ\Xθ) ~ ^φψ\Xθ) '

Now, define

- iRΛ - R2

a + ίR3

Ά).

Clearly, pV>pυ> = δiJP® and Σ ^ . ^ l Moreover, GP,)φJx0) = GφfPμx0\ so that
i

Gφψ(xo) = 0 if φ = PiJί

)φ, ψ = P(^ψ with z'Φj. This is the selection rule referred to
above. It reduces our problem to locating singularities of functions of the form
G<pιφι(Po)> 1 = * = 4 with φί = P^)

iφί for some â . As it turns out, the cases i = 3,4 are
the easiest to analyse [up to — 7(1—s) log/?]. Notice that since Gφφ(p0 + 2π)
= Gφφ(po) = Gφφ{-pol it is sufficient to restrict p ? to | R e p o | ^ π , I m p o ^ 0 , and in
this region the singularities can lie only in the imaginary axis, see (2.8). In the
following, we assume ε ^ 1/10, ρ0 ̂  1/2 and the character χ in (2.1) real irreducible.
The reality assumption simplifies the analysis of the problem under investigation.
See the beginning of Sect. 3, where we point out these simplifications.

Theorem 2.1. There exists βί Sβo such that for 0<β<βv Gφφ{p0) is analytic on

0 ^ - 7(1-ε)log/? if φ = P^φ for any a and i = 3,4. •

To analyse Gφ.φι(p0) with i= 1,2, we introduce the function χh(g) = χ(gw), where
gw is the oriented product of the six group elements along the boundary of the
elementary horizontal "window" located at the origin of the time zero plane.

Let χ1 =P(Q}χh, X2 = P{o}Xh' ̂ s w ^ t>e apparent from the next few theorems, the
study of the analytic structure up to | I m p o | ^ - 7 ( l - ε ) J o g β of Gφ2(p2(p0) is
completely analogous to the one developed in [5, 6] for Gφίφi(p0) up to |Imp o |
S —6(l—ε)logβ, the function χ2 replacing the elementary plaquette χ of the latter
case. Thus, we have
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Theorem 2.2. There exist positive constants fe1, k2, dv d2 and β2^β1

 s u c n t n a t if
0<β<β2,

kMiβf M ^ GX2X2(x0) £ k2(d2β)6 "*°". D

We define m2{β)= - lim {l/\x0\)\ogGχ2X2{x0\ so that lim m2(β)/-6\ogβ=l

and β2 can be chosen such that

. (2.11)

Let Γv (χ0) be the convolution inverse of — Gr y (xn). The existence of Γv „ is
A. 2, A, 2, ^ J\, 2, Λ. 2. ^ Λ 2 A» 2.

part of the following

Theorem 2.3. There exists β3Sβ2

 suc^ that for 0<β<β3, Γχ2χ2(p0) is analytic on

8. D

From this last result, Gχ2χ2(p0) is meromorphic on | R e p o | ^ π , 0 ^
^ — 7(1 — ε)logjS. Using the integral representation (2.8) and (2.11) it is easy to see
that GX2X2(p0) has precisely one simple pole at p0 = im2 (see [5, 9] for more details).
Thus, GX2X2(p0) has the form

/ N ^ sinhm9 7 sinhiΠ /η s

^ C P ) = v ( m ) + I ° / v 2 ( A o ) (212)^ C P o ) v 2 (m 2 ) Q + I
2 fθ _ 7 ^ _ | ^ l o

with v 2(m 2)>0 and dv2(λ0) = (2π)3\δ{λ)d(χ2, E(λo,λ)χ2)3r We write

( 2 1 3 )

Theorem 2.4. 77zere are constants k3, k4 and β4^β3 such that for 0<β<β4

(a) 0<v2(m2)</c3,
(b) H2{p0) is analytic on |Repo | ^ π , 0 ^ I m p 0 ^ - 7(1 -ε)logjβ and \H2(p0)\ ^ k 4

there. Π

T o s h o w t h a t p o = i m 2 i s t h e o n l y p o s s i b l e s i n g u l a r i t y o n | R e p o | ^ π , 0 ^ 0

^ — 7 ( 1 — ε ) l o g β o f Gφφ(p0) f o r a r b i t r a r y φ = P(£)φ, w e p r o c e e d a s i n [ 6 ] d e f i n i n g

0) = Gφφ(Po) + GφX2(p0)ΓX2X2{p0)GX2φ{p0).

By using a spectral representation analogous to (2.8) one shows that Gφχ2(p0) and
Gχ2φ{p0) are analytic in the region above, with the possible exception of a simple
pole at p0 = im2. Thus, the desired result for Gφφ(p0) follows from the next theorem.

Theorem 2.5. Assume 0<β<β3. Then, F(^(p0) is analytic on | R e p o | ^ π , 0 ^

We next study functions of the form Gφφ(p0), φ = P{^]φ. An analysis up to
\lmpo\S — 6(1— ε)\ogβ has already been done in [5,6]. Thus, in the theorem
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below we just summarize the results, without giving the corresponding proofs in
Sect. 4. These could also be obtained by adapting the proofs of Theorems 2.2, 2.3,
and 2.5.

We denote simply by χ the function corresponding to the elementary plaquette
located at the origin of the time zero plane, and by Γχχ(x0) the convolution inverse
of - Gχχ(x0).

Theorem 2.6. There exists β5ύβ^ such that for 0<β<β5, Gφφ(p0) is analytic on
|Rep o | ^ π , |Imp o | ^ — 6(1 — ε) log/? except possibly for a simple pole at p0 = imo(β).
Here φ^P^φ, mo(β)=- lim (ί/\x0\)logGχχ(x0)< -51ogj8, and in fact

lim mo(β)/( — 4logβ) = 1. In addition, JHyy(p0)
 ϊ 5 analytic in the region above. •

To investigate the analytic structure on — 6(1 — ε)logβ ^ Imp 0 ^ — 7(1 — ε) logβ
for general Gφiφι{p0) we consider first Gχχ(p0). We will show, to begin with, that
Γχχ(p0) is analytic on |Rep o | Sπ, 0 ^ I m p 0 ^ — 7(1 — ε) logβ except for a simple pole
at p0 = ίρ, \m2 — ρ| = 0(β) With additional estimates, we then show that fχχ(p0) has
also a simple zero nearby, at po = im1 with |m : —m2\ = O{β). Thus, ό χ χ(p 0) has two
simple poles, at po = imo and po = imv We next show that this is also the case for
Gχιχι(p0) (χx as defined before) and finally extend the result for general Gφιφί(p0).

Let

4 > o ) - Gχιχί(p0) + Gχιχ(po)Γχχ(po)Gχχι(Po) (2.15)

Since χ is expected to couple to all excited states with the same quantum numbers,
a naive analysis using the spectral theorem suggests that the subtraction from
Gχιχi performed in (2.15) should get rid of all physical poles (i.e. poles correspond-
ing to particles) in the function Fχιχi. The possible singularities of Fχιχi therefore
should be related to those of Γχχ. The next few theorems shows that this is indeed
the case.

Let Φχιχί(x0) be the convolution inverse of —FχιXί(x0). Its existence is proven
as part of the

Theorem 2.7. There exists β6t^β5 such that for 0<β<β6, Φχίχι(p0) is analytic on
| | Q

Thus, Fχιχi(p0) is meromorphic on the region above. From the work in [6], the
poles can only occur for ϊ m p o > — 6(1— ε)log/?. To find them, we introduce the
function

As will be seen, K play a role analogous to the Bethe-Salpeter kernel in [7]. Define
also

[see (2.13) and (2.14)].

Theorem 2.8. There are constants k5 and βΊύββ such that for 0<β<β7,
(a) K(p0) is analytic on | R e p o | ^ π , 0 ^ I m p o ^ - 7(1-ε)log/? and \K(po)\

7 there.

(b) |Γ2(Po)l = 2 o n t n e region ^/( a) •
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From the definition (2.16),

which can be written

XiX

or more explicitly

XixλPo) c o

0 l+K(po)Gχ2X2(po)

as

HΛi+ϊy-2

v2(m2)(l + Γ 2 Γ *
> s h m 2 - c o s p 0 1 ( ^

s i n h m 2 ' v x ' ± v

Hi(po) + H2(Po)

l + ηίpoJ+f^o)'

~ - 1
2*. 2> >

Lv 2(m 2)K

375

(2.18)

Thus, the singularities of Fχιχι(p0) on |Repo |^π, 0^Impo5g — 7(1—e)logj8 are
the same as the zeros of

coshm9 — cosz?0Notice that the entire function q(pn) = r4 has only two zeros in the
smhra2

strip (Repol^π, namely po= ±im2.

Theorem2.9. There exists β8^βΊ such that ifθ<β<β8, |v2(m2)(l + Γ2)~
 1K\^on

|Repo |^π, 0 ^ I m p o ^ — 7(1 —ε)log/?, and \g{po)\>l/2 on the boundary of this
region. •

From Rouche's theorem, it then follows that

Corollary 2.10. Fχίχi(p0) has precisely one simple pole on |Re/?0|<π, 0<lmp 0

<-7(l-e)logj8, ifθ<β<β8. D

From (2.15), the pole oϊ Fχiχi(p0) can lie only on the imaginary axis because, as
follows from the arguments in [9], Γχχ(p0) for |Rep o |^π is regular outside that
axis. We denote the pole by p0 = iρ.

Theorem 2.11. There are constants ζ and β9Sβ8

 sucn that if 0<β<β9, |v2(m2)
(1 + T2Γ

 XK\ < \g\ on the circle \p0 - im2\ = ζβ. D

Corollary 2.12. // 0 < β < β9, \m2 - ρ\ < ζβ. D

As remarked earlier, p0 = iρ is expected to be a pole of Γχχ(p0). To show that this
is indeed the case, define

LχJPo) = fχχ(po)Gχχi(po)ΦχιXί(po), (2.20)

and

4 > o ) = *XiXM)Gx

These two functions are actually the same because in general Gφψ(x0) = Gψφ(x0)
and χ, χ1 are real functions.
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Theorem 2.13. There exists a constant k6 such that if 0<β<βΊ, Lχχi(p0) is analytic

on |Repo |^π, 0 ^ I m p 0 ^ -7(l-ε)logβ and \Lχχi(p0)\^k6β2ε there. Q

Define M(p0) by the equation

4 4 ^ 4 . (2.22)
Theorem 2.14. M(p0) is analytic on | R e p o | ^ π , 0 ^ I m p o ^ - 7 ( l - ε ) l o g β if 0<β
<βΊ.

From this last theorem and (2.22), we see that the only possible singularity on
| R e p o | ^ π , 0^ImpoS — 7(1— ε)log/? of fzχ(p0) is po = iρ. To show that this is
indeed a singularity, we must check that Lχχι(iρ) + 0.

Theorem 2.15. There exists βί0^β9 such that for 0<β<β10, Lχχi(po) + 0 if \po

-im2\^l. •

We are now in position to find the zeros of Γχχ(p0). Inserting (2.18), (2.19) into
(2.22), we get

4 = J ^ K ) 4 u ( l + T2y%ιt + (LχχiH2(ί + %)- ' £ M + M)/]. (2.23)

From Theorem 2.6 we know that Γχχ(imo) = 0 and this is the only zero on 05jlmp 0

^ — 6(1 — ε) log/?. Thus, to find new zeros there is no loss of generality in restricting
p 0 to

Theorem 2.16. There are constants kΊ, βu^=β10

 such that if 0<β<βιl and |Rep o |

-'^JU^/β). D

Thus, the zeros of Γχχ in the region of Theorem 2.16 are the same as those for
the function

1 = / + ~ ~ m ~ _ 1 ~ ^^-=g + h

with / and g(/?0) as before [see definition after Eq. (2.19)] and

Theorem 2.17. There exists β12^βu such that for 0<β<β12, |h(p o) |^l/2 on
|Rep o l^π

? -51og^^Im/? 0^-7(l-ε)log^ and \g(po)\>l/2 on the boundary of
the same region. •

Because of (2.11), we know that g(p0) has precisely one zero in the interior of
the region above. Therefore, from Rouche's theorem, the same is true for Γχχ(p0).
Call this zero po = imv We have a result analogous to Theorem 2.11.

Theorem 2.18. There are constants η and β13ύβ12

 s u c n t n a t if ^<β<β\^ \n(Po)\
o)\ on\p0-im2\=ηβ. D



Glueball Spectroscopy 377

Corollary 2.19. IfO<β<β13, \mί-m2\<ηβ. D

The theorems above prove that on | R e p o | ^ π , 0rgImp o < — 7(1 — ε)logβ,
Gχχ(p0) has precisely two simple poles, at po = imo and po = imί. The next result
shows that this is also the case for Gχιχi:

Theorem 2.20. There exists βί4_^β13 such that ifθ<β<β14, Gχιχi(p0) has exactly
two simple poles on | R e p o | ^ π , 0 ^ I m p o < — 7(1— ε)log/f, namely po = imo and po

= imv Π

Finally, we extend this result to arbitrary Gφiφί:

Theorem 2.21. If 0<β<βl4 and φ = P(£)φ for some a, Gφφ(p0) is analytic on |Repo |
^ π , 0 ^ I m p o < — 7(1— ε)logβ except possibly for simple poles at po = imo, p0

= im2. •

3. Properties of Finite Volume Generalized Correlation Functions

The aim of this section is to calculate derivatives of

Gφψ(x,y Λ; {βP}) = <φ(x)ψ(y)> (A {ft,})- (φ(x)) <φ(j/)> (3.1)

with respect to βP for a suitable choice of these variables. See the beginning of
Sect. 2 for notation. This will be the main technical input to determine the domains
of analyticity of the functions introduced in the last section. As usual, we assume φ,
xp of finite support in the time zero plane and e.g. φ(x) denotes the translate of φ by
the lattice vector x = (χ0, x). We also assume the space-time dimensionality to be
three and that the character χ in (2.1) is real irreducible. This assumption is
responsible for the simple forms of Theorems 3.2 and 3.3 below. We use periodic
boundary conditions in the space directions only, and without loss of generality,
assume the region AdΈ? to be a rectangle along the coordinate axis. Setting all βP

equal to small β, the thermodynamic limit of (3.1) does not depend on this
particular choice of boundary conditions, as follows easily from the cluster
expansion [8].

The specific choice of {βP} variables we will adopt is the following. We set
βp = w

q f° r a ^ plaquettes P parallel to the time axis and located between t = q and
t = q+l. For plaquettes perpendicular to the time axis, we set βP = z. In terms of
duplicate variables, (3.1) can be written as

^ ψ » ^ ( " % % ^ ^ , (3.2)

where e.g. φ' is φ at g' and

sΛ(g,g')=Σw

q Σ (x(gP)+x(gp))+z Σ (X(0P)+X(9P))- ( 3 3)

The sum over q is only for times defined within A, ̂  is the set of plaquettes in A
parallel to the time direction and located between the time layers t = q, t = q + l,
and έ?1 is the set of plaquettes in A perpendicular to the time direction. Also,

g'Λ. (3.4)
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We want to find the structure of the coefficients of the power series expansion
of (3.2) in a particular variable wq. This has been done in [5, 6] up to the coefficient
of fifth order. For the present work, we need the coefficient of the sixth order as
well.

Write (3.3) in the form

SJg, g') = wqΣ (X(9P) + M P ) ) + S%>(g, g'), (3.5)
Pe&q

and let G(Λ) be the matrix whose elements are G(x, y A).
We will always assume |z|, \wq\ <β0 so that the results of the cluster expansion

applies to Gφψ(x,y;Λ).

Theorem 3.1.
(a) (5"/3<)| w ^ 0 G(yl) = 0 if l ^ m ^ 3 ,
(b) (d™/dw™)\Wq = oG(x,y;Λ) = 0 if xo^q<yo and

Proof. The numerator £f of (3.2) has the expansion

^= Σ V
with π = o n

(χ(gP)+χ(gf

P)))ndgΛdg'Λ. (3.7))ΛdgΛ.
Pe0 I

To calculate (3.7) we use the Peter-Weyl orthogonality theorem together with the
fact that (φ(x) — φ/(x))(ψ(y) — ψ/(y))exp(Si^)(g,g')) do not depend on the bond
variables parallel to the time direction and located between the time layers t = q,
t = q + l. Thus, £flq){x9y) = 0. When n = 2, it is clear that

χ, y) = Σ !S(Φ(χ) - Φ'(χ))(ψ(y) - wWes^(x(gP)2+χ{g'P)2)dgΛdg'Λ

Σ φ φ)x,y), (3.8)

where stf(A) is the number of plaquettes in 0*'^ (which is just four times the area of a
time layer). Similarly, when n = 3, the only terms giving a nonzero contribution in

the expansion of the third power in (3.7) are Σ # ( # P ) 3 a n c * Σ#fep)3 Therefore,
p P

^\x, y) = 2a^{Λ)^\x, y), (3.9)

where a = \χ{gγdg. The denominator in (3.2) has of course a similar expansion:

^ < ( 3 i o )

and 2>f = 2Mst(Λ)9}{$. (3.11)

From this, it follows immediately that

Gφip(x, y;Λ) = Gφψ(x, y Λ)\Wq = 0 + 0(w4

q), (3.12)

which proves part (a) of the theorem. Part (b) also follows from (3.12), since if

x0 S q ύ y0, then clearly Gφψ(x, y Λ)\ = 0 = 0 •
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The next theorem was established in [5, 6]. Its simple proof is reproduced here
for completeness. Let s0 denote the unit vector in the time direction.

Theorem 3.2. Assume xo^q^yo. There are constants c 4 > 0 and c5 such that
(m = 4,5)

dm

G ( Λ ) \ £ G(Wq to = q

Proof. Since ^q\x,y) = 0 from 0^rc^3, we have (m = 4,5)

Expanding the fourth power in (3.7) with n = 4, one shows that the only
4 4

nonvanishing contributions come from terms of the form f\ χ(gP) or J j χ(g'P)
ι = l i = 1

with the plaquettes {Pjf= x disposed along the faces of cube. In this case, the
product of characters can be integrated explicitly, yielding

4 4 -i

J Π X(9P) Π dg,= -μχ(gP5)χ(θp6)' (3.13)
ί = l « ? = 1 «

The integration above is performed only with respect to bond variables parallel to
the time direction, and P 5 , P 6 are the remaining faces (which are perpendicular to
the time direction) of the cube under consideration d is the dimension of the
representation defining χ. Thus, S^lq)(x, y) has the form

where c4 is just a combinatorial factor [divided by d4 from (3.13)], which counts
the number of terms arising from (3.7) associated to a fixed elementary cube in the
time slice t = q, t = q+l. This proves the theorem when m = 4.

When m = 5 we proceed as above with ^q\x, y). Expanding the fifth power in
5 5

(3.7), nonvanishing contributions come only from terms like fj χ(gP.) or f| χ(g'P)
i=l l i=l

with the five plaquettes disposed along the faces of a cube. The side carrying a χ2

term can be expanded in a Fourier series and the only term in this expansion
5 4

giving a non-zero contribution to the integral j Y\ χ{gP) Π dge comes from the
ί = l ί=l

component along χ. Thus, the result is proportional to (3.13) and the theorem is
proved also for m = 5. •

The sixth derivative of Gφψ(x, y A) has a richer structure:

Theorem 3.3. There are constants c6, cΊ (c7>0) such that if xoύq<yo, then

δ6

G { A ) \ X G(

4

+ C7 Σ Σ GφXί(x,t
i= 1 to = q

where Xi = P{QXh, l ^ i ^ 4 were defined in Sect. 2.
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Proof. We have

with

^ 6

( g ) U , )>) = Σ H SS(ΦM - Φ'(χ))(ψ(y) - v>'(y))

6

• eS(T Π (ήgP)+x(g'P))dgΛdg'Λ. (3.14)
i= 1

Expanding the product we see that cross terms of the form χ2χr4r or χ4χ'2 give
nonvanishing contributions proportional to jrf(Λ)&Ίq\x, y)/(2^)). Also the "pure"
terms χ6, χ'6 have contributions proportional to j/(Λ)S?lq)(x9 y)/{2^]). This

4

happens when the term is of the form χ2(gP) fj χ(gP) with {P.} disposed along the
i= 1

faces of a cube and P different frς>m the P 's. It is not difficult to show that the
terms proportional to s^(A)^^\x, y)/(2@$) add up to zero. This is to be expected,
since from the cluster expansion, Gφψ(x,y Λ; {wj,z) has a limit as Λ-+Z3, which is
analytic in each variable (the limit is attained uniformly on compact subsets of |wj,
\z\<β0). Then lim {de/dw6)\w =0G Jx.y Λ) exists, showing that extensive terms

Λ-+Z3 q

must cancel in the expression for the sixth derivative. There are still contributions
6

proportional to ^)I{2Θ{§)). This happens when all six plaquettes in Y[ χ(gP) are
ι = l

disposed along the sides of a cube. We then proceed as in the ^ q ) case by Fourier

transforming the plaquettes containing χ with a power higher than one. The sum

of all these terms gives a contribution to (d6/dw%)\w =0Gφψ(x,y;Λ) of the form

c6 Σ Gφχ(x, t;Λ)Gχψ(t + £O,y;Λ)\w = 0 for a suitable constant c6.

The other contribution from ^q)(x,y) come when the six plaquettes in
6

Π X(θpτ)
 a r e disposed along the faces of a parallelepiped. The calculation of such

terms is similar to the one corresponding to ^q\x,y). Let χh and χv be the
horizontal and vertical windows at the origin in the time zero plane. χh was defined
after Theorem 2.1, and χυ = Roχh. The contribution of these terms to ^ q ) is given
by

c'i Σ ίί(Φ(*)- Φ'M){ψ{y)~ψWeSΛ\xh(t)xh(t + h) + χv(t)χv(t + 50)

)x'v(t + *0))dgΛdg'A,

where cΊ is a combinatorial factor (divided by d6) analogous to c4 and therefore
positive. Thus, the final expression for the sixth derivative is

d6

G { Λ ) \ Σ G{

Ί Σ i°φχh^t Λ)GXhψ{t + ̂ y;Λ) + GφXυ(x,t Λ)GχJt + ̂ y;Λ)]\Wq = 0.
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This can be reexpressed in terms of χί9 1 S i ύ 4 by using the identity

Σ GφXι(x91 Λ)GXiψ(t + 209y;Λ) = £lGφχh(x, t Λ)GXhψ{t + ί o j M )
/= i

+ G^Cx, ί Λ ) G J ί + a0, y Λ) + Gφχh(x, t - ^ Λ)GXhψ{t-s.+^y A)

+ G φ χ > , ί - l 2 Λ)GZi; v(ί -22 + 209y;Λ)]9

where 2V e2 are the unit vectors along the horizontal and vertical directions,
respectively. Using the periodicity in the space directions and setting cΊ=2cf

7

completes the proof of the theorem. •

The partial Fourier transform (with respect to the space variables) at zero
momentum is defined by

Gφtp(χ0, y0

 Λ) = Σ Gφtp(χ> y>Λ)> ( 3 i 5 )
y

the sum being clearly independent of x due to spatial translation invariance of the
finite volume interacting measure (with complex parameters {wj, z). Let Gφψ(A) be
the matrix whose elements are Gφψ(x0, y0 A). We summarize the results obtained
in this section in the following

Theorem 3.4.

(b) If xo^q<y0, then

(c) There are constants c 4 > 0 and c5 such that if xo^q<y0, then

(<37<3w™)|Wq = 0 G ^ m = 4 , 5 .

(d) There are constants c6, c7>0 such that for xoύq<yo,

d6 ~
y s Gφψ(x0,y0;Λ)\Wq = 0 = c6Gφχ(x0,q A)Gχψ(q +ί9y0;Λ)\Wq = 0

2

+ C7 Σ GφXι(x09q;Λ)GXιV)(q+ί9y0;Λ)\Wq = 0.
i= 1

Proof We have only to explain why there is no contribution due to χ.5 i = 3,4 in
the last sum in (d). This is because, e.g.

GφX3(x0, y0 A) = £ G

φX3(
χ, y I A) = \ Σ ίG

φXh(x9 y A)
y y

+ iGφχv{x, y;A)~ Gφχh(x, y~eγ\A)- iGφXυ(x9 y-42;A)]=0. Π

4. Proof of Theorems in Sect. 2

In this section, the missing proofs of the results stated in Sect. 2 will be presented.
We start with the observation that an equation analogous to (2.9) holds even for
finite volume correlation functions depending on the complex parameters {w }, z.
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Namely,

Gφψ((x0, x), (y0, y)\Λ) = GRaφRaψ((x0, RΛx), (y09 Ray) A).

The reason is that the finite volume interacting measure (with complex parameters
{wq},z) is invariant under a rotation of π/2 around an axis parallel to the time
direction and through the center of a plaquette. Thus, the finite volume partial
Fourier transforms (3.15) satisfy Gφψ(xo,yo;A) = GRaφRaψ(xo,yo;A) and by the
same argument as in Sect. 2,

Gφψ(χ0, y0 Λ) = GRaφ RhΨ(χ0, y0 A)

for arbitrary a, b. Also, from the cluster expansion, if |wj, \z\ <β0, £ \Gφψ(x, y Λ)\
y

is bounded independent of x and A. We call this bound Cφψ [(2.7) thus follows
from this fact]. Setting all wq, z equal to the same β, 0<β<βo we have
lim3 Gφψ(x0, y0 A) = Gφψ(y0 - x0) defined by (2.4).

Proof of Theorem 2.1. If φ = P®φ with i = 3 or 4, then Gχφ(x0, y0 A)

= Gφχ.(x0, yo;A) = 0 for i=l,2. Hence, from Theorem 3.4, if xo^q<yo,

(dm/dw™)\Wq = oGφφ(xo,yo;A) = 0 for O ^ m ^ ό . From the maximum modulus

theorem, it then follows that \Gφφ(x0, y0 Λ)\ g Cφφ J ] 1%/̂ oΓ S e t t i n β a 1 1 %, z

equal t o / , 0 < £ < £ 0 and letting / ί ^ Z 3 , we get \6φφ(xΌ)\^Cφφ(β/β0)
7^. This

implies Gφφ(p0) to be analytic on \Impo\<-7\og(β/β0). Choosing β<βί=β$ε

I \guarantees that this region contains |Imp o | < — 7 1 — -IIogj3. Π

Proof of Theorem 2.2. From Theorem 3.4, we have if x0Sq<y0:

dm ~
γ {XQ,y0 A)\w = 0 = 0 for 0 ^ m ^ 5 , (4.1)

uwq •-2

and

y-β GχixMo> y* ^ ) l w β = o = C 7 G ^ 2 ( X 0 ) « Λ)GX2XM+t,yo'>
 AK=o (4.2)

As in the proof of Theorem 2.1, (4.1) implies that for 0<β<βo,

\G (x ) | ^ C (β/β ) 6 ! x o ! . (4.3)

On the other hand, setting xo = 0, yo = 1 in (4.2) yields

GX2X2& 1 lΛ {wj, z) = g- Gχ2X2(0,0 /t {wj g Φ 0, z)
Λ2Λ2 y ^ J Λ2Λ2 y y-r v

• GZ 2 3 f 2(l, 1 /I {wq}q Φ 0, z)wg + O(w7

0),

from which we get
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The right hand side is easily calculable, since

GX2X2(0,0;Λ;β=0) = GX2X2(ί,UΛ;β = 0) = l/2.

Letting Λ^Έ3, we conclude that

Thus, there exists β2^β1 such that

Gχ2X2(x0 = l)UcΊβ
6)/(8'6l)

if 0<β<β2. From the integral representation [arising from (2.8)],

<W*oH ί e-λ^dv2(λ0)
(0,oo)

(with dv2 a positive, finite measure) and Holder's inequality, we have (x 0 φ0)

GX2Jx0 = 1)1-1 = GX2Jx0)GX2X2(x0 = 0 ) ' - l " ' = GX2X2(x0)C^2-
1,

S 0 t t \|xo|

^J^ή ° (4.4)
The proof of Theorem 2.2 follows from (4.3) and (4.4). •

Proof of Theorem 2.3. We first show that the matrix Gχ2X2{A) is invertible if \wq\, \z\
are small enough. Let Pχ2X2(Λ) be the diagonal part of G^2X2(A)9 i.e. PX2X2(x0, 3>o IA)
= ό

χ2χ2(
χo,yolΛ)δXo>yo, and let QX2X2(Λ) be defined by GX2X2(Λ) = Pχ2X2(Λ)

+ QX2X2{Λ). From the fundamental theorem of calculus,

i ^ Λ

GZ2z2(xo»xo ^ { w J ' z ) = 2 + ί ^ 7 1 Gx2x2(
xo>*o'>A> iλwq}>λz)

o aλ

Restricting {wq}, z to |wj, \z\<β'0 = β0/N (N to be determined shorly), the
derivative above can be estimated by Cauchy's formula

^ G ^ ^ o ^ o ^ . U w ^ λ z ) - — JN ^-^2 dη.

Since 0^/1^1, we have

Tλ >
NC

1212

2 '

We choose N > 1 to be the smallest number for which the right-hand side above is
less than or equal to 1/4. This implies \\Py y (Λ)||^(l/4) so that Py y (A) is
invertible, and

Using |G,2 X 2(x0,y0 ^)l = C,2 Z 2 fΊ IV^ol 6 . we estimate \\QX2X2{Λ)\\ as follows:

= m a x Σ l δ M 2 ( x o ^ o ^ ) I ^ C X 2 ; f 2 m a x Σ ()8'1//ΪO)6 '--W '>
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assuming \wq\, \z\<β'v Thus

(β'Jβof

Choose β\ SβΌ such that \\QX2X2(Λ)\\ S1/8. Then \\PχiX2{Λ)- ιQxiχi{Λ)\\ g 1/2, and
GχM1{Λ) is invertible. Calling the inverse -Γχ2Xi{Λ), we have 11/^^^/1)11^8
if \wq\, \z\<β\. Since Gχ 2 ; f 2(xo,yo;/t)|W ( ! = o = 0 if xo^q<yo, the same is true for
Γχ2χ2(

χθ'yo>Λ)\Wq=0. From Leibniz's formula,

and Theorem 3.4, it follows immediately that

dm -

and ™* ' = °
dm - - dm ~

q q

Since (dm/dw™)\Wq = 0Gχ2χ2(x0,y0;Λ) = 0 if xo^q<yo and m = 4,5, the same is true

for (dm/dw™)\w =0Γχ2χ2(x0,y0;Λ). In addition, if xo^q<yo,

d6 -

Wq

d6 ~
= Σ ΓX2Jx09u0;Λ)-^GX2Ju09υ0;Λ)ΓX2Jv09y0;Λ)\Wq = 0

vo>q

= ci Σ fX2X2(x0>"o Λ)GX2X2(u09q A)GX2Jq + l9υ0;Λ)

' fχ2χ2(
vo> yo Λ)Lq = o = cΊδ(x0, q)δ(q + 1, y 0 ) . (4.5)

From the maximum modulus theorem,

and letting all wq, z be equal to β, 0 < β < β\:

8 ί ) 7 | x o " y o 1 i f K - y o l > l .

It is not hard to show that lim 4 χ 2 (x 0 > ^o' ̂ ) = 4 * 2 ^ 0 ~ xo) e χ i s t s a n ( ^ ^s ^ e

convolution inverse of - ό χ 2 / 2 ( x 0 ) . We have | f χ 2 χ 2 ( x o ) l ^ 8 ( ^ Ί ) 7 | x o 1 i f l^o l > 1

?

 s o

/ \that Γχiχ2(p0) is analytic on |Imp o | ̂  _ 7 1 - -1 logβ iϊβ< β\2/ε = β3. The proof is-1

complete. •

Proof of Theorem 2.4. (a) We have v2(m2)sinhm2/(coshm2 — l)f^Gχ2X2(p0=Q)

— Cχ2χ2>
 s o ^ a t v2(m2) = (^χ2χ2

C0^lm2' Choose β'2Sβ0

 s o small that cothm2

< j/5/2 (for later convenience) for 0<β<β'2.
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(b) From (2.14),

and |Imp o |^ — 7(1 — ε)log/?. Choose β'3^β0 so small (depending on ε) that

cosh[-7(l-ε)logj8]^^cosh|-7(l--Jlogj8

ΐovO<β<βf

3. Then,

|cosh/l0 — cospj ^cosh/ί0 — cosh Imp 0 }t\coshAo >\(coshl0 — 1)

if A 0 ^ - 7 ( l - | j l o g j 8 . Therefore |H 2 (Po)l^2G χ 2 χ 2 (p 0 =0)^2C χ 2 ; C 2 . Setting

β4 = min {j8'2, /?3, /?3} completes the proof of the theorem. •

Proof of Theorem 2.5. Consider the finite volume approximation of F^(x 0 ). In
matrix notation

F%(Λ) = Gφφ(Λ) + Gφχ2(Λ)Γχ2JΛ)Gχ2φ(Λ).

F{^(x0,yQ\A) is analytic on |wj, \z\<β\ (introduced in the proof of Theorem 2.3)
and bounded there by Cφφ + SCφχ2Cχ2φ. Also, if all wq, z are equal to β, 0<β<β'v

limJ%(xo,yo;A) = F%(yo-xo). Clearly, if xo^q<yo ^

From

m!

and Theorem 3.4, we see that (dm/dw£)F™(Λ)\Wq = o=0 if l ^ m ^ 3 , and that

'dvζ

dw™

if 4 S m ύ 6 . Since φ = P">φ, Theorem 3.4 implies (dm/dW;)\Wq = 0Gφφ(x0,yo;Λ) = 0, if
0 ^ m ^ 5 and x o ^ « < y o

 A lso (d2/dw%^0Gφφ(x0,y0;Λ) = CΊGφX2(x0,q;Λ)
• Gχ2φ(q + ί,y0;Λ)\w = 0, and a similar result holds for GφxvGχ2φ. Hence, using the
proof of Theorem 2.3 to calculate (dm/dw™)\Wι} = oΓχ2X2(xo,yo;Λ), we find
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yO'Λ) = ° for 0 g m ^ 5 and xQSq<y0- In addition,

vo^q

Σ Gφχ2(
χo> uo I Λ)fχ2χ2(w0> ^o ^ A)CΊGX2X2(v0, q

L UφX2(
X0>U0>

= 0.
Proceeding as in the proof of Theorem 2.1, we conclude that F{^(p0) is analytic up

/ ε\
to | Imp o |< — 7 log(/?//?!), which includes the region | I m p o | ^ — 7 1— -Jlogβ if
β < βf/ε = j33. The proof of the theorem is complete. • ^ '

Proof of Theorem 2.7. Consider the finite volume approximation to Fχiχi(x0):

FnxM) = GχιxM) + GχiM)ΓJΛ)Gχχi(Λ). (4.6)

We assume |wj, \z\<β5 (given in Theorem 2.6) which is so chosen that Γχχ(Λ) is
analytic there and ||/^χ(yl)|| ^ 4 (see [5] or proceed as in the proof of Theorem 2.3).
Thus, Fχιχi(Λ) is analytic on the region above and setting all wq, z equal to β, 0<β
<β5, lim FχίXi{x0, y0, Λ) = FχίXί(y0 — x0). As in the proof of Theorem 2.3, there

exists β'3^β5 such that GχiXί(Λ) is invertible for \wq\, \z\<β'3 and if -ΓχίXί(Λ)
denotes the inverse, ll^ i χ i(^)ll =8. Hence, we can write

- ΓχιXί(Λ)GχJΛ)Γχχ{Λ)Gχχι{Λ)).

Now Gnχ(Λ;{wq = 0}, z=0)=0, so that

The derivative can be estimated through a Cauchy integral as before. Thus, there

exists β'4ίβ'3 such that \\GXiX(A)\\, \\Gχχi(Λ)\\^lβ for \wq\,jz\<β'4. This implies

Fγ Ύ (Λ) invertible. Calling the inverse - Φv Ύ {A), we have ||ΦΎiyι(Λ)\\ ^ 16. Setting

all wq, z equal to β, 0<β<β'4, one can verify that lim ΦXίXί{x0, y0 \
 Λ) = φ

χiχί(yo

— x0) exists and is the convolution inverse of — Fχιχι(x0). We now verify the
analyticity properties of ΦχίXί(Po) From (4.6) and Theorem 3.4, it is clear that
FXίXί(x09 yo; Λ)\Wq = 0=0, if xoύqύyo. Also
and

dm -

3<

δm dm

+ Gχιχ(Λ)^^L(Λ)G

χχί(
ΛK = o+τ^Gχiχ(Λ)Γχχ(Λ)Gχχi(Λ)\w = 0 (4.7)
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for 4 ^ m ^ 6 . To calculate these derivatives, we need (dm/dw™)Γχχ, which can be
obtained as in the proof of Theorem 2.3:

hence, from Theorem 3.4, if x0 ^

dm -
(4.8)

and

-^—6 Γ x(x0, yo',Λ)\ 0 = c

C7 Σ

•lvo;Λ)Γχχ(vo,yo;Λ)\Wq = o. (4.9)

Inserting (4.8), (4.9) into (4.7), we find iϊ xo^q<yo

= 0 (m = 4,5),

and after a lengthy computation

d6 ~ ~
^Γ~6 Fxixi(xo> yo'>A) = ciF

XiXl(
xo> Q. \ Λ)FχίXM + !> ̂ o \ Λ ) \ W g = o

q Wq = 0

As in the proof of Theorem 2.3, these results imply (xoύq<yo)

^—-Φ χ i χ i(x o,y o;Λ)\W q = o = 0 if 0 ^ m ^ 5 ,

and

d6 -

By the same arguments as before, Φχιχί(p0) ^s t n u s analytic on |Imp o |

<-7\og(β/βf

4), which includes \lmpo\<-ill--jlogβ if β<β'lι\ Setting β 6

= jS^2^ completes the proof of the theorem. •

Proof of Theorem 2.8. Consider the finite volume approximation to K(x0):

K(Λ) = rx2X2(A) - ΦX2X2(Λ). (4.11)

We assume \wq\, \z\<β6 so that the bound ||X(/1)|| ^24 holds. Also, from the proof
of Theorems 2.3 and 2.7, if x0 ^ q <y0,

ι£)|w =oK(xo,yo;Λ) = 0, 0 ^ m ^ 5 .
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But also, due to (4.5) and (4.10)

d6 -
—rK(xo,yo;Λ)\Wq = o = 0 if xo^q<yo.

This implies in the usual way |K(.xo)| ^24(β/β 6) 7 | x o 1, and K(p0) is analytic on |Imp o |
ί ε\

< - 7 1 - - logβ provided β<β2

6

/ε. In addition, K(Λ; {wq = 0}, z = 0) = 0 and by

doing an estimate using the Cauchy formula as before, we find ||JK(Λ)||
^96max{|wJ/β6, \z\/β6}9 if \wq\9 \z\<βJ2. This is automatically satisfied if \wq\, \z\
<βl'\ since we assumed from the beginning that βo:gl/2 and ε 5̂  1/10. In
particular, \K(xo = 0)|^96(β/β6) for 0<β<β2

6

/ε. Hence, if | I m p o | ^ - 7 ( 1 - ε ) logβ,

) + 2 Σ exp(71og^-+|Imp0|)n
n=l \ Pβ / J

expWl-|jlogiϊ-7(l-e)logiϊjW

β6 l -expgεlog^)' 6 x ^ Λ FV2
7 / 7 \ 2 7

because βT<βη

τ< 1/2. Also, since ε ̂  1/10, β (̂  " I ε I < βJ 7 < β6, i.e. β/β6 < βl ε . We

thus have | K ( p o ) | ^ 4 8 0 ^ ε and therefore, from Theorem 2.4 |T2(p0)|^480/c4β
( 7 ε / 2 )

^1/2 if j8^j8'5 (this defines β'5). Letting /^ 7 =min{^ / ε , β'5} completes the proof of
the theorem. •

7

Proof of Theorem 2.9. From Theorems 2.4 and 2.8, |v2(m2) (1 + T2)~
 1k\^

on |Imp 0 | ^-7( l-e) logA 1 / )
for an appropriate /?'6. Let

5C = {p0 : Rep0 = π, 0 ̂  Imp 0 ^ - 7(1 - ε) logβ}

and
p 0 = - π, 0 ^ Imp 0 ^ - 7(1 - ε)

On yl£,

l^(Po)l= ( c o s n ^ 2 ~ cosp0)/sinhm2 ^ 1 — (l/sinhm2) > 1/2,

since from the proof of Theorem 2.4 cothm2 < ]/5/2 which implies l/sinhm2 < 1/2.
On BC, |gf(po)|= (coshm2 +cosh Imp o )/sinhm 2 ^l, and similarly on AD.

Finally, on CD,

\g(po)\2 = [cosh2m2 + cos2 Rep 0 + sinh27(1 -ε)logβ

— 2 coshm2 cos Rep0 cosh7(1 — ε) logβ]/sinh2m2

^ [(coshm2 — cosh 7(1 — ε) logβ)2 — l]/sinh2 m
2 — cosh 7(1 — ε) logβ) — l]/sinh m2

2^/cosh7(1-ε)logβ \2 !
^ r-j cothm2 - I .

V smhm2

 2) 4
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The right-hand side tends to infinity as β-^0. Thus, it stays bigger than 1/2 \ϊβ<β'Ί
Sβ'6 for an appropriate β'Ί. We set β8 = β'Ί to finish the proof. Q

Proof of Theorem 2.11. Let po = ίm2 + r, with \r\ = ζβ. ζ will be given explicitly
below. Then,

Po)\ = \r\ cothm2(l - cosr)/r + isinr/r\

and lim|gf(po)|/|r| = l. We choose β'sg>βs such that | r | g l and \g(po)\>(l/2)r. On
β-*0

the other hand, from the proof of Theorem 2.8,

\K(po)\^96\(β/β6) + 2 Σ exp[(71og08/j86) + m2
L B = I

From Theorem 2.2, rπ2S —6log(d1β), hence

\K(Po)\ S (β/β
w = l

if β<β9^β'8 is appropriately chosen. We set ζ = l92\_\/ββ + 4el{βΊ

6dl)\ so that
|£(po)|^(l/2)ίj8. In conclusion, we have \k(po)\S(l/2)ζβ = (V2)\r\<\g(po)\ and the
proof is complete. •

Proof of Theorem 2.13. Consider the finite volume approximations to Lχiχ(x0):

fΛ), (4.12)

where \wq\, \z\<β6, so that \\Φχιχι(Λ)\\£l6, \\GχJΛ)\\£CXιX, and \\Γχχ(Λ)\\£4,
hence \\LχJΛ)\\ S64Cχιχ. From (4.12) it follows that Lxix(xo, j ; 0 ; yl)| 0 = 0 , if x0

and (3m/3^)|We = oLJfIJt(yl) = 0, if I:gm;g3. Also,

A straightforward but tedius computation shows that

dm -
L J A ) l

l f x^<yo a n d 4 ^ m ^ 6 .

Thus, in the usual way this implies |L ; ( i ; ((xo) |^64C ; c i χ(^ 6) 7 | x o 1 iϊθ<β<β6 and
Lχίχ(po) analytic up to |Impo| < - 7(1 - ε/2) log/? if 0 < β <βΊ (remember j87 ^ j8|/ε).
Also, Lχιχ(Λ; {wq = 0}, z = 0) = 0. Proceeding in the same way as for K(Λ\ we
deduce, after an estimate using the Cauchy formula, that |Lχi/(xo = 0)|
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S256Cχiχ(β/β6) iϊO<β<βΊ, and this leads again as in the proof of Theorem 2.8 to

\Lχiχ(p0)\ S nS0Cχjh for |Impo| g - 7(1 - ε) logjS. D

Proof of Theorem 2.14. Let

Λ) (4.13)

w i t h \wq\, \ z \ < β 6 . T h e n \\Γχχ(A)\[^4, 1 1 4 x ^ ) 1 1 ^ 6 4 0 ^ a n d ^ x ^ χ ^
+ 4CχiχCχχi [see (4.6)], so that ||M(/t)|| SkM for and appropriate constant. Now, if

yφ one shows by direct calculation that

δm -
M(o,yo;Λ)\o = 0 for 0 ^

and

-^M(x09y0;A)\Wq = 0 = cmδ(x0,q)δ(q + l,y0) for 4 g r a ^ 6 .

This implies, as before, that \M(xo)\^kM(β/β6)
Ί]xo] if | x o | > l if 0<β<β6, and

therefore M{p0) is analytic on

|Imp 0 |<-7(l-ε/2)logj8 if 0<β<βΊ. D

Proof of Theorem 2.15. Consider

It is clear that

lim Gχxι(x0,xo;A; {wq = 0},z)/z
z->0

(d = dimension of the representation χ). Here, Pe and Pr are the left and right
plaquettes of the elementary horizontal window. From (4.12),

Lχχι(xθ9xo;A;{wq = 0},z)

= Γχχ(x0, x0 A {wq = 0}, z)

• G m ( x 0 , x 0 /t {wg = 0}, z)Φ χ i χ i(x 0, x 0 /I {wq = 0}, z),

and hence ~
limz Z//;c i(x0,xo',A; {wq = 0},z)

z->0 ZXi 0' 0> » «

Using the fact that (d/dwq)\w =oLχχi(A) = 0 for all q, the above result implies

d - 4
rfβ XXi ' 0 ' ' q J ^ - ^ '



Glueball Spectroscopy

from which follows (taking the thermodynamic limit)

d - 4

391

We choose β<β'9(^β9) so that \Lχχi(x0=0)\^(2/d)β.
Now, consider Lχχί(xo = 0, yo = ί A; {wq = 0}q + 0, z = 0). We claim that this is

identically zero as a function of vv0. The reason is that Gχχi(x0, yo;A;{wq = 0}qΦO,
z = 0) = 0 for all x0, y0. This is clear if x0 < 0 or y0 > 1 (or vice-versa), but is also true
when x0 =0 and yo = ί because integrals of the form

fχ(0,0)χh(l,x)expwo Σ χ(gP)]dg

vanish identically as is easy to see.
Write

with

n = 7

(4.14)

From the remark above, hn(A; {wq =
the same β in (4.14), we get

= 0) = 0 Vw. Setting all wq, z equal to

n = 7

and /zn(/l 8̂ = 0) = 0. From this, we get the important result

L ( 0 lAβ)\ 0

which implies, if \β\<β6:\LχJx0=09 yo = ί; A)\^64Cχχi\β/β6\
8. This bound

carries to the infinite volume limit:

Now, suppose p0 = ίm2 + r, with \r\ ^ 1. Then,

Σ
|xo| =

Σ

χi J exp[(7log
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where we used results from the proof of Theorem 2.13. Proceeding now as in the
proof of Theorem 2.11, using m2 ^ —6log(d1β), we get

<128CV

<128CV

Thus, if β<β'9, we have

fild\

(eβ/βldj)

e \i( e

β*d*)J ψ6d\\

\LχJp0U(2/d)β-kLβ2,

if β<β9.

and we choose βlo^β'9 so that \Lχχί(po)\>0 for 0<β<β10. Π

Proof of Theorem 2.16. First, notice that iϊO<β<βΊ, \Lγy HJ1 + %)' 1LV γ\^aβlc

for some constant α and |Imp o | ^ — 7(1 — ε)log/J. This follows from Theorems 2.4,
2.8, and 2.13. From the proof of Theorem 2.14, \M(xo)\^kM{β/β6)

Ίlxo] if | x o | > l .
Thus,

M(po) = M(xo=0)+ Σ M(x o y p o X o + ̂ i (Po) s (4.15)
|xol = l

with M^Po) = Σ M(xo)eipoxo being bounded on |Imp o | ^ - 7(1 - e) loĝ S by

IM^Po)^ Σ /c M exp[(71og(^ 6 )-7(l-ε) log^) |x 0 | ]^4/c M ^ 7 ε

(as in the proof of Theorem 2.8). Now, from the definition (4.13),

so that lim M(xo = 0)=— 1. Also, from the results in the proof of Theorem 2.15,
0-0

From the proof of Theorem 2.7, we know that

Also, from

=()) is o(w6

0).

we have
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i.e.

fχχ{x0=0,y0 = l;Λ;{wq = 0}qΦθ9z = 0) = O(wt).

Therefore,

lim W-AM(x0=0,y0 = l;Λ;{wq = 0}q^0,z = 0) = cJ4\,
wo^O

which implies

]imβ-*M(xo=0,yo = l;Λ;β) = cJ4l.
β-*0

In this last expression, M is calculated setting all wq9 z equal to the same β. Taking
the thermodynamic limit, we conclude that

l im^M(x o = l ) = - c 4 .

Now, from (4.15)

|

Since I m p 0 ^ — 51ogβ, |cosp0|^sinh( — 5 log/?) and hence,

\M(po) + LχχιH2(l + f2y
ιLχJ

^ 2\M(x0 = 1)| sinh( - 5 log j8) - (\M(x0 = 0)| + 4kMβΊε + aβΊε)

and we can choose β<β11^β10 such that the right hand side is bigger than
cj(5lβ). D

The proof of Theorems 2.17 and 2.18 are very similar to the ones for Theorems
2.9 and 2.11, after using the bound in Theroem 2.16. We therefore omit them.

Proof of Theorem 2.20. From (2.15), G y i y i =FYiY-GyiYΓγγGYYi and the possible
singularities of G/lXΛ on0:glmp0:§ — 7(1 — ε)logβ, |Rep o |^π arepo = ιmo, imί and
IQ. We show that Gχιχι is regular at po = ίρ:

]im(po-iρ)GχιXι= lim (Po~iρ)Fχιχι

-GxJig)GXXl(iQ) lim (Po-iρ)Γχχ. (4.16)
Po^iQ

On the other hand, from (2.22)

lim (p0 - ίρ)f =L (ίρ)L (ίρ) lim (p0 - iρ)F . (4.17)
PO-+IQ PO-+ΪQ

Since

f =Γ G Φ —ίϊ F T -\-M)G Φ
^χχi 1 xx^xxixixi ^xxiΓ XiXi^xxx^ lvl^xxixixχ

we have (remembering that

Φχiχί(iρ) = 0): LχJiρ) = - ί/Gχχi(U>). (4.18)
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Taking (4.17) and (4.18) into (4.16) shows that lim (p0-iρ)G =0. Thus, the

only possible singularities are po = imo,ίmv We show that these are indeed
singularities of GχίXί. For suppose Gχiχ is regular at po = imί. Then, from
Lχiχ

 = ΦχίχfiχiχΓχχ we would get Lχiχ{ίm1) = 0, which is impossible due to
Theorem 2.15 since \mί — m2\ = O(β). Similarly, if GXlX is regular at po = imo then

/ β \7|xo|

Lχiχ(imo) = 0. But recall that \Lχiχ(x0)\S64Cχιχ(~-\ (from the proof of

Theorem 2.13) and lim (l/β)Ly y(x0 = 0) = 4/d (proof of Theorem 2.15). Thus, from

and the fact that m0 ~ — 4 log/? as /?-»0, it is clear that Lχίχ(ίm0) φ 0 if β > 0 is small
enough. •

Proof of Theorem 2.21. Introduce the function

where

= G -\-G Γ G +F Φ F

+ G<PXΓXXGXXI '

By going to the finite volume approximation, one can show by direct but tedious
calculations that if x0 ^ q < y0,

Thus, F^ is analytic on |Imp o | < — 7(1 — ε) logβ and the only possible singularities
of Gφφ on this region are therefore p0 = irn0, imv iρ. To show that Gφφ is regular at
iρ, we calculate

0 = lim (po-iρ)Gφφ + Gφχ(iρ)Gχφ(iρ) lim Γχχ

+ I" lim (po-ίρ)Fφχι\ lim — ^ ^ - ί lim (po = iρ)Fχiφ\. (4.19)

Notice that e.g.

lim (p0 - ίρ)Fφχι - Gφχ(iρ)Gχχi(ίρ) lim (p0 - zρ)f^, (4.20)
Pθ~^lQ Pθ~*ΪQ

hence

(4.21)

Taking (4.20), (4.21) into (4.19) completes the proof of Theorem 2.21. •
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