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Abstract. It is shown that in three space-time dimensions the pure U(l) lattice
gauge theory with Villain action and fixed coupling constant converges to the
free electromagnetic field as the lattice spacing approaches zero. The same
holds for the Wilson action on the electric sector.

1. Introduction

The lattice approximation to gauge field theories [22] beautifully preserves those
differential geometric structures of the continuum theory which are important for
physics. In addition to its value as a computational tool it provides a potential
mechanism for proving the existence of continuum gauge theories.

Balian et al. [1] have shown that for pure gauge theories in two dimensions
the compact lattice version is solvable, which yields, by explicit computation, a
proof that the lattice theory indeed converges to a continuum limit in two
dimensions. But in three or more dimensions compact lattice gauge theories are
not solvable and no such model has heretofore been shown to have a continuum
limit.

In three dimensions the compact pure gauge model with gauge group U(l)
(= circle group) is expected to converge in the continuum limit to the free
electromagnetic field. See for example [2]. In their deep paper on confinement in
the U(l)3 lattice gauge theory Gopfert and Mack [10] showed that the integer
scalar field naturally associated to the dual model converges upon suitable
normalization to a free scalar field if the coupling constant g is allowed to go to
infinity at an appropriate rate as the lattice spacing goes to zero. They conjectured
also that in the canonical limit in which g is held fixed the lattice gauge field itself
should converge to the free electromagnetic field at the level of the field variables
Fuv or the Wilson loops, at least for the Villain action.

* This research was supported in part by N.S.F. Grant MCS 81-02147, in part by the Institute for
Mathematics and its Applications at the University of Minnesota and in part by the Institute for
Advanced Study in Princeton, NJ, USA
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We show that the compact U(l) lattice gauge theory in three dimensions
converges to the free electromagnetic field for the Villain action with fixed coupling
constant in the sense of convergence of the characteristic functional of the field
variables, Fuv. We also show that for the Wilson action or any other action satisfying
natural minimal conditions the Fuv converge to the free electromagnetic field on the
electric sector. Thus we leave unsettled the question as to whether for the Wilson
action monopoles survive in the continuum limit. If they do we show that they are
independent of the free electromagnetic field. But we also give strong evidence using
a spin wave approximation that there are no continuum monopoles for the Wilson
action either (in dimension three).

DeAngelis and DeFalco [7] and Bellisard and DeAngelis [3] have shown that
the U(l) gauge model as well as the XY model with either Wilson or Villain
actions converge in a certain sense to the corresponding lattice Gaussian model
as the temperature goes to zero. Although they do not prove the existence of a
continuum limit they give evidence for its existence in the case of the X Y model [7].

Informally the free Euclidean electromagnetic field on Rd is given by a measure
on a space of 1-forms A = {Av(x)}d

v=1 by the expression

Z-'explXVΓ1 X J Fμv(x)2dx^A, (1.1)
μ<v Rd

where Fμv(x) = dAv/dxμ - dAμ/dxμ, and 2 A is the infinite dimensional "Lebesgue
d

measure": Q)A = Π Π ^v(x) Although this expression suffers, even at an
v = l xeRd

informal level, from the fact that the quadratic form in the exponential factor has
a large nullspace as a function of A, it is well known that by any of a number of
gauge fixing mechanisms the integral of gauge invariant functions is well defined
and in particular the integral of functions of the Fμv. We refer the reader to [21]
for description of the free electromagnetic field in the relativistic region and to
[11] and [13] for a description in the Euclidean region.

By a test r-form φ = {φiίt,,,tir(x)} on Rd, we shall mean an r-form which is
infinitely differentiable and has compact support. The basic objects we study in
this paper are the lattice versions of the smoothed field variables which in the
continuum are given by the informal expression

F(Φ)= Σ ί Fμv(x)Φμv(x)dx>
μ<v Rd

where φ is a test 2-form. An informal computation of Gaussian integrals starting
with (1.1) shows that the integral of exp[zF(</>)] is given by

= exp [- g\(- ΔΓ^δφm (1.2)

where A denotes the Laplacian on Rd and (δφ)v(x) = £ dφμv(x)/dxμ is the divergence
n

of φ. We shall use d for the exterior derivative (= curl) and δ = d* for its adjoint
(δ =div.). F(φ) should be thought of, for fixed φ9 as a measurable function of a
point F in some measure space. In fact it is a simple consequence of Minlos'
theorem [19] that there exists a unique probability measure on the dual space of
the space of test 2-forms satisfying (1.2). Equation (1.2) contains all the information
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we shall need about the free Euclidean electromagnetic field, which may in fact
be defined as the stochastic process φ-*F(φ) satisfying (1.2).

Recall that Maxwell's equations may be written in 4-dimensional Minkowski
space-time in the form dF = Q, δF = J, where F = {Fμv(x)} is the field strength,
J is the charge-current 1-form and the zero on the right of the first equation reflects
the absence of magnetic charge (no mono poles). In the Euclidean region Eq. (1.2)
shows there are also no monopoles, since for any test 3-form ψ (dF)(\l/\ which is
to be understood in the usual distribution sense as F(δψ), is zero. Indeed, using
the identity δ2 = 0 and substituting φ = t(δ\l/} in (1.2) shows that <^ίίFW)> = 1 for
all real ί, so that F(δ\jj] = 0 for all test 3-forms ψ. That is, dF = 0 for the free Euclidean
electromagnetic field.

The discrete analog of the Bianchi identity dF = 0 fails in the lattice theory
however. We shall show that starting with the Villain action on the lattice the
Bianchi identity is recovered in the continuum limit. A proof of this for the Wilson
action seems to require other techniques. On the electric sector however our results
are quite complete. We show that for any action satisfying the expected minimal
conditions (see conditions Al, A2, A3 in Sect. 2) the lattice analog of δF converges
to the free electromagnetic field both in the sense of convergence of the characteristic
functional and convergence of the Schwinger functions. The proof uses only the
Schwinger-Dyson equations and the asymptotics of the single plaquette energy
distribution near zero temperature. Duality arguments are not required anywhere.
We also prove Gaussian domination bounds on the Laplace transform and on
moments of δF in any dimension. These may be useful in four dimensions. For
general background on lattice gauge theory and for a survey of some deep results
on convergence of noncompact lattice models by Balaban, Brydges, Frδhlich and
Seiler, see [18].

2. Notation and Statement of Results

We consider lattice gauge models determined by a real-valued energy function h
on the real line R, satisfying some of the following conditions:

Al. h:R-^R is even, periodic with period 2π, and has two continuous
derivatives.

A2. minh = h(ty=0.
A3. h"(x) = 1 whenever h(x) = 0.

Examples 1 Wilson action: h(x) = 1 — cosx. More generally, the energy function
can have several zeros in the periodicity interval (— π, π]. For example h(x) =
m~2(l — cos mx\ m = 1,2, 3,..., also satisfies Al, A2 and A3, as does finite convex
sums of these.

2. Villain action: For each real number β > 0, define hβ(x) by

e-βW = Cβ £ exp[-/?(x-2πn)2/2], (2.1)
n— — co

where cβ is a constant chosen so that the right side is one at x = 0. Then hβ satisfies
Al and A2. We shall see in Sect. 3 that hβ(0) converges to one as β -»oo.
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Let A be a cube in Zd. That is, A = {keZ : m g kt ̂  M, i = 1, . . . ,d} for some
choice of integers m and M. Denote by {A(j)}d

=Q a complex built on A. AU) is a set of
oriented j-cells whose vertices are in Λ. We shall be interested for the most part in
open or closed complexes. We recall that a complex is open if for any j cell b in A(J)

and any j + 1 cell c, bedc implies ceA(i+ 1}. The complex is closed if for each (j + 1)
cell c in Λ0+1) any j cell ί?eδc is in A(J}. Open complexes correspond to a choice of
Dirichlet boundary conditions while closed complexes correspond to free boundary
conditions. See [9 or 14] for a discussion of this basic machinery of lattice gauge

theory. If ψ is an r-cochain over {A(j)}d

j=09 then we use the notation (dή/)(c) = £ ψ(b)
bedc

for the discrete exterior derivative. The sum extends only over those b in A(r) for
which b lies in the boundary of c and has consistent orientation. Similarly (δψ)(c)

= £ \l/(b) is defined for c in A(r~ 1} and the sum extends over those b in A(r) whose
b .cedb

boundary contains c with the proper orientation. Ifψ and ψ' are two r-cochains over

{Ar}9 then we put (\l/9\l/') = £ \l/(c)\l/'(c). All cochains are real- valued. The last sum is
ceΛO )

over unoriented r cells c. That is, c or — c occurs but not both. It doesn't matter which
since the sum is unaffected. This convention will be used for all sums or products
over r-cells, as in (2.2) and (2.3). It should be emphasized again that a statement bedc
means that b occurs in the boundary of c with consistent orientation. We shall use
the well known identities d2 = 0, δ2 = 0 and (dψ9\l/') = (\l/9διl/r)9 when ψ is an r-
cochain and ψ' is an (r -f l)-cochain.

If ψ is a C00 r-form on Rd, we denote by dψ its exterior derivative and by δψ
its coderivative; δ = d*. The two uses of the symbol d are related. Let a > 0 and
let aZd = {ak: keZd}. If ψ is a test r-form on Rd, then there is a naturally induced

d

r-cochain ψa on aZd. For example if r = l and ψ(x) = £ ψj(x)dxj, and if b is
7 = 1

a bond (oriented 1-cell) parallel to the j axis and extending from x (in aZd) to
x -h αe,., where (el9 . . . , ed) is the standard orthonormal basis of Rd, then ψa(b) = ψj(x).
More generally, if c is an r-cell in aZd, then we define ι//a(c)=\l/jίmfjr(x)9 where
ψ(x)= £ ^ jr(x)dxjl Λ — Λ dxjV, and where x is the "lower left" hand

corner of c, c has edges <x,x + αe,..), i = 1 , . . . ,r, and c is properly oriented. For
example if r = 2, then the correct orientation of c is that which makes the bond
b = (x9x+aejιy positively oriented. If r = 3 then the correct orientation is that
which makes the face with edges <x,x+flβ j. ι>, <x,x + ̂ 2> positively oriented
when this face is oriented as in the preceding sentence, and so on.

If ψ is an r-cochain on Zd, we define daφ = a'1 dψ and if ψ is an r-form on
Rd, define daψ = α"1 d(ι//^9 which is an (r + l)-cochain. Similarly δaφ = α""1 δψ if ψ
is a cochain and δaψ = a~l δ\l/a if ψ is an r-form.

Finally we write

(^^0= Σ ί ^,..>WΆ;,.,VW^
jl<...<JrR*

for two test r-forms on Rd. For two such forms one verifies easily using standard
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Riemann integral techniques that

αj.0

Using the mean value theorem judiciously, one can verify (easily for r = 0, with care
for r = 1) that

α|0

We shall need this for r = 1.
Let T = {eiθ : — π<θ^π}. We identify functions on the circle, T, with functions

on the real line, R, which are periodic with period 2π.
The finite volume Gibbs state in a cube A c Zd, at inverse temperature β and

with energy function h satisfying Al is given by

Here θ = {θb}beΛ(ί) is a 1-cochain on Λ. with values in ( — π,π], dθ= f| dθb

beΛM

is the product of Lebesgue measures on Γ, and dθ(p) = Σ θb for each plaquette
bedp

p( = 2-cell), in Λ(2\ For the open complex built on Λ, if dp has an edge, b, in the
boundary of A then b is not in /t(1) and is omitted from the sum defining dθ(p). This is
equivalent to setting such a θb equal to zero (Dirichlet boundary condition). Z is the
normalization constant and / is a function of the bond variables θb.

Since T is compact, infinite volume limits always exist. They satisfy the DLR
equations and in fact there always exists at least one translation invariant infinite
volume Gibbs state. We denote by <>p any such translation invariant infinite
volume Gibbs state. See [4, 5, 6, 8] for a discussion of uniqueness. If φ is a
2-cochain on Zd with finite support and a > 0, put

Fa(φ)=ad £ φ(p)a-2hf(dθ(p)). (2.3)

Then Fa(φ) is a function of the infinite volume configuration θeT(Zd)(l\
It is Wilson's proposal [22] that a~2h'(dθ(p)) is an approximation to the free

electromagnetic field Fμv(x), when h(x) = 1 — cosx. Thus Fa(φ) is the natural
smoothed version of the lattice approximation to Fμv(x).

Theorem 2.1. Letj be a test 1-form on R3. Assume that h satisfies Al, A2 and A3.
Let g be a strictly positive real number and put β'1 = ag2. Then in dimension d = 3

lim(eiF^yβ = e-^dj"2>2. (2.4)
α|0

Moreover, this equality holds if h is replaced throughout by the Villain action hβ.
The right sides of (2.4) and (1.2) are equal when φ = dj.

Theorem 2.2. (Gaussian Domination). Assume h satisfies Al, A2 and A3. Let α be
a positive real number satisfying h"(x) !gα for all x. Let φ be an exact 2-cochain of
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finite support on Zd. Then for any a>Q and /? > 0

<^>, ̂  exp [φ*-4r V W2/2]- (2.5)

// h is replaced throughout by the Villain action hβ then (2.5) holds with α = 1.

Theorem. 2.3. I. (Orthogonality of dF and δF for fixed lattice spacing in
dimension d.) Assume h satisfies Al. Let ψ and j be finitely supported cochains on
Zd of degree 3 and 1 respectively. Then for any β > 0, Fa(δψ) and Fa(dj) are mutually
orthogonal with respect to any Gibbs state < yβ determined by h if the state < yβ

is invariant under translation and 90° rotations.
II. (Independence of dF and δF in dimension 3). Assume that h satisfies Al, A2

and A3. Let < yβ be a corresponding translation invariant Gibbs state. Assume
further that for all test 3-forms if/ and test 1-forms j, Fa(δaψ + dj) converges in
distribution as α-»0 with β'1 = ag2. Then the limits F(δψ) and F(dj) are mutually
independent.

The proofs of these three theorems are in Sect. 4.

Remark 2.4. It is expected that in dimension three F(δψ)=Q. We shall prove this
for the Villain action (Theorem 2.6) and give evidence for this for the Wilson action
(Theorem 8.1). Thus the second part of Theorem 2.3 should eventually prove to
be vacuous.

Theorem 2.5. I. (Moment domination in dimension d). Assume h satisfies Al and
that h"(x) ^ α for some number α and for all x. Let φ be an exact 2-cochain of

finite support on Zd. Then

<Fa(φ)2nyβ ^ 1.3...(2n- IXα^

II. (Convergence of moments in dimension 3). Assume h satisfies Al, A2 and A3 or is
the Villain action hβ. Ifj is a C™ 1-form on R3 and β~l = ag2, then

Km(Fa(dj)2nyβ = U...(2n-l)g2n\\dj\\2». (2.7)
αj.0

The proof is in Sect. 5.
The preceding theorems all deal with the behavior of the lattice electric currents,

Jα = δFa. That is, they give information about Fa(φ) when φ is exact. The next
theorem, for the Villain action, is our only result on the monopole sector for
compact models. It asserts that in the continuum limit, starting with the Villain
action, there are no monopoles.

Theorem 2.6. Let φ be a test 3-form on R*. For the Villain action and for any r
in [1, oo).

Hm<|Fβ(5»r>(^-ι=0,

where < yβ is any translation invariant Gibbs state which is a limit of finite volume
Gibbs states with Dirichlet or periodic or free boundary conditions.

The proof is given in Sect. 6.
In Sect. 7 we discuss the possibilities of replacing h' in (2.3) by some other
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function u. For example if h(x) = 0 only at integer multiples of 2π, then h' can be
replaced by an odd, periodic function u without altering the continuum limit if
u and h' agree up to fourth order at x = 0.

In Sect. 8 we show that in the spin wave approximation to the Wilson action
there are no monopoles in the continuum limit. The spin wave approximation
consists in replacing cosx by —x2/2 in the Gibbs measure while continuing to
use sinx to define the field variables as in (2.3). Sections 7 and 8 taken together
strongly suggest that the continuum limit of the Wilson action has no monopoles.

3. Rates of Concentration of Gibbs State Mass near Minimum Energy

Lemma 3.1. Let f be a bounded measurable function on a probability space (Ώ,μ).
Assume that for some real numbers b, c, γ and K

a. x:(x£bZ>0,

If b < c, then
c-b\ (3.1)

Proof, e-'^y-1 J <Γ 1 / gy- 1 j
fSb

Hence, if A = {x: f(x) < c}, then

A"

By decreasing c — b in the exponent one can remove the condition that / be
bounded. But this is not necessary for our purposes.

Lemma 3.2. Let h be a continuous real-valued non-negative function on the real
line which is periodic with period 2π and satisfying h(0) = 0. Let Abe a (large) cube in
Zd and put

^Λ(θ\θ)= X h(dθ(p)). (3.2)
peΛ^

Here {A(j)}d

j=0 denotes the largest open complex with vertices in A. θb denotes the
value of θb when b lies in dA(l\

where dθ = Y[ dθb. Only those bonds enter this product whose vertίcs do not lie
beΛ(1)

entirely in dA. However one endpoint of b may lie in dA. Let M = max h. Then
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there exists a real number y > 0 depending on A and h such that for all θ

—^ J ^Λ(θ\θ)e~^^θ)dθ^2Md\8A\ + 4d2M\A\y-ίe-βMdldAl. (3.3)

Proof. Define θ by θb = 0 if foe/t(1) and θb =θb if fceδΛ(1). Then dθ(p) = 0 if dp
does not intersect (M(1). For such p,h(dθ(p))=Q. If peΛ(2) and 3p intersects dA(i}

then h(dd(p)) ^ M. The number of such p is at most |<M(1)| (cardinality without
regard to order) since at least one bond in dp lies m 5/ί(1). But jcMμ)( ^(c? - !){<?/ί{.
Hence,

£ Λ(d0(p))gM(d-l)|3yl|. (3.4)
peΛ(2)

apoδΛ ( 1 )f 0

Since A is continuous there is a neighbourhood U of θ\Λa} in Γ^0 such that
Σh(dθ(p))^M\dA\ for έ1 in U. The last sum is over those ^e/ίί2) such that
dpndA(1) = 0. Let y be the normalized d0 measure of U. Then y > 0. Adding (3.4)
to the last inequality we get

X h(dθ(p))^Md\dA\ (3.5)
peΛ(»

uniformly in 5 for 0|Λ(1) in 17.
Apply Lemma 3.1 to j/Λ(θ\0) with b=Md\dΛ\ and c = 2Md\dA\ to conclude

that the left side of (3.3) is at most

where K — sup s/Λ(θ\θ\ which is at most M|Λ(2)|. Since each point in A is a corner
of at most (2d)(2d - ί) plaquettes we have K <; 4d2M\Λ\, which estabίishes (S.3.).

Corollary 3.3. Denote by <«^yi(β|5)>ylϊδf/ϊ ίA^ /£/£ siWe of inequality (3.3). Under the
hypothesis of Lemma 3.2.

rn sup <j/^(fl|9)> Aft/ l ^ 2Λfd|&l|. (3.6)
^-»oo 0

Proof. Inequality (3.6) follows from (3.3).

Proposition 3.4. Let h be a continuous real-valued, non-negative, even, periodic
function on the line satisfying h(Q) = 0. Then for any translation invariant Gibbs
state < yβ on Zd and any plaquette p

lim < A ( W ) = α (3.7)

Proof. There are d(d - l)/2 pairs of coordinate axes in Zd. Pick plaquettes pl3 . . . , pn,
n = d(d- l)/2 with one lying in each coordinate plane and with p j = p. Let A be
a large cube. Then by translation invariance
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The last equality follows from the DLR equations [12, 15, 17]. By (3.6) we have

lim Σ <h(dθ(pj))yβ^Md2(d-l)\dA\/\A^\. (3.8)
β-+™ j = ι

But \A(2}\ is proportional to \A\, so that |<3Λ|/|yl(2)| -> 0 as |Λ| -> oo. Since Λ is arbitrary
the left side of (3.8) is zero. Each summand on the left of (3.8) is nonnegative. So
(3.7) follows.

In order to get more detailed information about the rate at which the internal
energy per site converges toward its minimum value we shall study the distribution
of a single plaquette variable, dθ(p), when the function φβ(x) = exp(— βh(x)) is
positive definite.

Lemma 3.5. Let A be a cube in Zd and let φ be a positive definite even periodic
function of period 2π on (— oo, oo). Denote by {A(j)} the complex for periodic, free,
or Dirichlet boundary conditions. Let p be a plaquette in the interior of A(2) and put

K0aP) = ί Π M» Π <KM(9h (3 9)
beΛ(ί) qeΛ(2)

bφdp qφp

where θdp denotes the four bond variables {θb}bedp. Then u depends only on dθ(p)ι
u(θdp) = Z(dθ(p}\ where Z is periodic and positive definite.

Proof. Although the fact that g depends only on dθ(p) follows easily from gauge
invariance (see Remark 3.1) we shall derive it from a Fourier representation of g
which we need anyway.

We may write

ae

Substituting into (3.9) gives

= ί Π dθb Σ ( Π <Ό exP I"* Σ
bφdp n( ) \qfp / [_ qf

where ^ is a sum over all integer -valued functions n(.) on A(2} - {p}. We note
»(•)

by the way that the closed complex {A(j}}d

j=1 built on A corresponds to free
boundary conditions. If we define n(p) = 0, then the sum in the exponential factor
can be extended over all q in A(2} and then rewritten as ]Γ θb(δn)(b). A θb

beΛ^
integral therefore gives zero unless (δn)(b)=0. Carrying out all the indicated
integrations yields

u(θdp) = X (2π)'"(1>l-*( Π «„(,)) exP Γ* Σ θb(δn)(b)].
δn(b) = 0 \q?p / L bedp J

Now let j be a vertex of p and let bί and b2 be in dp with bί pointing toward;
and b2 pointing away from j. If (δn)(b) = 0 for all bφ ± dp then

b:dbBj
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Hence m = (δn)(b) is the same for all be dp. Using £ Θbm = mdθ(p) gives finally
be dp

«(ίU= Σ eimM(p) Σ (2π)u<1)| Π βΛβ).
(5«)(fc)=mlb6βp

Thus the Fourier coefficients of Z(dθ(p)) are nonnegative.

Remark 3.1. The fact that u depends only on dθ(p) follows immediately from
gauge in variance, and in the nonabelian case as well. For if φ is a central function
on a compact group G, and if 1, 2, 3, 4 labels the vertices of p in the order of the
given orientation, then the gauge transformation gxy^y(x)gxyy(y)~1 takes u(gdp)
to w(l, 1,1,d0(p))ify(x)= 1 for all x not in {2, 3, 4} and7(7 + 1) = (g.J_1 ...g2>ί)~1

ify = 2,3 or 4, while at the same time translation in variance of the Haar measure
shows that u doesn't change.

Remark 3.2. One can prove Lemma 3.5 without using the Fourier representation
of φ as follows. Using the definition of positive definiteness ^jcicjφ(θi — θj]^^
for all c1,..., cπ, Θ 1 9 . . . , θn, one sees easily that φ(θί +Θ2 + Θ3 + Θ4) is positive definite
on t/(l)4 and that φ(dθ(q)) is therefore positive definite on L7(l)yl(1) for each
q. Hence the integrand in (3.9) is positive definite. But if v(g,k) is a positive

definite function on a product, G x K of compact groups then #-> J v(g,k)dk is

also positive definite if dk is Haar measure on K. By Remark 3.1 we may put
Ob = 0 for three bonds be dp to see that Z is positive definite.

Theorem 3.6. Assume that for each β > 0, hβ satisfies Al and A2. Assume further
that for some real number α and all β>0:

A4. d2hβ(x)/dx2^a for all xεR,
and

A5. e~βhβ is positive definite.

Let < >£ bean infinite volume Gibbs state on Zd which is a limit of finite volume
Gibbs states with Dίrichlet or periodic or free boundary conditions with action

£# =βΣhβ(dθ(q)). Then for any plaquette p and c> 0

pτobp(hβ(dθ(p)) ^c)^ 2π(uβd)il2 exp(- βc) (3.10)

for sufficiently large β and

->«> n-»oo _π

(3.11)
The right side of the inequality is finite if hβ is the Villain action or is independent
of β and satisfies A3. The Villain action satisfies Al, A2, A4, A5 with α = 1.

Lemma 3.7. Put φ(x) = exp (- βhp(x)) in Lemma 3.5 and write Zβ(x) for Z(x). Then
under the hypotheses of the Theorem

β(Q) for |χ|^π. (3.12)
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Proof. The second inequality in (3.12) follows from Lemma 3.5 because a
real-valued positive definite function achieves its maximum at zero. This is the
only place where A5 is used.

To prove the first inequality in (3.12) fix β and choose a bond b in dp. If we
put θb = x and θb, = 0 for each of the other three bonds b'edp then

Z,(x)=fexpΓ-/ί £ hβ(dθ(q))\dθ9 (3.13)
L qeΛ^ J

4f P

where dθ = Y\ dθb,. Exactly 2d—\ of the summands on the right side of
b'eΛ(l\b'φdp

(3.13) depend on x and we may suppose that the orientations of these plaquettes
q agree with b. Put f(x) = - β~l logZ^(x). Then

f'M = 7ττf (δh/)(b) exp c~

where (δΛ')(^) = Σ'^(^(#)) arκ* ̂ e sum Σ' extends over those q with bedq but
excluding g = p. Since fc is even and h'(θ) is odd one sees that /'(O) =0. Moreover
the second derivative of / is

The coefficient of β is positive by Schwarz's inequality. Hence /'(x) ̂  x

But (δhfr)(b)=^fhfr(dθ(q))^(2d-l)oί for all x and θ. Thus /"(x)^(2d- l)α.
Since /'(0) = 0 we have f ( x ) ^ f ( Q ) + (2d-l)ax2/2. Hence Zβ(x)^Zβ(Q)

o/ Theorem 3.6. Using the notation of the previous two lemmas put

Z(β)=

Then for any bounded periodic function v the finite volume Gibbs state expectation
of υ(dθ(p)) is given by

<v(dθ(p))yΛ>β=Z(βΓ1 } v(x)expt-βhβ(x)]Zβ(x)dx. (3.14)
— π

The four integrals over the bond variables θb, bεdp have been replaced by an
integral over one of them — denoted x — because both the density u(θdp) in
Lemma 3.5 and the integrand v(dθ(p)) depend periodically on dθ(p) only. A factor
(2π)3 cancels.

Now hβ(Q) = 0 and since x = 0 is a local minimum of hβ(x) we also have hβ(0) = 0.
Thus, since hβ(x) <Ξ α for all x, we have hβ(x) g αx2/2 for 1^1 ̂  π. By the first
inequality in (3.12) we therefore have

exp [- βhβ(x) ]Zβ(x) ^ exp [- jg(2rf)αx2/2]Z/?(0).
Hence

Z(j8) ̂  Z^O) J exp [- β(2dfrx2/2] dx. (3.15)
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But

J e-
tχ

= (2π/ί)1/2 - (2/πί)e-rπ2/2 ̂  (2/ί)1/2

for sufficiently large ί, say ί ̂  2t0. Therefore
1/2 (3.16)

for αβd ̂  ί0.
To prove (3.10) put v(x) = 1 if hβ(x) ^ c and zero otherwise. By Lemma 3.6

Z,(x)£Z,(0).Soby(3.14)

^ ί0.To prove (3.11) note that by an integration by parts

J h'β(x)2ne-βh^dx = (2n-l)β-i ] h"β(x)h'β(x)2n-2e-βh^ dx
— π — π

^α(2n-l)^'1 J h'β(x)2n-2e-βhv(x)dx.
— π

Boundary terms cancel by periodicity. By induction

J h'β(x)2ne-βh*(x)dx^unβ-nl3...(2n-l) ] (2n - 1) J e~βh^dx. (3.17)
— π — π — π

Hence by (3.14) and Lemma 3.6

O) J e-
— π

But Z(β}~lZβ(Q) <> (aβd)1/2 for uβd ̂  ί0, where ί0 is independent of A. Thus we may
let Λ f Z * and then let /?-» oo to get (3.11).

It remains only to prove that the right side of (3.11) is finite when hβ is
independent of β or is the Villain action.

Lemma 3.8. Assume that the function hβ in Theorem 3.6 does not depend on β and
satisfies Al, A2 and A3. Then the right side of (3.11) is finite.

Proof, h can have only a finite number of zeros in [— π, π] because at any
accumulation point h" must be zero, contradicting A3. If h(x0) = 0, then by A l and
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A3 there is a number ε>0 such that h"(x)ϊtj when |x-x0 |^ε. Thus h(x)^
(x - x0)

2/4 for \χ - χ0\ < ε and therefore

° ε

(X) dχ ^ βi/2 j eχp |-_ β^χ _ Xo)

If there are n zeros in (— π, π] then the lim sup on the right of (3.11) is therefore
at most 2nπ1/2(αd)1/2, since the integral of e~βh over any closed interval not
containing a zero of h goes to zero exponentially as β ->oo.

Lemma 3.9. (Villain action.) Define hβ as in (2.1). Then hβ satisfies Al, A2, A4 and
A5 with α = l. Moreover hβ(x)>Q unless x is an integer multiple of 2π. hf

β(x) is
uniformly bounded in x and β for /? ̂  1. // 0 < y < π, then

sup{\h'β(x)-x\:\x\^y}=0(e-βζ) as β-><x> (3.18)
and

sup{\h;(x)-l\:\x\^y}=V(βe-βζ) as /?-*oo, (3.19)

where ζ = (2π — y)2 - y2. Also

sup{\h'jl(x)\:xeR}=0(β) as β-+ao. (3.20)

The right side of (3.11) is finite.

Proof. It is clear from the definition (2.1) that hβ is even, periodic with period 2π,
infinitely difierentiable, and that hβ(Q) = 0. It is well known that e~βhβ('} is positive
definite (see e.g. [14]), from which it follows that exp [— βhβ(x)~] has a maximum
at x = 0. If / is a function on the integers, put

with Z(x, β) chosen so that < 1 > x β = 1. Then since

hβ(x)=-β-1log\cβ £ exp{- jS(x-2πn)2/2}l,
L n= -oo J

one computes easily the first and second derivative of hβ to find

, (3.21)
and

h»β(x) = l-β{((x- 2nn)2 > ̂  - < x - 2πn > 2

 β } . (3.22)

Note first that the expression in braces, { }, in (3.22) is nonnegative by by Schwarz's
inequality. Hence hβ(x) ^ 1 for all x. Now we may rewrite (3.21) and (3.22) as
h'β(x)-x=2π(nyXiβ and

For O ^ x ^ π the behavior of Z(x,β) as β-+ao is determined by the term
00

n=0 in the rapidly convergent series expression for it: Z(x,β)= Σ
n— — oo

exp[-β(x-2τw)2/2]. Consequently <n> J C f / ϊ =0(β~Λ) uniformly for | x |^y<π
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and the same behavior is valid for <π2> j c / 3. Equations (3.18) and (3.19) follow from
this. Since hβ is periodic and even it suffices for proving (3.20) to prove <«2>X j / 3

and <n>2

x β are bounded uniformly for x in [0,π] and uniformly in β for β ^> 1. But

< y e-β(x~2πn)2/2

X'β~\_n = 0 J L

Q + e~β(X-2π)2/2

J

+ 2
n>2

In the second bracket we have separated the terms n = 0, n = 1 and n = - 1 and
estimated the rest of the series. Looking at the three non-zero terms separately
one sees that each remains bounded after division by the indicated estimate
of Z(x9β), uniformly for x in [0,π] and uniformly in β for β^ 1. (It may be
illuminating to note also that lim <n2) β = lim <n>π « = i )

β-*ao 'P β^ao 'P

Finally, to see that the right side of (3.11) is finite note that

j exp [- /M,,(χ)] dx = cβ £ J exp [- β(x - 2πn)2/2] dx
n= — oo — π

while c^ = Σ exP [ ~ β(2πri)2/Z] which converges to one as β -> oo.
«= — 00

Remark 3.10. For the Villain action hβ(x) converges uniformly in x to the periodic
extension of x2/2 on ( — π,π]. This follows directly from the definition (2.1) as
well as from (3.18). For example, factoring exp [- βx2/2] out of (2.1) and taking
logs yields

+ Σ
nψ 0

But c«-> 1 as j?-χχ) and the argument of the log function is easily seen to be
bounded on [ — π,π] by its value at x = π.

Remark 3.11. Information about decay oΐ(h(dθ(p))yβ asβ->oo can also be gotten
from correlation inequalities when these are applicable. To illustrate, consider the
Wilson action h(x) = 1 — cos x. De Angelis'et al. [4-7] have pointed out that
Griffiths inequalities apply to U(l) gauge models. Let

dθ/(θ)expΓscosdθ(p)+ X tcosdθ(q)

One may conclude from Griffith's inequalities that <cosd#(p)>sί is an increasing
function of s and t for s ̂  0 and t ̂  0. Hence

Thus, < 1 - cosdθ(p)yβ}β ^ < 1 - cos dθ(p)yβίQ. But the last expectation reduces to
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a one dimensional integral which the reader can verify is 0(β~l). Therefore, for
the infinite volume limit,

^-cosdθ(p)yβ=Q(β-1). (3.23)

After this manuscript was submitted Jean Bricmont kindly informed me that
inequality (3.10) can also be deduced from correlation inequalities, as well as from
reflection positivity, by the methods of [23].

4. Proofs of Theorems 2.1, 2.2, and 2.3

Lemma 4.1. (Schwinger -Dyson Equations). Assume h satisfies Al. Let <( > β be any
infinite volume Gibbs state for the action

^=βΣh(dθ(p)). (4.1)
P

The sum is over plaquettes, p, in Zd. Let v be a differ entiable periodic function of
finitely many bond variables. Then for any bond b

(4.2)
where

(δh')(b)= Σ h'(dθ(p)). (4.3)
p: dpBJb

Proof, v depends on the bond variables θb, for b' in some finite set S c (Zd)(1). Let
A be a large cube such that S is contained in the open complex A(1\ and such

that the given bond b is also in A(ΐ\ Put d Λ(θ) = β Σ h(dθ(p)) and fix arbitrary

boundary values θb, on the boundary of Λ(l\ Then by an integration by parts

Here dθ = Y\ dθb,. The boundary terms, cancel by periodicity. Division by the
?'e^(υ

normalization constant Z(θ) yields the identity (4.2) for the finite volume Gibbs
state in A with arbitrary boundary conditions. Equation (4.2) now follows from the
DLR equations.

Lemma 4.2. Assume h satisfies Al, A2, A3. Let < yβ be a translation invariant
infinite volume Gibbs state for the action (4.1). Then for any plaquette p in Zd and
1^ r< oo

=0.

This holds also if h is replaced throughout by the Villain action hβ.

Proof. As noted in the proof of Lemma 3.8, h can have only finitely many zeros
in the periodicity interval (— π,π]. It follows from Al, A2 and A3 that for any
number ε > 0 there is a number δ > 0 such that |1 — h"(x)\ < ε whenever h(x) < δ.
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Hence, if M ̂  1 + max \h"(x)\, then

< |1 - h"(dθ(p))\r yβ ^ sr Prob (h(dθ(p)) <δ) +Mr Prob (h(dθ(p)) ^ δ)

So by Proposition 3.4 lim sup <|1 - h"(dθ(p))\ryβ ^εr. The first part of the
/?-*oo

Lemma follows from the arbitrariness of ε.
For the Villain action \hβ\ is not uniformly bounded, so the previous proof

must be modified slightly. By remark 3.10 there is a number c>0 such that for
all large β, hβ(x) < c only if x is within π/2 of some integer multiple of 2π. Thus
by (3.19) there is a number βQ such that |1 - h"β(x}\ < ε if hβ(x) < c and β > βQ. As
before

- h"β(dθ(p))\r>β £ β' + 1 + sup \h"β(x)\ Prob (hβ(dθ(p)) ^ c)

by (3.20) and (3.10). We may now take lim sup as before.
β->ao

Proof of Theorem 2.1 . Although our main result is only for dimension 3 we keep
track of the dimension dependence of powers of the lattice spacing, a, for
Theorem 2.2. and for other anticipated future use. Thus we consider a test 1-form
j on Rd and put φa(p) = (dj) (p) for the two co-chain defined in Sect. 2. Put

(4.4)

The sum runs over all plaquettes in (αZd)(2), but it is a finite sum for each a because j
has compact support. Define, for β > 0.

iφ^β^V (4.5)
Then

p dpab

1Z Σ i
p bedp

-4/Γ 1 Σ φa(p}2 <.h"(dθ(p))eίs F' >,. (4.6)
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In the fourth line Lemma 4.1 was used and in the last line we used α"1 £ j(b) =
bedp

φa(p). Now we put d = 3 and β~1 = ag2 to get

dujds = - sg2a*£ φa(p)2<h"(dθ(p))eisF«yβ.

Put φ = 4/. Then P

= sg2(\\φ\\2

L2 - α3£ φa(p)2] ua(s)
P ' (4.7)

P

Now \ua(s)\ g 1. So the first term on the right of (4.7) goes to zero as α-> 0, uniformly
for 5 in any bounded interval. Moreover,

|<(1 - h"(dθ(p)))eisF«yβ\ ^ <|1 - K'(dθ(p)))\>P

goes to zero uniformly in s and uniformly in p as a -> 0 by Lemma 4.2, since β->ao.
Since α3 Σpφa(p)2 is bounded the second term on the right of (4.7) also goes to zero as
0->0 and does so uniformly on bounded 5 intervals. Hence the derivative of
ua(s)es2g2^^12 converges to zero uniformly on bounded s intervals as α approaches
zero. But for all a this function is equal to one at 5 = 0. It follows that ua(s)ιes2^2^^2

converges to one as a approaches zero. Put s = 1 to get Theorem 2.1.
For the Villain action replace h by hβ throughout the proof. This concludes

the proof of Theorem 2.1.

Proof of Theorem 2.2. We use the same notation as in the proof of Theorem 2.1
except that we replace φa by an exact 2-cochain φ (i.e., φ = dj for some 1-cochainy)
and we now set ua(s) = (esFMyβ. The equations (4.6) for the derivative of ua are
the same except for the absence of the factor ί2. Thus

dua(s)/ds = sa2*-^-1 £ φ(p)2(h"(dθ(p))esF«yβ.
p

esFa is a bounded positive function for fixed a. Using h"(x) ^ α for all x we get

dua(s)/ds ^ s(aa"-4β-l)(a"Σ Φ(P)2} «Φ)
\ P /

Since ua(ϋ) = 1 it follows (e.g., divide by ua and integrate) that

ua(s) ^ exp [s\aad~ *β~ l)ad\\φ\\2

2/2].

Put s = 1 to get (2.5). For the Villain action replace h by hβ as before and use

hβ(x) ^ 1 from Lemma 3.9.

Proof of Theorem 2.3. If ψ is a 3-cochain on Zd and; is a 1-cochain on Zd, both

finitely supported, then
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In the last line we have used the Schwinger- Dyson equations. For a fixed plaquette
p dh'(dθ(p))/dθb is zero if + b is not in dp. In the sum over b we may use those
orientations which are consistent with p. In this case the integrand in the last line
is h"(dθ(p)}. But (ti'(dθ(p)}yβ is independent of/? by the assumed translation and
rotation in variance. Write α t = (h"(dθ(p))yβ. Then

<Fa(δφ)Fa(dj)yβ = α2d-4αx Σ(^)(P) Σ M
p bedp

= 0.

For the second part of the theorem we take ψ to be a test 3-form on R3 and
j to be a test 1-form on R3. Let

with β~ * = ag2, for a > 0. By assumption ι;α(s) converges as a-+ 0 for each s. Denote
the limit by υ(s). In order to prove the asserted independence of the limits F(dj)
and F(δι//) it suffices to prove that

/ eiF(dj+δψ) \ = / eiF(dj) \ / eiF(δψ) \

for all such j and ψ. But the first factor on the right is known from Theorem 2.1
and the second factor is ι (O). The right side is thus ω(l) if ω(s) is given by

ω(s) = exp[-sVll*ΊI2/2] KO).

Now ω(s) is the unique solution of the differential equation

dω/ds = - sg2 ||4/||2ω(s), ω(0) - 1;(0). (4.8)

It suffices therefore to show that v(s) also satisfies this equation. Put φ = sdj + δaψ
and put G = Fa(φ). Then (d = 3 below).

dva(s)/ds = i(Fa(dj)eiGyβ

ladΣ φ(p)a-2«dh'(dθ(p))/dθb)eίGyβ.
b p

As noted in the first part of this proof dh'(dθ(p))/dθb is 0 or + h"(dθ(p)). Hence

) Σ φ(pKh"(dθ(p))eiGyβ

p dpBb

ι ^ j(b)φ(p)(h"(dθ(p))eίGyβ

p bedp

= -g2a"^φ(P)(dJ)(p)<,h"(dθ(p))eίGyβ. (4.9)
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Now

<h"(dθ(p))eiGyβ = va(s) + <(A"(<#(p)) - iχG>r

The second term converges to zero uniformly in p as a-+ 0, as we saw in the proof
of Theorem 2.1. Moreover the 2-cochains φ and daj are bounded in I2 norm
uniformly in a as a -> 0 and uniformly for 5 in a bounded interval. Further,

= <Λ Σ (4./)

which converges to s||d/||2. Hence the right side of (4.9) converges to -sg2\\dj\\2v(s)
as a goes to zero.

Upon taking the integral of both sides of (4.9), from 0 to s, then letting a go
to zero, we see that v(s) satisfies an integral equation equivalent to the differential
equation (4.8). This concludes the proof.

5. Domination and Convergence of Moments

Proof of Theorem 2.5. I. By assumption there is a 1-cochain y on Zd with finite
support such that φ = dj. Then

a2" ~*β- \2n - 1) Σ>) Σ φ(pKSh'(dθ(p))/dθbFa(φ)2n-2 >,
6 p

b dpBb

a2" ~*β-\2n - 1) Σ Φ(P? <h"(dθ(p))Fa(φ)2"-2 >,

The transition to the skth line follows from reversing the sum on b and p as in
the proof of Theorem 2.1. The inequality (2.6) now follows by induction on n.

II. With β~~l = ag2 and d = 3 the sixth line above reads

(5.1)
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Now if we put φ=dj\ then ad^φ(p)2 converges to ||φ'||2 as α->0. Hence by
P

(2.6) with β'1 = ag2 and d = 3, Fa(dJ) is bounded in U norm uniformly in a for
each r < oo. Thus by Lemma 4.2 the last term on the right of (5.1) converges to zero.
Equation (2.7) now follows by induction on n.

Remark 5.1. Theorem 2.2 can be deduced as a consequence of (2.6).

6. Absence of Continuum Monopoles for Villain Action

In this section hp will denote the Villain energy function defined by (2.1), while
< yβ denotes any translation invariant infinite volume Gibbs state which is a
limit of finite volume Gibbs states with Dirichlet or periodic or free boundary
conditions.

Lemma 6.1. In d dimensions, let c be a 3-cell (i.e. an oriented three dimensional
cube.) Let 1 ̂  r < oo, and put

pedc

There exists a constant k> 0, independent of c, such that

)\ry^=0(e^k) as /?->σo.

Proof. Since hβ(x) converges uniformly on [ — π,π] to x2/2, there is a number
β0 and a small number γ > 0 such that hβ(x) ^ y implies \x\ g 2π/7 if β ̂  β0 and
M^π.

Let θ = {θb} be an infinite volume configuration, fix β ̂  /?0, and assume that
for each plaquette p in the boundary of the given cube c there holds hβ(dθ(P)) g γ.
Each θb is in ( — π,π] so that dθ(p)e( — 4π,4π]. Since hβ is periodic it follows
from the choice of β and γ that for each pedc, dθ(p) is within 2π/7 of some integer
multiple of 2π. That is, there is an integer kp such that

But d2θ(c) = 0, i.e.
pedc

\dθ(p)-2πkp\^2π/Ί for all pedc.

dθ(p) = 0. Hence

Σ(-
pedc pedc

Dividing by 2π shows that the integer

be zero. So
pedc

is at most f and must therefore

(6.1)
pedc

Let ζ = (2π - 2π/7)2 - (2π/7)2. Then ζ>0. From (3.18) and the periodicity
of h'β we see that there is a number β^ > β0 such that for any integer kp

\h'β(x) -(x -2πk p)\ ^ Ce~« β>βlt
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for some constant C, if |x — 2πkp\ < 2π/7. Thus

157

\dh'β(c)\ = Σ hf

β(dθ(p))
pedc

Σ {h'β(dθ(p))-(dθ(p)-2πkp)-}
pedc

iϊβ>β! and hf(dθ(p)) g γ for all pedc.
If A is the set of configurations θ for which k(dθ(p)) ζy for all pedc and C

is its characteristic function, then

+ <|dfy(c)r(l-CJ>,

^ (6C)re ~rβζ + (6 max\h'β\) r < < 1 - CAyβ. (6.2)

But \hβ(x)\ is uniformly bounded in x and β by Lemma 3.9, for β ̂  /^ Moreover
it follows from (3.10) that

<1-CX>^ X Prob^(rf%))>y)^constantjβ1/2^^

for large jS. The lemma now follows with k = min (ζ, y/4).

Proof of Theorem 2.6. Let ψ be a test 3-form on R3. Then

Lr(β)

Lr(β)

This first factor converges to J |^(x)|dx as α->0 while the second factor converges
κ3

to zero for β"1 = α#2, and in fact exponentially fast in the lattice spacing a.

Remark 6.2. Combining Theorems 2.1 and 2.6 we derive easily that for any test
one form j and test 3-form ψ

lΐm <exp [iFtfd + dj)])β = exp [- 02||4fl|2/2]
α-» 0

for the Villain action /ι^ with the canonical value β"1 = αg2.

7. Change of Field Function

Let u(x) be a periodic real-valued continuous function with period 2π, and define



158 L. Gross

for any 2-cochain φ of finite support. The choice u(x) = h'(x) coincides with the
field variables that we have used so far (cf. Eq. (2.3)). This is a natural choice
because of the way it arises in the Schwinger-Dyson equations, Eq. (4.2). But it
is illuminating to understand to what extent one can alter this choice. Specifϊcallly,
the question of the existence of monopoles in the continuum limit for the Wilson
lattice action is not settled in this paper. This section shows that it is only the
cubic terms in the expansion of sinx about x = 0 which can possibly contribute
to the survival of monopoles in the continuum limit. In the next section we shall
show that in the Gaussian lattice model with field function u(x) = sinx there are
no monopoles in the continuum limit (d = 3), showing that even the cubic terms
don't contribute in that case. But that proof depends on information about
correlations which we have not used anywhere so far and which is not presently
available for the Wilson action.

Theorem 7.1. Assume that h satisfies Al, A2 and A3 and that e~βhίs positive definite
for all β>0. Assume further that h has six continuous derivatives. Let u be a five
times continuously differentiable odd function on the line which is periodic with period
2π. Ifu(j\x) = h(j+ υ(x) f o r j = 0,1,2,3,4 whenever h(x) = 0, then for any test 2-form
φ on R3

K™<(Fa(Φa)-F«a(φa))2yβ=Q. (7.1)
α|0 P

In particular if Fa(φa) converges in distribution so does F"(φa)9 and they have the
same limit.

Proof. Put v(x) = hf(x) - u(x). Then

<lFa(φa) -TOJ]2),1'2 = <[>3Σ Φa(p]a-2v(dθ(p})-]2yβi
2

p

^"Σ\ΦM<v(dθ(p))2y1

β>
2. (7.2)

P

If h(x0) = 0, then by assumption v and its first four derivatives are zero at x = x0,
so that v(x) = 0(\x - x0|

5) as x-»x0. But /ι"(x0)=l, so that in some small
neighbourhood around x0 we have Λ"(x)^l/2. Thus \h'(x)\ ^ |x — x0|/2 in this
neighbourhood, and \v(x)\ ^ const |/z'(x)|5 there. There are only a finite number
of such points x0 in (— π, π], and the union of the above described neighbour-
hoods contains {xe(— π,π] :h(x)<c} for some sufficiently small c. Hence, using
periodicity, |φc)| g C^h^x)]5 whenever h(x)< c. Thus

) < c } y β +(sup^2)<C{Mdθ(p))^c}>r

By (3.11) the first term is 0(β~5) as β-+ao while the second term is, by (3.10)
0(βl/2e~βc). Hence (v(dθ(p))2yβ=O(β-5) as β-*oo, uniformly in p.

Thus with β~l =ag2 we see that the right side of (7.2) is at most a constant

times a(ag2)5/2Σ \φa(p)\> which equals α1/205( 03Σ \Φa(P)\ \ This converges to
p \ P /

zero like aί/2.
The final statement of the theorem means that the two sequences of characteris-
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tic functionals have the same limit. And in fact

a a a

which converges to zero by Schwarz's inequality and (7.1).

Remark 7.2. A similar theorem holds with h replaced by the Villain action hβ. In
this case the only zero if hβ(x) in the periodicity interval (— π,π] is at x = 0. The
conclusions of Theorem 7.1 hold if u is an odd periodic function in C5(R) satisfying
w'(0) = 1 and w'"(0) = 0. The second and fourth derivatives are automatically zero
because u is odd. This result for the Villain action doesn't seem very important
at the present time because the absence of monopoles in the continuum limit for
the Villain action has already been established in the preceding section. The
condition u'"(0)=0 could probably be dropped if one had information about
correlations. This is suggested by the results of the next section.

8. Gaussian Model with Nonlinear Field (Spin Wave Theory)

The noncompact version of the U(l) model is given in a cube A c Z3 by the Gaussian
measure.

Z^expΓ- (0/2) { £ (dθ(p))2 + m2 £ (δθ(x))2\]dθ (8.1)
L lpeΛ<2) χeΛ(o) JJ

on RΛ(1\ where dθ = Y\ dθb. We take {Λ(j)}?= 0 to be the open complex formed over
beΛM

A. With — Δm = δd + m2dδ (which automatically incorporates Dirichlet boundary
conditions because the complex is open) one verifies easily that

Λ,β = exp [- (2βΓ1((- AJ-^δφ, δφ)-] (8.2)

for any 2-cochain φ over Λ(2\ Informally the noncompact version of Eq. (2.2) is
given by (8.1) with m = 0. However the quadratic form in the exponent is degenerate
when w = 0 and insertion of the gauge fixing term w2£((50(x))2 is one of the

X

standard ways of making the measure finite. The integral of functions which depend
only on the variables dθ(p\ peΛ(2) is independent of m as the reader can verify for
exponentials from (8.2). Henceforth we take m = l . We are concerned only
with functions of the dθ(p). It is clear from (8.2) that the thermodynamic limit
A T Z3 exists on these functions, and if φ is a 2-cochain of finite support, then

= exp [- (2β)~\(- AΓlδφ9δφ)ί (8.3)μ

where — A = dδ + δd acting on I2 cochains.
Let Cp(q) = 1 if g = p, — 1 if g = — p and zero otherwise for each plaquette p.

Then putting φ(qf) = sCp(q') + tCq(q') into (8.3) and differentiating once with respect
to each of the real parameters s and t at s = t — 0 gives

Note that G(p, q) is independent of β.
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The linear fields dθ(p) are well understood Gaussian random variables and
Eq. (8.3) implies without much difficulty that the characteristic functional of the

field variables α3]Γ φa(p)a~2 dθ(p) converges as α->0 to the right side of (1.2) for
P

any test 2-form φ if β~ * = ag2. We are interested however in the nonlinear, periodic
field variables

Fa(Φa) =<*3Σ φa(p)a-2smdθ(p), (8.4)

where φ is a test 2-form on R3. We saw in Sect. 7 that the only possible source
of monopoles in the continuum limit for the Wilson action is the cubic term in
the expansion of sin dθ(p). Our objective here is to show that there are no monopoles
in the continuum limit of the nonlinear fields (8.4).

Theorem 8.1. Let if/ be a test 3-form on R3. Then

lim<Fα(έ»2>(αί72).1=0. (8.5)
α-*0

Remark. 8. 2. The same result holds if sinx is replaced by any odd polynomial.
Only the third order Hermite polynomial requires some care and this proceeds
in much the same way as we shall show for sinx. The higher order Hermite
polynomials however contribute zero in the limit for the same reasons as in Sect. 7.

Lemma 8.3. For plaquettes p and q define Sβ(p,q) = (smdθ(p)sindθ(q)yβ. Then

Sβ(p, q) = ™pί-β-1Gl sinh [β~ lG(p, 4)], (8.6)

where G = G(p,q) is a constant.

Proof. Write 2 sinx siny = cos(x - y) - cos(x + y) = Re [ei(x~y} - eί(x+y}~\, and use

(8.3) to get

exp[(2j8)- \Δ ~ \Cp - Cq\ Cp - Q]

- exp [(2/0 - \Δ ~ \CP + Cl Cp + C .

Lemma 8.4. Fix q. Then p-*G(p,q) is a 2-cochain and its exterior derivative is
zero. That is, dG(-,q)(c) = 0 for all cubes c.

Proof. £ G(p,q)=βΣ <dθ(p)dθ(q)yβ = β(d2θ(c)dθ(q)yβ=0.
pedc pedc

Lemma 8.5. Write \p — q\L for the distance of the center of the plaquette p in
(Z3)(2) to the center of the plaquette q measured in units in which adjacent points
in Z3 have distance one. There is a constant A and a number y > 1/2 such that

Proof. G(p,q) = ((-AΓίδCp,δCq). The kernel (- AΓ1(x9y) acting on scalar func-
tions is known to fall off like \χ - y\~* for large separation between x and y, see
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e.g. [2Q,§26] or [16, page 387]. The inner product defining G(p,q) is a finite sum
of differences of this kernel and therefore falls off at least as fast. One can therefore
take γ = l .

Remark 8.6. An explicit computation for G(p, q) for the two cases, p parallel to q
or p perpendicular to q, shows that G(p9q) = 0(]p — q]l'2t\OB\p — q\I). With more
care the log can probably be eliminated. It is illuminating, however, to see how
fast a fall off is actually required to eliminate monopoles. γ > 1/2 will be shown
to be sufficient.

Lemma 8.7. There is a constant M such that

if β^L

Proof. Use Lemma 8.3 and the fact that β~1G(p,q) is bounded for β^> 1.

Proof of Theorems.!.

<^«(<5»2 >β - a6 Σ (
PA

= a-1Σψa(c)dG( ,q)(c)=0 by Lemma 8.4. Hence

P,q

Choose a number γ >\ as in Lemma 8.5 and a number t <| such that 3γt > 1.
Then, writing M' for a bound on M\G(p,q)\3, we have

<^>)2>/^M'ΓV £ \(δaψ)(p)\\(W)(<ι)\
\P-q\L^~(

+ M/ΓV Σ K

Now ψ has compact support in R3. Let r be the radius of a ball centered at zero
containing the support of ψ. Then δa\l/ is supported in Z4 on a ball of radius r/a.
For each plaque tte p in this ball the number of plaquettes q for which \p - q\L ̂  a~t

is on the order (a'1^. Thus the first sum on the right of (8.7) is 0((r/a)*(O*) as

α|0, since δaψ(p) is uniformly bounded in a and p by the mean value theorem.
Thus the first term on the right of (8.7), with β~l = ag2 is 0(a5a~3~3t) = 0(α2'3ί).
Since ί <| this goes to zero as a->0. The second term on the right of (8.7) is at
most Mg6a5 + 37t^\(δa\l/)(p)(δa\l/)(q)\. Since 5 + 3yί> 6 this also converges to zero

p,q
as a approaches zero.
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