Communications in
Commun. Math. Phys. 92, 369-395 (1984) Mathematical
Physics

© Springer-Verlag 1984

Glueball Spectroscopy
in Strongly Coupled Lattice Gauge Theories

Ricardo S. Schor* **

Max-Planck-Institut fiir Physik und Astrophysik, Werner-Heisenberg-Institut fiir Physik,
D-8000 Miinchen, Federal Republic of Germany

Abstract. We study the mass spectrum up to —7 (1—¢) logf of pure three-
dimensional lattice gauge theories with action ) x(gp) for real irreducible y
P

and small f. Besides the lowest excitation m,~ —4logf, we find two nearly
degenerate excited states m,, m, with m;~ —6logf (i=1,2) and (m, —m,) at
least O(p).

1. Introduction

The existence of glueballs within QCD has been predicted already some time ago
by Fritzsch and Gell-Mann [1]. They are receiving increasing attention, in the
context of lattice gauge theories, since the pioneering work of Kogut et al. [2]. The
information concerning the mass spectrum in the lattice case has come mainly
from Monte Carlo calculations and strong coupling perturbation expansions. See,
e.g. [3,4] and references given there. Using appropriate selection rules, excited
states have been obtained by locating the lowest excitation within each selection
sector, but the methods were not suitable to find states with the same quantum
numbers.

In two previous publications [5, 6], we started a nonperturbative study of the
glueball spectrum in pure gauge lattice models with the Wilson action

S,=p Z Rex(gp) (1.1)

PCa
making the simplifying assumption that the character y is real irreducible and the
space-time dimensionality is three (see Sect. 2 for notation). We found isolated one
particle states in the full energy-momentum spectrum of the theory, if # is small
enough. The particle mass m,(f5) has the asymptotic behaviour my(f)~ —4logp as
f—0 and is the only spectrum (besides the vacuum) up to the threshold

—6(1—¢)logp.
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In the present paper, we investigate the mass spectrum up to the threshold
—7(1—¢)logp and find precisely two excited states m,(B), m,(B) with almost
degenerate masses: both m,, m, are asymptotic to —6logf as f—0, and |[m, —my,)|
is at least O(p). The actual asymptotic behaviour of m, —m, is not determined in
this work although the methods developed here are suitable to calculate in
principle the power series expansion for the mass difference. These results are
derived under the same simplifying assumptions alluded to before but we believe
the methods can be adapted to handle more general cases.

We now explain briefly how the excited states are obtained. Precise statements
can be found in Sect.2. The two-dimensional lattice quantum field theory
associated to the action (1.1) in three space-time dimensions has an obvious Z(4)
symmetry (corresponding to successive rotations R of 7/2 around an axis parallel
to the time direction and through the center of a plaquette). This symmetry
induces a selection rule on the zero momentum states which can then be split into
a direct sum of four subspaces, each transforming according to the irreducible
representations of Z(4). We denote these representations by E, 4,, 4,, A;. They
associate to the abstract group {R°=IR,R% R3}, respectively, {1,1,1,1},
{1,—1,1,—1}, {1,i,—1,—i}, and {1, —i,—1,i}. The methods developed in [5, 6]
are suitable to analyze only the lowest non-trivial excitation within each selection
sector. In this way, we show that there is no mass spectrum below —7(1 —¢)logp
for vectors transforming according to 4, or A;. For vectors transforming as 4,
there is exactly one excitation with mass m,(f), asymptotic to —6logf as f—0. On
the subspace corresponding to the identity representation, the method of [5, 6]
gives only the already known particle m,(f). To analyse excited states within this
subspace we implemented some ideas developed by Koch in the context of
continuum quantum field theories [7]. As it turns out, there is exactly one such
state [up to —7(1—e¢)logf] with mass m,(f), which is asymptotic to —6logpf as
B—0; m, () is obtained as the solution of a “perturbed” equation, whose
“unperturbed” solution is m,(f). The estimate on the mass difference given above
comes from this fact.

The organization of the paper is as follows. In Sect. 2, we give some definitions
and present the statements leading to the results above, without proofs. Almost all
of them require estimates on decay rates of appropriate Green’s functions, which
were obtained by using the decoupling procedure of [5, 6] extended suitably to
handle the region of mass up to —7(1 —¢)log . The required theorems for this part
are given in Sect. 3. Finally, in Sect. 4, we give the missing proofs of Sect. 2.

2. Some Definitions and Main Results

We consider a d dimensional pure lattice theory with compact group G. A gauge
field configuration associates to each oriented bound ¢ =(x,,x,) in Z* a group
element g, G, with the convention g,-,=g, !, where /™ '=(x,,x,). If ¢ is a
continuous function depending only on a finite number of bond variables (¢ has
“finite support)” we define the expectations

oYU (Ba)= - [9lg)exp| T By Rexlyy)

Pca

dg ., (2.1
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where A CZ* is a finite set containing the support of ¢ and y is a character from an
irreducible, unitary representation of G. The sum in the exponent is over all
plaquettes in A, and to each plaquette P we associate a complex number f,; gp IS
the oriented product of group elements along the boundary of P and dg, is a
product of Haar measures, one for each bond in A. Z , is a normalization factor,
such that {1)(A4;{fp})=1. From the cluster expansion of Osterwalder and
Seiler [8], there are constants f, (independent of 4, ¢) and C,, (independent of A)
such that (2.1) is analytic and uniformly bounded by C, on |B|<f,. Also,
truncated correlations have exponential decay rates: if the supports of ¢, p are
separated by a distance d, then on |f,|<f,,

[<ow> (45 {Bp}) — <o) (4; {Be)<wd (A5 {BpDI S Cpppre ™™ 22

for suitable constants M (independent of 4, ¢, y) and C,,, (independent of A). In
addition, setting all f,=f, 0<f<f, the expectations {¢)(A;p) converge uni-
formly to {¢>(B) as A—>Z* and define a probability measure du on the Baire

subsets Z of = || G, (infinite product of G with itself, one factor for each bond
¢cz?
in Z%. The “interacting measure” dyu is translation and time reflection invariant, so

that these operations are implemented on the “path space” &=I*(Z,Z,du) by
unitary operators, denoted U(x), xeZ* and 0, respectively. The physical Hilbert
space is the time zero “slice” of &, i.e. # =I[*(Z, X, du), where X, is generated by
continuous ¢ of finite support in the time zero hyperplane of Z* and a Feynman-
Kac formula holds for gauge invariant functions. Thus, for any ¢, pe# gauge
invariant writing x =(x,, x) with x,€Z, xeZ*" 1,

(@, U(xg, X)9)s = (@, U(— X, X)) =(p, e Tl xyp) (2.3)

where H and P are the energy and momentum operators, respectively. See [6]
for more details on this formalism.

In the sequel, we only deal with gauge invariant functions of finite support in
the time zero hyperplane. We define

G,,(X)=(0, UX)p)s— (@, 1) (1,9)s, (2.4
qu(xo) = Z G(pw(xo’ x), (2.5

and
Goy(Po) =Y. G, (xo)eo, (2.6)

so that (N;W(po) is the usual Fourier transform of G,,(x) at zero momentum. From
(2.2), there exists a constant C,,, such that for 0<g <8,

Y6, xI=C,,. 2.7)
Also, from (2.3), Gw(po) has the integral representation

Gwp (po)=CnP | sinh 4,

o(M)d Ags A .8
(020 (-n,n]d—l COSh/lO-COSpo ( ) ((p’E( 0> )(p)_;fa (2 )
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where dE(4,,A) is the joint energy-momentum spectral measure. Thus, the
singularities of (2.8) are located at the spectrum of the energy operator at zero
momentum (plotted in the imaginary axis), the poles corresponding to particles. It
is the goal of this work to find the possible singularities of G, (p,) up to the
threshold |Imp,| = —7(1 —¢)logp, for arbitrary ¢. The analysis can be carried out
due to the existence of selection rules operating on the zero momentum states. We
assume the space-time dimensionality d =3 from now on.

From the invariance of the interacting measure under rotations of /2 around
an axis parallel to the time direction and through the center of a plaquette, it
follows that

Gpy(X0s X) = Gp_y, g, (X0, RX), (2.9)

where R, denotes rotation along an axis through a and Rx is x rotated by n/2
around the origin. Thus, G, (x,)= Gr,y, r,v(Xo)- Actually,

é(plp(XO) = éRa(p, Ry, lp(xo) (2 10)

for arbitrary a, b. This is because R,=R,U(z) provided z=(a, —a,+b,—b,,
a,+a,—b,—b,) and so,

A

GRan,wa(xO) = GRa(p,RaU(z)tp(xo) =Gy, vyy(X0) = G (X0
Now, define
PO =(1/4)(1+R,+R2+R3), P =(1/4(1—R,+R2Z—R3),
P =(1/4)(1+iR,—R2—iR}), P®=(1/4)(1—iR,~R2+iR3).

Clearly, P?PY =6, P¥ and )’ PY=1. Moreover, (A}P;.W,w(xo):(A}(,,,Péi)(xo), so that

G,,,W(xo)=0 if 9=P%¢, p=PPy with i=%j. This is the selection rule referred to
above. It reduces our problem to locating singularities of functions of the form
Gq,‘q,‘(po) 15i<4 with ¢, = P‘"q)l for some a;. As it turns out, the cases i=3,4 are
the easiest to analyse [up to —7(1—¢) logﬂ] Notice that since G(M,(pO +2m)
—Gw(po) Gw( Do), it is sufficient to restrict po to |Rep0{<n Imp,=0, and in
this region the singularities can lie only in the imaginary axis, see (2.8). In the
following, we assume ¢ < 1/10, 9, <1/2 and the character y in (2.1) real irreducible.
The reality assumption simplifies the analysis of the problem under investigation.
See the beginning of Sect. 3, where we point out these simplifications.

Theorem 2.1. There exists i, <, such that for 0<f<p,, GW(pO) is analytic on
[Repol =7, 0SImp,< —7(1—¢)logB if ¢=PYP¢ for any a and i=3,4. [

To analyse Gsz.«p,(Po) with i=1,2, we introduce the function y,(g) =x(g,,), where
gw 1s the oriented product of the six group elements along the boundary of the
elementary horizontal “window” located at the origin of the time zero plane.

Let x, =Py 1, =P§ %, As will be apparent from the next few theorems, the
study of the analytic structure up to |Im Po| < -7(1—¢)logp of Gq,zm(po) is
completely analogous to the one developed in [5, 6] for G(M,](po) up to [Imp,|
< —6(1 —¢)logp, the function x, replacing the elementary plaquette y of the latter
case. Thus, we have
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Theorem 2.2. There exist positive constants k,, k,, d,, d, and f, <, such that if
0<p<p,,

kl(dlﬁ)6|XO|éé;(zlz(xO)ékz(dzﬁ)G IXOI' D
We define m,(f)= — | lilm (1/1x,)) 108G, .. (x,), so that lim m,(B)/—6logf=1
xp| =0 B-0
and 5, can be chosen such that
—Hlogf<m,(B) < —%logﬁ , (2.11)

(x,). The existence of I’ [,y 18

X2X2

Let I mz(xo) be the convolution inverse of —

part of the following
Theorem 2.3. There exists f;=f8, such that for 0<f<p;,
[Repyl <7, 0=Imp, =< —7(1 - 5) logB. O

X212

xzxz(po) is analytic on

From this last result, (N?mz(po) is meromorphic on [Repy|=n, 0=Imp,

—7(1—¢)logB. Using the integral representation (2.8) and (2.11) it is easy to see

that me(po) has precisely one simple pole at p, =im, (see [5, 9] for more details).
Thus, G,_, (p,) has the form

X2X2
sinhm, < sinh A,

U TSI —— ——dv,(4 2.12
coshm,—cosp, (1 S)ioss coshi,—cosp, v,(4o) (2.12)

Gmxz(l)o) =v,(m,)

with v,(m,)>0 and dv,(1,)=(27)* [ d(M)d(x,, E(Ag, M),), We write

~ sinhm
H,(po)=vy(m,) =" —CZOSp , (2.13)
2 0
N @ sinh/,,
H,(po)= ) md%(io)' (2.14)

=7(1~%)toes
Theorem 2.4. There are constants ky, k, and f, < B, such that for 0<f<p,
(@) 0<vy(m,)<ks, .
(b) H,(p,) is analytic on |[Repo|<m, 0=Imp, < —7(1 —e¢)logp and |H ,(py)| <k,
there. [J

To show that p,=im, is the only possible singularity on |Re pol =n, 0=Imp,
< —7(1—¢)logp of G,,(p,) for arbitrary ¢ =PP¢@, we proceed as in [6] defining

FO0)=G,,(po)+ G, (06)T ., (P0)G0(Po) -

By using a spectral representation analogous to (2.8) one shows that G(p)(z(po) and
G,,,(po) are analytic in the region above, with the possible exception of a simple
pole at p, =im,. Thus, the desired result for G »(Po) follows from the next theorem.

Theorem 2.5. Assume 0<f<p,. Then, F2(p,) is analytic on |Rep,|<m, 0=Imp,
< -7(1—¢)logh. O

We next study functions of the form Gw(po), ¢=PP¢. An analysis up to
[Impy| = —6(1 —¢)logf has already been done in [5, 6]. Thus, in the theorem
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below we just summarize the results, without giving the corresponding proofs in
Sect. 4. These could also be obtained by adapting the proofs of Theorems 2.2, 2.3,
and 2.5.
We denote simply by x the function corresponding to the elementary plaquette
located at the origin of the time zero plane, and by I, (x,) the convolution inverse
Gxx(xo)

Theorem 2.6. There exists s < f, such that for 0<f<ps, G 00(Do) is analytic on

[Repol =7, Imp,| < —6(1—¢)logf except possibly for a szmple pole at po=imy(p).

Here ¢=PPo, myf)=— lim (1/Ix,))logG,,(x,)< —5logP, and in fact
|xo]—= o0

lim my()/(—4logp)=1. In addition, fxx(l’o) is analytic in the region above. []
8-0

To investigate the analytic structure on —6(1 —¢)logf<Imp, < —7(1—¢)logf
fgr general G, , (p,) we consider first Gxx(pO)‘ We will show, to begin with, that
L, (o) is analytic on [Repy|=m, 0=Imp, < —7(1 —¢)log B except for a simple pole
at po=ig, Im, —o|=0(B). With additional estimates, we then show that I’ (p,) has
also a simple zero nearby, at p,=im, with |m, —m,|=0(p). Thus, G (po) has two
simple poles, at p, =im, and p,=im,. We next show that this is also the case for
Gmﬁ(pO) (x, as defined before) and finally extend the result for general G, , (p,).
et

ﬁ)mm(po) = wau(po) + émx(po)fxx(po)éxm(po) . (2' 15)

Since y is expected to couple to all excited states with the same quantum numbers,
a naive analysis using the spectral theorem suggests that the subtraction from
le 2, performed in (2.15) should get rid of all physical poles (i.e. poles correspond-
ing to particles) in the function F . The possible singularities of F, , therefore
should be related to those of F The next few theorems shows that this is indeed
the case.

Let @, . (x,) be the convolution inverse of —F, xl(xo) Its existence is proven
as part of the

Theorem 2.7. There exists s < fi5 such that for 0<f<f, @
[Repyl <7, 0<Imp,< —7(1—¢)logf. [

xm(po) is analytic on

Thus, F «1x1(Po) 1s meromorphic on the region above. From the work in [6], the
poles can only occur for Imp,> —6(1 —¢)logf. To find them, we introduce the

function i
K(po)=T,,,,(p)) = ,,,(po)- (2.16)

As will be seen, K play a role analogous to the Bethe—Salpeter kernel in [7]. Define
also
T(po)=K(po)H{p,), i=1,2 (2.17)

[see (2.13) and (2.14)].

Theorem 2.8. There are constants ks and B, < B4 such that for 0<B<p.,
(a) K(po) is analytic on |Rep,| < <7t 0=Imp,=< —7(1—¢)logpf and |K(p,)|

Skspl2 2 there.
(b) ]T (po)| =% on the region of (a). [
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From the definition (2.16),

?xzngpo) _ 1:11(~po)+ﬁ2~(po)
1+ K(po)G,,,,(p0) 1+ Ti(po) + Ty(po)’

FXle(pO) =

which can be written as
H,(1+T,) 2
[I+1+T) 'T,]

Fp(00)= +H,(1+T)7",

or more explicitly

vy(my) (1+T,) "2
coshm, —cosp,

F,,.00)= +H,(1+T) . (2.18)

1+T,)°t K
sinhm, A T) valmy)

Thus, the singularities of F (po) on [Repo|=7m, 0<Imp, < —7(1—¢)logp are

the same as the zeros of

X1X1

coshm, —cosp,

fpo)= +v,(m,) (1+T) K. (2.19)

sinhm,

coshm, —cosp,

Notice that the entire function g(p,) = has only two zeros in the

sinhm,
strip |Repo| £, namely p,= +im,.

Theorem 2.9. There exists fg <, such that if 0<f<fg, [v,(m,) (1 + TZ)_ K] <ion
[Repol=n, 0=Imp,< —7(1—¢)logp, and |g(p,)|>1/2 on the boundary of this
region. [

From Rouché’s theorem, it then follows that

Corollary 2.10. 1:"1111(p0) has precisely one simple pole on |Repy|<m, 0<Imp,
<—=T(1—¢)logh, if 0<f<Pg. O

From (2.15), the pole of F ux1(Do) can lie only on the imaginary axis because, as
follows from the arguments in [9], I, (p,) for [Repy| <= is regular outside that
axis. We denote the pole by p,=ip.

Theorem 2.11. There are constants { and By =g such that if 0<B<B,, [v,(m,)
(1+T,)" 'Kl<lgl on the circle |p,—im,|=(p. O
Corollary 2.12. If 0<f<fg, Im,—ol<{f. O

As remarked earlier, p, =ig is expected to be a pole of fxx(p())‘ To show that this
is indeed the case, define

Zxxx(pO)zf‘xx(po)éxm(po)qsxxm(po)’ (2'20)
and

L, (p)=9,,,,(05)G,,(po),(Po). (2.21)

These two functions are actually the same because in general wa(x0)=Gw¢(xo)
and y, x, are real functions.
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Theorem 2.13. There exists a constant kg such that if 0<B<pf,, L,
- 7
on [Repy|=m, 0=Imp, < —7(1—¢)logp and |L,, (o)l Ske¢fz° there. [

(po) is analytic

Define M (po) by the equation

Lo (po) =Ly (00)F (o)L, (Po) + M(po) (222)
Theorem 2.14. M(po) is analytic on |Repy|<7, 0=Imp, < —7(1—¢)logf if 0<f
<p,.
From this last theorem and (2.22), we see that the only possible singularity on
[Repol=m, 0=Imp, < —7(1—¢)logP of I, (p,) is po=io. To show that this is
indeed a singularity, we must check that L, (ig) 0.

Theorem 2.15. There exists f,o=f, such that for 0<f <P, I:XXl(p()H:O if 1po
—im,|=1. O

We are now in position to find the zeros of fxx(po)- Inserting (2.18), (2.19) into
(2.22), we get

~ 1 ~ ~ o~ ~ o~ ~ o~ ~
Fxx - ? [vz(mz)Lxm(l + Tz) 2L11x +(L111H2(1 + TZ) leuc +M)f] ' (2'23)

From Theorem 2.6 we know that fxx(imo) =0 and this is the only zero on 0<Imp,
< —6(1—¢)logp. Thus, to find new zeros there is no loss of generality in restricting
Po to [Repy|=m, —Slogf=Imp,= —7(1—¢)logp.

Theorem 2.16. There are constants ko, f,; =, such that if 0<f<p,, and [Rep,|
<m, —5logf=<Imp, < —7(1—)logf,

IM+I~’Z)(1I—~12(1+TZ)_IZ'X1X|g(k7/B)' D
Thus, the zeros of fu in the region of Theorem 2.16 are the same as those for
the function
AT ANIES e P
(L, H,(1+T) 'L, +M)
with f and g(p,) as before [see definition after Eq. (2.19)] and

s L, (1+T) %L
h(pe)=v,(my) (1+T,)” 'K + Vo)L (1 _122 nr
L, H(1+T,)"'L,,+M

f1=f+

XXt

Theorem 2.17. There exists f,,<f,, such that for 0<B<p,,, |h(py) =1/2 on
[Repo|=m, —5logf<Imp,=< —7(1—¢)logp and |g(p,)|>1/2 on the boundary of
the same region. []

Because of (2.11), we know that g(p,) has precisely one zero in the interior of
the region above. Therefore, from Rouché’s theorem, the same is true for I (p,).
Call this zero p,=im,. We have a result analogous to Theorem 2.11.

Theorem 2.18. There are constants nj and 3 <p,, such that if 0<B<P 5, [h(p,)|
<lg(po)l on Ipo—im,|=np. [0
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Corollary 2.19. If 0<f<f,,, Im, —m,|<nf. 0O

_ The theorems above prove that on |Repy/=m, 0=Imp,<—7(1—¢)log}p,
G,,(po) has precisely two simple poles, at p,=im, and p,=im,. The next result

shows that this is also the case for I

Theorem 2.20. There exists B, <, such that if 0<B<p,,, G, , (po) has exactly
two simple poles on [Repy|<n, 0=Imp, < —7(1 —¢)log B, namely p,=im, and p,
=im;. [

Finally, we extend this result to arbitrary quol:
Theorem 2.21. If 0<B<pB,, and o =P ¢ for some a, Gw(po) is analytic on |Rep,|
=n, 0=Imp,< —7(1—¢)logf except possibly for simple poles at p,=im,, p,
=im,. [

3. Properties of Finite Volume Generalized Correlation Functions

The aim of this section is to calculate derivatives of

Gpy(x, y; A5 {Bp}) = <P(x)p(y)) (A5 {Bp}) = {P(x)) <w(y)> (3.1)

with respect to i, for a suitable choice of these variables. See the beginning of
Sect. 2 for notation. This will be the main technical input to determine the domains
of analyticity of the functions introduced in the last section. As usual, we assume ¢,
p of finite support in the time zero plane and e.g. ¢(x) denotes the translate of ¢ by
the lattice vector x=(x,, x). We also assume the space-time dimensionality to be
three and that the character y in (2.1) is real irreducible. This assumption is
responsible for the simple forms of Theorems 3.2 and 3.3 below. We use periodic
boundary conditions in the space directions only, and without loss of generality,
assume the region A CZ? to be a rectangle along the coordinate axis. Setting all 8,
equal to small 8, the thermodynamic limit of (3.1) does not depend on this
particular choice of boundary conditions, as follows easily from the cluster
expansion [8].

The specific choice of {f} variables we will adopt is the following. We set
Bp=w, for all plaquettes P parallel to the time axis and located between t=q and
t=q+1. For plaquettes perpendicular to the time axis, we set i, =z. In terms of
duplicate variables, (3.1) can be written as
G, (x,y;4)= %Z— (@) — @' ()W) — v (y)e’+@dg dg, = %, (3.2)

A
where e.g. @' is ¢ at ¢’ and

S49.9)=2w, Y (lgp)+x(gp)+2z Y. (x(gp)+1(gp)). (33)
q P

€Py Pep+

The sum over q is only for times defined within A, #, is the set of plaquettes in A
parallel to the time direction and located between the time layers t=gq, t=g+1,
and 2+ is the set of plaquettes in A perpendicular to the time direction. Also,

Z2=9= ([ dg dg,. (3.4
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We want to find the structure of the coefficients of the power series expansion
of (3.2) in a particular variable w,. This has been done in [5, 6] up to the coefficient
of fifth order. For the present work, we need the coefficient of the sixth order as
well.

Write (3.3) in the form

Sg.9)=w PZ (x(gp) + 2(gp) + SP(g.9), (3.5

and let G(A) be the matrix whose elements are G(x, y; A).
We will always assume |z], [w,| <f, so that the results of the cluster expansion

applies to G, (x,y; A4).

Theorem 3.1.
(@) (@"/owg)l,,,=oG(A) =0 if 1=m=3,
(b) (a'"/aw'"nw —oG(x,y;4)=01if x,<q<y, and 0=m=3.

Proof. The numerator & of (3.2) has the expansion

F = Z y(q) (x, y)w (3.6)
with
F0(x, y) = [[(B(x) — Bx)p(y) — ' ()’ s *”( > (X(gp)+x(g})))"dg,1dg',1- (3.7)

Pe?y

To calculate (3.7) we use the Peter-Weyl orthogonality theorem together with the
fact that (@(x)—@'(x)w(y)—v'(y)) exp(S@(g,g)) do not depend on the bond
variables parallel to the time direction and located between the time layers t =g,
t=gq+ 1. Thus, ¥9(x,y)=0. When n=2, it is clear that

F0x, =Y [[(@x)— & @) w0) — v )L (x(gp)* + 1(9p)*)dg ,dgs

Pe2y

= Y 259(x,y)=2A(NFO(x, ), (3.8)

Pe7y
where /() is the number of plaquettes in &, (which is just four times the area of a
time layer). Similarly, when n=3, the only terms giving a nonzero contribution in
the expansion of the third power in (3.7) are Z x(gp)® and Z %(gp)*. Therefore,
P P
F0(x, y) =20 (NS (x, y), (3.9

where a = {y(g)*dg. The denominator in (3.2) has of course a similar expansion:

@(q) .
with 7= Z [ (3.10)

29 =0, 9@:2&{(/1)@@ and 29 =20A4(N)DP. (3.11)
From this, it follows immediately that
G, (%, y; M)=G, (%, y; A, o +0W]), (3.12)

which proves part (a) of the theorem. Part (b) also follows from (3.12), since if
Sq=y,, then clearly G, (x, y,A)lw o= O
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The next theorem was established in [5, 6]. Its simple proof is reproduced here
for completeness. Let ¢, denote the unit vector in the time direction.

Theorem 3.2. Assume x,<q=<y, There are constants c,>0 and cs such that
(m=4,5)

o mGW(X ViMlhy=0=Cn 2, Gy, 15 MG, (t+26, 73 A~

to=gq
Proof. Since £9(x,y)=0 from 0=<n <3, we have (m=4,5)
o 1S (x,y)
WG‘NV(X’ )’>/1)lwq - 2 @(q)
Expanding the fourth power in (3.7) with n=4, one shows that the only
4 4
nonvanishing contributions come from terms of the form [] x(gp) or [] (g},
i=1 i=1

with the plaquettes {P;};_, disposed along the faces of cube. In this case, the
product of characters can be integrated explicitly, yielding
4

4 1
| IJI e fl:[l dg,= 5 19p)1(gp,)- (3.13)

The integration above is performed only with respect to bond variables parallel to
the time direction, and P, P4 are the remaining faces (which are perpendicular to
the time direction) of the cube under consideration; d is the dimension of the
representation defining y. Thus, #(x, y) has the form
200 y)=c, ) (@) =3 (x) W) —v' ()

to=q

LA+ o)+ 1 OF (E+70)dg 4dg
where ¢, is just a combinatorial factor [divided by d* from (3.13)], which counts
the number of terms arising from (3.7) associated to a fixed elementary cube in the
time slice t=gq, t =g+ 1. This proves the theorem when m=4.

When m=35 we proceed as above with #(x, y). Expanding the fifth power in
S 5

(3.7), nonvanishing contributions come only from terms like [] x(gp) or [] x(gp,)
i=1 i=1

with the five plaquettes disposed along the faces of a cube. The side carrying a x*

term can be expanded in a Fourier series and the only term in this expansion

giving a non-zero contribution to the integral | ﬂ x(gp) ]_[ dg, comes from the
i=1 £=1
component along y. Thus, the result is proportional to (3.13) and the theorem is

proved also for m=5. []
The sixth derivative of G, (x,y;4) has a richer structure:

Theorem 3.3. There are constants cq, ¢, (c;>0) such that if x,<q<y,, then

06
a 6 (ptp(x y A)qu_() cﬁ Z G(px(XI A)wa(t—‘—eO?y A)qu—o

to=q

4
+c, Y Y G (MG, (t+20, V5 My =0>

where y;=PPy,, 1<i<4 were defined in Sect. 2.
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Proof. We have

00 Feh(x,y) 6! F(x, y)
ow 6 (plp(xy A)Iw,,—o 29(61) _H“Q/(A) 2@(61) ’

with
S (x,y) = Z@ (@)= @' () (W) —vw' ()
9 T] (ulgp) +2(9b)dg 4dg - (3.14)

Expanding the product we see that cross terms of the form y2y'* or x*y'? give

nonvanishing contributions proportional to .7 (A).%9(x, y)/(22P). Also the “pure”

terms %%, x'® have contributions proportional to Z(A)LP(x,y)/(22%). This
4

happens when the term is of the form x*(g,) [ | x(gp) with {P,} disposed along the
i=1

faces of a cube and P different from the P;s. It is not difficult to show that the

terms proportional to (A)F(x, y)/(22%) add up to zero. This is to be expected,

since from the cluster expansion, G,,,(x, y; 4;{w,}, z) has a limit as A—7Z3, which is

analytic in each variable (the limit is attained uniformly on compact subsets of |w,|,

[z <B,)- Then lim3(06/0w§)[ G,,(x,; A) exists, showing that extensive terms
A7

must cancel in the expression for the sixth derivative. There are still contributions

wg=0

proportional to #/22%). This happens when all six plaquettes in [ [ x(gp ) are
i=1

disposed along the sides of a cube. We then proceed as in the @ case by Fourier

transforming the plaquettes containing y with a power higher than one. The sum

of all these terms gives a contribution to (9°/0w))l,, —G,,(x,y;4) of the form
Y G, (X, 1; )G, (t+ 20, y; A) for a suitable constant cg.
to=q

wg=0

The other contribution from %¥(x,y) come when the six plaquettes in
6

1 x(gp) are disposed along the faces of a parallelepiped. The calculation of such
i=1
terms is similar to the one corresponding to yj,f")(x, y). Let x, and yx, be the
horizontal and vertical windows at the origin in the time zero plane. x, was defined
after Theorem 2.1, and y, = Ry, The contribution of these terms to Vé‘” is given
by
¢y ¥ 1@ — @' ()W) — ¥ ()T (Dt +26) + 1O, + 20)

to=gq

+ 0O+ 20) + 1Ot + 20))dg 4dg 4 »
where ¢, is a combinatorial factor (divided by d°) analogous to ¢, and therefore
positive. Thus, the final expression for the sixth derivative is

6

a 6
+c/7 Y [G,, (x.t;A)G

to=q

Gop(X, y5 A, =0 =C6 > G, (X%, t; )G, (t+2p, y; Dly,=0
to=q

t+é0,y; )+ G, (X, 1 NG, (t+é0,y; )]

Zhw( wg=0"
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This can be reexpressed in terms of y;, 1 <i<4 by using the identity
4
Y, G, (%, t; )G, (t+20,y; A)=%[G,, (X, t; )G, (t+2,y; A)
i=1

+G,y (51 A)G [t 420, y; D)+ Gy (X, 1 =215 A)G, [t =21 + 20,55 4)
G(va(xa t—ez 5A)va1p( _62 +eoayaA):| >
where ¢, ¢, are the unit vectors along the horizontal and vertical directions,

respectively. Using the periodicity in the space directions and setting ¢, =2c}
completes the proof of the theorem. []

The partial Fourier transform (with respect to the space variables) at zero
momentum is defined by

GopX0s Vo3 A=Y G,y A), (3.15)
Y

the sum being clearly independent of x due to spatial translation invariance of the
finite volume interacting measure (with complex parameters {w,}, z). Let G ,(4) be
the matrix whose elements are Gw(xo, Vo A). We summarize the results obtained
in this section in the following

Theorem 3.4. )
@) (@"/OW)l,,,=0Gp(A)=0if 1=m<=3.
(b) If xq=q<y,, then

@ /oWy, =0Gp(X0s o : A)=0, 0=m=3.
(c) There are constants ¢, >0 and c4 such that if x,<q<y,, then
@ /0W) = 0G X5 Vo s D=6, G (%0, a5 MG @+ 1, yos Dy m=4,5.

(d) There are constants cg, ¢, >0 such that for x,<q<y,,
96

g G0 Y03 M, =0 =CGiy (503 G +1, 03 Al g

2
t¢q ) G0, a3 DG, g+ 1,505 A, o

i=1

Proof. We have only to explain why there is no contribution due to y;, i=3,4 in
the last sum in (d). This is because, e.g.

G0 V03 =Y. Gy (x5, y; A)=1 Y [G,,,.(x,y; 4)
Yy y

+iG,, (%, y; ) =G, (x,y— &, ;4)—iG,, (x,y—2,; A)]=0. [

4. Proof of Theorems in Sect. 2

In this section, the missing proofs of the results stated in Sect. 2 will be presented.
We start with the observation that an equation analogous to (2.9) holds even for
finite volume correlation functions depending on the complex parameters {w,}, z.
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Namely,
unp((xo’ X)9 (yos Y) 9 A) = GR,«),R,w((xO’ Rax)a (yO’ Ray) ’ A) .

The reason is that the finite volume interacting measure (with complex parameters
{w,},2) is invariant under a rotation of n/2 around an axis parallel to the time
direction and through the center of a plaquette. Thus, the finite volume partial
Fourier transforms (3.15) satisfy G, (x,, Vo3 A)=Gp_, R,w(xo’ Vo:4) and by the
same argument as in Sect. 2,

thw(xoa Yo A)= GRatp, Rhtp(xO’ Vo5 A)

for arbitrary a, b. Also, from the cluster expansion, if [w,|, |z| <, Y G, (%, y; )]

y
is bounded independent of x and A. We call this bound C,,, [(2.7) thus follows
from this fact]. Settlng all w,z equal to the same B, 0<f<f, we have
11m Gw(xo, Vo A)= Gw(yO xo) defined by (2.4).

Proof of Theorem 2.1. If ¢=PPp with i=3 or 4, then G,,(x,, yo;A)
=G,, (X yo; A)=0 for i=1,2. Hence, from Theorem 3.4, if x,=<g<y,,
(6"‘/&’w"')|wq_0 G (X0, Y93 4)=0 for 0=m=6. From the maximum modulus

theorem, it then follows that |Gw(x0, Vo s M=C,, [T Iwy/Bol’- Setting all w,,

xo<q<yo
equal to B, 0<f<pB, and letting A—~Z3, we get |G, (x,)|=C,,(B/Bo)” ™. This
implies G »(Po) to be analytic on |Imp,| < —7log(B/B,). Choosing B<f; = 2

guarantees that this region contains |Imp,| < —7(1 — %) logB. O

Proof of Theorem 2.2. From Theorem 3.4, we have if x, Sg<y,:

Wc‘;xm(xo,yo;A)|wq=0=o for 0<m<5, (4.1)
q
and
| . A A
MGXZXZ(x09yO;A)qu=O=C7G1212(x0’q;A)GX212(q+lay();A)qu=0‘ (4'2)

As in the proof of Theorem 2.1, (4.1) implies that for 0 << f,,
1G s (X0)| = €y (BB0)° (4.3)
On the other hand, setting x, =0, yO =1 in (4.2) yields

0, 1;4;{w,},2)= 0,05 45w} 440, 2)

X2X2

(1,1;4;{w }q¢0,z)w0+0(w0)

X2X2

XzXz

from which we get

lim — 1 0,1;4;8)=

810 ﬂ6 )(212 (0 0 A3 ﬁ O)GX212(1,1,A ﬁ O)

szz
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The right hand side is easily calculable, since
G, 0,0;4;8=0=G, (1,1;4;=0)=1/2.

X2X2

Letting A—Z>, we conclude that

lim g=6¢G
p—-0

Thus, there exists f, <, such that
G %0 =12 (c,5)/(8-61)
if 0<f<f,. From the integral representation [arising from (2.8)],

anz(xo) = [ e Hollgy (1)
(0, )

X2x2

Xo=1)=c,/(4-6)).

szz(

(with dv2 a positive, finite measure) and Holder’s inequality, we have (x,+0)

xzx (x = l)leI = Gx xz(xo)é)czxz(xo =O)|xOI o = zexz(xo)cmlz ! ’

so that . ol
Grora(0)Z Copp, (‘ﬁ”) . (4.4)

lzxz

The proof of Theorem 2.2 follows from (4.3) and (4.4). O

Proof of Theorem 2.3. We first show that the matrix Gu (A) is invertible if [w,], |z|
are small enough. Let P, (A) be the diagonal part of G 2)(2(/1) ie. P, (X0, yO,A)

X2X2
mz(xo, Vo> Ao, ,» and let 0,,.,(4) be defined by me(/l) P4
+Qx:x (A). From the fundamental theorem of calculus,
5 d .
G ropaXos X3 A5 (W}, 2) =%+ gd/l 7 xm(xo,xo,/l {Aw,}, A2).

Restricting {w,}, z to |w,, |2/<By=p,/N (N to be determined shorly), the
derivative above can be estimated by Cauchy’s formula

;j xzx:(xO’ X3 A; {lw 3, Az)= _1_ 4‘, x:x:(xo, Xo3A4; {lw },n2)

dn.
2mi lnl=N (n— /1)2
Since 0=A<1, we have

d chzxz

¥ mz(xo,xo,A {Aw,},42)| = SR
We choose N >1 to be the smallest number for which the right-hand side above is
less than or equal to 1/4. This implies ||P,,,,(4)[=(1/4) so that P, (A) is
invertible, and

Gszz(A):Plzlz(A)[l + szxz(A)— llexz(A)] ‘
Using l(ﬁ}xm(xo,yO;A)lécmx2 [T Iw,/Bol® we estimate [|Q,, . (A)] as follows:

X0=g<yo

19,,,,(A)] = max ZIQXZXZ(xo,yo,A)I_ rmax Y (By/Bo)e ol

X0 X0 yo¥xo
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assuming |w,|, |z2] <f}. Thus

(B1/Bo)°
22 —(B/Bo)°
(A =1/8. Then ([P, (A" 'Q,,, ()| =1/2, and
X2X2 lez(A) we have ” 2(A)”§8
if {w,l, |z]<p). Since sz(xo» Vo3 Ml =0=0 if xg=q<y,, the same 1s true for
mz(xo, yO,A)IWq_O From Leibniz’s formula,
am . m—1 m an . am—-n
Wrxzxz(/l): Z (n)mrxuz(/l)a m—n xzxz( ) xzu( )
q q

n=0

19 (DI =2C

Choose ﬁ’l <P, such that [|Q,,,,
G, (A) is invertible. Calling the inverse —

and Theorem 3.4, it follows immediately that
oo

—1I
aw;” szz(

A)| =0 if 1=m<3,

wg=0
and
o . 4 o
Lol

W XlXZ(A)|Wq =0~ {yara xzxz(A) XZXZ(A)qu= 0 (4 =m= 6) .

q
Since (a'"/awman_o szxz(xo,yO;A)—O if x,<g<y, and m=4,35, the same is true
for (8"'/6w"‘)| (X9, Vo5 A). In addition, if x, =g <y,,

wq =0 x2X2

% -

0W6 szxz(xo’ y() ; A)[wq_—_()
q

66
= 2 lez(xo’ Uo A) ow 6 zexz(uo’ Vo> A) xzxz(UO’ Yo A)qu= 0
vo>4
=¢Cq Z szz(xo’ U 5 A)ze)(z(uO’ q; A)zexz(q + 13 UO 5 A)
o, vo
’ Fszz(DO’ yO > A)’wq= 0= C75(x0, Q)é(q + 1’ yo) . (45)

From the maximum modulus theorem,

I voi D=8 T Iw/Bil7 if |xg—yel>1,

X0=¢<yo
and letting all w,, z be equal to f, 0<B<p:
I 00 Yo s DI S8(B/B) T i [xg—yol >1.
It is not hard to show that lim r araXo0s Vo; N=T axaWo — Xo) exists and is the

convolution inverse of — J(m(xo) We have |1, (xo) S8(B/B;)" ™! if [xo[>1, so

X2X2

that I" (po) is analytic on [Imp,| < —7(1 — g) logB if B<p**=p,. The proof is
complete. []

Proof of Theorem 24. (a) We have vz(mz)sinhmz/(coshmz—l)géml(po=0)
=C,,,,» S0 that v,(m,)=C, cothm, Choose B,=<p, so small that cothm,

< 1/5/2 (for later convenience) for 0 << f),.
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(b) From (2.14),

~ @ sinh4,
IHz(po)' = jl

“7(1—§)log[3

and [Impy| = —7(1 —e)logf. Choose f5=<f, so small (depending on ¢) that
-7 (1 — %) logp

|cosh 2y — cospo| = cosh A, — cosh Imp, =3 cosh 4, >3 (coshA,—1)

dv,(4o),

|cosh A, —cosp,l

cosh[ —7(1—¢)logf] <3 cosh

for 0<f<p;. Then,

=0)<2C, . Setting

)(212( X2X2

if 4,2 (1 - —) logB. Therefore IH 2ol <26
B,=min{p,, B3, f5} completes the proof of the theorem. []

Proof of Thgorem 2.5. Consider the finite volume approximation of ﬁfpz(;(xo). In
matrix notation

Foa) =Gy (A) + G (D (NG ().

F‘Z)(xo, Yo A) is analytic on |w,|, |z| <} (introduced in the proof of Theorem 2.3)
and bounded there by C, +8C ,C,,o Also, if all w,, z are equal to B, 0<B<f8],

Ali»'r% f’ff(}(xo, Vo3 A)= F(Z)(y0 — xo) Clearly, if xo=<q<y, I:"fpz‘;(xo, Y03 Dy, =0=0.

From
o o 4
= FO(A) = A
owr = ® )= owr Gool4)
m! o . " 4 o 4
_— — ANy—1T, (A)7—G, (4
+n1+n2+n3:m n1!n2!n3! 6w2‘ ¢Xz( )6W22 1212( )awgs sz( )

and Theorem 3.4, we see that (6"/0w")F2)(A)| =0if 1<m<3, and that

wg=0

m m

a . A
owr F(Z)( )'Wq_o GW(A)IWq=0+G<orz(A)F a4 )W

q q q

” om .
+ waz(A) W Flzxz(A) 4)|

GXZ(P(A)IWq =0

1240( wg=0

m

0
+6_w— <PX2(A) xzyz(A)GXz#’( )|Wq=°’

q
if 4<m=6. Since ¢ = PP, Theorem 3.4 implies (0"/0w}),,, - W(xo,yo ; A)=0, if
0=m<5 and x,<¢q<y,. Also (0*/owJ),, _()G(/,q,(xo,yO ; )=C,G,, (xo,q: A)

Gm,(q+1 Vo3 A, - o> and a similar tesult holds for Goyas sz Hence, using the
proof of Theorem 2.3 to calculate (@™ /oW, =0 I, (x0, 03 4), we find
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(@™ /0w ), = o F 2 yos A) =0 for 0=<m=5 and x,=<q<y,. In addition,

0° . ;
A6 F(Z)(xo, Yo 5 A)‘wq= 0= C7G¢12(xoa q; A)wa(q + 17 Yo 5 A)qu=o

6‘/’0’
6‘1

+ Z GlPXz(xO’ g s Dy, (to, Vg 3 A)C7Gmx2(vo, q,; A)wa(q +1,¥05 A)qu= 0
uoS
vo<11

+ Y G,y (X thg s A)C70(u, )3(g + 1,00)G, 00, Yo s Dy =0

uo=q
vo=¢q

+ Y C3Gy (500 a5 MGy @+ Lugs A, (1,005 MG, (06, o5 Ay, =
uo >q
vo>4q

=0.
Proceeding as in the proof of Theorem 2.1, we conclude that F m(po) is analytic up

to [Impy| < —7log(B/f,), which includes the region |Imp,|=< -7(1— %) logp if
B<p*=p,. The proof of the theorem is complete. [

Proof of Theorem 2.7. Consider the finite volume approximation to F u(Xo):
F,,(M)=G, (ND+G, (DL (NG, (A). (4.6)

We assume |w,|, |z| < (given in Theorem 2.6) which is so chosen that I A s
analytic there and ][F (A =4 (see [S] or proceed as in the proof of Theorem 2.3).
Thus, F xm(/l) is analytlc on the region above and setting all w,, z equal to §,0<f
<Ps, hm Fxm(xo, Vo, A)= Fxm( —X,)- As in the proof of Theorem 2.3, there

(4) is invertible for |w,|, |z/<p; and if ~TI},, (A)

X1X1 X1x y o4t

exists ﬁ3 ,85 such that Gm{

denotes the inverse, || I, ,,(4)[| =8. Hence, we can write
) =G, (U= L, (DG, (A, (G, (1).

Now G (A;{wq=0} z=0)=0, so that

pave
d -

(A)= fdi m{(/l {Aw,}, 42).

XlX

The derivative can be estimated throggh a Cauchy integral as before. Thus, there
exists B, < B, such that IIGXM(A)H I 1)(1.(/1)” <1/8 for |w,|, |z] <B,. This implies

F, ,.(4) invertible. Calling the inverse — @, (A4), we hav? @, WI= 16.ASett1ng
all w,, z equal to B, 0<f <, one can verify that lim dixm(xo, Yos D=2, (v

—X,) exists and is the convolution inverse of — xm(xo). We now verify the

analyticity properties of ‘pxm(l’o) From (4.6) and Theorem 3.4, it is clear that

Flor Vo3 Mlyy=0=0, if xo=q=yo. Also (/6w —oF,,(A)=0, 1=m=3
and
Wﬁmm(/ﬁ'w:o
om . - o
= W GXIXI(A)IWq=O + GXIZ(A) (A) GXXI(A)qu=O

q
~ om A

+G111(A)a m XI(A)GXXI(A)I —O+ 6 m 111(‘/1) (A)Gxxl(/l)lw =0 (4‘7)
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for 4<m<=6. To calculate these derivatives, we need (6"’/6w;")lix, which can be
obtained as in the proof of Theorem 2.3:

o4 ~ o . ~
a—w‘tln_ FXX(A)IWq =0~ FXX(A) 51_41? Gxx(A)Fxx(A)iWq =0 (4<m=6),
hence, from Theorem 3.4, if x,<g<y,,
a" -
_I;X(xo’yo;A)qu=0=cm5(x0’ Q)é(q+17 yO)’ m=475, (48)

m
awq

and
6

% .
Fae L (x0s Yo s Dlyy, = 0= C60(x0, 9)0(q + 1, y,)
q

+e; Y L (xor g3 )G, (16, 05 4)

uo, Vo
Gy @+ 1,005 DL, (00, Vo5 Ml o- 4.9)

Inserting (4.8), (4.9) into (4.7), we find if x, =g <y,
o .
WFXLX1(x0’yO;A)’wq=O=O (m:495)»
q
and after a lengthy computation

0% . A A
WFZIM(XO’J}O;A) =C7FIIX1(x0’q;A)F11X1(q+ 1’y0;A)|Wq=O'
q

wg=0
As in the proof of Theorem 2.3, these results imply (x, =g <y,)

m

o . .
dem(xomo;/l)lwq=0=0 if 0=m=S,

q
and

6
28 DX Vo Mlg=0=¢70(x0, 9)3(g + 1, yo).. (4.10)
q

By the same arguments as before, & .(po) is thus analytic on [Imp,|

x1x

< —7log(B/p,), which includes |Imp,| < —7(1 — %) logp if <P Setting B,

=p.¥¢ completes the proof of the theorem. []

Proof of Theorem 2.8. Consider the finite volume approximation to ﬁ(xo):
K(A)=T,,, (A~ (A). (4.11)

We assume [w,|, |z] < B4 so that the bound || K(A)il =24 holds. Also, from the proof
of Theorems 2.3 and 2.7, if x, <g<y,,

(@"/0Why,= oK (X yo5)=0,  0=m=5.

2X2 X2X2

wg=0
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But also, due to (4.5) and (4.10)

0°
6 GK(xoryO)A)qu—O_O lf xO q<y0'

This implies in the usual way |K(x,)| <24(8/8,)"*!, and K(p,) is analytic on [Im p,|
< —7(1 - g) logf provided ff< 2. In addition, K(4; {w,=0}, z=0)=0 and by

doing an estimate using the Cauchy formula as before, we find K ()
<96 max {|w,|/Bs, lI/Bs}, if [w,, |zl <Be/2. This is automatically satisfied if [w,], 2|
< B, since we assumed from the beginning that f,<1/2 and 3<1/10 In
particular, |[K(x,=0)| £96(f/B,) for 0<f< % Hence, if [Imp,| < — 7(1—¢)logp,

Ripo) 296|(81po)+2 3. exp|hog ﬁ it o

i
<96[ 6 +2 3. exp(7(1- | o~ 7011 1ogh)
- 2exp(zelogB) B
—96l —exp(zelogﬁ) 96[136 +4exp(zelogp)|,

7
because [32 <pi<1/2. Also since £ £1/10, [3( )<ﬁ?_7<ﬂ6,ie B/Bs<B2°. We

thus have |K(p,)| <480/32 and therefore, from Theorem 2.4 |T,(p,)| <480k, 7%
<1/2 if BB (this defines B5). Letting B, =min{fZ", f5} completes the proof of
the theorem. []

Proof of Theorem 2.9. From Theorems 2.4 and 2.8, |v,(m,) (1 + T) K| =2k,k ﬂ?
on |Imp,y| < —7(1—¢)logp, if f<f,. Thus, |v,(m,) (1+T,)"” 1K|<(1/2) 1f[3</36 §ﬁ7
for an appropriate f. Let
AB={p, :|Repol=m, Imp, =0};
BC={p, : Repo =7, 0=Imp, < —7(1 —&) log} ;
CD={py :|Repo| <7, Imp, = — 7(1 —£)log}
and
AD={p,:Rep,= —n,0=Imp, < —7(1—¢)logp}.
On AB,
|g(po)l =(coshm, — cosp,)/sinhm, =1 —(1/sinhm,)>1/2,

since from the proof of Theorem 2.4 cothm, < ]ﬁ/2 which implies 1/sinhm, <1/2.
On BC, |g(py)l=(coshm,+cosh Imp,)/sinhm, =1, and similarly on AD.
Finally, on CD,
19(po)I* = [cosh?m, +cos? Rep, +sinh?7(1—¢)log
—2coshm, cos Rep, cosh7(1—¢)logf]/sinh?m,
2 [(coshm, —cosh7(1 —¢)logf)*— 1]/sinh*m,
- (cosh7(1 —¢)logp

2
> . —cothm,| —1
- sinhm, «© mz)

i
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The right-hand side tends to infinity as §—0. Thus, it stays bigger than 1/2 if f <,
< B; for an appropriate .. We set fg=f, to finish the proof. [

Proof of Theorem 2.11. Let p,=im,+r, with |r|={f. { will be given explicitly
below. Then,
|9(po)l=Ir| cothm,(1 — cosr)/r+isinr/r|

and lim |g(p,)l/Ir|=1. We choose f3 = fg such that [r|<1 and |g(p,)|>(1/2)r. On
-0
the other hand, from the proof of Theorem 2.8,

IR (p) <96 [(ﬁ/ﬂa +2 3 expl(T1og(B/B) +my+ 1)n1] :
From Theorem 2.2, m, < —6log(d, ), hence

IR (po) §96[<B/ﬁ6>+2 3" expl(log— log(2dS) + 1)n]}

n=1

7d6
=96[(ﬂ/ﬁ6)+21(——e(lz£/67_—£¢%)}

S 96[(B/Bs)+4eB/(B5dS)]

if p<pBo=py is appropriately chosen. We set {=192[1/¢+4e/(B(d?)], so that
IK(pO)I <(1/2){p. In conclusion, we have IK(p0 [=(1/2)(p=(1/2)|r| <lg(p,)| and the
proof is complete. []

Proof of Theorem 2.13. Consider the finite volume approximations to I:Xl (Xo):
L, (N)=0, (NG, (AL, (A), (4.12)

where |w,|, |z| <fg, so that l|¢’x1,,(/1)”<16 ||G AI=C,,,, and [IF LA =4,
hence |IL LA =64C, .. From (4.12) it follows that L, (X0 Vo5 )lv —0=0,if x,
<qg<y, and (6"’/6w"1")| _OL (A4)=0, if 1=m=3. Also,

amt . o

WLMZ(A)'Wq:O 71)(1( )GXxx(A)a m xx(A)IWq:O

q

Wq X1x

" om . -
+ ¢xun(/1) ow™ Glnx(/l)rxx(/l)lwtz =0
q
+W X1X1(A)G11X(A)F (A)lwq=0' (4§m§6)
q

A straightforward but tedius computation shows that

m

Willx(xo,yo;A)quz():O, if x,<q<y, and 4=m=6.

Thus, in the usual way this implies |L,(xo)| S64C,, (B/Bs)7*! if 0<B<pBs and

x‘x(po) analytic up to [Imp,| < —7(1 —&/2)logf if 0< < f3, (remember f, < f2").
Also, L, (4; {w,=0}, z=0)=0. Proceeding in the same way as for K(A), we
deduce, after an estimate using the Cauchy formula, that |L11x(xo—0)|
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=256C,, (B/Be)if O <B < B, and this leads again as in the proof of Theorem 2.8 to

L, (po)l < 1280cmﬁ? for |Imp,| < —7(1 —¢)logB. [
Proof of Theorem 2.14. Let
M(A)=T,(A)~ L, (DF,,, (DL, (A) (4.13)

with |w,, |z|<Bs. Then ||I,(A)| <4, |L,, (A <64C,,, and |F, (DI=C,,,,
+4CX1 XCm [see (4.6)], so that | M(A)|| £k,, for and appropriate constant. Now, if
=<g<y,, one shows by direct calculation that

m

owr

q

M(xq,yo; Aly,—o=0 for 0=m=3,

and

a m

This 1mplles as before, that lM(x0)|<kM([3/ﬁ6)7"‘°' if |xo/>1 if 0<p<py, and
therefore M(p,) is analytic on

Imp,|< —7(1—¢/2)logh if 0<B<B,. [I

M(xo,yO,A)qu_o—c O(x9,9)0(q+1,y,) for 4=m=6.

Proof of Theorem 2.15. Consider
éxxl(xo, Xg; A :{w,=0},2)= Gxxh(xo, Xo;A;{w,=0},2).
It is clear that
li_r)r(l) Gm(xo, xo;4;{w,=0},2)/z
=2 {19 )19)1(gp)dg . =(2/d)

(d=dimension of the representation y). Here, P, and P, are the left and right
plaquettes of the elementary horizontal window. From (4.12),

L, (Xg, x93 A5 {w,=0},2)
=1, (xg,Xq;4;{w,=0},2)
x)(l(XOa-xO)A {W _0} ) )(1)(1(x0’x0’/1 {W —'0} )

and hence

limz 1L, (x4 Xo; A5 {w,=0},2)
z—0
=21im 271G, (xo. X0 : 4; {w, =0}, 2)=(4/d).
z—0

Using the fact that (9/0w,)l,,, - m(

d ; 4
dﬂ xm(xo’xo’/l {w, [3},2=/3)iﬂ:0_—_2,

A)=0 for all g, the above result implies
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from which follows (taking the thermodynamic limit)

&l-b

dﬁ Lxu(xo O)lﬂ 0~

We choose < Bo(<B,) so that [L,, (x,=0)| = (2/d)B.

Now, consider L, (x,=0, y,=1; 4; {wq=0}q¢o, z=0). We claim that this is
identically zero as a function of w,. The reason is that G, (xo, Yo 4; {w,=0},+,,
z=0)=0 for all x,, y,. This is clear if x, <0 or y, > 1 (or vice-versa), but is also true
when x,=0 and y,=1 because integrals of the form

§ 2(0,0)%,(1, x) exp

wo Y x(gp)] dg,

Pe2j

vanish identically as is easy to see.
Write

Lm(xo =0,y,=1;4;{w,}, Z h(A5{W,} 50 2IW5 5 (4.14)

with
1 0"

hn(A;{Wq}q#:O7Z) h' a n

Ll)(;(xo =1;A;{wq}’z)|wq=0'
From the remark above, h,(4; {w,=0},.,, z=0)=0 Vn. Setting all w,, z equal to
the same f in (4.14), we get

0

L, (xo=0,y,=1;4;p)= Z (A;B)p"

and h,(A4;f=0)=0. From this, we get the important result
a7 .
a—lﬁLxxl

which implies, if [B|<fq: ILAm(x0 =0, yo=1; A)|<64C,, |B/Bs|*. This bound
carries to the infinite volume limit:

(x0=0,yo=1;4;B);-0=0,

I (0= DI S64C,, (B/B)® if 0<B<ps.
Now, suppose p,=im, +r, with |[f|<1. Then,
L, (po) — L, (xo=0)|

S| T Lbge™ i+ XLy, Gl

|xo0| =1 |xo| 2 2

(710g() +ms 1)

8
glzgcxm(ﬂﬁ) exp(m,+1)+128C, Z exp
6
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where we used results from the proof of Theorem 2.13. Proceeding now as in the
proof of Theorem 2.11, using m, < —6log(d, ), we get

L (Po) = L (6 =0)]

, (eB/BLA)?
=128C,, [ﬁ <ﬁ8d6) * 1~(eﬁ/ﬁ2d?)}

<128C,, [(/3;16))”(&(16” 2=k, B2 i B<B,.

Thus, if <, we have
1L (o)l 22/~ K, B2,
and we choose f,, =<, so that ll:m(po)l>0 for 0<f<p,,. O

Proof of Theorem 2.16. First, notice that if 0< 8<B., 1L, H,(1+ T,) 'L, | <ap”
for some constant a and |Impy| < —7(1 —¢)logB. This follows from Theorems 2.4,
2.8, and 2.13. From the proof of Theorem 2.14, |M(x0)| <kM(B/ﬁ6)7"‘°' if |x,| > 1.
Thus,

Mi(po)=M(x,=0)+ | .Z M(x)eP** + M, (po). (4.15)
xo|=1
with ]\7Il(p0)= Z J\;I(xo)e"”f”“J being bounded on |Imp,| < —7(1—¢)logf by
|xol =2

1M, (po)| < , 'Z> . kyrexp[(710g(B/Bs) — 7(1 —e)1ogB) Ixol] < 4ky B

(as in the proof of Theorem 2.8). Now, from the definition (4.13),
M(A;{w,=0},z=0)=T,(A;{w,=0},z=0=—1,

so that lim M(x0=0)=— 1. Also, from the results in the proof of Theorem 2.15,
-0

M(Xo=0’)’o=1§/1;{Wq=0}q¢0,z=0)
=1 (xg=0,p=1;4;{w,=0},40,2=0)
Lul(xo—O Yo=0;4; {W _O}q¢O9Z 0)
Frip20=0.70= 1343 (1w, =0} . 5,2=0)
L, (xo=1,y=1;4;{w,=0},4,2=0).

From the proof of Theorem 2.7, we know that

ﬁX1x1(xo=0,yo=1;A;{wq=}q¢o,z=0) is  OwS).
Also, from
L o =Fyt) 2 G (N, (Ao,
owg *xE v 1 Gy wq
we have

(0%/owg )'wo 0 (xo—o Yo= 1;A;{Wq=0}q$052:0)=c47
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ie.
[ (xg=0,y,=1; 4;{w,=0},.0,2=0)=0(w}).
Therefore,

lim wo “M(xo=0,y,=1; 4;{w, =0}, 0, z2=0)=c,/4!,

wo— 0
which implies

lim B™*M(x, =0, y,=1; 4; B)=c,/4!.
B0

In this last expression, M is calculated setting all w,, z equal to the same B. Taking
the thermodynamic limit, we conclude that
.1 . 1
;EI}) [?M(x(): )= 2764
Now, from (4.15)
IM(po) — 2M(xo = 1) cos po| <|M(xo =0)| + 4k, B7°.
Since Imp, = — 5logp, |cosp,| =sinh(— 5logf) and hence,
IM(po)+ L, H,1+T) 'L, |
>2|M(x, =1)|sinh(— 5 log ) — (IM(xo = 0)| + 4k, 7 +aB?)

and we can choose f<f,, =f,, such that the right hand side is bigger than
c,/(5!p). O

The proof of Theorems 2.17 and 2.18 are very similar to the ones for Theorems

2.9 and 2.11, after using the bound in Theroem 2.16. We therefore omit them.

Proof of Theorem 2.20. From (2. 15), G o =Frn G FMG“1 and the possible
singularities of Gxuu on0=Imp, = —7(1—¢) logﬁ IRepOI <mare p,=im,, im; and

io. We show that G, ,, is regular at p,=ig:

plimg(p0~ig)me hm (p0 ig)ﬁxm
01l

26,006, 0 lim (po—i0)l,.  (416)
On the other hand, from (2.22)
Jim (po—i0)l', = Ly (i0)L,fi0) lim (po—i0)F . (4.17)
Since
L, 1—F1XGmf15ml =(L,,F, 0Ly, + MG, D, .

XX17 X1X1 11)(

=—L L G, +M

XX17X1X T XX1

?

Q2

XX17 X1X1?

we have (remembering that
?,,,.0=0):L,  (io)=-1/G,, (o). (4.18)
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Taking (4.17) and (4.18) into (4.16) shows that lim (p,— i0)G ,=0. Thus, the

X1x
po—ie
only possible singularities are p,=in,, im,. We show that these are indeed
smgularltles of sz For suppose G,,, is regular at p,=im,. Then, from
L G we would get L (im,)=0, which is impossible due to

lll Xl)(l Xll x1X
Theorem 2.15 smce |m, —m,|=O0(p). Similarly, if G . is regular at p,=im, then

7| xol
(imy)=0. But recall that ILX Xl =64C, Bli_) (from the proof of

Theorem 2.13) and lim (l/ﬁ)me(xo =0)=4/d (proof of Theorem 2.15). Thus, from
=0

X1X

B 7 | xol
=0)|<64C,,, > (—) emolol,

xo*¥0 \Me6

|Lx1 [img) — L

XIX(

and the fact that m,~ —4logf as f—0, it is clear that L~X1 [img) 0 if >0 is small
enough. [

Proof of Theorem 2.21. Introduce the function
FY=G,,+G,I,G,,+F, o, F

PXT XX T X QX1 X1x1” X1

where
—G +G I G

LT XX T XXL”

By going to the finite volume approx1mat10n, one can show by direct but tedious
calculations that if x,<¢g<y,,

pve F“’(xo,yo,A)lwq_o—O for 0<m<6.

q

Thus, F, “’ is analytic on |Imp,| < — 7(1 —¢)log f and the only possible singularities
of G on this region are therefore p, =im,,im,, ig. To show that G, is regular at
io, we calculate

0= pliirlgg (po— iQ)éq, ot GW(ig)éw(ig) pli_r}}e I:XX

. @
+ | lim —io)F lim —X& || ] =ig)F, |. 4.19
pol-*ie (Po o) W“H —ie (Po iQ)} [POII'I}Q (Po ie) ne ( )
Notice that e.g.
pllirllg (pO - lQ) X1 = G(px(lQ)Gxxl(lQ) llm (pO )FXX ’ (4'20)

hence
pﬁg:e (po—i0)™'®,,, = —[G,,(i0)G,, (i) plig}g (po—iQ)l,[7t. (421
Taking (4.20), (4.21) into (4.19) completes the proof of Theorem 2.21. []
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