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Unitary Equivalence of Temperature Dynamics
for Ideal and Locally Perturbed Fermi-Gas

D. D. Botvich and V. A. Malyshev

Department of Mathematics, Moscow State University, Moscow V-234, USSR

Abstract. We consider the local perturbation

V=ε X V(x,y)χΩ(x)χΩ(y)a*(x)a*(y)a(y)a(x)

of the ideal Fermi-gas on the lattice Έv, where Ω is a finite subset of TΠ and χΩ is
its indicator. The invertibility of Moller morphisms for small ε is proven. It
follows that in the cyclic GNS representation with respect to KMS states the
dynamics of ideal and locally perturbed Fermi-gas are unitary equivalent.

Introduction

Two kinds of equilibrium states are usually considered in mathematical physics:
ground (zero temperature) and KMS (nonzero temperature) states. There are
many results concerning spectral decompositions of Hamiltonians (in the GNS-
representation) for the ground state representations which support the so-called
quasi-particle picture: any system is a collection of noninteracting quasiparticles
(we note that asymptotic completeness is not proven even for the ground state
representations).

In Appendix B we explicitly calculate spectral decomposition of Ho showing
the quasiparticle picture. We could not find this representation in the literature.

For the KMS-states the only results in this direction are due to Robinson,
Evans etc. [1-3], who proved the existence of Moller morphisms for local
perturbations of quasi-free systems. In this paper we prove the invertibility of these
morphisms. An extension of our method and other results will appear in
subsequent publications.

1. Formulation of the Main Result

Let K = 12(ZV) be a complex Hubert space and 91 = 9l(K) be the CAR-algebra over
K. It is well known that its generators a(f), a*(f), feK satisfy the following



302 D. D. Botvich and V. A. Malyshev

anticommutation relations

where (/, g) is the scalar product in K antilinear in / and linear in g (see [3]).
We consider the free evolution of the ideal Fermi-gas. It is a strongly

continuous one-parametric group τt of ^-automorphisms of 2ϊ generated by

τt(a(f)) = a(eitHf), φ*(f)) = a*ψtHf), (1.2)

where H = — A +μlκ acts in K (lattice Laplacian plus a constant, see [3]).

Let us consider also the perturbed dynamics (local dynamical perturbation

[1])

ί-ί dsv..dsn
n= 1

LτS2(V)9 C . . [ τ S n ( n τt(A)l • •]]] (1.3)

for ί^O and in similarly for ίrgO with the integration domain: t^sn^... ^s1 ^ 0 .
Here Fe9l and further on we consider only the case of

V=ε Σ VΩ{x,y)a*a*ayax, (1.4)
x,yeΈv

where Ffi(x,y) is a real symmetric function with finite support Ω x Ω, ΩcΈ"

fl, ^ = x

Theorem 1. Moiler morphisms

y + {A)=s-\xmτv_t{τt{A)) (1.5)
ί->±oo

exist for any Ae%, any v ^ l , εeIR, V, Ω.

The main result of the paper is the following:

Theorem 2. For v ̂  3 and any VΩ, one can find ε0 = εo(VΩ, v) such that for any \ε\ < ε 0

there exist

γ±(A)=s-limτ_t(τΐ(A)) (1.6)
ί-> ±00

/or any y4e2ί.
Let ω 0 be the unique (τίtjί)-KMS-state (0<β< oo) for the ideal Fermi-gas (see

[3]). Let ωv be the unique (see [3, p. 161]) (τJ^)-KMS-state defined by
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β β \
1 1 1 i p 11 - j (dΓ(H) + V) jdΓ(H)\ .

where the co-cycle Γ \ formally Γ = e e I is given by the convergent
series [3]

CO β/2 St Sn-i

Γ = I+ Σ (-D" ί dSiμs2... j dsnτiSn(V)...τίsι(V). (1.8)
« = 1 0 0 0

Let lV(ί) = exp{iί//J be the unitary group which is implemented by τ\ in the
cyclic GNS-representation {M?

ωv, πωv, Ωωv) with respect to ωv {V can be equal
to 0 here).

Corollary. Under the conditions of Theorem 2, Ho and Hv are unitary equivalent.

Note. The same technique works for the case ( n ^ l , v ^

N

V=^Σ Σ Vn(xv...,xn)[
n=l xteZv \ ί = l

The case n = 1 is explicitly solvable. It corresponds to the free Fermi-gas in the
exterior field V(x). In this case one finds examples for dimensions v = l, 2 where
bounded states appear [6].

2. Existence of Mδller Morphisms

We shall prove Theorem 1 here. We begin with the case v ̂  3. The cases v = 1, 2 are
slightly different. The proof is a simple modification of similar proofs in [1-3]. It is
sufficient (see Theorem 4 in [1]) to prove that (91, τ) is asymptotically integrable
with respect to K i.e. one must specify a dense subset 2IC$ί such that for any ^
the function ||[τf(F),./4]|| is absolutely integrable in t We put

).. α ω m^0? ^ 0 , fi9 g.
are local, i.e. have finite supports in Z v }.

Let us put A = a(f), f being local, ( , ) is the scalar product in K = 12(%V)- One
has

Σ VΩ(x,y)la(eitHf),a*xa*ayaχ-]\\
x,y<=Zv I

yeΈv

+ (eitHf, δx)a*ayax - a*a*ayaxa(eitHfj)

^ N Σ WΩ(x,y)\\(\(eUHf,δx)\ + \(eitHf,δy)\). (2.1)
x,yeΩ
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There exist C(/)>0 such that uniformly in zeΩ

1
\v/2 (2.2)

(see Appendix A). It follows from (2.1) and (2.2) that \\[τt(A\ F]|[ is asymptotically
integrable for v ̂  3.

The case A = a*(J) can be treated similarly. As τv_tτt is the homomorphism of 21
into itself the operators y±(A) exist for any

Let us consider the case v = l. We choose

where

m, n^O, U &

Ko = {/:/e L2([0,2π]), /(0) = /(π) = /(2π)

It is evident that 21 is also dense in 21. We have for fe Ko

1 2π
~ 2it( 1 - cosφ

2π o

ίtμreizφ^

2 π

2ίl/2π b

(2.3)

(2.4)

(2.5)

Let us put

Integrating by parts the integral in the right-hand side of (2.5) and using again
Appendix A in the similar way we prove Theorem 1 for v = l.

For v = 2 one can choose

3. Invertibίlity of Moller Morphisms

We shall prove here Theorem 2. As in Sect. 2, in order to prove the existence of y ±

we must prove that for any Aeg, 2ί being dense in 21, RA{t)= | |[τ^ f(F)j ̂ 4]II is
asymptotically integrable in t. Indeed, one can derive Robinson's equation [1, 3]
for this case

(3.1)
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(It follows from the explicit calculations in finite volumes.) Again we take

m, n^O, /., g. are local}.

In order to prove the existence of γ_ one must show that

for any local f a *(/) = *(/) or **(/) = α*(/).
We have [1]

J. .f

•[α*ω,[τϊl(n ,[τiB(nτt(F)]...]]

ύ]\\ίa*{f),τt[_V)-\\\dt+ Σ ί ί

• II [«*(/), [τSι(F),...,[τSn(F),τr(F)]...]]| (3.2)

Theorem 3. Under the conditions of Theorem 2 there exist constants Cί ~C(V,Ω)
>0, not depending on f and C(/)>0 such that for any

a)

b)

/ί Z5 evident that (3.4) implies the absolute convergence of (3.2) /or |ε |< — .

/ Let / l s f2, h&JT), i = l , . . .

Then the following formula holds:

(3.3)

(3.4)

(3.5)

= - Σ X(*(ΦU\X)a*(h1)...a*(hi_ι)a*ii\fι)a*(f2)a(f2)

Σ
a*{fί)a^\f2)a(fi)a*{hι+ί)...a*{hk), (3.6)
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where

f*5 if α^Hα*^) (3.6)
W {absence of*, if a*(h^ = a{h^

χ{x) = — 1, χ(absence of *) = 1,

/rrrfO^), #(Λ) = *
U' \{f,h), # (ft) = absence of *.

We use simple identities

= a(h)a*(f1)a*(f2)a(f2Mf1) - (K Λ

+ (h, /2)α*(Λ )α(/2)α(Λ), α Vi W ί H / i

= a*(h)a*(fι)a*(f2)a(f2)a(f1) + (fv / i W i

and consider now

(Λ)α*(^).. α*(^). (3.8)

Using (3.7) we drag through to the left all a*{hx), ...,a#(hk) in (3.8) thus proving
(3.6).

Let us put

Lemma. The following estimate holds (t = sn+1)

II[«*(/), [ < ( * > * (sja^sja^sj,..., lal(sn)a*n(sn)ayβn)aXn(snl

• < + 1 ( s π + i ) < + 1( s

n+iK n + 1( s«-n) f lχ n + I(
s«+i)3 ]]H

Jθ,J l» . . »Jn{Zi}»{zΊ} °̂

• K ^ 3 1 ^ ^ , β ί s ^ ̂  ) | . . . | (e"» - l 2 f δ Z Λ _ i9 e " ^ - ̂  ^Z S Λ_ t )|

'\(eiSnHδZn,e
iSn+ίHδz,n+i)\, " ' (3.9)

where the sum ]Γ 5/ taken over all 22n + 3 ordered sequences zi = xi or yp z'i = xί or
{Zi),{z'i}

yi9 the sum Σ is over all sequences (j0, j v . . . J j such that for all k O^k<jk

jθ,.-.,jn

^ n + 1 for any I, 0 ^ / ̂  n + 1, j f cα?ι 6e ê ruαί ίo / nor more than for four values of i.

Proof It is convenient to use diagrams (graphs). The vertices of a diagram are the
points so=0, s1,...,sn, sn+ί on the real line. The lines are the pairs (s0, sjo\ (sv

SjJ, ...,(sπ_1 5 sjn_i\ (sπ, sn + 1) which enter in the right-hand side of (3.9):
a) the diagrams are connected
b) the number of edges incident to any vertex does not exceed fe = 4 (if s0 ^ s x
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To prove (3.9) we use formula (3.6) inductively. From the first commutator we
obtain one edge of the diagram, from the second one we obtain the other edge, and
so on. We have two 23" terms with the same diagrams. The norm of the remaining
operation and annihilation operators is bounded by 1.

Due to Appendix A there exist constants C = C(V)Ω)>0 and C 2 (/)>0 such
that

eisH 1
UeιsHδz)\^C2(fh

for all z, zv z2eΩ.
Then the upper bound of the right-hand side of (3.9) takes the form

) v l 2

(3.11)

4. The Proof of the Main Estimate

We prove (3.4) here, i.e.

(4.1)

where C does not depend on n.
We approximate both sides of (4.1) by Riemannian sums

Σ Sn + 1 X""1

L * fi-4-lc h v / 2 M-i- le c h v / 2

jθ, ,jn 0 < S i < . . . < S n + 1 <OO V-1 ' ύ j o ^ ^ I 71 I '- '

ιy/2

In both sides s , r.eZδ (one-dimensional ^-lattice). The sum in the left-hand side of
(4.2) is dominated by the sum over all admissible diagrams [with the properties a)
and b)] whose vertices are n u m b e r e d a s O < s 1 < s 2 < . . . < s Λ + 1 . We denote this sum
by ]Γ /G, where IG is the contribution of the corresponding diagram. The right-
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hand sum ]Γ( r) is taken over all arrays {rί,...,rn + ί) of edges with the nonzero

lengths rv...,rn+v

We omit δn+1 and want to prove that

W (4.3)

To prove (4.3) we use the argument similar to the one used in Sect. 1.5 of [7].
Given an array (r 1 5 . . . , r n + 1 ) we define the algorithm by which one can

construct not more than Cn admissible diagrams with the contribution equal to

(Λ i I,. l\v/2 ' " (Λ i L. lw/2* 14.4)

The algorithm consists of not more than 4(n + 2) steps. We numerate these steps by

On the step (0,1) we take r1 and construct an edge from 0 to rv We construct
vertices 0, rt and the line between them. Then we proceed by induction. The lines
of length rv...,rk are already constructed and we are on the step (i,j). The rules of
the algorithm are the following:

1. On each step we decide whether to construct 0 or 1 line (and so 0 or 1 new
vertex).

2. If on the step (i,j) we decided not to construct a line then on the steps (i,f\
j <f we also do not construct lines.

3. On the step (z, 1) we choose one of the already constructed vertices V{ and on
all steps (/, 1),...,(/,4) we can draw lines only from Vv We call Vt "used on the step
of i."

4. The choice of Vt is uniquely defined by the rule: Vt is the first already
constructed vertex not used in earlier steps.

5. The algorithm stops either on the step (n+1,4) either when there are no non-
used vertices or when (n+l)-lines are constructed (i.e. all rί,...,rn+1 are
exhausted).

It is evident that each G will be constructed and each array (r 1 ?..., rn+ x) is used
not more than (5 24)" + 1 times.

5. Unitary Equivalence

We shall prove Corollary 1 here. As ω0 is the unique (τί>i8)-KMS state and ωv is the
unique (τf^-KMS state [3], then by Theorem 2 of [1] (see also [3]) we have

ω±(Λpωv(γ±(Λ)) = ω0(A) (5.1)

for all ^e2ί . Let us define the operators U± '^ωQ-^^ωv by

U ± (πωo(A)ΩJ = πωv(y ± (A))Ωωv. (5.2)
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They are isometric

(U±(πωo(A)ΩJ, U±(πωo(B)ΩJ)

309

= ωv((γ ± (B))*γ ± (A)) = ωv(γ± (B*A))

ωo, πωo(B)ΩJ,

and unitary

We have

By definition

It follows that

U ±eitH°U-±\πωo{A)ΩJ

v = eitHnπωv(A)Ωωv),
and so

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Corollary. Under the conditions of Theorem 2 the spectrum of Hv (except
nondegenerate eigenvalue 0) is absolutely-continuous.

This follows from Corollary 1 and Appendix B.

Appendix A

Let / be infinitely differentiable on the v-dimensional torus T, v ^ l , and Ω is a
finite subset of Z\ Then there exist C = C(fΩ)>0 such that

Γ / v

J exp \iti X 2(1- cos φ) f{φ)ei(x>φ)dφ ύC-
1

(A.1)

for all xeΩ, φ = (φv ...,φv).
We must only note that for fixed xeΩ (A.I) follows from the stationary phase

method.
From (A.I) it follows evidently that there exists C = C(Ω) such that

ί e x P )}\e i i χ - y φ)dφ <C-
1

,v/2
(A.2)

for all x, yeΩ.
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Appendix B

We obtain here the spectral decomposition of Ho (we follow [4]).

Definition 1. The state ω on the CAR-algebra 91 over K is called (gauge-invariant)
quasi-free state iff

ω(a*(fm)... fl*(Λ)α(01)... a{gn)) = δmn det(( f t, Bf)) (B. 1

for all f^g.eK, where B is the linear operator in K such that 0^B^lK [5].

Definition 2. The Wick monomial is the following polinomial (: : ω

d = : :)

min(m, n) k

= Σ (-l)*ΣsgnσΓΊω(fl*W1K/)I))
k=0 σ 1=1

fl*t/i) - «*C) - fl OD - a*VmWm+1) - α ®

where ^ is the sum over all permutations σeS m + π such that

Jk r i -"rm + n-2k I

for any sequence l ^ z 1 < i ' 2 < . . . < i ' k i § m J m + l ^ ^ m + n, Z = l , ...,/c and any
increasing sequence r 1 ? •• ,r m + π_2 f c of numbers 1,2, ...,m + n different from i 1 ? ...,zfc,

Lemma 1 (The properties of Wick monomials). Lei ω be a quasi-free state. Then

1) (:a*(f1)...a*(fm)a(g1)...a(gn):)*

2) ω(:α*(/ 1 ) . . .α*(/ B )φ 1 ) . . .α(sf m ) :) = 0 if m + ^ > 0 , (B.4)

3) ω(: α*(/J ... α*(/i)%i) Φ n ) ^*fe) <>*(K)

• φ x ) . . . α(Ml):) = ω(α*(/J ... a*(fx)Φi) Φz))'

= δnkδml det ((Ml, B/;.)) det((04, (/ - B)^.). (B.5)

Proof of 1) is evident. For a proof of 2) and 3), see [4],

Definition 3. Let eitH be a unitary group in K. The group τt of automorphisms of 51

induced by

τt(a(f)) = ΦUHf), Φ*(f)) = a*(eitHf) >

will be called the free dynamics.
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Let (J^ω, πω, Ωω) be the cyclic GNS-representation with respect to quasi-free ω.
We define Hω by

Lemma 2. Let B and H commute. Then the subspaces

^ n = {nJ:a^fJ...a^fJa(gi)...a(gn):)J,gi

are mutually orthogonal, invariant with respect to Hω and

m,n=0

Proof. Orthogonality follows from properties 2) and 3) of Wick monomials.
Invariance follows as

ω{a*(eitHf)a(eitHg)) = (eίtHg, BeitHf)

= (eitHg, eitHBf) = (g, Bf) = ω(a*(f)a(g))

implies

τ((: α*(/i)... α*(/JΦi) %,) 0 = : ̂ (^*(Λ) ^*(/JΦi) <gn)):.

Further we shall consider only a Fermi-gas on a lattice. We recall (see [3]) that
in this case

K = 12(T), H=-A+μ-lκ,

Let us put

m ' " Ί m

Theorem 4. There exists the unitary operator

Um,n -^m,n ^m,n

such that

Um,nHωU-ι

1

n = A1 + ...+Am-Am+i-...-Am+n + μ(n-m). (B.7)

In other words J^ω is isomorphic to the tensor product # _ ® # _ of the Fock
space 2F_ and "anti Fock space" 3F, and Γ(eίtH) is the second quantities of eitH and

" " ) . (B.8)
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The proof is easily obtained if we put

Um,βω(:a*(f1)...a*(fm)a(g1)...a(gn):)

Let us note that ImUmn = J4?mn as Bm and {1K-B)1/2 are invertible.

Corollary (Fourier representation). Jfω is isomorphic to Las{Vm)®Las(Vn). Under
this isomorphism Hω\^ is unitary equivalent to the multiplication onto the function
(<pfe[0,2π])

m+n v \

Σ 2(l-cosφf) + M«-m) . (B.9)
j=l k=ί j=m+1 k=ί

Thus the spectrum on ^ f ω θ^o,o ί S absolutely-continuous.
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