SU(2) Monopoles of Charge 2

Jacques Hurtubise
Department de Mathématiques U.Q.A.M. C.P. 8888, Succursale "A", Montreal H3C 3P8, Canada

Abstract

Using the methods of Hitchin, the moduli space of $\mathrm{SU}(2)$ monopoles of charge two is computed.

A. Introduction and Notation

The purpose of this paper is to compute the moduli space of $\mathrm{SU}(2)$ monopoles of charge two; we find it to be $\mathbb{R}^{3} \times T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$, where $T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$ is the manifold obtained from the tangent bundle of $\mathbb{P}_{2}(\mathbb{R})$ by identifying all tangent vectors v with their inverses $-v$.

The first $\mathrm{SU}(2)$ monopoles of charge two were produced by Ward [8]; they possess an axis of symmetry and correspond in the moduli space to ($\mathbb{R}^{3} \times$ the zero section of $T\left(\mathbb{P}_{2}(\mathbb{R})\right)$). Later, Ward produced a more general solution [9], but was only able to assert non-singularity in the case of solutions sufficiently close to the axisymmetric ones. It is to be noted that the more general statement of non-singularity needed here follows from the recent work of Nahm [7] and Hitchin [4].

We start by giving a brief summary of the theory; this will also serve the purpose of fixing notation. Details can be found in [3] and [4].

Let P be a principal $\mathrm{SU}(2)$-bundle over $\mathbb{R}^{3}, P_{\mathrm{g}}$ its associated su(2)-bundle, ϕ a section of P_{g}, ∇ a connection on P, with F its associated curvature. The couple (∇, Φ) is an $\mathrm{SU}(2)$ monopole if the following conditions are satisfied:

1) $* F=\nabla \Phi$, where $*$ is the Hodge star operator on 2-forms over \mathbb{R}^{3}. (Bogomolny equations; see [1])
2) $\int|F|^{2}<\infty$ (finite action) and $|\Phi|=1-k / 2 r+O\left(r^{-2}\right.$) as $r \rightarrow \infty$ (boundary conditions). The $\operatorname{su}(2)$ norm is given by $-\operatorname{tr}\left(x^{2}\right) / 2$: this is chosen to conform with Hitchin [3]. The k in $k / 2 r$ is an integer, and is called the charge of the monopole.

Monopoles are susceptible to treatment via complex geometry. To do this, one uses the space \widetilde{T} of oriented lines in $\mathbb{R}^{3} ; \widetilde{T}$ has a holomorphic structure determined by the cross product in \mathbb{R}^{3}, and $\widetilde{T} \cong T\left(\mathbb{P}_{1}(\mathbb{C})\right.$), the holomorphic tangent bundle of $\mathbb{P}_{1}(\mathbb{C}) . \widetilde{T}$ has a natural real structure τ, with no fixed points, given by reversal of orientation of the lines. Also, fixing a point p, one obtains a section $s_{p}: \mathbb{P}_{1}(\mathbb{C}) \rightarrow \widetilde{T}$,
given by all the lines through p; these sections are τ-invariant, and so are called real. Finally, let x be an inhomogeneous coordinate on $\mathbb{P}_{1}(\mathbb{C}) ;(w, z) \rightarrow w \partial /\left.\partial x\right|_{x=z}$ gives local coordinates on \widetilde{T}, in which $\tau(w, z)=\left(-\bar{w} / \bar{z}^{2} \cdot-1 / \bar{z}\right)$.

Let E be the rank 2 complex vector bundle associated to the principal bundle P; associating to each oriented line x the space of sections s over x such that $\left(\nabla_{u}-i \Phi\right) s=0$ along x, u a positive unit vector, determines a bundle \widetilde{E} on \widetilde{T}. If (∇, Φ) is a solution to the Bogomolny equations, \tilde{E} has a natural holomorphic structure. Let L be the holomorphic line bundle on \tilde{T} defined by the transition function $\exp (-w / z)$ from $\{z \neq \infty\}$ to $\{z \neq 0\}$; let $\mathcal{O}(n)$ be the lift to \tilde{T} of the bundle $\mathcal{O}(n)$ on $\mathbb{P}_{1}(\mathbb{C})$; set $L(n)=L \otimes \mathcal{O}(n)$; then, if (∇, Φ) also satisfy the boundary conditions, \widetilde{E} can be written in two ways as a holomorphic extension:

$$
\begin{aligned}
& 0 \rightarrow L(-k) \rightarrow \widetilde{E} \rightarrow L^{*}(k) \rightarrow 0, \\
& 0 \rightarrow L^{*}(-k) \rightarrow \widetilde{E} \rightarrow L(k) \rightarrow 0 .
\end{aligned}
$$

These are permuted by the real structure. Let S be the curve over which $L(-k)$, $L^{*}(-k)$ coincide; S is a curve in the linear system $|\mathcal{O}(2 k)|$, and is called the spectral curve of the monopole. One has:

Theorem $1[3,4]$. i) S is compact.
ii) S is preserved by τ.
iii) L^{2} is holomorphically trivial on S.
iv) $A s \tau^{*} L^{2}=L^{* 2}$, the natural pairing of sections of L^{2} on $S:\left\langle s, s^{\prime}\right\rangle=\tau^{*} s\left(s^{\prime}\right)$ is $(-1)^{k+1}$ definite.
v) $H^{0}\left(S, L^{t}(k-2)\right)=0$ for $t \in(0,2)$.

Note that i) implies that S is of the form
$0=w^{k}+a_{1}(z) w^{k-1}+\cdots+a_{k}(z)$, with a_{i} polynomial, of degree $2 i$. iv) is equivalent to asking that $L(k-1)$ have a real structure on S. v) is akin to the instantion vanishing theorem, and is the condition that ensures non-singularity.

Furthermore, from a curve S satisfying the spectral curve conditions i) to v), it is possible to recreate an \widetilde{E}, and hence a monopole, and so one can parametrise the monopoles of a given charge by the space of corresponding spectral curves.

B. The Case of Charge Two

In the case of charge two, the curves S are in the linear system $|\mathcal{O}(4)|$; they are either smooth and elliptic, or pairs of sections $\mathbb{P}_{1}(\mathbb{C}) \rightarrow \tilde{T}$ (curves in $|\mathcal{O}(2)|$); the reason is that if S has singular points (if it does not, it is elliptic), the real structure forces them to come in pairs. As (section $\cap S)=4$ points, a section through two singular points of S and another point (such sections exist) is then a component of S, which must then be the union of two sections of $|\mathcal{O}(2)|$.

1. Reduction and Symmetries

The Euclidean group on \mathbb{R}^{3} acts on the space of divisors $|\mathcal{O}(4)|$. We start by factoring out this action, on the subspace $W \cong \mathbb{R}^{8}$ of real compact curves.

The general compact, real curve of $|\mathcal{O}(4)|$ is of the form

$$
\begin{align*}
0= & w^{\prime 2}+\left(c^{\prime}{ }_{10}+r_{1}{ }_{1} z^{\prime}-\bar{c}^{\prime}{ }_{10} z^{\prime 2}\right) w^{\prime} \\
& +\left(c^{\prime}{ }_{20}+c^{\prime}{ }_{21} z^{\prime}+r^{\prime}{ }_{2} z^{\prime 2}-\bar{c}^{\prime}{ }_{21} z^{\prime 3}+\bar{c}^{\prime}{ }_{20} z^{\prime 4}\right), \tag{1}
\end{align*}
$$

with $c_{i j}^{\prime} \in \mathbb{C}, r_{i}^{\prime} \in \mathbb{R}$, and w^{\prime}, z^{\prime} our standard coordinates on \widetilde{T}.
a) One first factors out the translation action, by choosing an origin in \mathbb{R}^{3}; one does this by eliminating the w-term. One gets:

$$
\begin{equation*}
0=w^{\prime \prime 2}+\left(c^{\prime \prime}{ }_{20}+c^{\prime \prime}{ }_{21} z^{\prime \prime}+r^{\prime \prime}{ }_{22} z^{\prime \prime 2}-\bar{c}^{\prime \prime}{ }_{21} z^{\prime \prime 3}+\bar{c}^{\prime \prime}{ }_{20} z^{\prime \prime 4}\right) \tag{2}
\end{equation*}
$$

Call the subspace of these centred divisors W_{c}.
b) Now, one factors out the remaining $\operatorname{SO}(3)$ action: the $z^{\prime \prime}$-term above has four roots $a, b,-1 / \bar{a}, 1 / b$; rotate so that one of these is sent to zero (another goes to infinity); then rotate around the axis in \mathbb{R}^{3} corresponding to the points $\{0, \infty\}$ in $\mathbb{P}_{1}(\mathbb{C})=\left\{w^{\prime \prime}=0\right\}$, so that one gets the reduced form (which is well defined)

$$
\begin{equation*}
w^{2}=r_{1} z^{3}-r_{2} z^{2}-r_{1} z, r_{i} \in \mathbb{R}, r_{1} \geqq 0 . \tag{3}
\end{equation*}
$$

Call the space $[0, \infty) x \mathbb{R}$ of such reduced divisors $W_{\text {red }}$; one therefore has the projection map $P: W \longrightarrow W_{\text {red }}$, factoring as $P=P_{c^{\circ}} Q$, with $Q: W \longrightarrow W_{c}$, $P_{c}: W_{c} \longrightarrow W_{\text {red }}$.

The isotropy group of this reduced form is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ when $r_{1}>0$ and $S^{1} \times \mathbb{Z}_{2}$ when $r_{1}=0$ (axisymmetric case); the \mathbb{Z}_{2} factors correspond in \mathbb{R}^{3} to the rotations by π that permute the roots $0, \infty, a,-1 / a$ of $r_{1} z^{3}-r_{2} z^{2}-r_{1} z$ in $\mathbb{P}_{1}(\mathbb{C}) \cong S^{2}$.

In passing, note that any symmetry of the spectral curve determines a symmetry of the monopole: therefore,

Proposition 2. The symmetry subgroup (of the group of proper Euclidean motions) of a monopole of charge two is:
a) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ in the non axisymmetric case, and corresponds to rotations by π around 3 orthogonal axes intersecting at a point.
b) $S^{1} \times \mathbb{Z}_{2}$ in the axisymmetric case, and corresponds to rotations about a point mapping an axis through that point to itself.

2. Link with the Standard From of an Elliptic Curve

Consider a curve $S: w^{2}=r_{1} z^{3}-r_{2} z^{2}-r_{1} z$ corresponding to $\left(r_{1}, r_{2}\right)$ in $W_{\text {red }}$. If $r_{1}=0, S$ is the union of two sections; if $r_{1}>0$, the curve is non-singular, elliptic. Setting

$$
\begin{aligned}
& w=\tilde{w} \cdot\left(r_{1} / 4\right)^{1 / 2} \stackrel{\text { def }}{=} \tilde{w} \cdot k_{1} \\
& z=\tilde{z}+\left(r_{2} / 3 r_{1}\right) \stackrel{\text { def }}{=} \tilde{z}+k_{2}
\end{aligned}
$$

we obtain the normal form of an elliptic curve:

$$
\begin{gather*}
\tilde{w}^{2}=4 \tilde{z}^{3}-g_{2} \tilde{z}-g_{3}, \text { with } \\
g_{2}=12 k_{2}^{2}+4, \quad g_{3}=8 k_{2}^{3}+4 k_{2} \\
27 g_{3}^{2}=\left(g_{2}-4\right)\left(g_{2}+2\right)^{2}, \quad k_{2}=3 g_{3} /\left(2 g_{2}+4\right) \tag{4}
\end{gather*}
$$

Then S is the embedding in \widetilde{T} via the Weierstrass \mathfrak{p}-function and its derivative $\left(\tilde{w}=\mathfrak{p}^{\prime}, \tilde{z}=\mathfrak{p}\right)$ of $(\mathbb{C}$ modulo a lattice $\mathscr{L})$. As S is real, \mathscr{L} is rhombic or rectangular; as the real structure has no fixed points, \mathscr{L} is rectangular, with positive real and positive imaginary generators l_{r}, l_{i}. (For a detailed treatment, see [2].)

If we consider the modular function $I\left(g_{2}, g_{3}\right)=27 g_{3}{ }^{2} / g_{2}{ }^{3}$ of the lattice, we get I as a function of $k_{2}{ }^{2}$; this is a diffeormorphism for $k_{2}{ }^{2} \geqq 0$, with $k_{2}=0$ giving $I=0$ (square lattice); furthermore, for $I \neq 0$, there are, up to scale, two rectangular lattices with real and imaginary generators giving the same I, one horizontal $\left(l_{r}>l_{i}\right)$, one vertical $\left(l_{i}>l_{r}\right)$; the ratio l_{i} / l_{r} is smoothly parametrised by $I^{1 / 2}$, and so by k_{2}. Therefore, if $I\left(r_{1}, r_{2}\right)=$ modulus of $S, H\left(r_{1}, r_{2}\right)=l_{i} / l_{r}(S)$, there are smooth diffeomorphisms $\tilde{I}, \tilde{H}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
I\left(r_{1}, r_{2}\right)=\widetilde{I}\left(\left(r_{2} / r_{1}\right)^{2}\right), \quad H\left(r_{1}, r_{2}\right)=\widetilde{H}\left(r_{2} / r_{1}\right) .
$$

3. Spectral Curve Conditions on S in $W_{\text {red }}$

a) $r_{1} \neq 0$.

Consider again $S: w^{2}=r_{1} z^{3}-r_{2} z^{2}-r_{1} z$. One has:

Proposition 3.

i) L^{2} is trivial on the curve $S \Leftrightarrow 4 k_{1} \in$ the lattice \mathscr{L}.
ii) $H^{0}\left(S, L^{t}\right)=0, t \in(0,2)$, for S a curve with L^{2} trivial $\Leftrightarrow 4 k_{1}$ is a real generator of the lattice \mathscr{L}.
iii) When $4 k_{1}$ is a real generator of $\mathscr{L},\langle\cdot, \cdot\rangle$ is negative definite.

Proof. i) L^{2} is trivial on S iff there are holomorphic functions f_{1}, f_{2} on $S \cap\{z \neq \infty\}$, $S \cap\{z \neq 0\}$ respectively with $f_{2}=\exp (-2 w / z) f_{1}$ on the overlap. Taking dlog, this is equivalent to

$$
\begin{equation*}
\mathrm{d} \log \left(f_{2}\right)=d(-2 w / z)+\mathrm{d} \log \left(f_{1}\right), \tag{5}
\end{equation*}
$$

where $d(-2 w / z)$ is a one-form on S with double poles and no residues at $z=0$, $z=\infty$; pulling back to $\mathbb{C} / \mathscr{L}, d(-2 w / z)=-2 k_{1} d\left(\mathfrak{p}^{\prime} /\left(\mathfrak{p}+k_{2}\right)\right)$; letting u be the standard coordinate on $\mathbb{C}, d(-2 w / z)=\left(-4 k_{1} / u^{2}+O(1)\right) d u$ near 0 . In turn, $\mathrm{d} \log \left(f_{1}\right)$, must be of the form $\left(4 k_{1} / u^{2}+O(1)\right) d u$; as this is its only pole on S,

$$
\operatorname{dlog}\left(f_{1}\right)=\left(4 k_{1} p+c\right) d u, e \in \mathbb{C}
$$

Moreover, $\operatorname{dlog}\left(f_{1}\right)$ has periods $2 \pi n i, n \in \mathbb{Z}$; for any $l \in \mathscr{L}$,

$$
\begin{equation*}
4 k_{1} \eta(l)+c l \stackrel{\text { def }}{=} \int_{u_{0}}^{u_{0}+l}\left(4 k_{1} p+c\right) d u=2 \pi \operatorname{in}(l), n(l) \in \mathbb{Z} . \tag{6}
\end{equation*}
$$

However, one has the Legendre relation, for $l_{r}, l_{i}[2]$:

$$
\begin{equation*}
\eta\left(l_{r}\right) l_{i}-\eta\left(l_{i}\right) l_{r}=2 \pi i . \tag{7}
\end{equation*}
$$

Comparing (6) and (7) gives

$$
\begin{equation*}
n\left(l_{r}\right) l_{i}-n\left(l_{i}\right) l_{r}=4 k_{1}, \tag{8}
\end{equation*}
$$

and so $4 k_{1} \in \mathscr{L}$.
Conversely, if $4 k_{1} \in \mathscr{L}$, one has (8) for some $n\left(l_{r}\right), n\left(l_{1}\right)$; one can choose c so that (6) holds for l_{r}; (7) then implies that (6) holds also for l_{i}, hence for all l; integrating and taking the exponential gives a section.
ii) As for i), the condition that $H^{0}\left(S, L^{t}\right)=0$ is just that $2 t k_{1} \notin \mathscr{L}$; as $4 k_{1} \in \mathscr{L}$, $4 k_{1}$ must be a generator.
iii) $\langle\cdot, \cdot\rangle$ is negative definite $\Leftrightarrow f_{1}(x) f_{2}(\tau(x))=r, r<0, r \in \mathbb{R}$. If Γ is a path on S from x to $\tau(x)$, this is equivalent to asking that $\int_{\Gamma+\tau(\Gamma)}\left(4 \mathrm{k}_{1} \mathfrak{p}+c\right) d u=2 \pi n i, n$ odd. (This property is independent of the Γ chosen). The real structure on \mathbb{C} / \mathscr{L} must be a lattice preserving map of the form $u \rightarrow a \bar{u}+b$, with $|a|=1, b$ a half-period ([2]); τ acts continuously on a family of real elliptic curves in \tilde{T}; considering the rectangular lattices in the family gives $a= \pm 1$; considering the square lattice of the family $\left(k_{2}=0\right)$ and the action of τ on \tilde{T} gives that $\mathfrak{p}(u)$ real, $\mathfrak{p}^{\prime}(u)$ imaginary positive $\Rightarrow \mathfrak{p}^{\prime}(\tau(u))$ imaginary positive, which, referring to [2], yields $a=-1, b=\left(l_{r}+l_{i}\right) / 2$. Taking Γ as the segment $\left[0,\left(l_{r}+l_{i}\right) / 2\right]$ then gives $l_{i} \cong \Gamma+\tau(\Gamma)$; if $4 k_{1}$ is a real generator of the lattice, (8) gives $n\left(l_{i}\right)=-1$, and so

$$
\int_{\Gamma+\tau(\Gamma)}\left(4 k_{1} p+c\right) d u=-2 \pi i
$$

b) $r_{1}=0$.

Proposition 4. The curve S : $w^{2}=-(\pi z / 2)^{2}$ is the only curve with $r_{1}=0$ in $W_{\text {red }}$ satisfying the spectral curve conditions.
Proof: The curves in $W_{\text {red }}$ with L^{2} trivial, $r_{1}=0$ are given by $r_{2}=[(2 n-1) \pi / 2]^{2}$, $n \in N$; see [3]. The condition $H^{0}\left(S, L^{t}\right)=0$ gives, by the same type of argument, $n=1$. Finally, for $n=1$, we can take $f_{1}(z)=1, f_{2}(z)=-1$, and so $\langle\cdot, \cdot\rangle$ is negative definite.

We now fit Propositions 3 and 4 together, and obtain:
Proposition 5. i) The set C of spectral curves in $W_{\text {red }}$ is a smooth curve intersecting $r_{1}=0$ transversely at $r_{2}=\pi^{2} / 4$.
ii) In a neighbourhood of this point, C can be described by $f\left(r_{1}, r_{2}\right)=0$, with f a smooth function, even in r_{1}, with $\partial f / \partial r_{2} \neq 0$.
Proof. For $r_{1}>0$, we show that C is the graph in polar coordinates (r, θ) of a smooth function $r=g(\theta)$. On $r_{1}>0, C$ is the set of elliptic curves with $4 k_{1}$ generating \mathscr{L}. Now for a curve in $C, \tilde{H}\left(r_{2} / r_{1}\right), g_{2}\left(r_{2} / r_{1}\right)$ are smooth functions of θ; however, for a fixed $\mathscr{L}, g_{2}(m \mathscr{L})=m^{-4} g_{2}(\mathscr{L})$, and so the real generator $4 k_{1}$ of \mathscr{L} is a smooth well defined function of r_{1} / r_{2}, for \mathscr{L} corresponding to a curve in C; but $4 k_{1}{ }^{2}=r_{1}$, and so C is as claimed.

Consider now how C behaves as $r_{2} / r_{1} \rightarrow+\infty$; from (4),

$$
\frac{r_{2}}{3 r_{1}}=k_{2}=\frac{3\left(4 k_{1}\right)^{-6}}{2\left(4 k_{1}\right)^{-4}} \cdot \frac{G_{3}\left(k_{2}\right)}{\left(G_{2}\left(k_{2}\right)+2\left(4 k_{1}\right)^{4}\right)}
$$

where G_{2}, G_{3} are g_{2}, g_{3} of our lattice, normalised so that the real generator is 1. This yields

$$
r_{2}=\frac{9}{8} \frac{G_{3}\left(k_{2}\right)}{\left(G_{2}\left(k_{2}\right)+32 r_{1}^{2}\right)},
$$

$k_{2} \rightarrow \infty$ implies $G_{3}\left(k_{2}\right) \rightarrow 8 \pi^{6} / 27, G_{2}\left(k_{2}\right) \rightarrow 4 \pi^{4} / 3$ [5]. Also, $k_{2} \rightarrow \infty$ means $g_{2} \rightarrow \infty$: the scale of the lattice (which is vertical, for $k_{2}>0$) tends to zero, and so $r_{1}{ }^{2}=\left(2 k_{1}\right)^{4} \rightarrow 0$; thus

$$
\lim _{k_{2} \rightarrow \infty}=\frac{\pi^{2}}{4}
$$

i.e., the curve C tends to the axisymmetric case. Also, expanding in series [5], one has

$$
\begin{aligned}
G_{2}(s) & =\frac{(2 \pi)^{4}}{12}\left(1+240 \sum_{n=1} \sigma_{3}(n) q^{n}\right), \\
G_{3}(s) & =\frac{(2 \pi)^{6}}{216}\left(1-504 \sum_{n=1} \sigma_{5}(n) q^{n}\right), \\
(1-I(s)) & =\frac{G_{2}^{3}-27 G_{3}^{2}}{G_{2}^{3}}=1728\left(q+\sum_{n>2} a_{n} q^{n}\right),
\end{aligned}
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, and $G_{2}(s), G_{3}(s), 1-I(s)$ are computed for the lattice generated by $(1, s), \operatorname{Im}(s)>0$, and $q=\exp (2 \pi i s)$. Inverting near $q=0$, one can write G_{2}, G_{3} as $G_{2}(1-I), G_{3}(1-I)$; but at $1-I=0, I$ is a smooth function of $\left(r_{1} / r_{2}\right)^{2}$, and so, near $\left(r_{1}, r_{2}\right)=\left(0, \pi^{2} / 4\right), C$ is defined by $F\left(r_{1}, r_{2}\right)=0$, with

$$
F\left(r_{1}, r_{2}\right)=r_{2}-\frac{9}{8} \frac{G_{3}\left(\left(r_{1} / r_{2}\right)^{2}\right)}{\left(G_{2}\left(\left(r_{1} / r_{2}\right)^{2}\right)+32 r_{1}^{2}\right)},
$$

which proves ii).
Note. One can show that $r_{2} \rightarrow-\infty, r_{1} \rightarrow 0$ as $k_{2} \rightarrow-\infty$. One uses the case $k_{2} \rightarrow$ $+\infty$, plus the fact that $\pm k_{2}$ determine identical lattices, but with one horizontal, one vertical. The spectral curve thus tends to the union of two well separated real sections; as these are the spectral curves of monopoles of charge one, one sees that this limiting case conforms with Taubes' construction of n-monopoles by "glueing" well separated monopoles of charge 1 [6].

4. $P^{-1}(C), C$ a Curve in $W_{\text {red }}$

We have computed the curve C of spectral curves $\left(r_{1}, r_{2}\right)$ in $W_{\text {red }}$ satisfying our general conditions for determining a bundle E that generates a monopole. The
space M of all such curves is just $P^{-1}(C)$, where $P: W \rightarrow W_{\text {red }}$ was our map defined in 1). We now prove a smoothness criterion for $P^{-1}(C)$.

Proposition 6. Let C be a smooth curve in $W_{\text {red }}$, intersecting $\{0\} \times \mathbb{R}$ transversally in a discrete set, with $(0,0) \notin C . P^{-1}(C)$ is smooth iff the following condition (*) holds: $\left({ }^{*}\right)$ for each point p in $C \cap\{0\} \times \mathbb{R}$, the curve can be expressed locally as $f\left(r_{1}, r_{2}\right)=0$, with f a smooth function, even in r_{1}, with $\partial f / \partial r_{2} \neq 0$ at p.

Proof. $\Leftarrow)$: As P factors as $P_{c^{\circ}} Q$, and Q is just the factoring out of the translation action, it suffices to show $P_{c}{ }^{-1}(C)$ smooth. Away from $\{0\} \times \mathbb{R}$ in $W_{\text {red }}$, P_{c} is a submersion; the only points of C for which we have to check smoothness are those in $\{0\} \times \mathbb{R}$. Let $\left(r_{1}, r_{2}\right)=(0, x) \in C ;\left(c_{20}, c_{21}, r_{2}\right)=(0,0, x)$ is in $P_{c}^{-1}(C)$; we show that $P_{c}^{-1}(C)$ is smooth at this point; because of the group action, this is sufficient.
i) P_{c} restricted to $W_{i}=\left\{\left(0, c_{21}, r_{2}\right) \in W_{c}\right\}$ is just $\left(0, c_{21}, r_{2}\right) \rightarrow\left(\left|c_{21}\right|, r_{2}\right)$, and so at $(0,0, x), P_{c}^{-1}(C) \cap W_{i}$ is smooth iff $(*)$ holds.
ii) $P_{c}^{-1}(C)$ smooth iff $P_{c}^{-1}(C) \cap W_{i}$ smooth at $(0,0, x)$: In a neighbourhood of $(0,0, x), x \neq 0, W_{c} \cong S^{2}(U) \times I$, where $S^{2}(U)$ is the symmetric square of a neighbourhood U of zero in \mathbb{C}, and I is an interval in \mathbb{R}; one has an unordered pair of roots, a, b defining the intersection $z=a, b,-1 / \bar{a},-1 / b$ of the divisor with $w=0$, and an $\operatorname{SO}(3)$-invariant scale factor r; along $(0,0, y), y \in \mathbb{R}$ in W_{c} the scale factor can be taken as y. Similarly, $W_{i} \cong U \times I$.

Let Sym: $U \times U \times I \rightarrow S^{2}(U) \times I$ be the natural projection; we consider $\left(P_{c} \circ \text { Sym }\right)^{-1}(C)$. Define $T_{a}(z): U \rightarrow \mathbb{P}_{1}(\mathbb{C})$ by $z \rightarrow(z-a) /(\bar{a} z+1)$; note that if a and b are two points in U, there is a real constant c such that $T_{a}(b)=\exp (2 \pi i c) T_{b}(a)$. Let $F(a, r): U \times I \rightarrow \mathbb{R}$ denote an axially symmetric (i.e., $F(a, r)=F(c a, r)$, for $|c|=1$) smooth function defining $P_{c}^{-1}(C) \cap W_{i}$ at $(0,0, x)$, with $\partial F / \partial r \neq 0$ at $(0,0, x)$. We define the smooth composition

$$
\tilde{F}(a, b, r)=F\left(T_{a}(b), r\right)
$$

this defines $\left(P_{c} \circ \text { Sym }\right)^{-1}(C)$ locally, and $\widetilde{F}(a, b, r)=\widetilde{F}(b, a, r) ; \widetilde{F}$ then factors to a smooth function on $S^{2}(U) \times I$ defining $P_{c}^{-1}(C)$ locally, with $\partial \tilde{F} / \partial r \neq 0$ at $(0,0, x)$. $\Rightarrow): W_{\text {red }}$ embeds in W_{c} naturally; at $(0, x) \in C, \partial / \partial r_{2}$ is transversal to C in $W_{\text {red }}$, by hypothesis; but $\partial / \partial r_{2}$ is also transversal to the group action at $(0,0, x)$ and so $\partial / \partial r_{2}$ is transversal to $P_{c}^{-1}(C)$ in W_{c}; the two-plane containing $W_{\text {red }}$ thus intersects $P_{c}^{-1}(C)$ transversally, and so the condition (${ }^{*}$) is realised.

5. The moduli space

Let M be $P^{-1}(C) ; M \cong$ moduli space of monopoles of charge two.
Theorem 7. i) M is a 7-dimensional manifold, smoothly embedded in $W=\mathbb{R}^{8}$.
ii) M is diffeomorphic to $\mathbb{R}^{3} \times T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$, where $T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$ is the tangent bundle of the real projective plane, with the vectors $v,-v$ identified for all v.

Proof. i) is a consequence of Propositions 5 and 6.
ii) $P^{-1}(C) \cong \mathbb{R}^{3} \times T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$ iff $P_{c}^{-1}(C) \cong T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$.
W_{c} is a 5 dimensional irreducible representation of $\mathrm{SO}(3)$, and $W_{\text {red }}$ is the quotient space. Think of W_{c} as the space of symmetric, tracefree real 3×3 matrices, and of $W_{\text {red }}$ as the space of diagonalised matrices in W_{c}, with decreasing values along the diagonal; let $(0, a)$ in $W_{\text {red }}$ correspond to the diagonal matrices with eigenvalues $a / \sqrt{6}, a / \sqrt{6},-2 a / \sqrt{6}, C$ is diffeomorphic to the curve of unit vectors in $W_{\text {red }}$ minus the point $(0,-1)$: see the proof of Proposition 6. The inverse image of $(0,-1)$ is the set of matrices of norm 1 in W_{c} with two equal, negative eigenvalues. This is just $\mathbb{P}_{2}(\mathbb{R})$, as such a matrix is determined by its positive eigenspace. $P_{c}^{-1}(C)$ is therefore $S^{4}-\mathbb{P}_{2}(\mathbb{R})$; to see that this is $T\left(\mathbb{P}_{2}(\mathbb{R})\right) / \pm$, note that an element of $P_{c}^{-1}(C)$ corresponds to a matrix which is determined by three orthogonal eigenspaces, with eigenvalues $a_{1} \geqq a_{2}>a_{3}, \Sigma a_{i}=0, \Sigma a_{i}{ }^{2}=1$. The eigenspace corresponding to a_{3} determines a point x in $\mathbb{P}_{2}(\mathbb{R})$; the eigenspace corresponding to a_{2}, when $a_{2}>a_{1}$, determines a direction in the tangent space T_{x} of $x ;\left(1-\left(a_{2} / a_{1}\right)\right) /\left(1+2\left(a_{2} / a_{1}\right)\right)$ can then determine a norm; thus the matrix corresponds to a couple $v,-v$ in the tangent bundle; the case $a_{2}=a_{1}$ corresponds to the zero section of the tangent bundle.

Acknowledgement. The author is indebted to Dr. N. J. Hitchin for his help and encouragement.

References

1. Bogomolny, E. B.: The stability of classical solutions. Sov. J. Nucl. Phys. 24, 449-454 (1976)
2. Duval, P.: Elliptic Functions and Elliptic Curves. LMS Lect. Notes 9, C.U.P. 1973
3. Hitchin, N. J.: Monopoles and geodesics. Commun. Math. Phys. 83, 579-602 (1982)
4. Hitchin, N. J.: On the construction of monopoles. Commun. Math. Phys. 89, 145-190 (1983)
5. Lang, S.: Elliptic functions. Reading, M. A.: Addison-Wesley 1973
6. Jaffe, A., Taubes, C. H.: Vortices and monopoles, Boston: Birkhäuser 1980
7. Nahm, W.: CERN preprint TH. 3172

8 Ward, R.: A Yang-Mills-Higgs monopoles of charge 2. Commun. Math. Phys. 79, 317-325 (1981)
9. Ward, R. : Ansatze for self-dual Yang-Mills Fields. Commun. Math. 80, 563-574 (1981)

