
Communications in
Commun. Math. Phys. 90, 293-315 (1983) Mathematical

Physics
© Springer-Verlag 1983

Surface Models with Nonlocal Potentials:
Upper Bounds

C. Eugene Wayne*

Institute for Mathematics and its Applications, University of Minnesota, Vincent Hall, 206 Church
Street S.E, Minneapolis, MN 55455, USA

Abstract. The behavior of fluctuations in a class of surface models with
exponentially decaying nonlocal potentials in studied. Combining a Mayer
expansion with a duality transformation, we demonstrate the equivalence of
these models to a class of two dimensional spin systems with nonlocal
interactions. The expansions give sufficient control over the potentials to allow
the fluctuations to be bounded from above by the means of complex
translations in the spin representation of the model.

1. Introduction

In this paper a class of models obtained by introducing nonlocal potentials into
the solid-on-solid (SOS) model is studied. We show that for a certain class of
potentials there exists a finite positive constant c(β, J) such that fluctuations in the
interface described by the model may be bounded by

)ln(l + W), (1.1)

for all non-zero inverse temperatures β.
The models considered have finite volume partition functions

(-β Σ \ht-h j\ + Σ Vχ(W\x)\ (1.2)
{h} \ <U> XCΛ I

Let A be a square region in IR2, centered at the origin, of side length (2m + 1), meΊL.
The sum over {h} runs over all configurations of integer valued fields on Z2, which
obey the boundary conditions ht = 0, for all sites i^TL2r\Λc. For technical reasons
we require that \Λ\ >A0, where \A\ is the number of sites in Z2πΛ, and A0 is some
constant defined in the appendix. Throughout this paper, <i, j> will denote a pair
of nearest neighbor sites in Έ2. Because of our boundary conditions, the sum over
nearest neighbor pairs may be thought of as running over all pairs in Z2, or only
over those pairs which intersect A. The sum over XcA runs over all connected sets
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Fig. la and b. Sections of interfaces : a an interface for the SOS model, b because of the overhangs this
interface could not appear in the SOS model

of plaquettes in the dual lattice Z2* = (Z+ 1/2)2, which are contained in A. The
nonlocal potentials Vx( ) obey:

(a) Inversion Symmetry. We assume that Vx( - ) is invariant under the change in
the field configuration, {/z}-> — {h}.

(b) Translation in variance. We assume that Vx( ) depends not on the absolute
values of the field {h}\x, but only on the differences in {h} at adjacent sites in
TL2c\X. We denote this fact by writing (in a slight abuse of notation)

. (1.3)

(c)
(h}\x

In (c), \X\ = number of plaquettes inX, more generally given a set s, \s\ will denote
the cardinality of 5.

These models arise as follows. Previous studies of surface models, except at
very low temperatures, have been limited to either the SOS or discrete Gaussian
models [8]. These models attempt to describe the behavior of surfaces at the
interface between the two phases of some system. In each case the shape of the
interface is specified by associating with each site in TL2 an integer and assuming
that the integer ht specifies the height of the interface at the point I These models
possess two crucial restrictions. First, they prohibit interactions between lattice
sites more than one lattice spacing distant from one another. Second, they don't
allow for any overhanging parts of the interface.

The models in (1.2) overcome the first of these restrictions and represent a first
step toward removing the second as well.

One more realistic model for interfaces is provided by the three dimensional
cubic Ising model. Choose coordinate axes so that the z = Q plane lies between the
two center planes of spins. Choose boundary conditions so that the boundary
spins are forced to be +1 if the site under consideration lies above the z = 0 plane
and — 1 if it lies below. In this case the interface is the PeierΓs contour separating
the upper and lower halves of the system. (See [4, 7] for studies of the low
temperature behavior of such interfaces.) Such interfaces do have overhangs and
one might expect on heuristic grounds that the effect of overhanging con-
figurations would be similar to non-local potentials, just from the observation that
the sort of overhangs allowed certainly depends on the shape of the remainder of
the interface, because of the requirement that the interface be non-self-intersecting.

The relationship between the non-local potentials and overhanging con-
figurations emerges more clearly in the following example. Consider the class of
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interfaces, Γ, obtained by "decorating" a SOS interface with overhangs, in such a
way that the resulting configuration would be an allowable interface in the Ising
model described above. (The SOS interface with no decorations is also an allowed
configuration.) Assign to each such interface the Boltzman factor it would have if
it had arisen in an anisotropic Ising model with coupling J = 1 in the x and y
directions and Jz in the z direction and with boundary conditions as described
above, namely,

- β^(Γ] __ — β Inumber of vertical plaquettes|

t — βJz (number of horizontal plaquettesi Π 4)

In the partition function for this model we break the sum over all such Γ into
two parts, summing first over all overhangs compatible with a given SOS
configuration and secondly over all SOS configurations. The sum over overhangs
may be rewritten as an exponential using techniques like those of Sect. 3 of the
present paper, or [2, 3, 9, 12], and the resulting exponential is interpreted as a sum
over non-local potentials. Up to a multiplicative constant, our partition function
then has precisely the form of (1.2). One can ask to what extent the conditions (1.3)
are verified for the non-local potentials we generate in this procedure. Conditions
(1.3) (a) and (1.3) (b) are satisfied. Condition (a) reflects the fact that the number,
shape, and size of the overhangs which can be inserted into a given interface are
unchanged if one inverts the whole interface. Similarly, condition (b) is just a
reflection of the fact that one can translate the whole SOS interface (or some
section of it) vertically, without changing the kind of overhangs which one can
attach to it. Condition (c) is the one where our estimates break down at present.
The assumed exponential decay is valid. It arises from the fact that any overhang
must contain at least as many horizontal plaquettes as there are plaquettes in its
projection into the z = Q plane.

Since V£( -) is associated with sets of plaquettes whose projection into the z = 0
plane is the region X, and since each horizontal plaquette carries with it a factor
of e~βJz, we obtain decay of the sort claimed in (2.2) (c), with J proportional to βJz.
The problem which arises is that this decay is not uniform in {h}. The reason for
this can be seen in Fig. 1. As the vertical "wall" into which we insert the overhang
becomes higher and higher, the number of places available to insert the overhang
grows, and thus V£( ) should also grow. This is found to be the case. This is the
principle restriction which prevents us from applying these results to the aniso-
tropic Ising model.

We note that opposing this growth in the non-local potentials is the fact that
the SOS part of the partition function becomes exponentially small as the height of
the walls becomes large and it may be possible to use this fact to relax condition
(1.3) (c).

Our principle result is

Theorem 1.1 For every β>0 there exists a constant J0(β)>0 such that for all
J>J0(β) there exists a positive constant k(β, J) such that for all x = (rc,0)e2£2, with

one has

(1.5)
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Furthermore, k(β, J) may be uniformly bounded by some constant k(β) for all
J>J0(β).

Note that the bound of (1.2) follows easily from that of (1.5) by subtracting one
from both sides of (1.5) and expanding to third order in ε. The term proportional
to ε on the left hand side of (1.5) disappears because of the symmetry under
{h}-+ — {h}. Dividing by ε2 and taking the limit ε->0 yields (1.2). Also, the
restriction that the point x lie along the x-axis is not necessary and could be
removed at the expense of complicating the proof.

In the limit J— >oo, one recovers the SOS model from our models. Thus
Theorem 1.1 guarantees that <(/z0-y2>^/cO§)ln(l + |χ|) for the SOS model.
Some easy manipulation of the results of Sects. 2 and 5 show that one can pick k(β)
<Cuβ~4 (see [16]) for some constant Cu. However, by [8] we know that for β
sufficiently small one has <(/z0-/zJ2>^C(β)ln(l + |χ|) (the results of [16] show
that one can take C(/?)>CL|ln/?| for some CL>0). Thus one has very precise
control of the fluctuations in the "rough" phase of the SOS model, namely the two
sided logarithmic bound

C(«ln(l + W)^<(/ί0-/zJ2>^W)ln(l + W). (1.6)

The results presented here also hold if we replace the models (1.2) by
perturbations of the discrete Gaussian model, with partition functions

-β Σ (hj-hj)2+ Σ V?(W\χ)}. (1-7)

In particular by taking the J— »oo limit and using the results of [8] one obtains
logarithmic growth of fluctuations in the roughened phase of the discrete Gaussian
model just as in (1.6).

The chief technical tool used to prove our bounds is a duality transformation
which allows us to rewrite these models as two dimensional spin systems. Until
now duality transformations have depended on some special feature of the
interactions in the system which allowed the sums that arise in the transformation
to be explicitly calculated. Using a Mayer expansion we are able to relax this
requirement and greatly increase the class of models to which the duality
transformation may be applied.

One might expect, in light of the behavior of the SOS model, that the models
studied here would undergo a roughening transition at sufficiently high tempera-
tures, resulting in logarithmic lower bounds on the fluctuations. By combining a
Mayer expansion with the multipole expansion of Frόhlich and Spencer [8], one
can present a formal expansion for these lower bounds. However, / do not know
how to prove convergence of this expansion, (there is an error in one of the
convergence estimates for this expansion presented in [16]), and thus the existence
of a roughening transition in these models remains conjectural.

2. The Duality Transformation

Adopting the convention that the bonds (nearest neighbor pairs) <m, fe) are
directed, with the positive direction either up or to the right, and denoting by y the
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1 j

Fig. 2. Representative sites in the original and dual lattice

set of lattice bonds in the path from 0 to x, we may rewrite our unnormalized
expectation as :

ε(hm~hk)

{h} <m,fc>ey
Π . (2.1)

Now exchange the "site" variables {h}, for "bond" variables nij = hi — hj. The
variables n f j are not independent. Their sum around any plaquette must be zero.
The coboundary operator, V, defines a function (on sites of the dual lattice)

(2.2)

where the incidence function, /(/*, </,y», is (+ 1) when the bond <zj> is contained
in the boundary of the plaquette associated with the site z* in the dual lattice and is
oriented in the positive direction, (—1) if it is oriented in the negative direction,
and 0 if </, j> does not lie in the boundary of i*. (We choose the counterclockwise
orientation to be positive for the boundary of a plaquette. See [1, 11] for a concise
explication of these lattice operations.) The constraint on the variables {n} now
becomes (Fn)(ι*) = 0. Enforcing these constraints with Kronecker ^-functions, (2.1)
becomes

{n}
Π

XcΛ

Σ Π f π *** π *-"•"' π f
{n} Lί*eΛ* 0 Z 7 Γ J < / c X > e y <ί, j> i*eΛ*

XCΛ
V } ( { n } \ x ) 9 (2.3)

where /I* is the set of all sites in the dual lattice (Z2)* = (Z+l/2)2 such that the
plaquette (in the original lattice) centered at this site touches A. Our boundary
conditions then translate into the restriction that ntj vanish for all bonds <ι, j> CΛC.
Throughout this section and the next, "starred" quantities (e.g. /*, </*,)*» refer to
the dual lattice and unstarred quantities refer to the original lattice.

From Fig. 2 we see that each ntj appears twice in JQ eWί*(Fπ)(ί*) once with a

positive sign when ί* is the site of the dual lattice immediately above or to the left
of <z,j>, and once with a negative sign when /* is the site in the dual lattice
immediately below or to the right of </,y'>.
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2π .*
Denoting Y[ J — - = JDΘ and defining the function (5<f* J *> y by

i*eΛ* 0 2π

l if </*,;*> intersects some bond in y

we obtain

< ί , J >

. (2.5)

3. The Mayer Expansion

Were it not for the non-local potentials, the sums over {n} in (2.5) could be exactly
performed, yielding a two dimensional nearest neighbor spin system [8, 17]. We
show below that after a Mayer expansion one obtains again a two dimensional
spin system, but this time it contains complicated non-local potentials. The form of
the Mayer expansion presented here is very similar to that of [13]. Let Γ1? . . ., Γn be
connected collections of lattice bonds such that for all ze{2,...,n} there exists
7'e{l, . . . ,z— 1} with Γ nΓyφθ. Then, define the interpolated potentials

such that </,7>eΓ1u...uΓ/c

such that ^

• ~ > s ' < - ί ( { n } \ x ' 9 Γ 1 , . . . 9 Γ k _ 1 )

if there exists

and there exists

otherwise. (3.1)

We begin the induction by setting ^'-'^"'({n}^; Γ1? ...,Γ f c_1)= Vx({n})\x), on
the right hand side of (3.1) in the case when fe= 1. Also, we henceforth suppress the
dependence of the potentials on J.

Defining an arbitrary order for the bonds which intersect A, and choosing
Γj^ί^'pj^)}, where <z'1,j1> is the first bond with respect to this order, the
fundamental theorem of calculus yields

XCΛ

where

•exp/Σ
[XCΛ

r r r r }
> • • > i m - l J ^ m ' ^ m + l ' •"'1^

Ί if there exists (ijycX such that </,7>CΓm,

(i'J'ycX such that <z/,/>^Γ1u...uΓ/c and no

(i"9j"ycX such that <Γ,/>eΓ 1u...uΓw_ 1,

0 otherwise.

To proceed further we use.

(3.3)



Surface Models 299

Lemma 3.1. For any k^l

_ ("V yst ..... sk(fn\\ Γ
jc \L yx \\nϊ\χ9 L ι» •••ϊ'

= Σ Σ (v >5*-ιfe(A> ^ -^ (3.4)
x j=ι

adopted the convention that

Proo/. The first equality follows immediately from (3.1). The second equality is
also obvious in the case fc= 1, from (3.3). Assume that it holds for k<m. In the case
k = m, we rewrite the right hand side of the first equality in (3.4), using (3.3), as

Σ v}1 ..... '-'(Ml r JV..,/;^)
X : <z,;>cXand

7=1

'••' m — 1' m > X V I . J l χ ' ] _ > • • • ) m — I / ' V ^ ^/
Λ

where the first term on the right hand side of (3.5) results from applying (3.1) and
then the induction hypothesis, coupled with the observation that there must
always be a bond inX exterior to /^u.-.u/^. The second term is handled by the
observation that if

Γ(X r)n{Γ1u...uΓm_1} = 0, then V^-tSm-l({n}\x; Γ19 .• ,Γm_1) = Vx({n}\x),

where Γ(30 = {set of lattice bonds contained in X}. (This follows from the
definition of the interpolated potentials.) With this comment the second term in

(3.5) becomes Σ%χ(Γι> •••^m-i> Γm> ®)Vχ((n}\χ)> which when combined with the
x

first term yields (3.4) and completes the proof.
We now complete the expansion. The second term in (3.2) is reexpanded by

introducing a decoupling parameter s2, and choosing Γ2 = Γ(X1). This yields

Ids, Σ χX l(0;Γ ι ;0)J/X ι({n}yexp{£ ^'(WI^KW!)
0 XiCΛ [XCΛ

1

= ί<feι Σ W0;/;;0)Vw

0 XiCΛ XCΛ
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[XCΛ

0

•expί Σ Vx({n}\x)+ Σ V?({n}\x;Γj
X C Λ X C X
(Γ2uΓι)=Q

+ }ds1jds2 Σ Σ Σ(v sι)χ*2(A, >Γf-ι;Γ);Γm 'Γ2)
0 0 XiCΛ X2CΛ j= 1

χxι(0 Γr; 0) VXι({n}\Xι)VX2({n}\X2) exp ( Σ ^"*({n}|jr A, Γ2)l, (3.6)

where in the second step we have used the facts that Vx

lS2 = 0({n}\x; Γ1?Γ2) = 0 for
any X with Γ(ϊ)nΓ(X'1) = 05 and Γ(X)n(Γ/1\Γ(X')) = 0 (Γ^ = {set of bonds
intersecting Λ}\ V^({n}\x; Γί) = Vx({n}\x) for Γ^nΓ^Θ, and
Vx

lS2=s°({n}\x;Γ19Γ2)=VSί({n}\x'9Γ1) if XcX19 all of which follow from the
definition of the interpolated potentials. The general induction step sets
Γk = Γ(Xk_1) and introduces the interpolated potentials Vx

li""Sk({n}\x'9 Γ1? ...,ΓΛ).
Continuing the decoupling process until ΓΛ is exhausted one obtains

Lemma 3.2.

exp[Σ Vχ({n}\x)]= Σ Σ- Σ Σί^i.-.^-i
[XCΛ \ fc=ι Xi X k - t »ι o

k

•exn ί V Vsi>-~>s*-i(fn\\ - Γ i j uΓ Ϊ4- V F (iwlC ΛPJ Lt yx \\nϊ\χ> * i^ -^1 k-i)^ Li yχ\\nί
X C Λ

(3.7)

Here the sum over η runs over all tree functions (see [5]), i.e. functions on the
integers mapping {1,..., k} into itself satisfying η(j) <j9 and is determined by which
term in the sum over j we pick in (3.4). We adopt the convention that empty
products are set equal to one and empty sums are set equal to zero. (For a more
detailed exposition of the general induction step see [13].) Note that there are no
convergence problems with (3.7) since on a finite lattice only a finite number of the
terms are non-zero.

Definition. A cluster Y consists of
(a) An integer fe^l.
(b) A collection of connected subsets of A, {X19...9Xk_ί}.
(c) A collection of sets of lattice bonds

k

the minimal bond in \JΓj = f ( Y ) . (3.8)
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(d) A tree function η on k vertices.
(e) An interpolation parameter sm for m = l , . . . , f e — 1.

Definition. Given a cluster 7 we define the cluster function

Y,θ,ε)= V Π e-β\"u\e

inij(θi*-θj*+εδ<i*,j*>,v)
(n}\r(Y) <i,j>

<U>eΓ(Y)
k

' 1 1 \-Sη(έ)> '••' Stf-2xX^l(^l^ •• ? Γ r/00-1 ' */7(«0 ' *η(f)+l> ' ' '' ̂ ~ I'^Xf- ΛWLxV - i'J
^=2

•expf X •̂- *-({π}|x;Γ1u...uΓJk_1)|. (3.9)

With these two definitions we may write

Vx({n}\x)

Q(Y,θ,ε)\ X Π ^o(^-^ + ̂ < l*>^>,v)
» {"}|r^\f (y) <ί,J>:

L < i , j > 6 Γ Λ \ Γ ( Y )

•exp Σ ^({πjyi, (3.10)
jrς/ι

Γ(X)nf(Y)=9 1

where we have compressed our notation so that

Σ = Σ Σ- Σ Σί^ -,^-!-
r:Γι={<iιJι» k=l Xι Xk-ι η 0

Repeat the expansion process, this time applying it to the bracketed quantity
on the right hand side of (3.10). We choose (i'vj\y so that Γl is the smallest bond
(with respect to the previously defined ordering) in ΓA\Γ(Y). The clusters generated
in this expansion must satisfy a compatibility condition with respect to those
generated in the first expansion. Specifically, we require that Γ(71)nΓ(y2) = 0.
Continuing this process until ΓΛ is exhausted we arrive finally at the expression,

Lemma 3.3

Σ(π.«-'κl«tow( - ' +

k
= T Π

{Yv...,Yk}: m=l

By Γ^Yj) we mean Γλ for the cluster Y . Now remove the various restrictions on the
k

allowed sets of clusters. First remove the requirement that (JΓ(Ym) = ΓΛ. Define

T (f)\— \ p-β\n\inθ_( ) ~ ~
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Then for ε sufficiently small we have

Also, note that for any cluster Y, with fe=l, Γ(7) = {<z, j>} for some <z,7>, and
Q(ί θ jε) = //?(θί,-θj.φ + iεί<ί*>/>>fy). (Recall that <z*,j*> is just the bond in the dual
lattice which bisects <z>7*) ) Defining

)' (3 13)
'

we may rewrite the right hand side of (3.11) as

Σ' [ Π W*-^ + ̂ <^, *>,y)Πβ(^^β)l, (3.14)
{7 l?...,yj: [</,7>eΓ^

f(ym)nΓ(Y7.) = 0 ; m Φ j
Γί(Yl)<...<Γ1(Yk)

where 2J indicates that the sum runs only over clusters with fc>l. Expression

\ ί k ~ 1(3.14) is equivalent to (3.11) since we may regard any bond in ΓΛ\<[jΓ(Ym)> in
i

(3.14) as belonging to some cluster with fc=l, for which Q(Y,θ,ε) = l.
One eliminates the requirement that Γ1(71)<... <Γ1(Yk) by summing over all

ordered sets of clusters (Y19 ...9Yk) and dividing by l//c! to cancel the overcounting.
Finally, remove the restriction that Γ(^n)nΓ(Y.) = 0, by introducing functions

n with

0 otherwise.

With these modifications (3.14) becomes,

oo i m

Π ιβ(θίt-θjf+iεδ<itj^γ) Σ - Σ' Πβ(r».M Π i/(y(,i}).
<i,J> m=0 m (Yί,...,Ym) 1 l ^ ί < j ^ m

(3.16)

Standard manipulations (see [2, 3, 9, 12]) combined with convergence
estimates presented in Sect. 5 yield :

Lemma 3.4. There exists ε0(/?) and J0(/?)>0 such that for all 0<ε<ε0(β) and all
J > J0(β) one has

(3.17)

«p Σ Σ' ( Σ
l m! (Γι,.. .,^m) V f l f e G c ( Γ ι , . . . , y m )

Here, GC(Y1? ..., YJ is the set of connected graphs on (71? ..., 7J, A(^ = A(Yt, Ύ)
= V(Yi, Y^)— 1, where / is the leg in the graph g with endpoints at Yt and Yj. Note
also that one obtains a representation for the partition function in terms of the
variables, {$}, if one sets ε = 0, everywhere on the right hand side of (3.17).
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4. Complex Translations and an Upper Bound

The analyticity and periodicity of the integrand on the right hand side of (3.17)
permit us to make the change of variables (see [14, 15]),

θ^θp + iap. (4.1)

Let y* be the set of sites in the dual lattice closest to and above y. Let χL( ) be the
characteristic function of y*. We pick

(4.2)

Here, d2 is the y-component of the lattice gradient, and CD(i*,j*) is the covariance
of the negative of the two dimensional lattice laplacian with Dirichlet boundary
conditions imposed outside of /I*. Under the change of variables (4.1)

Γ °° 1
•exp Σ Λ Σ' ( Σ

L m = l m (Yί,...,Ym)\geGc(Y1,...,Ym) J

π w *-6

<i*J*>

Π

exp Σ ^ Σ' (Σ ΓUM) Π
m = l m (l rι,...,rm)\0eG c / / l j = l

\DΘ π
oo -j

Σ - Σ' (Σ
m = l m (Yι,...,Ym)\geGc

This inequality results from multiplying and dividing the integrand on the right
hand side of the first equality by the untranslated Iβ ana Q functions, and then
extracting a supremum of the quantity in curly brackets. This last step uses
implicitly the fact that Q(Y,θ,ε = Q) is real to show that the integrand in the last
inequality is positive. The reality of Q(Y9θ,ε = Q) follows by noting that the Iβ( )
functions are all real, and Q(Y,θ,ε = Q) = Q*(Y,θ, ε = 0) just by changing variables
from {n}-+ — {n} in the Definition (3.9).

The integral on the right hand side of (4.3) is the partition function which
allows us to bound ^eε^h°~hχ)y by the quantity in curly brackets. To estimate that
quantity we need the following two lemmas, the first of which is proved in the
appendix, and the second of which we prove in the next section.

Lemma 4.1. There exists α constant c, such that for any nearest neighbor pair
<z*,j*>, lα.* — a,j*\<C'S. Furthermore, there exists a constant c' such that

•W). (4-4)
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Lemma 4.2. For every /?>0, there exists J0(/?)>0 and ε0(/?)>0 such that for
J>J0(β) and 0<ε<ε0(/?), there exists a constant C"(β, J) such that

sup
co i

Σ — Σ' (Σ*-> ™\ *-* \ *-*
w =l m i (y 1 ? . . . ,y m )\0 e G c

C"(β,J) Σ (α;,-α,,
<«*,./*>

Π
(4.5)

Furthermore, C"(β, J) can be made arbitrarily small by choosing J sufficiently large,
and is uniformly bounded for J > JQ(β).

Note that Lemma 4.1, the explicit form of Iβ(θ) and a simple application of
Taylor's theorem imply the existence of a constant C'"(β) > 0 such that

sup (4.6)

for ε sufficiently small. Combining this with (4.5) and (4.3) we obtain the bound

•W)}, (4.7)

where in the last inequality we have used Lemma 4.1, and defined k(β,J)
= c'[c"(β,J) + c'"(β)']. This completes the proof of Theorem 1.1.

5. Convergence Estimates

In this chapter we prove Lemma 4.2 which yields convergence of the expansion for
the upper bound. As a first step, consider differences of products of cluster
functions.

Lemma 5.1. There exists ε0(/?)>0 such that for all 0<ε<ε0(/f)

L / = l 7=1

(5.1)

where 21(71, ..., 1̂ , θ, α, ε) is a real function for all values of its arguments. There
exists J0(β)>0 such that for all J>J0(β\

with

\Q2(Y19...9Ym9θ9a,s)\^ sup (a^-a^ + εδ^^2 Π TO, (5.2)

j=2 v ^j~^^(Γ^ ^ηU1-1;rη(Λ^^^^
(5.3)

where we again recall that <i*, j*> is the bond dual to <i, j>.
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Proof. For clusters with fe=l, the result is immediate. Otherwise, define

m m

Gλ(θ,a,ε)= I} Q(Yj9θ + iλa,λε)- Π Q(YJ9θ9ε = 0).
7=1 7=1

305

By Taylor's theorem

for some λ0e[0,1].

Define β1(y ι,...,ym,θ,α,e) = (-i

dG

dλ 2 dλ2

dG,

dλ
. We prove that (—z)

dλ

(5.4)

is real.

Since we have already shown that Q(YJ9Θ90) is real, that suffices to prove that

ϊdλ
and hence Q^Y^ ..., Ym,θ,a,ε) is real.

= 0 = r π

(n}\r(γ)

V
L

\nιj\(_rι \(π _
\ nij)\ai*

k

•π-
< f = 2

•exp

£-i\'- ι» •

(5.5)

The first term is pure imaginary since Q(Yj,θ,ε = Q) and Iβ(θ^ — θ^) are real, while

~τf(^ϊ*~θp + iλdp— iλcijt + ίλδ^jty γ)\λ = 0 is pure imaginary, by explicit com-
ίi/L

putation. In the second term we may ignore the factors of Iβ(θ^ — θ^} since they are
real. Changing variables in the sum over {n}\f(Y} to {m} = { — n} and using the
invariance of e~β^ and T^ ({w}|x) under this change of variables, one finds that this

term is pure imaginary too. This proves that —(Y,θ + iλa,λε)\λ = 0 is pure
dA

imaginary. Thus Qί(Y1,..., Ym, θ, α, ε) is a real function as claimed in the first half of
Lemma 5.1.
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Now define

2 1? 2 dλ

We first prove some bounds on Q(Y^ θ + iλ0a, λ0ε) and its derivatives.

(5.6)

l̂ '-'̂ -HWI^;^,...,^^)^^^^. (5.7)

This is true by assumption for k = 0, and since the interpolation procedure either
leaves Vχl"~'Sk( ) unchanged, or multiplies it by some constant of magnitude
less than one, it holds for all larger k as well. By the standard PeierΓs argument,
there exists J0(β)>0 such that for all J>J0(β) one has

X:x0eX

. (5.8)

Thus,

Σ Σ ^1 -

3-(3/4)J
fc-1

m= 1
(5.9)

By Lemma 4.1, |α.*-^|^c ε. Pick ε0(j8) so that β(c+l)^(l/2)j8 for all
0<ε<ε0(β). Then for A0e[0,l],

(5.10)

Combining (5.7), (5.9), (5.10), and the definition of Q(Y9θ,ε) yields

< ΓΊ s , . . . , s _ χ (Γ,...,Γ Γ Γ + , . . . , Γ _ )

fc-l

• exp ,-(3/4)J (5.11)

Now bound derivatives of Q(Y,θ + iλa,λε) with respect to λ. The derivative
produces \Γ(Y)\ terms [see the second term in curly brackets in (5.5)], each of
which may be controlled with the bounds we used for Q(Y, θ + iλa, ε), supplemented
by

<k (β). (5.12)
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This yields

dQ

-âλ
^ sup

k-1

(Γ Γ 'Γ Γ Γ
f - iV 1 1' •"' * η(έ)- 1 ' l η(t) ' L η(έ)+ 1' " > 1 ^- l

k

Π

Second derivatives are bounded in analogous fashion, using in addition

V e ~ β\n\(n2)ein ~ nλo(aί* ~ aι

. (5.13)

(5.14)

and results in

dλ
',θ + iλa9λε)\λ = t sup aί*-aj» + ε< Jt>

/ \ _ Γ /T/Λ J N > J / >

f-2

>χ (Γ1? ...,Γ _ Γ Γ + , ...,Γ _ ) (5.15)

In this formula, the factor of |Γ(Y)| comes from estimating the number of terms in

which both derivatives act on a single exponential, and the factor |Γ(7)|2 comes
from estimating the number of terms in which the derivatives act on different
exponential factors in Q(Y, θ + iλa, λε).

Now consider derivatives of Q(Y, θ + ίλa, λε). Combining our bounds on
derivatives of Q(Y, θ + iλa, λε) with the bounds

dλ
(θit -

-θp + iλofap-aj*

:*,-«,,

(5.16)

and

%<•--•'
which are easily obtained from the definition of Iβ( ), we find

r AΠπH~ ^v"^ ' dλ
V dlβ( ^
λ. 3T"( )
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^ sup |α _α + f i«5 .
J ^ 'J

' 1 1 V5^)' •• >St-2'%Xj-
,...,Γ _ )e~

J\Xf-*

<exp\e,-(3/4)J
k-l

U*.

where we have omitted the arguments of the
Similarly one has

(5.17)

functions to save space.

Π(s w'.,$;_ 2)χx (Γ 1 9...,Γ (^_ Γ Γ , . . . ,Γ_ )e~ Jl^-ιl

k- l
ί /ι / /ι \ T I

Ίexp

. (5.18)

The first two terms in square brackets come from estimating the case when both
derivatives act on the function Q(Y, θ + iλa, λε), the third term from the case where
one derivative acts on Q and one on Iβ( ), and the last two come from the case
where both derivatives act on the product of Iβ( -) functions.

The important point is that there exist constants K±(β) and K2(β) such that
the bracketed qunatities in (5.17) and (5.18) may be bounded from above by

k-l

Recall that for fc^l,

and

k- l

1

k-l

, respectively.

|β(Y, θ + iλ0a, λ0ε)\ ^exp (K3(β)

Π
Pick

. Using (5.11) and (5.16) we also have

k- 1

u*m

(Γ Γ ' Γ ' Γ Γ }
t_2\

1 1J •••?-' η(t)-l ' L η(t) > L »/( ι?)+l» '"'^ «f- l/

~(3/4)J

+ e-
(3/4}J}, then

^ sup (0f*
<i*L7*>eΓ(^ )

Π( Π [5n»-^ ^fe11 I 11 L " η ( j p ' 7 — 2 - J Λ Λ j -i

Γ .(Y);Γ . (y),...,Γ._

,,, ..φv v)
2(m + 2m2)

J J /> /

(5.20)
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By k£ we mean the integer k associated with the cluster Ύe. Similarly Γ (Ύ^ and
Xj(Yj) are the sets Γj anάXj associated with Ύe. Since [possibly by enlarging J0(/?)]
one has

(m + 2m2) [
< f = l j=l

(5.21)

for all J>J0(β\ Eq. (5.20) leads immediately to (5.2).
We now estimate sums of the new cluster functions 5(7), defined in (5.3). The

principle result is

Lemma 5.2. For every β>0 there exists J0(β)>0 such that for all J> J0(β),

^m!£Γ(1/8)Jm. (5.22)
(Yί Σ; }

<ίjye\JΓ(Yk)

eg k=l

Recall that Σ' Just means that we sum only over clusters with fc^2.
This lemma implies Lemma 4.2. By Lemma 5.1

{
oo -j

Σ - Σ ( Σ
m=ί m- ( Y i , . . . , ym) \geGc

Π Q(Yj,θ+ia,£)- π Q(γ, θ,

eχP Σ - Σ Σ

Σ Σ
eGc[ t

Σ
fc=l

(5.23)

In the last inequality we have applied (5.3) and insured that the sup(α.* — a^
m ^

+ ε(5<;*,j*>,)J
2 is attained by summing over all <z*,7*> with <i,j> in \J f(Yk).

Lemma 5.2 bounds this expression by

m = l

V1 /

<i*J*>

(5.24)

This is the bound of Lemma 4.2 if we make the identification

C"(β,J)= Σ e~(1/8}Jm.
m = l

Note that Lemma 5.2 combined with (5.19) also insures that the sums over
(715 ..., 7m) in (3.17) are absolutely convergent and hence that the manipulations
leading to the exponentiated form of the expansion were justified.
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Lemma 5.3. There exists J0(β) > 0 such that for J > J0(β)

Π CV7" Ί <Γ I Γ*(V \\m ,ί~(3/16)JM sr <-)r\
^H ̂ s/— I \ * l / l ' ̂  ' ^J.ZJj

f(Z s)"nf(ΎιJ'Φ0 s = l

ΣlΠZ s ) |=M

/or any cluster Yv

Proof. We first show that for J sufficiently large

Σ ι c /TA <Γ Λ ~ ~ ( 1 / 4 )JN /c Λ/:\o^IJ^β . (j.ZOJ

| f (V)i=N

Assume that the cluster 7 has |Γ2| = w2, ...,|Γfc| = nfc. (One has |ΓJ = 1 always.)
There are at most 2N ways of partitioning the bonds in Γ(Y) among the Γfc's.
Expression (5.26) is then bounded by

2". Σ (k)e-^™ sup Σ Σ Σάsί,...,dst_1
k=2 {«ι,...,«fc} Xι,...,Xk-ι: η 0

<i,j>eΓ(^ι)
\r2\=n2,...,\Γk\=nk

ί k

|H ^0')' •••'5j-2fcJ -ι(^ 1' "•'•' »/(7)-l ' ^ ί/OV %(7)+l' "•>* j-l)

(5.27)

The last step assumed that </,7>eΓ(X'1) and compensated by multiplying by fc. We
now claim that

|Γ2| =«2,..., |Γk| = πk

(5-28)

For fc = 2 this follows from the standard Peierls argument. Assume that (5.28)
holds for fcrgm— 1

V (e o )y / I T Γ Γ Γ Γ )
Zj VΛ?7(m)' •••'ύm-2/A'Λ:w-ιV J 1' '"' J r/(m) - 1 ' •* η(m) ' J f/(m) + 1' • > ' 1 m/

^m-l

< V V is «? \p-(J/8)\X\
= L L \*η(m)>'-^m-2)e

<ίJ>eΓη(m) X:
<ί,j>eΓ(X)

(5.29)

The first inequality follows because all terms in the first sum with
Γ(Km_ ι)<^Γη(m) = 0 vanish. In the second inequality, the Peierls argument is used to
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bound the sum over^ί with (ίjyeΓ(X). Inequality (5.29) implies (5.28) holds for
k = m since we use (5.29) to control the sum over Xm, and the induction hypothesis
bounds the rest. By standard estimates (see [6])

(5.30)
η 0 L j = l

Combining (5.26), (5.27), (5.28), and (5.30) yields

00

(5.31)
.
\ f ( Y ) \ = N

for J sufficiently large. Note that

m m

Σ' \\S(ZS}^2M sup Σ' ΠS(ZS). (5.32)
(Zι, . . . ,Z m ) 5=1 ("1 ..... "m} (Zι,...,Zm) S=l

f (Zs)n j f (Yι)Φ0 Σ«k = M f(Z s )nf(yι)Φ0
s= 1, .. .,m s= 1, .. .,m

Σ|f(Z s)|=M |f(Z1)| = «1,..., |f(Zm)|=«m

The factor of 2M bounds the number of possibilities for splitting the total number
of bonds in Σ 1 (̂̂ )1 into subsets nl9 ...,nm. Since each Γ(ZS) intersects f(Yί), the
right hand side of (5.32) is bounded by

2M sup ft/ Σ Σ S(ZS
j>ef(yi) Z s :<i,j>eΓ(Z s)

|f(Z s)|=« s

^ sup
{«l,...,«m} S= 1

Σnk = M

^2M\f(Y1)\m e-l/4JM^\Γ(Yl)\me-(3/l6}JM, (5.33)

for J sufficiently large. In the first inequality, we have used (5.26) to bound the sum
over Zs, and then bounded the number of terms in the sum over <z',j') by I/X^)!-
This completes the proof of Lemma 5.3.

In analogy with [2, 3, 9, 12] define cluster functions

!P(y ι,...9yπ;Z1,...,Zk)= Σ (ΓUO) Π S(Z,). (5.34)
geGc(Yι,...,Yr;Zί,...,Zk)Veg ] j=l

Recall that Gc(71? . . . 9 Y r ; Z1? ...,Z fc) refers to the set of graphs in which each Z
vertex is connected (directly or indirectly) to a Yk vertex by a leg in g. One then has

Lemma 5.4. There exists J0(β) > 0 such that for all J > J0(β] one has

' |?P(y 1,...,y r;Z 1,... JZ k)|^fc! e-
( J / 8 ) J vexp ΣTOI (5.35)

(Z l s . . . ,Z k )

Proof. First note that Ψ(β Z ! , . . . , Zk) = 0 and Ψ( Y, , . . . , Yr 0) = 1 . We then rewrite
Ψ(Y1, . . . , Y r ; Z1? . . ., ZΛ) in terms of Ψ functions with less than r + k vertices, via the
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manipulations detailed in [2, 3, 9, 12]. This leads to

Σ' \ψ(γ19...,γr ,zi9...9zj\£
(Zι,...,Zk) (Z l s . . .,Z k) s=l

Σ|f(Z.) |=Λr

Π [\A(γ19za)\s(zj]

k-l 1 N-l

! Σ — Σ Σ'Z_J If'")! I i—i ί—l

|β| = l l 2 "^! 1 Λf= |β | (ZΊ,...,Z'|
Σ|Γ(Zi)|=M

1 .̂

Σ\Γ(Z%)\=N-M

( Z ι , . . . , Z f c )
(5.36)

Given a graph gfG Gc, Ω = {s : /(7υ Zs)εg}. The first term is handled by noting that
A(Yί9 Zs) vanishes unless f (ZJnΓίyj φ 0, and then applying Lemma 5.3. The third
term is handled by the induction hypothesis and the second combines the
induction hypothesis and Lemma 5.3. This bounds (5.36) by

V

|Ω| =
(5.37)

If J is sufficiently large exp((l/8)J+l —(1/4)JM)^1, and the quantity in curly
brackets is bounded by Qxp(\f(Y1)\\ which completes the induction.

Finally, we use Lemma 5.4 to prove Lemma 5.2.

Σ' Π s(γk) Σ (ΓMM) Π
ieGc\ t /k=ί

, (5.38)

where we assumed (ijyεΓ^), and compensated by introducing a factor of m.
Using (5.34) this may be bounded by

m Σ' Σ Σ'

^ Σ (5.39)
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by Lemma 5.4. This may be rewritten as

mls(l-e-JI8Γlx Σ Σ' e | f (Y

al8(l-e- "8Γ1 Σ e"
m = l

m / 8, (5.40)

provided J is sufficiently large. In the next to last inequality, we have applied (5.26).
This completes the proof of Lemma 5.2.

Appendix. The Dirichlet Covariance

Let Ξ be a set of periodic lines, separated by a distance (2m + 2) in the x and y
directions, which divides IR2 into (2m + 2) x (2m 4- 2) squares AJ9 one of which, AQ9 is
centered at the origin of the dual lattice (and hence contains A*). For any point
xeA9 define a set of points, {x7 }, invariant under reflection in any line belonging to
Ξ and with x = x0. One then has, following [10], a representation for the Dirichlet
covariance in terms of the free covariance,

CJ)(i,0)-CD(U)= Σ (-l)εj[CF(z-0.)-CF(z-χ.)], (A.1)
j=o

where ε;. is the number of reflections in lines in Ξ necessary to obtain x. from x. We
now prove Lemma 4.1. From (4.2) one has

= β Σ ( - D ε k Σ
k = 0 έ*eγ*L

- CF(j* - (ί* - ey\) + CFU* - tϊ)} , ( A.2)

where we used (A.I) in the second equality.
To bound the terms with feφO, we note that

oo

F(i*)= Σ(-l)^' Σ {CF(i*-V*-ey\}-CF(i*-t*k}} (A.3)
j = l ^*eyl

is a solution of Laplace's equation throughout A0. Thus by the maximum-
minimum principle it must attain both its maximum and minimum values on dAQ9

the boundary of A0. However we know that for any site /*edz!0, *f*ezl0,

(A.4)
so that

(A 5)
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for some constant K, and any i*εAQ using standard estimates on the free
covariance. Thus if we choose AQ larger than 9|x|2 we find

\F(i*)\£K. (A.6)

Applying the same estimate to those terms in (A.3) containing 7* rather than z*
allows us to bound all terms in (A.3) with & Φ O by 2εK.

Now concentrate on the case fc = 0. Since i* and 7* are nearest neighbors, if
z* = (x1,x2),7* is either (x1 ±l,x2) or (x1 5x2±l). Assume that it is (x1 + I,x2). All
other cases are estimated in analogous fashion. If /*ey* it has coordinates (m,0),
0^w^|x|. (Assume that the origin of our coordinate system is at the leftmost
point in γ%.) Then, using standard estimates on the free covariance,

Γ^ CF(i*, t* - ey) - CF(ί*, n - CF(/*, /* - ey) + CF(j*, f

< Y l^ ^l ^κ,
~ m = o 1+xl + xl + m2 = (A.7)

for some constants K, Kf. Combining this with estimates on the terms in (A.2) with
fcφO, we see that

B (A.8)

as claimed.
From the definitions of α * and δ^ J-*> r one has

= Σ

2L82χy + ε2\y\, (A.9)

where < , •> is the usual inner product on £2(Λ*\ and ΔD is the lattice Laplacian
with Dirichlet boundary conditions outside A*.

Now examine

<CDd2χ,d2χy= Σ CD(i*,j*)(d2χ)(i*)(d2χ)(j*)
i*,f

= Σ (-1)* Σ CF(J*,;*)(δ2χ)(i*)((52χ)0 *). (A.10)
k = 0 >«, j*

The terms with fcφO are treated in a manner analagous to that used earlier.
The fc = 0 term may be rewritten as

= |y|-2(Cf(0*)-Cf(x*)), (A. 11)
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where we used summation by parts, the fact that — A CFχ = — (d\ + dl)CFχ = χ, and
0* and X* are the points at which (dvχ) is nonvanishing. Standard estimates on the
free covariance then imply

\ - <C Fd 2χ, d2χy +\y\\i Kln(l+ \X\). (A.12)
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