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Abstract. The initial value problem associated with the second Painleve
Transcendent is linearized via a matrix, discontinuous, homogeneous
Riemann-Hilbert (RH) problem defined on a complicated contour (six rays
intersecting at the origin). This problem is mapped through a series of
transformations to three different simple Riemann-Hilbert problems, each of
which can be solved via a system of two Fredholm integral equations. The
connection of these results with the inverse scattering transform in one and two
dimensions is also pointed out.

1. Introduction

At the turn of the century Painleve [1] and his school [2] classified all equations of
the form qtt = F(qp q, ί), where F is rational in qv algebraic in q and locally analytic
in t, which have the Painleve property, i.e. their solutions are free from movable
critical points [3]. Distinguished amongst these fifty equations are the so-called six
Painleve transcendents, P I - P VI any other of the fifty equations can either be
integrated in terms of known functions or can be reduced to one of these six
equations.

In the Soviet literature [4] interesting results regarding exact solutions and
properties of the Painleve transcendents are summarized in [5] the main results
are: i) For a certain choice of their parameters, PII-P V admit rational solutions,
as well as one-parameter families of solutions expressible in terms of elementary
transcendental functions (Airy, Bessel, Weber-Hermite, Whittaker, respectively),
ii) P II-P V admit transformations [6-9] which map solutions of a given Painleve
equation to solutions of the same equation, but with different values of its
parameters. These transformations can be used to generate recursively the
solutions mentioned in i). Similar results have also been obtained for P VI [10].

In recent years further interest in the Painleve equations has developed due to
the following reasons: i) Although PI-VI were first discovered from strictly
mathematical considerations, they have recently appeared in several physical
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applications (see for example [11-14]). ii) Ablowitz et al. [15] have discovered a
remarkable connection between equations with the Painleve property and PDE's
solvable by the inverse scattering transform (1ST). For example, PII and special
cases of P III and PIV can be obtained from the exact similarity reduction of the
modified Korteweg-deVries, the sine-Gordon and the nonlinear Schrδdinger
equations, respectively [16]. It is interesting that proper exact reductions of the
Korteweg-deVries (KdV) equation lead to P I and PII [17]. iii) There exists a deep
connection between equations with the Painleve property and monodrony
preserving deformations. Actually aspects of this connection were already dis-
cussed at the beginning of the century (see below). Recently monodrony preserving
deformations, about regular and irregular singular points of linear ODE's, have
been discussed by Sato et al. [18] and Ueno [19], Flaschka and Newell [20], and
Jimbo et al. [21], respectively.

In this paper we consider the initial value problem of PII,

qtt = 2q3 + tq-v9 (1.1)

where v is a constant parameter. In this respect we note: i) Ablowitz and Segur
[16] characterized a non-elementary one-parameter family of solutions of (1.1)
with v = 0, through a GeΓfand-Levitan-Marchenko integral equation of the
Fredholm type, ii) Flaschka and Newell [20] considered (1.1) as a deformation
equation of the following system of linear ODE's

ωc(ζ;t) =

-i(4ζ2

4ζq-2iqt+-

(1.2)

Solving the initial value problem of (1.1) amounts to solving an "inverse problem"
for ω(ζ t), i.e. given appropriate monodromy data reconstruct ω(ζ ί). Obtaining
this monodromy data is classical and corresponds to the direct problem in 1ST.
The solution of the inverse problem is given in [20] in terms of what the authors of
[20] call a system of singular integral equations (see Appendix B). iii) Jimbo et al.
[21] considered PΠ, as part of a larger program of study of monodromy
preserving deformations for a first order matrix system of ODE's having regular or
irregular singularities of arbitrary rank. In their work the inverse problem is solved
in terms of an infinite formal series uniquely determined in terms of certain
monodromy data, iv) In [22] we characterized a three-parameter family of
solutions of

Uttt + 6UUt-{2U + tUt) = 0, (1.3)

using a linear singular integral equation. This equation was mapped to a matrix
system of Fredholm integral equations. However, the question of whether or not
this is the general solution of (1.3) was left open. Equation (1.3) is related [23] to
P Π through a one to one transformation [17]. It turns out that the solution of
(1.3) obtained in [22] corresponds only to a specific range of v.

In this paper we consider the inverse problem for PII in terms of a RH
boundary value problem. This RH problem is defined with respect to six semi-rays
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separated by an angle of π/3 from each other. Solving the inverse problem is
tantamount to constructing a sectionally analytic function ψv(z;ή with given
"jumps" across the above semi-rays. These jumps are uniquely defined in terms of
the "stokes multipliers" (part of the monodromy data). A necessary condition for
the solvability of the above RH problem is that a certain product condition must
be satisfied at the origin. This condition imposes a constraint between the stokes
multipliers, the so-called connection matrix, and the monodromy matrix at the
origin, i) In the case that 0 ̂  v < 1 the above RH problem is a matrix discon-
tinuous RH problem on a complicated contour (six semi-rays intersecting at the
origin). Through a series of transformations we map this problem to three simple
RH problems, each defined on two rays (which provide the continuation of each
other). Two of these RH problems are continuous, while the third has a
discontinuity at the origin. Each of those RH problems, using standard methods is
then reduced to a system of two Fredholm integral equations of the second type.
The question of existence and uniqueness of these Fredholm equations can be
addressed using standard analysis, ii) In the case that v ̂  1 the above RH problem
has a non-integrable singularity at the origin. One has then to suitably subtract the
"singular part" before applying the method of i). In this process one discovers a
relationship between ψv(z',t) and ψί_v(z;t). This relationship easily yields the
known transformation between qv(t) and ^f1_v(ί). Hence, using induction one only
needs to consider the range 0 ^ v < l .

The correspondence of our integral equations with those given in [20] is
discussed in Appendix B here we only mention that in solving the inverse
problem we have abandoned the approach of [20], which we find ineffective.

Before concentrating on the main results of this paper, we shall first discuss
briefly the connection between the method of solution of the initial value problem
of P I I used here, and the 1ST method as applied to problems in 1 + 1 (i.e. one space
and one time) and 2 + 1 [24-26]. We hope that from this discussion it will become
clear that there exists a unified approach to initial value problems in 1, 1 + 1, and
2 + 1 dimensions: Solving the initial value problem of some equation for q(t) or
q(x, t) or q(x, y, t) is equivalent to solving an inverse problem for some related
eigenfunction ψ(z t) or ψ{z x, t) or ψ(z x, y, t). The inverse problem generically
takes the form of a RH problem for equations in 1,1 + 1 , and in general the form of
a δ(DB AR) problem for equations in 2 + 1 (a DB AR problem is a generalization of
a RH problem). To define the relevant RH or DB AR problems one needs to study
the analyticity properties of ψ with respect to z. Furthermore these problems are
uniquely defined in terms of certain asymptotic data of the underlying linear
system satisfied by ψ (monodromy data in the case of equations in 1 dimension
and scattering data in the case of equations in 1 + 1 and 2 + 1).

2. The General Framework

Λ. RH Problems and 1ST

Let C be a simple, smooth, closed contour dividing the complex z-plane into two
regions D+ and D~ (the positive direction of C will be taken as that for which D+

is on the left).
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Fig. 1

A function φ(z) defined in the entire plane, except for points on C which will be
called sectionally holomorphic if: i) the function φ(z) is holomorphic in each of the
regions D+ and D~ except, perhaps, at z = oo ii) the function φ(z) is sectionally
continuous with respect to C, approaching the definite limiting values φ + (ζ), φ~(ζ)
as z approaches a point ζ on C from D + , or D~, respectively. The classical
homogeneous RH problem is defined as follows [27]. Given a contour C, and a
function G(ζ) which is Holder on C and detG(ί)Φθ on C, find a sectionally
holomorphic function φ(z\ with finite degree at GO, such that

, on C, (2.1)

where φ±(C) are the boundary values of φ(z) on C. If G(ζ) is scalar, (2.1) is solvable
in closed form. If G(ζ) is a matrix valued function, then (2.1) is in general solvable in
terms of a system of Fredholm integral equations. Various generalizations of the
above RH problem are possible. For example: i) The contour C may be replaced
by a union of intersecting contours, ii) G(ζ) may have simple discontinuities at a
finite number of points in this case one allows φ(z) to have integrable singularities
in the neighborhood of these points, iii) RH problems may be considered in other
than Holder spaces (e.g. [28]): iv) One may consider inhomogeneous RH
problems φ + {ζ) = G{0Φ'(0 + H0 °n C.

The connection between RH problems and 1ST in 1H-1 results from the
following: A necessary condition for a given nonlinear equation for q(x, t) to be
solvable via 1ST is that q(x, t) is related to some linear eigenvalue problem. For
example for the MKdV equation [16]

( ° q(Xt])(ζ,x,t). (2.2)

To solve the initial value problem for q(x, t\ one first formulates an inverse
problem for ψ(z ;x,t): Given appropriate scattering data reconstruct ψ. The solution
of this inverse problem is obtained via a RH problem for the sectionally
meromorphic function (with respect to z) ψ. To define this RH problem one needs
to use (2.2) to study the analytic properties of ψ with respect to z. It is evident that
one may pose the inverse problem for any function q(x). However, this result can
be used to solve the initial value problem of q(x, t), only if q evolves in such a way
in t that the scattering data is known for all t. This yields only a specific class of
evolution equations solvable via (2.2) (sometimes referred to in the literature as the
isospectral class).

The situation is conceptually also similar in 2 + 1. Equation (2.2) is now
replaced by a linear PDE for ψ in x and y. Again one formulates an inverse
problem for ψ(z x, y, t). However, the solution of this inverse problem is now
obtained via a DBAR problem (this results from the fact that the analyticity
structure of ψ with respect to z is now more complicated).
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B. Monodromy Problems

It is remarkable that the first RH problem was formulated in connection with an
inverse problem: Consider the following system of linear ODE's

(2.3)
dζ i=χί-

where α are complex constant scalars and At constant mxm matrices. It is clear
that ιp(z) is a multivalued analytic function with branch points at ap i = 1,..., n in
the neighborhood of at, ψ(z)^Hi(z)(z — ai)~L\ where Hi are holomorphic and
invertible near α and L , ΐ = l,...,n are constant matrices, related to the mono-
dromy matrices M.φexp[2π/LJ. In connection with (2.3), Riemann [29] for-
mulated the following inverse problem, which is known as the "Riemann
monodromy" (RM) problem: Given branch points av...,an and matrices
Mv ...,Mn, find ψ. This problem was reduced by Riemann to a discontinuous
matrix RH problem on the contour joining the branch points the jumps across
this contour are uniquely determined in terms of the monodromy matrices. The
RH problem has been considered by: i) Hubert [30], Birkhoff [31], and
extensively by Plemelj [32] using its equivalence with a RH problem, ii) By Lappo
Danilevskij in terms of hyperlogarithe functions [33]. iii) By Sato et al. [18] using
the equivalence between the RM problem and the so-called Schlesinger equations
(see below), and employing classical operators of field theory. See also [34].

The use of the above inverse problem for solving certain nonlinear equations is
similar to the one considered in A above: Suppose that A{ depend on certain
parameters t = (tv ..., tN). Can one impose such an evolution of A with respect to ί,
that the underlying monodromy data and known for all ί? The answer is
affirmative provided that Ai satisfy a system of nonlinear equations known as the
Schlesinger system.

The above considerations have been extended to systems of linear ODE's with
irregular singular points [31] and [19-21]. Given such a system there exist two
fundamental questions: i) Find all nonlinear equations (Schlesinger system) which
are related to this linear system of ODE's (i.e. find all its isomonodromic
deformations). This question has been exhaustively answered in [21]. ii) Solve the
relevant inverse problem. This question has been considered in general in [21, 35]
using infinite series, and concretely for the inverse problems associated with PII
and P III in [20]. Here we solve the inverse problem associated with (1.2) by using
a RH problem as well as a sequence of appropriate transformations.

3. The Direct Problem

PII can be written as the compatibility condition of (1.2) and

Let W(z) be a fundamental solution matrix of (1.2) (for simplicity of notation we
suppress the f-dependence). The essence of the direct problem is to establish the
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analytic structure of W with respect to z, in the entire complex z-plane. It should
be pointed out that, in contrast to the analogous problem in 1ST for 1 + 1 and
2 + 1, this task here is straightforward: Equation (1.2) is a linear ODE in z,
therefore its analytic structure is completely determined by its singular points.
Equation (1.2) has a regular singular point at the origin (if vΦO) and an irregular
singular point at infinity. In order that one is able to formulate a RH problem one
must know the behavior of W(z) as z-*oo. Suppose that W(z)-+W as z-»oo in Sί

(some sector of the complex z-plane). Then, according to the Stokes phenomenon,
W(z)-^WG, where G is some constant matrix containing the so-called Stokes
multipliers. Alternatively one may choose different fundamental matrices in
different sectors by the requirement that all have the same asymptotic behavior as
z-»co. In connection with (1.2), there exist six sectors; let W= Wt if z in S . Then
(details of the direct problem can be found in [20])

W{z)=Wt(z)9 z in Si9

= W1(z)G19 | ^

W3(z)=W2(z)G29 ^

4π
(3.2)

W6{z)=W5(z)GS9

4π

5π

T

5π

T'

where

W1(ze2iπ)=W6(z)G6,

l ΰ

a 1

1 a

1 b

1 0s

l σ

c 1,

1 c
(3.3)

As z—>oo in S15 H^(z) asymptotically tends to

+ 0

where / is the unit 2 x 2 matrix and

4iz 3

, t)=^-+ izt, Kit) = β/

2 - ίg2 -

(3.4)

(3.5)
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As z->0, two linearly independent solutions of (1.2) are given by [for vΦ(2n +1)/2]

where Λ(t) = 2qt + 2q2 + t and the factors exp[±u(t)], ut = q have been introduced
in order that (3.6) satisfies (3.1). If v = (2n + l)/2, Eq. (3.6) must be appropriately
modified. This leads to the following monodromy matrix J associated with z = 0

r . , _ . - 0 \ . 2n+ί . / 1 0

0 e2πivr 2 ' \2πΛ

where A is the coefficient of ζ^~1^2 in the series (3.6), and it is shown in [20] that
it is independent of t. The matrices Wλ(z) and Φ{z) are related through the con-
nection matrix E

^j, (3.8)

Flashka and Newell [20], using (3.2) and a certain symmetry relationship of Φ,
have established the following relationships between Gί? J, and E\

= 2otycosvπ-πΛoc2e~vπ\ l + bc= -2βδcosvπ + πλβ2e~vπ\
(3.9)

b= -aδevπι-βye~vπι + πΛφ'vπ\ oc + b + c + abc= -2/sinvπ.

4. The Inverse Problem

This is the main section of this paper. It is concerned with the formulation and
solution of the inverse problem associated with (1.2), i.e. given suitable mono-
dromy data reconstruct W(z). It is convenient to work with

ψμ)=Wj(z)Y'\ 1 ^ 6 ; Y = Diag(έΓV). (4.1)

Then (3.2) imply the following jump conditions for the function Ψ(z)

Ψj+1(ζ)=Ψj(0gj(0ASjS6;ΨΊ(ζ) = Ψ1(ζe2ίπ\ζ on C, (4.2)

where C = CX + ... + C6, g^)= YGjY"1, i.e.

1 0\ (1 be~2θ\ ί 1 0\ /I ae~2θ'

(4.3)
0\ /I ce~2θ^

9s~\be2θ l)' g6~\0

Also

Ψ{z)-+1 as z-+oo, Ψ1{z)^Φ{z)E as z->0. (4.4)

Equations (4.2)-(4.4) define a singular, discontinuous, homogeneous RH problem for
the sectionally analytic matrix-valued function Ψ(z): The function Ψ(z) has
different representations Ψ^z),..., Ψ6{z) in the different sectors S1,...,S6. The
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Fig. 2

boundary values of these different representations are related through Eqs. (4.2).
Furthermore, Ψ fz) is analytic for z in Sj and Ψj(z)-+I as z-»oo in Sr The above
RH is discontinuous because #6(0)φ#3(0), g x(0) ή= g JO), g2Φ)=^Q5Φ). It is singular
because at the origin Ψ(z) possesses a non-integrable singularity, unless 0 ̂  v < 1
(note that Cί is the contour from ε to oo, similarly for Cp 1</§J6).

A.

We first consider the above RH problem in the case that it is regular, i.e. 0 ^ v < 1.
It will turn out that the case of a general v can be reduced to the case 0 ^ v < 1.

Theorem 1. Consider the following matrix, discontinuous, homogeneous RH problem
along the six rays C , 1 ̂ j ^ 6, intersecting at the origin (see Fig. 2) : Determine the
sectionally analytic function Ψ{z), Ψ(z) = Ψ fz) if z in Sj9 from the following
conditions :

α) Ψj(ζ) satisfy the jump conditions (4.2) for ζ on C.

β) Ψ(z)-^l + 0\-\ as z->oo.

γ) Ψ{z) has at most an integrable singularity at the origin.
δ) Ψx{z) possesses the following monodromy matrix at the origin.

J-+0;J = E-ίJE, (4.5)

(4.6)

where J is defined by (3.7) ( 0 ^ v < l ) . Then
i) A necessary condition for the solvability of the above RH problem is

ii) // (4.6) is satisfied then the solution of the above RH problem can be obtained
as follows: First solve the following RH problems

a ) fy (Z)

Fig. 3a
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O, C on c
as z->oo in S1+S2

where A is defined by

b)

ζ on C l

on C 4 '

Fig. 3b

(4.7)

(4.8)

(0, C on C 2 + C 5 ;
co in Sj+Sg + S!

r1

 1/"1(^)Cτ1(gr1(O) 1(Λ(0) *> ί o n C 2

where β is defined by

c)

Fig. 3c

ΣΛz

C on C 5

(4-9)

(4.10)

on

in

1, c on C 3

. C on C 6 .

(4.11)
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Then define:

a) χ16(z), χ2(z), χ34(z), χ5(z), for z in S^S^ S2, S2 + S4, S5, respectively, as
follows

b) φ^z), ...,φ6(z) for z in Sv ...,S6, respectively, as follows

5 2 ) ( G 1 G 2 G 3 ) - 1 , (4.13)

φ3(z) = χ34(z)f1(z)Λ, (/> 6(z)-χ 1 6(z)/ 2(z)(G 1G 2G 3G 4G 5)- 1.

c) φ1(z), ψ2(z), ...,ψ6(z) for z in Sv . . . ,S 6, respectively, as follows

(4.14)

Remarks, a) The RH problem (4.7) is continuous both at the origin and at infinity.
Actually

0β(-oo) = /. (4.15)

b) Similarly for the RH problem (4.9):

fif,(-oo) = J, (4.16)

since /->/ as z-^oo [using ga(± oo) = / ] .
c) The RH problem (4.11) is continuous at infinity but discontinuous at the

origin:
M^-^MGi^Γ'fΓ1^ (4.17)

since F->I as z->oo [using ^ ( ± 0 0 ) = / ] . Furthermore, the discontinuity at the
origin is related to the monodromy matrix M of Σ, which is in turn related to the
monodromy matrix J of ψ: let M be the monodromy matrix of Σv i.e.

Γ1(ze2iπ) = 2: i(z)M. (4.18)

Then equations ψ1(z) = φ1{z), φ1{z) = χ16(z)f1(z\ χί6(z) = Σί(z)F2(z) imply that

M = F20f10J(F20fί0y\ (4.19)

where / 1 0 , F20, denote j γ and F2 at the origin. The origin condition of (4.11)
implies

M^c(0 + ) ^ ; 1 ( 0 - ) = /. (4.20)

It is easily seen [using Λ;1G~1A3=G1G2G3(G1G2y
1 and F20=F10G~\

/ 1 0 = / 2 0 G 6 ] that Eqs. (4.19), (4.20) are consistent.
d) The matrices G^^^G^^'1 and G^G^^G^^1 are non-unit mat-

rices with one as a double eigenvalue. Hence the matrices A and B exist.
e) Equation (4.6) is valid iff a + b + c + abc = ± 2ί sin vπ, see Appendix A.
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Proof. To derive i) note that in the neighborhood of the origin

ψ2(z)~ψί(z)Gvψ3(z)~ψί(z)GίG2,...,ψβ(z)~ψ1(z)G1G2G3G4G5. (4.21)

Also across Cγ

) G 6 ^ ^ 1 ( ^ 2 ί " π ) G 1 G 2 G 3 G 4 G 5 G 6 . (4.22)

Hence using (4.5) and the fact that ψ^s) is non-singular we obtain (4.6).
Now we concentrate on ii) of Theorem 1. The basic idea of the above result is

to use suitable transformations to map the RH problem for ψ to simpler RH
problems. These transformations must be such that the new RH problems are
consistent at infinity and at the origin. Consistency at the origin means that the
product of the jump matrices at the origin equals the inverse of the monodromy
matrix about the origin. Similarly, consistency at infinity means that the product
of the jump matrices at infinity equals the identity. It is clear that the RH problem
for ψ is consistent at infinity, since each monodromy matrix tends to I at infinity.

The proof of Theorem 1 follows from the following lemmas:

Lemma 1. Let φ(z) = φfz) if z in Sj and

ψμ) = φμ)σj9 ίύjύ69 (4.23)

where

σ 1 = / , σ2 = Gv σ3 = GίG2, c4 = GxG2G3, σ5 = G1G2G3G4, σ6 = G1G2G3G4G5.

(4.24)
Then the RH for ψ is equivalent with the following RH problem for φ :

0 Φ2(0 = <M0§i(Q on C 2 , φ3(ζ) = φ2(ζ)g2(ζ)

where on C3, ...,φ1(ζ) = φ6(ζ)g6(ζ) on Cl9 (4.25a)

(4.25b)

= G 1 G 2 G 3 G 4 G 5 ^ 6 ( 0 .

ii) 01(z)->7 as z->oo in Sv

iii) φ(z) has at^ most an integrable singularity at the origin.
iv) φ1(z) has J as its monodromy matrix at the origin.
Furthermore, the RH problem for φ is discontinuous only along the real z-axis, it

is continuous at infinity, and it is consistent at the origin iff the RH problem for ψ is
consistent, i.e. iff (4.5) is valid.

Proof. Recall that the RH problem for ψ is discontinuous along every contour Cj.
We determine the constant matrices σ. from the requirement that the RH for φ(z)
has a discontinuity only along the real z-axis. Using (4.23) in (4.2) we obtain

φ2{ζ) = φί(ζ)σ1gί(ζ)σ~1 on C2,

φ3(C) = 0 2 (C)σ 2 ^ 2 (Oσ 3 ~ 1 , on C 3 , ...,φ1 (ζ) = Φ6(ζ)σ6g6{ζ)σ~x on C 1.(4.26)
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Fig. 4

If in the neighborhood of the origin the matrices Ψ and Φ are related by Ψ(z)
= Φ(z)A, then their monodromy matrices Jψ, Jφ are related by

JΦ = AJΨΛ'1. (4.27)

Hence, Eqs. (4.23), (4.5) imply

Jφ = σ1jσ;1. (4.28)

The consistency condition at the origin for the RH for φ implies

which [using (4.28)] is satisfied iff (4.6) is valid. We choose σv ..., σ6 in such a way
that the jumps across C 2 , . . ., C 6 in the neighborhood of the origin all equal /. This
implies (4.24), where we normalize σ1 to be / so that JΦ = J. Note that the product
oϊg's at infinity equals I, which implies that the RH problem for φ is continuous at
infinity. Q.E.D.

Remarks. The above RH problem has a simple interpretation from the mono-
dromy point of view: φγ{z\ ..., φ6{z) are the representations of the same fundamen-
tal matrix solution φ(z) in the different sectors Sv ...,S6. This should be contrasted
with the \px(z\ ...,ψ6(z), which are different fundamental matrix solutions (related
to each other through the monodromy matrices). Of course, while ψ2(z)-*I as
z-+co in S2, 02( Z )" > ^Γ 1 a s z-^ 0 0 in S ; similarly φ3(z), ...,φ6{z) tend to different
constant matrices as z-^oo.

The RH problem for φ(z) can be reduced to the three simpler RH problems
(4.7), (4.9), (4.11). The idea is similar to the one used by Beals and Coifman [36] for
a scalar, continuous RH problem.

We first reduce the RH for φ(z) to one for χ(z) and one for f(z):

Lemma 2. Let χ{z) = χlβ{z) if z in S1 + S 6 , χ(z) = χ2(z) if z in S2, χ(z) = χ34(z) if z in
S3 + S4, χ(z) = χs(z) if z in S5. Also let f(z) = f1(z) if z in S 1 + S 2 + S3, f(z) = f2(z)
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X2(z)

f } [ z )

o—

Fig. 5

f2(z) C l

z in 5 4 + 5 5 + 5 6 . Relate χ(z) and f(z) to φ(z) via

fk (7\ — Ύ (7\ f (7) A A (7\ — y (7\ f (7\ Ώ (A ΊQ\
Ύ2\Z)~X2\Z) J\\Z)J±2^ Ψ5\z) ~Λ5VZ/ J2\Z)D2 ' Y*'Δy)

where the constant matrices Ai9 B{ satisfy

1 3 1 2 3^ 1 2' ^ 1 o' 6 V * /

Then
a) f(z) satisfies a continuous, both at the origin and infinity, RH problem :

on C 4 ; fi(ζ) = f2(ζ)B3g6(ζ)A1 ,ζ on C 1 ? (4.31a)

fγ{z)->I as z-+oo in S1+S2 + S3. (4.31b)

b) χ(z) satisfies a RH problem continuous at infinity and discontinuous but
consistent at the origin:

if[1{ζ) on C2,

f2\ζ) on C 5 ,
(4.32a)

/j_ 1(ζ) on C3,

f~\ζ) on C6,

χ1s(z)~Aϊ1 as z-^oo, Jχi6 = UQAJA~1 f^1, (4.32b)

where Jχi6 denotes the monodromy matrix of χ 1 6 at the origin.

Proof The transformations (4.29) imply (4.31a), (4.32a). The equation φx{z)
= χί6(z)f1(z)A1 implies (4.32b) provided that fx{z) tends to a constant value / 1 0 at
the origin this is indeed the case iff /(z) satisfies a continuous RH problem, i.e. iff

(4.33)

where we have used (4.31a), g3(0) = I, g6(0) = J~1.
Equations φί(z) = χlβ(z)f1(z)Av φ6(z) = χ16(z)f2(z)B3, as z-+oo imply

(4.34a)
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where we have used that φ1~^I, φβ-^{G1G2G?>G^G5)~1 as z-*oo [see (4.14)].
Similarly φ3(z) = χ34(z)f1(z)A3, φ4(z) = χ34(z)f2(z)B1 imply

B^f^fmAsG&iG&GJ-1. (4.34b)

Equations (4.33), (4.34) imply (4.30c). Using (4.34) the continuity at infinity of both
RH problems for χ and / is verified. Also using f2o

=fιoA3B^1 it is easily seen
that the product condition at the origin for (4.32a) is consistent with the formula
for Jχ 6 given by (4.32b). Equations (4.30a), (4.30b), (4.31b) follow normalizing
/ l 0 0 = J . Q.E.D.

Lemma 3. Let Σ{z) = Σγ{z)if z in S6 + Sλ + S2, Σ(z) = Σ2(z) if zinS3 + S4 + S5 F{z)
= Fx(z) if z in S2 + S3 + S4, F(z) == F2(z) if z in S5 + S6 + Sv Relate Σ and F to χ via

χ2(z) = Σ1(z)Fί(z)ali χ5(z) = Σ2{z)F2(z)b19

(4.35)
χ34(z) = Σ2(z)F1(z)a2, χl6(z) = Σ1(z)F2(z)b2,

where the constant matrices at, b{ satisfy

fe1=α2A3G1G2(G4Γ
1(GiG2Γ

1^1. b2 = a1A1G1A~1,

J3G1G2G4(G1G2)" X B " x = G~ \ B = A~ ιa~ xa2A3. (4.36)

Then if χ satisfies the RH (4.32) with

it follows that: 2 I » 2 i v /

a ) F(z) satisfies a continuous, both at the origin and infinity RH problem:

on C2;

on C 5 ,

F^z)-*! as z->oo in S2 + S3 + S±. (4.38b)

b) Σ(z) satisfies a RH problem continuous at infinity and discontinuous but
consistent at the origin

Fi (ζ), ζ on Co
- - - - - - - - (439a)

Σ1(ζ) = Σ2(ζ)F2(ζ)b1f2(ζ)B1g5(ζ)B3

1f2

1(0b2

1F~1(ζ\ ζ on C6

Σt(z)-*I as z-^oo in S6 + S1+S2, JΣl=F20b2f10A1J(F20b2f10A1)~1.
(4.39b)

Proof The transformations (4.35) imply (4.38a), (4.39a). The equation χί6(z)
= Σ1(z)F2(z)b2 and the expression for Jχi6 given by (4.32b), imply the expression
for JΣί provided that F2(z) tends to the constant value F20 at the origin this is the
case iff F{z) satisfies a continuous RH problem, i.e. iff

b2a~1

1=b1a2

l. (4.40)

Equations (4.35) and (4.34b) as z->oo imply

(4.41a)
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Assuming (4.37) and normalizing F(z) by F^z)-*/ as z-+oo, Eqs. (4.40), (4.41a)
imply (4.36). Using (4.41a) the continuity at infinity of both RH problems for F
and Σ is verified. Also the product condition at the origin for the RH problem for
Σ is consistent with the formula for JΣι given above. Q.E.D.

Theorem 1 follows from Lemmas 1-3 by choosing A1=I, a1 = G±1, Az—A.
This implies b2 = I, b1=BA~1.

Given a discontinuous problem on a simple contour, it is standard to map it to
a continuous one. The basic idea was introduced by Gakhov [27i], regarding a
scalar RH problem, and consists of introducing suitable auxiliary functions Ω±(z)
such that their discontinuities cancel the discontinuity of the jump function
appearing in the RH problem. The case of matrix discontinuous RH problems was
considered by Vekua [27iii]. For completeness we present the relevant results as
applied to the RH for z.

Lemma 4. Consider the RH problem for the function Γ(z), i.e. Eqs. (4.11), (4.18),
(4.19) and assume that vφl/2 (see remark below). Define the sectίonally holomor-
phic function Φ(z), such that Φ(z) = Φ + (z) if z in S3 + S4 + S5, Φ(z) = Φ~(z) if z in
S6 + Sί + S 2 , via the transformations

Σ2(z) = Φ+(z)Ω+(z)Dί, Σi(z) = Φ~(z)Ω~(z)D2. (4.42)

In the above equations

D2 = E(F20f0)~1, Z>1φ(ί2+(0 + ))~1 Ω~(0 + )D?g(0 + ) ,
(4.43)

and the branch cuts of Ω+, Ω are chosen in such a way that Ω+, Ω are analytic in
S3+S4 + S5, S6+Sι-{-S2, respectively. Then Φ{z) satisfies the continuous RH
problem.

on 3 6,
(4.44)

2

1 as Z-+O0 in S + S+SΦ~(z)-+D2

1 as Z-+O0 in

where gc(ζ) is defined by (4.11).

Proof. Consider the functions

\λJ

= 1 ' 2 ( 4 4 5 )

For the function ω^(z), the branch cuts of zλί and (z—i)~λi are defined from the
origin to — ioo and from i to — zoo, respectively. Thus if z is on C 3 + C 6 it follows
that ω1

+(0 + )/ω1

+(0-) = e x p [ - α i π ] . Similarly ω1"(0 + )/ω~(0-) = e x p [ α i π ]
Define the matrices

Ω±(z)ΦDiag(ω1

±(z),ω±(z)), Ω = {Ω'Γ1Ω+. (4.46)
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Then it follows that

O(0 - ) (0(0 + )Γ* = Diag(e 2 i λ i π, e2ίλ2π). (4.47)

Equations (4.42), (4.46) imply that

Φ + (ζ) = φ-(ζ)Ω+(ζ)(Ω(ζ))-1D2gc(ζ)D-1(Ω+(ζ)r1. (4.48)

Choose Dv D2 such that

(Ω(0 + )y1D2gc(0 + )D-1

1=(Ω(0-)y1D2gc(0-)D;1=I, (4.49)

i.e. D1 as defined by (4.43b) and D2 via

Hence, (4.43a) follows using

where we have made use of (4.5), (4.19), (4.20). Q.E.D.

Remark. The direct problem implies that v = 1/2 is somewhat special, since then J
is not diagonal. It is interesting that from the RH point of view v = 1/2 is also
special: In this case J has a double eigenvalue and one must modify the approach
suggested in Lemma 4. The corresponding general theory can be found in [27iii].

From the above discussion it follows that the original discontinuous, com-
plicated problem for the function Ψ(z) is equivalent to the three continuous simple
RH problems for the functions f(z), F{z), Φ(z). By taking appropriate "pro-
jections," i.e. by using Plemelj's formula [27], the above RH problems are
immediately reduced to Fredholm integral equations.

Proposition 1. The original RH problem of the function Ψ(z) defined in Theorem 1,
through the transformation of Theorem 1 and Lemma 4 is equivalent to the following
linear Fredholm integral equations:

τ~

(4,2a,

(4.52b)

In the above Pv P 2 , P 3 denote the limit z-^ζ from S^ + S5 + S6, S2 + S3 + S4, S6 + Sx

+ S2, respectively for example Pγ [ f ^~ dτ) (ζ) = j ^ dτ.

Proof Considering (4.7) and using Plemelj's formula it follows that

1 ί Λ(τ)fa.(τ)-^τ_
2πiC4iCl τ-z
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Equation (4.50) follows by taking the limit of (4.53) as z approaches C4 + C1 from
below. Equations (4.51), (4.52) are obtained in a similar way. Q.E.D.

It should be noted that appropriate use of Plemelj's formulae yields directly
integral representations for the function Ψ(z). In particular (4.2)~(4A) imply

')),ζ on C2; Ψl(0 = ψ;(0(/ + Γ4(Q),C on C5

')),{ on C 3 ; ! P - ( 0 = y 5

+ ( 0 ( / + /;(0),ί on C 6 (4.54a)

;)),( on C 4 ; <p-(0=<P+(0(J + Γ6(0),ί on C x ,

Ψ(z)—*I as z~> oo,

where the superscripts are used to remind us that, for the choice of arrows of
Fig. 2, Ψv Ψ3, Ψ5 are ( + ) functions while Ψ2, Ψ4, Ψ6 are ( - ) functions; also

(Tγ)2l=ae2\ (Γ2)ί2 = -be-2\ (Γ3)21=ce2θ, ( Γ J 1 2 = ~ae~2θ

(4.54b)
{Γ5)21=be2β, (Γ6)12 = ~ce-2\

and all the other elements of the matrices Γ equal zero. Equations (4.54) yield

j
2πι c τ — z

( 4 , 5 )

where Γ(τ) equals ΓVΓ2, ...,Γ6 on C 2 ,C 3 , . . . , C1 5 respectively. By taking the limits
of (4.55) as z approaches C from Sv S3, S5 one may obtain a system of integral
equations, which of course will be discontinuous at the origin. The results of
Theorem 1, and Proposition 1 may be interpreted as providing a constructive
approach to mapping the above linear integral equations to regular Fredholm
equations. However, the representation (4.55) is still useful for obtaining a formula
for q(t): Taking the large z limit of Eq. (4.55) and using (3.4) it follows that

q(t)=-ίίΨ + (τ)Γ(τ)dτ\ . (4.56)
π [C J l 2

Let qv(t) denote the solution of PII in the form (1.1). It is well established in the
literature [6] that there exists an explicit transformation relating qx-v{i) and qv(t);
also q-v(ή = qv{ — t). Hence, the solution to the initial value problem of P Π with
any v can be reduced to one with 0:g v< 1, which then can be solved according to
the results of Theorems 1 and 2. It is interesting that the above relationship
between qv and qί_v follows naturally from the RH problem point of view:

B. l ^ v

In this case the RH problem defined by (4.2)-(4.4) is singular, since Ψ(z) has a non-
integrable singularity at the origin. Consider for concreteness the case that

2. Then the singular part of Ψx is

~u(t) I a β\

[ P\ (4.57)
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Thus the singular parts of Ψ2,...,Ψ6 are XvGJz\ ...,XvGχG2G3G4G5/z\ re-
spectively. Let us introduce the sectionally analytic function Ψ(z) via

Ψ(z)=Ψ(z)-X^-T1(z), (4.58a)
where Tx{z) equals z

J, Gv GXG2, G&G^ G,G2G3G4, GίG2G3G4G5, (4.58b)

for z in SVS2, ...,S6i respectively. It is clear that Ψ(z) will have at most an
integrable singularity at the origin and hence it will satisfy a regular RH problem.
Actually, using (4.58) in (4.54) it follows that Ψ(z) satisfies

on C; Ψ{z)-+I as z-*oo, (4.59a)

where Δ{ζ) is defined by A(ζ)=XvT2{ζ)/ζ\ and T2{ζ) equals

0ΛO-G1, G.G^g^T'-G^ G&g^Q-G&Gs,

G1G2G3G4(g4(ζ)r1-G1G2G3, (4.59b)

G&G&GsiQ-G&GsGtGs, (g 6(ζ))~' - e''^G XG 2G3G 4G 5 ,

for ζ on C2, C 3 , . . . , C6, Cv respectively. Note that Δ(ζ) is regular at the origin this
is the case even for ζ on C1 by virtue of the fact that Xv is a singular matrix and
using (3.9).

Equations (4.59a) define an inhomogeneous, regular RH problem. Its solution
can be expressed in terms of the underlying homogeneous problem,

φ-{Q = φ + {ζ){I + Γ{ζ)),ζ on C; φ{z)-*I as z-^00. (4.60)

The RH problem (4.60) can be solved via the methods of Theorems 1 and 2.
Actually φ(ζ) can also be related to a monodromy problem. It is clear that both
ψv_1{z) and ψ1_v{z) satisfy (4.60) and have the required behavior at the origin.
However, the direct problem for ψv(z) implies a + b + c + abc = — 2ί sin vπ [see
(3.9)], which suggests that φ(z) = ψ1_v(z). Solving (4.60) for / + Γ(ζ) in terms of
ψ1_v(z), substituting this expression in (4.59a), and using Plemelj's formula it
follows that

Z Z711 Q T — Z

Equation (4.61) provides the solution of ψv(z) explicitly in terms of the solution
of ψ1_v{z). However, one may avoid the integrals by multiplying (4.61) by the
singular matrix with one in each entry:

H ω ( l ) ( ) (4 62)

Equation (4.61) is valid even if v^2. In this case both Δ(ζ) and ψ1_v(z) are
singular. However, the integral appearing in (4.61) is still well defined.

Using Eq. (4.62), the symmetry relationships (ψv(z))12 = (ψv(-z))2V (ψv(z))22

= {ψv( — z))lv and Eq. (1.2), one may obtain explicitly ψv(z) in terms of ψί_v{z)
[37]. Furthermore Eq. (4.62) can be used for deriving the explicit relationship
between q(t) and q1-v{t) mentioned above.
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Lemma 5. The large and small z limit of (4.62) yield

K 1 _ ϊ ( ί )-9 1 _ ϊ ( ί ) = ί : ϊ (ί)-β v (ί), (4-63)
and

ê -vW = λe"Mv(t)ylv(ί), (4.64)

respectively, where K{t\ Λ(t), and u(t) are defined in (3.5), (3.6), and λ is a constant
parameter. Both of the above equations imply

£ (465)

Proof The first part of the Lemma 5 follows easily from (4.61), (3.5), (3.6). To
derive (4.6) from (4.63) note that Kt(t)= -q\t). Hence (4.63) implies ^f1_v(ί) = ̂ rv(ί)
+ 4vW —^ί-vW Using this equation in (4.63) we obtain (4.65). Similarly differen-
tiating (4.64) and using Λt(t) - 2q{t) Λ(t) = 1 - 2v, we again obtain (4.65). Q.E.D.

Appendix A

In this appendix we investigate further the origin condition (4.6). This condition
implies Eqs. (3.9) within a choice of signs, actually (4.6) implies

a-\-b + c + abc = 2iσsinvτ, σ= +1. (A.I)

It was shown in Theorem 1 that (4.6) follows naturally from the RH problem
formulation of Ψ(z). On the other hand this RH problem is equivalent to a system
of linear integral equations [see the discussion after (4.55)]. These equations follow
from the integral representation (4.55). In this appendix it is shown that an
investigation of Eq. (4.55) in the neighborhood of the origin also yields (A.I). In
this respect the following result is useful.

Proposition 2. Consider the Cauchy type integral

U^L (A.2)
2πι c τv(τ - z)

where φ(τ) is a Holder function on C and φ{τ) tends to φv >..,φ6 as τ tends to zero
along Cv ..., C6, and C is defined in Fig. 2. Then

Φ(z)~^,z->0 in Sj9 ; = l, . . . ,6,

where ccj = Aj{2i sin vπ) and

A2 = Vl(Φl ~ Φl) + V2W>3 -Φ4 + Φ5- Φβ) >

Λ3 = Vl (Φί ~ Φl + Φs) + Vl( ~ Φ4 + Φs ~ Φβ) '

(A.3)

Λ = Vl(Φl -Φl + Φi- Φd + V2(Φ5 - Φβ) >

A5 = Vl(Φl ~ Φl + Φ3 ~ 04 + Φ5) ~ yiΦβ i

A6 = Vl(Φl ~ Φl + Φ3 ~ ΦA + Φs ~ Φβ) >

where v1Φexp(vπ0? v 2φexp( — vπi).



400 A. S. Fokas and M. J. Ablowitz

Proof. From the general theory of (A.2) [27] it is known that the behavior of Φ(z)
has the form (A.2) in the neighborhood of the origin. To determine the constants a.
use Plemelj's formulae: They yield

Equations (A.4) imply (A.3). Q.E.D. ( A 4 )

Using the above and Eq. (4.55) it follows that:

Proposition 3. Assume that Ψ(z), which solves Eq. (4.55), has the following dominant
behavior at the origin

(^ | ) ^ in S±; 0 < v < l . (A.5)

T h e n

A

~B

b + c + ω

A

~B~C

be = 2iσ s

1 + ab

mvπ, σ =

l — σae~

, cλ-Ge~~

= ±1,
- iπv

iπv *

(A.6)

(A.7)

Proof. To find the dominant behavior of (4.55) as z-»0, say in Sv one needs to
compute Ψ+ and F in the neighborhood of the origin; this is straightforward.
Then using Proposition 2 it follows that

(A B\ 1 ί (0 A\ IB 0\ /0 A + aB\

\A B/ 1i sin vn [ 1 \0 AJ 2 \B 0/ 2 \0 A + α.B/

0\ /0 ,4(l + bc) + £(ρ-fc)\

^ V 2 f l \0 i ( l + 6c) + B(ρ - b))

0\

0/

where

ρ = a + b + c + abc.

Equation (A.8) implies (A.6), (A.7). Q.E.D.

The direct problem implies that the singular part of Ψ(z) is given by (4.57)
where α, β are related to a, b, c through Eqs. (3.9). Manipulating these equations it
follows that a/β is independent of A actually

α 1+ab

β a b ^

which agrees with (A.7) within the sign of σ.

Appendix B

In this appendix we compare the approach used to solve the inverse problem here,
with that used in [20]. For concreteness we concentrate on the case that v is an
integer
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rΓΛζ)

Fig. 6

The jump conditions (4.54) imply

Ψ+(ζ)=ψ-(ζ)(I-Γ(ζ)),ζ on C, Ψ(z)^I as z-oo, (B.I)

where Γ(ζ) is defined by (4.55). If v>0 the RH problem (B.I) is singular, hence to
solve it, one needs first to subtract its singular part. However, one can still give an
integral representation for Ψ(z\ analogous to the formula (4.55). Actually, using
Plemelj's formulae, (B.I) yields

2πιc τ-z 2πιyί + _ + y6 τ-z

Equation (B.2) should be interpreted in the Hadamand sense: Both integrals
appearing in (B.2) in general diverge, but their sum converges. For example if v = 1,
the second integral of (B.2) converges; the first integral of (B.2) also converges
because the coefficient of lnε appearing in this integral is zero in light of (3.9). For
v = 2 both integrals diverge but their sum converges. (Details can be found in [37].)

Writing the first vector component of (B.2) we obtain

, c4 c6 ) τ — z

Ψ{ί\τ)dτ

Equation (B.3) is valid (in the Hadamand sense) for all z. If one restricts z in Sί9 one
obtains the equation obtained by adding (3.32a)-(3.32ί) of [20]. Using (4.54) and
(A.I) in this equation one obtains the main equation of the inverse problem of
[20], namely

/ 1 \ 1 p2Θ(τ) ήr
)=[λ-±-.[a J Ψf{τ) + b ί Ψψ(τ)-cb J ^"())\υ/ ιm\ C42 CA6 C

^ I ^Un. (B.4,
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where the contours C 4 2 , C 4 6 are given in Fig. 7. In a

Fig. 7

similar way one obtains an integral representation for Ψψ(z).
Equation (B.4) is not singular. However, in order to obtain an integral

equation from (B.4) one must "project," i.e. take the limit of z as z approaches the
contours C 4 2 and C 4 6 . But (B.4) is valid only for z in Sv Thus it seems to us that
one has to extract some more information from (B.3). The techniques developed in
this paper are dealing exactly with this problem: Through induction and a series of
transformations one can map the integral representation (B.3) to the three
Fredholm integral Eqs. (4.50)-(4.52).
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