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Abstract. We give a simplified construction of "twist eating" configurations,
based on a theorem due to Frobenius. These configurations are defined
through the equation: UμUvUμ U+ = exp(2πmμv/JV) with UμeSU(N\ μ = ltod
and nμv an antisymmetric matrix with integer entries. In the (Twisted)-Eguchi-
Kawai model they yield extrema some of which survive for N->co.
Comparison is made with the Monte Carlo data of the internal energy in the
small coupling region.

1. Introduction

The recently introduced Twisted-Eguchi-Kawai (TEK) model [2] combines four
powerful approaches to the strong interaction theories. The 1/JV-expansion [3],
the lattice approximation to space time [4], the twisted boundary condition for
gauge fields in a box [5] and the loop-equations [6]. For the Eguchi-Kawai model
[1] to work, one needs zero vacuum expectation values for all open loops. This is
only guaranteed in the strong coupling region. Quenching [7] has been introduced
to extend it to all coupling. It however considerably complicates calculations,
unlike the twisted version, where the model is defined by a simple modification of
the action:

Here Uμ are the SU(iV) link variables on a one point lattice and Zμv = Z*μ, an
element of the centre ZN of SU(iV), is the twist. It is labelled by the twist tensor nμv

through:

Z » = exp(2πmμv/JV), (2)

where nμv is an antisymmetric 4 x 4 matrix with integer entries defined modulo N.
The lower bound of the action (1) is zero and is saturated if and only if there

exist four elements Ωμ of SU(JV) satisfying :

Ω t f Ω v Ω ί Ω v

+ = Z > ) . (3)
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These configurations are called twist eating [8] (zero action solutions with
nonzero twist) and were first discussed in the context of the continuum [9].
Because of the revived interest in the solutions to Eq. (3) we think it is useful to
present a more straightforward construction for these solutions. It is based on a
number theoretic theorem due to Frobenius, which brings nμv in a suitable
standard form. This can be found in Sect. 2, along with relevant examples in Sect. 3.

In Sect. 4 we study the stationary configurations of the action (1).
Configurations satisfying Eq. (3), but with nμv replaced by any allowable twist
tensor mμv obviously are stationary, they are similar to the ZN excitations
discussed in [15]. They are stable (to all orders) if m is "close enough" to n and
describe flux-like excitations which we prefer to call fluxons1, to be contrasted
with the torons of [17] and vortices on an infinite lattice [15, 19]. We show that in
the Twisted-Eguchi-Kawai model there are surviving ίluxons for N-+oo, because
their action is proportional to 1/JV. They can be compared with the continuum
solutions in a box with twisted boundary conditions [10]. There are also
stationary points which are not of the above simple form. In Sect. 5 we deal with
some relevant applications to the TEK-model and compare with existing Monte
Carlo data [2], for which there is reasonable agreement.

In Sect. 6 we give conclusions and an outlook for further progress. The
motivation for this work is the "standard" belief that fluxlike excitations are
responsible for confinement. Work is in progress to use the fluxons for a better
understanding of this problem.

An appendix deals with a technical point on the solution space of Eq. (3), which
is completely categorized. A formula for its dimension is given in terms of nμv and
N only.

2. Construction of Twist Eating Configurations

We will first concentrate on the 4 dimensional case. Some comments on
generalisation to any dimension d^.2 are made at the end of Sect. 3. From the
continuum we learn that the existence of a solution to Eq. (3) implies [5, 11]
"orthogonal" twist: κ(?t) = 0modJV, where κ(ή) is the Pfaffian of n\

The converse has also been proved [10, 11], that is construction of solutions to
Eq. (3) for all [11] N and orthogonal nμv.

We can view nμv as an alternating form on the lattice spanned by the four basis
vectors (eμ)v = δμv. A slightly adapted version of the Frobenius theorem [12] tells
us that for any nonzero nμv there is a base (/μ) v such that nμv is of the form:

o°
0 - e ,

1 Sometimes used for "vortex" continuum solutions [18]
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with ex the greatest common divisor (gcd) of the absolute value of the entries oϊnμv

\ex =gcd(|nμ v |)]. All this implies that

is an invertible 4 x 4 matrix with integer entries. Therefore both detX and
det(X~1) = (detX)" 1 are integer, so d e t X = ± l . Now κ(nf) = (άQtX)κ(ή)= -eγe2,
and we simply force detZ = l by choosing e2 = —κ(n)/ev Note that the greatest
common divisor is invariant under SL(4,Z) transformations, so ex divides e2. [If
κ(n) = 0, we are free to choose detX = l.]

We will now use a trick, also employed by Brihaye [14] in a more restrictive
case, to split N into the product of Nx and N2, which divide, respectively, ex and
e2, which is possible since e1e2/N is an integer. When e 2=0modiV, we can
immediately apply 'tHooft's procedure [10], which is contained in the following
by putting N2=N and N1 = ί9 with P1=Q1 = 1. A solution to Eq.(3) is:

with

(8)

and PM, QM SU(M) matrices satisfying [10]:

PMQMKQM = ™P(2™/N). (9)2

Equation (8) is just one of the possible solutions to:

( V v - svtμ)/N2 + (yμzv - yvz^lNx = nμv/N,

which can be easily checked using (5) and (6). With this information it is not hard
to verify that (7) yields a solution to Eq. (3). In the appendix it is shown how this
generates the most general solution.

Since knowledge of the matrix X is essential in the construction, we will
give a recipe (the mterested reader can infer from this the proof of the Frobenius
theorem as we stated it above). We look for the minimum of the strictly positive
values of E(a,b) = aμnμvbv. This minimum can be shown to be ev the greatest
common divisor of nμv. There exist f1 and / 3 which saturate this minimum, so:
e1=E(fί,f3). When A is the two dimensional sublattice orthogonal to f1 and / 3

[i.e. points x on the lattice belong to A if and only if E(x,f1) = E(x,f3) = 0~] then
projection onto A is given by:

2 The solutions to (9) are all gauge equivalent. See the appendix for details
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PΛ is a linear operator. Therefore the lattice can be seen as the direct sum of the
kernel of PΛ (spanned by f1 and / 3 ) and the image A of PΛ. A is obviously
spanned by the set {PΛe

μ μ = 1,2,3,4}, but its dimension is two. So we can find f2

and / 4 which span A and together with f1 and / 3 form a base for the lattice. We
already showed that this implies de tX=±l . By interchanging f2 and / 4 or
multiplying one of them by — 1, we can change detX= — 1 into detX= 1. It is not
hard to see that we can choose for f2 and / 4 any two independent vectors from
the set {PΛe

μ}. This is how the following examples are constructed.

3. Examples

To illustrate the construction we will give three examples:

/0 -L -L -L\

' L 0 -L -L

L 0 - L i

\L L L OI
(lla)

X =

This is the so-called symmetric twist, used by Gonzalez-Arroyo and Okawa [2b]
to construct the TEK model. It guarantees, at least in weak coupling, zero vacuum
expectation values for open loops o n a L x L x L x L-sublattice. For iV = 4 and 16
they checked it by Monte Carlo calculations. A further example is in the class
which gave us most difficulties in our original construction [11]:

X =

(lib)

This solution is nevertheless the same as we would obtain from [11, Theorem 4.2].
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The two methods are not always equivalent as the last example shows:

(lie)
/ l - l υ υ\
1 - 5 6 0 0 1 ,

x=

The method of [11] yields Ωμ = {P5®l2®l3, 15®P2®Q3, β 5 ® l 2 ® l 3 ,
l5(χ)Q2(x)P3}. Another solution suggests itself directly from the simple form of nμv:
Ώμ = {P5(χ)l6, l5(χ)P6, Q 5 (χ) l 6 ,1 5 ®6 6 } . These three solutions can be transformed
into each other by a similarity transformation.

Generalisation to dΦ4 is obvious. First of all, the 2-dimensional case is trivial
to solve with no condition on nμv. The three dimensional case can be seen as a
special case for d = 4, namely by putting ni4 = 0. The case d = 2n, n>2 is a
straightforward generalisation of the 4-dimensional case, but now N is split in
general in the product of n integers. For this the pfaffian of nμv [no longer given by
(4)] needs to be OmodiV. We do not know if this is a necessary condition for n>2,
it also is not sufficient, but it is hardly of any physical relevance at present. The
case 2n — 1 is again obtained by "dimensional reduction" from d = 2n.

4. Extrema for the TEK-Action

If Uμ = Ωμ defines an extremum for the action (1), we can label the fluctuations
around this extremum, as in the background field method [13], by:

Uβ = Ωμeχp(-Xμ). (12)

where Xμ is an element of the algebra of SU(ΛΓ) in the fundamental representation.
Let λt for i = 1 upto N2 — 1 be the generators of SU(iV). They are antihermitian
NxN matrices satisfying Tr(/L) = 0 and Tΐ(λΛ ) = — iδ..> Any complex NxN

N 2 - 1

J

matrix A can be expanded as A = aol+ Σ aiK w i t n α i G ^ If furthermore
i= 1

Ύr(A) = 0 then α0 = 0. So Ίr(XA) = 0, for any X in the algebra of SU(N), implies that
A = 0. We can apply this to find the equations of motion. Expanding the action (1)
up to first order in Xμ and demanding stationarity of the action, we find
Tr(LμX" ) = 0 for any Xμ in the algebra and Ύx{Lμ) = 0. So the equations of motion
are:

Lμ^ Σ lΩv(Pμv-Pvμ)Ω: - ( P μ v - p v μ ) ] = θ , (13)
vΦμ

with Pμv = Pv* the plaquette variables :

Pμv = Zμv(n)ΩΪΩ:ΩμΩv. (14)



6 P. van Baal

Finding the most general solution is very hard. In the EK-reduction scheme one
eliminates the translational degrees of freedom, yielding the simple one point
lattice. The price one pays is that large groups occur.

As a first step we discuss the most obvious solutions. One of these is of course
the analogue of the ZN-fluctuations [15], for which Pμv is a multiple of the identity.
However, not all multiples are allowed, even if UμeU(N\ we always have
PμVeSU(JV), and thus it must be an element of the centre:

ΩμΩvΩ^Ω:=Zvμ(m), (15)

where mμv can be any orthogonal twist tensor, not necessarily equal to nμv.
Expanding the action S around this solution up to second order gives:

4 r

S(n;m) = 2N £ sin2 \^(nμv-m
μ Φ v = l L i V

+ \ Σ cosΆnμv-mJττ(FμvFμX), (16)

with

Ω^XΩX

Xμ is defined through (12), and Ωμ is a solution of (15).
It is claimed that the fluxon solution (15) is stable if and only if for all μ, v:

(18)

This is obvious up to second order. But there are zero modes which are not
connected with symmetries of the action, and in these directions higher order
contributions can destabilize the solution, at least in principle. (As an example of
these zero modes we mention the fluctuations around singular torons [17], with

n = m = 0, U =L Here all fluctuations are zero up to third order, but the quartic
term is positive.) The proof goes by induction. We write:

Sμv = Zμv(m) Tr( Uμ Uv υ; U:) = Tr(exp( - DμXv -Xv)

• e x p ( D ^ +Xμ) exp(Xv) exp( -Xμ)). (19)

Using the Campbell-Baker-Hausdorff formula this can be expressed as:

SβV = Tr (exp ( £ 4 ) exp ( - £ B,)), (20)
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with

(21)

The specific values of (β.) are of no interest to us here. In lowest order

so Aι — Bί=Fvμ. A zero mode implies Aγ =BV and we do not want a decreasing
action in this direction. But Aι=Bί implies

Sμv = Tr(expG42 - B2 + Θ(X3))) = Tr(l + \{A2 - B2)
2 + Θ{X5)),

which indeed gives an increasing action as long as A2 + B2 and condition (18) is
satisfied. The induction argument is now to assume that in all directions except
those given by Λj = Bj for all j up to i9 S is an increasing function, as long as (18) is
satisfied. In this exceptional direction however one has

and thus S is increasing in all directions except those given by Aj = Bj for all j up to
i-f-1. So S stays constant along the direction Xμ with A = B for all j , including at
least the gauge directions, and increases in all other directions, which proves the
claimed stability up to all orders if condition (18) is satisfied.

The weight factor in the functional integral is traditionally given by
exp( —#~2S) = exp( —/?S), where g is the bare lattice coupling constant. In the
JV-»oo limit g2N is kept fixed, so we naively expect only those configurations to
survive for which S is proportional to 1/JV (compare [10]); at least for g2 small

—

order 1/JV, which also means that all these surviving fluxons must be minima of the
action.

A generalization is obtained by putting Pμv — Pvμ = ίλμvl. Unitarity implies
\λ\ ^ 1 and up to a gauge transformation:

enough. Thus for the ίluxon's satisfying Eq. (15) we must have sin—{n μ v — mμv)\ of

with N = n++n_. The most general expansion of the action around an extremum
up to second order is given by:

S(n)= Σ ττ{ί-%Pμv + Plι*)-¥LDJCv+Xμ,DvXμ+Xv }
μΦv= 1

+ίίXμ,XMPμv-P,μ)+ΪFJPvμ + Pvμ)F;v}. (23)

So apart from the fact that the extremum is unstable if n_ φθ, we have furthermore
that S(n)^:2 if there is a (μ, v) pair with n_ φθ. In conclusion extrema of the form
Pμv—Pvμ=λl are stable iff they survive for N~+oo iff Eqs. (15) and (18) are satisfied
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From (23) we learn that probably any extremum with Pμv — Pvμ not a multiple
of / is unstable. Furthermore any extremum which survives will stabilize for
N-ϊco; they will become approximate minima, somewhat analogous to multiin-
stantons built up from single instantons at a large average separation. For
T r ( l - i ( P μ v + Pvμ))~l/iV implies Pμv-Pvμ~l/N and | ( P μ v + PJ~ 1 + 1/N2.
These extrema can be important too one might suspect a large entropy for them.
The final class of solutions we managed to construct are of this type, for this we
make the ansatz:

Oμ6U(N1)ΘU(iV2)Θ...Θl/(JV/)AJ(l)J (24)
ί

where N= ]Γ Nj and © is the direct sum. So we choose simultaneously all Ωμ in a
J = l

block form. The equations of motion restricted to each block are of the same form
as Eq. (13). The phase factors in each block are irrelevant in constructing solutions,

i

so one can choose Ωμ = ]|Γ Ωμ

ι\ Ωμ

ι)e SU(TV ). This problem we already solved, and
. jr1

we can have only surviving extrema if Ω(j} are of the Z^ .-type, i.e.:

ff+ ^+ ^^ f N ) , (25)

with of course orthogonal twist: κ(mU)) = 0moάNr We could interpret these
solutions as superpositions of ίluxons "separation" is now in the group manifold
instead of space-time.

5. Applications

We will discuss situations relevant for the TEK-model and for which Monte Carlo
data are available [2]. We will restrict ourselves here to the internal energy in the
weak coupling (large β) domain. The internal energy is defined through:

φ i > ί ; ^ ϊ ^ ^ . (26)

Here Z{n,β) is the partition function based on the action S of Eq. (1) [dU is the
SU(iV) invariant Haar measure] :

Z{n,β)=\ l\dUμexp(-βS). (27)
μ = l

The expansion around the absolute minimum of the action S0(n) gives the
following weak coupling behavior (see the appendix for a derivation):

( 2 8 )

The lower bound for the action is zero, it can be saturated only if the twist nμv is
orthogonal. The minimum action manifold is the solution space to Eq. (3). In the
appendix we show that for these solutions:

i(n) = gcd(nμv,N,φ)/N). (29)



Twisted SU(oo) Action in Eguchi-Kawai Model 9

If i(n) = 1 all solutions are gauge equivalent (see footnote 5), but for i(ή) φ 1 there
are singular points in the solution manifold, where quartic fluctuations occur,
similar to the singular torons of [17]. These torons correspond to nμv = 0, i(ή) = N,
and the fluctuations around the most singular ( = neutral) torons Uμ = I dominate

the partition function. One finds E(n = 0,/J) = l + < % 3 ) , using (28) with

S0(ή) = 0. This phenomenon of "ground state metamorphosis" also occurs if there
is nonzero twist, with ΐ(n)Φ 1, because the fluctuations around singular points will
dominate in that case3. Details of this highly nontrivial fact can be found in the
appendix. For any orthogonal twist nμv φ 0 we therefore find the result [2]:

1 JV
E(n,β) = l — for JV->oo, i(n)/N-+0 and β->oo. This corresponds to the

8 β
expression for the infinitive lattice. There is good agreement with the Monte Carlo
data of [2a, b].

For the orthogonal twist in [2a] (Zμ v = — 1, TV = 4k) we have i(n) = \N. Here the
11 JV

weak coupling behavior E(n9 β) = 1 — —-^ mildly deviates from the infinite lattice
96 p

case. This should not surprise us since only the smallest open loops are guaranteed
to have zero vacuum expectation value. For the symmetric twist we expect full
agreement for N->oo, and indeed here i(ή) = l, so at least the weak and strong
coupling region are in excellent agreement with the infinite lattice case. We can
also understand that fluctuations remain small for β/N not too small and i(n) = 1 4 .

If nμv is not orthogonal, S0(ή) >0, the lower bound S = 0 can not be saturated.
We assume that the minimum action configuration is of the ZN-type [Eq. (15)]
with m orthogonal and closest to n, by which we mean that

[o i

— (nμv~mμv)\ *s maximal. The full stability of the Z^-fluxons is
N J

consistent with the minimum action condition. Note however that the groundstate
will be generate, whenever there is more than one twist tensor mμ°v\ which is
orthogonal and closest to nμv in the above sense. The internal energy now behaves
as: 0 ΪNβ

+ &(g3). (30)

From this we deduce that there is an upper bound for the asymptotic value of the
internal energy within the class of nonorthogonal twist nμv:

(31)

It is saturated if ]Γ (nμ v~mμ°Λ = 1. To compare with Monte Carlo data [2a]

3 Contrary to what was used in [17, Eq. (6.1)]

4 Fluctuations will be of order (i(n) — 2)(i(n) — l)/(24Nβ) because of competition between regular and
singular fluxons for moderately large β/N [17] (see also the appendix)
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N N2 N
we take N = 2(2k+1) and nμv = — for all μ>v. This yields κ(ή)= —— = —mod TV,

and we choose as an example to saturate the bound (31):

/ N N
0 — — — —- —

— 0
N

y

•zr -z- 0

N

y

2

N

~y

1 - ^

(32)

There are 12 distinct possibilities for mfv\ For all of them /(m(0)) = 1, so within each
class all configurations are gauge equivalent. The ground state is 12-fold de-
generate. This is of course under the assumption that there are no lower fluxon
levels. The asymptotic behavior:

is in good agreement with Monte Carlo data [2a] for SU(6) and SU(10), so the
assumption is not contradicted.

Finally we will construct the action for the first few surviving fluxons in the
case of symmetric twist [2b] [Eq. (lla)], within the class we considered. Fluxons of

the form (25) will only survive if

«Ga»M"fcx
.- — =φl—\ This implies that κ(mU))

JV. iV \N

. . . . . . - . _ . — . Therefore all mU) cannot
[NLJ\ J N \ \Ljj

be orthogonal simultaneously. The only surviving fluxons in our class are
therefore of the ZN-type [Eq. (15)]. From Eq. (16) we find for JV-> oo the following
expression for the action [with mμv = nμv

Jrlμv, and lμv = Θ{\)~]\

(33)
v ' ' N ^ μv

i y μ>v

The orthogonality of m gives the following constraints on lμv:

(34)

From the second constraint we learn that £ l2

μv is always even. We therefore label
μ> v

the ZN fluxon levels by an integer k, such that Sk = fe. All Z^-fluxons of the feth

level are thus categorized by lμv satisfying \ ^ lμv = k and the constraints (34).
μ > v

Since surviving fluxons have κ(m) = N, they all are gauge equivalent for a given lμv.
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Table 1. The first eight ίluxon levels for the symmetric twist: nμv = L,μ>v, and N = L2,
along with a representative for m at each level. N is taken large

16π2

— ,

32π2

48π2

, no solution !

P
64π2 L + 2 0 *

S 8 = Ί Γ , m μ v = l + 2 L QL + 2 L + 2 0/

There are some values of k (e.g. /c = 6,11) for which the constraint (34) cannot be
satisfied we call them forbidden fluxon levels. In Table 1 we give the first 8 levels.
In the appendix we consider the ZN-fluxon contribution to Z(n, β).

6. Discussion

Even if there are more solutions to the equations of motion not of the simple form
we considered, the above shows there is an interesting non-perturbative structure
in the TEK-model. Since the perturbative sector of the TEK-model reproduces
beautifully planar expansion [2b], it is hard to see how one should extract
confinement from this [16]. This is in accordance with the standard belief that ZN-
vortices are thought to be responsible for confinement [19]. We showed that ZN-
excitations in the form of fluxons are also present for the TEK-model and can
survive from a naive point of view for JV-*oo.

There are nevertheless several problems to be solved. First of all the Eguchi-
Kawai reduction [1] process only guarantees that the Wilson loop expectation
values satisfy the same set of equations, but do not necessarily yield the same
numerical values, although Monte Carlo data [2] suggest that they do. Secondly
the N-+ oo limit is taken in a strange way, namely only covering the integers which
are squares. The choice of the symmetric twist also seems very special. It is
however not hard to see that any m from Table 1 can be taken as the twist tensor n
in the action (1), without changing e.g. the fluxon spectrum. The finite N
corrections will however become more complicated.

The Monte Carlo data for the χ-ratio support the conjecture that confinement
survives for JV->oo (compare Fig. 11 of [2b], and for SU(4) see [20]). From
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renormalization group arguments we expect the string tension to behave as σ(β)

I ' e The best one might hope for in weak coupling approxi-

mations is a factor e % N if there are no lower lying ίluxons.

It is hoped that the relative simplicity of a one point lattice will bring us closer
to a quantitative understanding of confinement.

Appendix

A.l. Dimension of Solution Manifold for d = 2

We first study the solutions to Eq. (9) (PN,QNeSU(N)).

PNQNPNQN =z^oxp(2πi/N). (A.I)

We will often drop the suffix N, if no confusion is possible. It is claimed that all
solutions are gauge equivalent to those given in [10]:

= z(N-l)/2 I \ I p = z(N-l)/2

Ό 1

01 θ

(A.2)

0 01

10 0/

P and Q are only simultaneously invariant under transformation with the centre
ZN of SU(JV), and the solution space is therefore isomorphic to SU(N)/ZN or the
adjoint representation of SU(iV). All solutions to (A.I) are given by:

P = ΩPΩ+, Q = ΩQΩ+, ΩeSU(iV). (A.3)

Let us prove the claim by bringing Q to a diagonal form; we will show that all
eigenvalues of Q are different and fixed apart from trivial rearrangements. It is
necessarily of the form Q. Finally P is then uniquely fixed to be P up to a diagonal
gauge which leaves Q invariant. So we have:

e y = V y , Pijλj = zλiPij. (A.4)

If π is a N-permutation and sg(π) its sign, we have:

π i = l

So there is a π such that Y[ Pίπ(i) + 0, implying:
i= 1

(A.6)
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We can write any permutation as a string of cyclic one's, π = ((iί ..Λs)(jι.. .jt)...) in an
obvious notation. Suppose now a cycle of length s occurs, then (A.6) forces zs = 1;
s = N is the smallest possibility, so π is cyclic itself and after some rearrange-
ments λί=zι~ίλ1. Then detβ = l forces λι to be z(N~1)/2u, with u an of the
centre. However, u~1λi defines the same set of eigenvalues (ZN is closed under
multiplication) and Q is up to a gauge given by Q. In this gauge all entries of P are
zero except for Pii+V i = l up to N— 1 and PN 1. From detP = l we must have
^ ^ • • • V i Λ r ί - f 1 - W e c a n therefore write Pui+1=z(N-1)/2

μίμ7+\,
with μί+ι=z{N~1)l2P[i

i

+1μi, where we furthermore used the information that
PP+ = J, implying P + 1 G U ( 1 ) . We can therefore choose μ.eU(l) (we define JV+1
to be equal to 1 as an index). It is a consistent set of equations, because one easily
shows that μ.+ 1 =zι(N~1)/2(Pί 2 Pi *+i)~ Vi> which gives an identity for i = ΛΓ,
since 2?<N-1)I2 = {- I f " 1 . '

Finally we choose μ1 such that Π ^ ί = ^ Therefore P = ΩPΩ+, with

Ω = diag(μ1...μN)eSU(N). This completes the proof of our claim.
The situation is somewhat more complicated if we want to construct the so-

lution space to

PQP+Q+=zn. (A. 7)

For n = Q the solution can be found in [17] in the form of torons. They are simply
commuting matrices and the dimension is N2 + N — 2. However, the solution
manifold contains singular points (the singular torons) whenever there is a
degeneracy. Its topology is much more intricate. Set theoretically we can label it as
HNξ&HN®SU(N)/HN with HN the maximal abelian subgroup of SU(JV). For the
TEK-model this point is, however, of no practical importance as we will see. If
n + 0, lmodiVwe will need some simple results on finite abelian groups, which are
all of the form ZN (compare e.g. [21]). zn generates a subgroup of ZN given by

<z»> = {z"Ίί = <U,. . . ,o(n)- l } , (A.8)

where o(n) is the order of zn, the smallest nonzero integer such that zo{n)'n = 1. We
can look at the orbits of <z"> in ZN, which are given through w<z">, for ueZN. The
number of disjoint orbits is called the index of <z"> in ZN, which we will denote by
ί(ή). They completely cover ZN; one now easily deduces [21]

o(n)'ί(n) = N9 i(ή) = gcd(n,N) (A.9)

Repeating the analysis of the case n= 1 we can use Eq. (A.7), but now π is allowed
to have cycles of length o(ή) or a multiple thereof. We can have at most i(n) of these
cycles each defining a free parameter. We can arange things such that

(A. 10)
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with yl = diag(μ11..μί(n))G(U(l)/Z0(n)y
("). From detβ = l we have det/LeZo(n); by

absorbing (detyl) * in f.e. μx we can fix det/1 = 1. As for the case n = 1, it is easy to
verify that in the gauge in which Q is diagonal ( = β), P is fixed up to diagonal
gauge-transformations. These can be used to bring P in a form which cannot be
further reduced:

o(n)
θ (A.11)

\, pί(n)
Vί(n) Γo{n)

with 0 having the same properties as A. To count the number of solutions we have
to realize that (A. 11) is invariant under gauge-transformations of the form:

Join)

Ω = (A. 12)

with ω again of the same type as A. The dimension of the solution manifold is
therefore:

(rc, N) = N2 - 1 + gcd. (n, N) -1, (A.13)

with the obvious convention, gcd(o,N) = N, it also covers the case n = 0. The
manifold has for gcd(n,iV)φl singular points analogous to those for n = 0, also
leading to quartic fluctuations. Note that for n relatively prime to N, the solution is
of the form (A.3), and no singular fluxons occur.

A.2. Dimension of Solution Manifold for d = 3

As in the 2-dimensional case we define:

i(ή) = gcd(nμv,N).

It is the index for the subgroup generated by zHμv for all μ, v, denoted by -
singly generated by zm because zHμv = zHμv, with

z = zι{n\ ήμv=^~.
ι{n)

Furthermore we define o(n) again to be the order of this subgroup:

(A. 14)

v>, it is

(A.15)

(A.16)
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ήμv defines a twist tensor for the SU(JV) case for which we know that there exist
solutions Ωμ satisfying:

& ( ^ 5 ή (A. 17)

We leave it to the reader to verify that all solutions of (A.17) are gauge equivalent5.
One uses that gcd(nμv,IV) = l and the result for d = 2 for pairs of Ωμ

6. The full
solution is now simply given up to a gauge by:

with Λ, Λ eS\J(i(ή)) and diagonal, where Λ®I$ again defines the invariance group
of (A. 18). So the parameters are easy to count, yielding:

v , iV)-l). (A. 19)

A3. Dimension for d = 4

If we repeat the analysis of the last paragraph we could take ήμv as a twist tensor
for SU(iV), however κ(ή) is orthogonal if and only if κ(n)/N contains ί(n) as a factor,
since then κ(ή) = κ(n)/i(n)2 is a multiple of N. Therefore we define a new value for
i(n):

i{n) = gcd(nμv,κ(n)/N9N). (A.20)

h and N are now defined as in (A.15); of course κ(n) is supposed to be OmodJV in
(A.20). We showed in Sect. 2 and [11] that there exist solutions Ωμ satisfying
(A. 17), and again the reader is invited to show that all these solutions are SU(JV)
gauge equivalent. The SU(iV) solution is now obviously of the form of (A. 18) with
the same invariance group. So we finally arrive at the most important result :

dim4(rcμ v, N) = N2 - 1 + 31 gcd I n μ v - ^ , ΛΓj - 1 j . (A.21)

As a very important application we mention that \κ(n)\ = AT implies that there
are only gauge modes in the zero-mode spectrum. Thus for the TEK model with
the symmetric twist (lla) there are no physical zero-modes, for all surviving
extrema we considered [surviving fluxons cannot change τc(w)]. This means that
the partition function in the weak coupling region is of the form:

k
k=0

cke-*π2kβlN (1+Θ(g3)) (A.22)

if no other fluxons are present. Ck is purely determined by the number of fluxons
and the gaussian integration. Note that some Ck will be zero, such as C 6 or CίV

We leave a further investigation for a future publication.

5 Throughout the article gauge equivalence for dφ2 means that each connected component is a
gauge orbit. These components are related by multiplication with centre elements
6 This is most easily seen by realizing that if PQP+Q+ =zι, then PN = Λ®Io(l), QN = Θ®Io{ly In the
gauge in which f.e. Ωλ is diagonal, we can compare the different conditions on Ω1^
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Let us finally study the case of singular fluxons, which occur whenever f(w)φ 1.
The ίluxon of the form Ωμ = Aμ®Ωμ (see above for notations) is obviously most
singular if Ωμ = li{n)®Ωμ for all μ. It has the largest symmetry group, and gives the
largest number of zero-modes. This number can be found by counting the number
of independent solutions to F μ v = 0 [see Eqs. (16) and (17)]. We write Xμ in a
suitable block form:

* , =
o(n) 1o(n)

lo(n)

(A.23)

with i = i(n\ Yμ

kl a complex traceless o(n) x o(n) matrix satisfying (Yμ

ikl)y = — (Yμ

(ιk)),
(χ(^)=-χ(ki) a n d Tr(λμ) = 0. F μ v = 0 reduces to F<ίv

Z) = j3μY<W) = 0. We know the
number of independent solutions to this equation to be o(ή) — 1 + 3(i(ή)~ΐ)=o(n)2

— 1 if Y^l) is traceless and antihermitian. From this one easily deduces that there
are 4(N2- l)-i(n)2(o(n)2- l)-4(ί(n)2- l) = 3(N2-ί(n)2) quadratic modes and
4(i(n)2— 1) quartic modes7. As in [17] one finds a contribution to Z(n,β)
proportional to:

β (A.24)

for the maximally singular ίluxon, and

(A.25)

for a regular fluxon (with all eigenvalues of Λμ different). All other fluxons give
contributions in between (A.24) and (A.25). Therefore a singular fluxon will
dominate for large β only if:

f (N2 - ί(n)) - ί(n)2) + (i(n)2 - (A.26)

This is equivalent to (i(n) — 2){ί{n)— l )>0.
For i(n) = 1 no singular fluxons occur. For i(n) = 2 there is competition between

singular and regular fluxons (compare for torons in SU(2) [17]). For N-^oo one
expects Eq. (28) to remain valid, for finite N there can be In/? corrections [17]. For
i(n) > 2 singular fluxons dominate. Our analysis avoids gauge nonίnvarίant calcu-
lations in the spirit of the usefulness of lattice gauge theories. Note for example
that for torons which are singular D^K = 0 for all Xμ. The standard gauge fixing
term [7] DμXμ does not fix any gauge parameter here.

After the completion of this manuscript I was informed through private
communication that Y. Brihaye obtained some results similar to those in the
appendix, concerning the general solution to Eq. (3).

7 Note: There are N2— l + 3(ΐ(rc)2— 1) zero-modes, N2 — i(n)2 of them are pure gauges [remember
that there are i{ή)2 — 1 gauges which leave Ω invariant]
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Note added. These results can be found in the following two papers: Brihaye, Y., Rossi, P.: The Twisted
Eguchi-Kawai model fails to reproduce the weak coupling of the Wilson model. Phys. Lett. 125B, 415
(1983), and Brihaye, Y., Maiella,G., Rossi, P.: Twisted Eguchi-Kawai models: an analysis of the saddle
points. Nucl. Phys. B222, 309 (1983). The overlap with the present work for the first paper is the
observation that there is a slight discrepancy between the Z μ v = — 1 twist and the infinite lattice. They
use the method of [7], We therefore find a somewhat different expression for the weak coupling internal
energy. This difference is already present between the results of [7,17]. The second paper essentially
finds the same result as we find in Sect. A. 3 along a different route. Their number J corresponds to our
ί(n).
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