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Abstract. The definition of the spectral curve of a monopole is extended to any
connected, compact, simple Lie group K. It is found there are rank K curves
whose degrees are related to the topological weights of the monopole.

1. Introduction

A lot is now known about static monopoles in Euclidean three-space for the
gauge group SU(2) [5, 7, 11, 13, 14]. These are solutions of the Bogomolny
equations, in the Bogomolny-Prasad-Sommerfield (BPS) limit and are classified
by an integer fe, the topological weight. For k=l the only monopoles are all
translates of the spherically symmetric Prasad-Sommerfield monopole [10]. For
higher k axially symmetric solutions have been constructed [14, 12, 5] and
recently shown to be regular [8]. The existence of a large number of solutions for
each k with no special symmetry has been shown by Taubes [13] and Weinberg
has shown that they depend on 4k— 1 parameters [15].

By using the "twistor methods" of Penrose, Ward and Atiyah, Hitchin [7] has
shown that each monopole has associated to it a real, algebraic curve of degree 2/c,
the spectral curve, from which the monopole can be reconstructed.

For groups K larger than SU(2) the monopoles are classified by r topological
weights (m1? ...,mr), where r is the rank of K. Taubes has shown [13] that there
exist monopoles for any K and (m1? ...,mr) when all the mi are non-negative, and
Weinberg has calculated the number of parameters that these solutions depend
upon [15].

The same twistor methods can be applied to these monopoles, and we show
that there exist r spectral curves Sv ...,Sr naturally associated to the vertices of
the Dynkin diagram. Again the curves have degree 2mi. If the intersections Str^Sj
are finite whenever i and j are joined on the Dynkin diagram (if the curves are
reducible StnSj may contain a component), then the monopole can be recon-
structed from the spectral curves.
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All the algebraic geometry needed to prove the results mentioned will appear
at a later date (see also Sect. 5), but it is hoped that the results are of interest in
themselves, particularly in light of a recent article [11] by Nahm which, using an
entirely different method associates n—1 curves to an SU(rc) monopole.

2. The SU(2) Case

3

A monopole, for a group K, is a gauge potential A = £ ^4ίdxί and a Higgs field Φ,
ΐ = 1

defined on IR3 and taking values in LK, the Lie algebra of K, which satisfy the
Bogomolny equations and the Bogomolny-Prasad-Sommerfield (BPS) boundary
conditions.

The Bogomolny equations are

*F = DΦ, (1)

or

3

v o p = Γ)φ (2}
L bίjkrjk uiψ W

for ϊ = l,2,3, where Dί = di + Aί is the covariant derivative, and Fjk = djAk — dkAj

+ \_Ap AjJ is the gauge field.
For SU(2) the BPS boundary conditions are that

(3)

This means that Φ°°, the Higgs field at infinity, takes its value in the two-sphere
inside LSU(2)^IR3. As this two-sphere is an orbit of the adjoint action of SU(2),
the appropriate boundary conditions for a group K are that in some gauge,

(4)

where Φ°° takes its values in an orbit of K on LK and ψ'.S^^LK. If
Φ°°(iV) = lim Φ(0,0, t) and H = {kεK \ aάkΦCG(N) = Φ°°(JV)}, then the orbit is of the

f-»oo

form K/H. We are restricting ourselves to the case where H = T a maximal torus
in K. For K = SU(n), Sp(n), SO(2π) and SO(2n+ 1), the maximal tori are [1],

K = SU(n) T = diagonal matrices, (5)

K = Sp (n) T = diagonal matrices, (6)

K = SO (2n) T=matrices of the form

where D.eSO(2), (7)
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K = SO(2n+l) T = matrices of the form

\X 0
for XeSO(2n). (8)

For SU(rc) this means that Φ°° has distinct eigenvalues.
If we write the Bogomolny equations in spherical polar coordinates, in a gauge

3

with Ar= Σ x^4; = 0> we nave f°r tne r-component

Differentiating (4), we see that if we let

4 then φ s s φ - - * F - + 0 . (10)

As an example, for SU(w) we have

(11)

with Σ Λ f = Σ ^i = 05 ^1>...>λw and where diag(A1, ...,An) is the diagonal
ι = l i = l

matrix with diagonal entries λί9...,λn and for topological reasons [6] fc19 . . ., fcn are
integers.

The construction used to define the spectral curve is as follows [7]. The
twistor space T is defined to be the set of all orientated lines in IR3. If γ is such a
line, we let — γ denote the line with opposite orientation. For any such line γ there
is a unique pair of vectors (u,v) satisfying u u=l, u v = 0 and such that
y = {ίu + v|ίeIR} with u pointing along the direction of orientation. But this also
describes a tangent vector v to S2 at u, so we see that T is also the tangent bundle
to the sphere S2.

The two-sphere S2 can be given complex coordinates in the standard way by
projecting stereographically from some point NeS2. If z is the coordinate of some

point, /?, a tangent vector is of the form w — , so for each line γ we can define

coordinates (w, z). This, of course, doesn't work for lines parallel to the vector N,
but if we project from the antipode of N we can give these lines coordinates and
on the area of overlap one set of coordinates is a complex analytic function of the
other.

Now for the case of SU(2), given the monopole (Aί9 Φ) Hitchin [7] defines a
vector space E(γ) for each line y, which is the two dimensional complex space of
solutions of the equation

(uίdi + ttU^x) - ίΦ(x))v(x) = 0 , (12)

where xey = (u, v) and v(x) is C2 valued. If t is a parameter along the line, this
equation can be abbreviated to
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Using the fact that SU(2) = Sp(l), the group of unit quaternions, a map
σ :E(γ)-*E( — y) can be defined satisfying σ2= — 1 and called the quaternionic
structure.

This collection of vector spaces E = E(y) can be given the structure of a
holomorphic vector bundle and [7] shows that this is equivalent to a solution of
the Bogomolny equations. If, in addition, the solution satisfies the BPS boundary
conditions, the spectral curve S can be defined.

To do this the boundary condition (3) is substituted into the differential
equation to give

dυ Ί-V* - « (14)is \ τ~ i

0

in a gauge where Σ uίAί = 0. Using a result from [4], this means that there are
ί = l

solutions υ^t), v2(ί) to (15) satisfying

/σ
uand v2(t)P2e-», (15)

as ί-» + oo. So there is a 1 -dimensional space L+(y)CE(y) of solutions decaying at
infinity. Letting s= —t we see that there is also a 1 -dimensional space L~(γ) of
solutions decaying at negative infinity. Then the spectral curve S is the set of y
such that L+(γ) = L~(y).

The curve S has two important properties. Firstly we can deduce easily that
σ(L+(y)) = L~( — y\ and so ye S if and only if — yeS; such a curve is called real.
Secondly in coordinates (w, z) defined above, S can be shown [7] to be the zero set
of a polynomial of the form

p(w, z) - wk + ̂ (zjw*- 1 + . . . + αfc(z) , (16)

where a (z) is a polynomial of degree 2j in z. A curve of this form is called a curve
of degree 2k.

For SU(2) and fc=l there is the well-known Prasad-Sommerfield monopole
whose only parameter is its position (zero of the Higgs field). The spectral curve of
this monopole is the collection of all lines through its centre.

3. The Spectral Curves

For the general group K the spectral curves can be obtained from the fundamen-
tal representations of K.

We recall [1, 9] that for a group K with maximal torus T the complexified Lie

algebra of K decomposes as LKc = LTcφLα, where ΩCLT* is the set of roots
a<=Ω

of K. If a regular element XeLT is fixed, we can divide the roots α into positive
and negative depending on the sign of a(X). Amongst the positive roots, there is a
distinguished set {α1 ?...,α r} of simple roots which form a basis for LT*. The

weights A are the set of μeLT* such that 2—'—— is an integer for all αeΩ, where
<α,α>
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< > is the Killing form. A weight μ is called dominant if 2 ' * ^0 for every

simple root αf. The lattice of weights has as generator the fundamental weights μi

defined by 2 — ̂ —=(5.., V z , / = l . . . r . Then μeΛ is dominant if and only ifJ
. , -

V = Σ ^ A f°r positive (integral) «..
i = l

Now if F is an irreducible representation of K, V decomposes into weight
spaces V= φ F(μ), where π(F)cΛ If we partially order the weights by λ^μ if

μeπ(F)

A — μ is a sum of positive roots, then π(V) has a unique highest weight λ, which is
dominant and dimV(λ) = l. Conversely if λ is a dominant weight there is an
irreducible representation Vλ with highest weight λ.

For example, in SU(w), LΓ is the collection of diagonal matrices
X = idiag(λv ...9λn) and Σ^ = 0. If x£eLT* is the zth projection, so that xi(X) = λi,
then the roots are xt — Xj, fφj. Conventionally, the positive roots are x. — x for
z<7, and then the simple roots are {x1 — x2, . . . ,x n _ 1 — xn}. The fundamental
weights are {x19xί+x2,...,xί+x2 + ...+xn_ί} and the fundamental represen-
tations are C",yl2CV..,yΓ~1<C'1.

Using these results, let K->SU(FA) be a representation of K with highest
weight λ. Then, as for SU(2), we can consider the vector space, Eλ(y) of solutions
of

(Df-iΦMί) = 0 (17)

along the line y, where ι (ί) takes values in Vλ. If < , > is the inner product on Vλ and
w(t)eEλ(y) and v(t)eEλ( — y\ we have

- < w(ί), ι?(ί)> - <Dίϋ, w> + <t;, /> fw>
αί

= <iΦι;, w> + <ι;, — ί'Φw>

= <z;, — /Φ*w — /Φw>

-0, (18)

as Φ* + Φ = 0 in LSU(FA). So there is a well defined pairing

<,>:EA(7)xEA(-?HC. (19)

Applying the same result [4] as for SU(2), we see that for each eigenvector
e(μ)eVλ(μ) there is some v(t)eEλ(y) such that

(20)

as ί-» + oo.
So, in particular, we can define the one dimensional subspace

E+(γ) = {vεE(y)\ Hί)Γλ(*Fβo)/V(φoo)ί|| is bounded as ί^-hoo}.

Similarly we can define the dimAF— 1 dimensional space

is bounded as f-» — oo for all μ<λ}. (21)
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(22)

:?)}, (23)
the spectral curve associated to the dominant weight λ.

Now if λ is a dominant weight then Λ = Σ "//*/> where the «. are non-negative
integers and the μ. are the fundamental weights. So we define St = S^ the zth

spectral curve of the monopole. Then we can show that

Then, by considering the decay rates, we have

<EA

+(y),EΛ-(-y)> = 0.

So we can define the real algebraic curve

= Σ "A, (24)

where this notation means that if pλ(w, z), p.(w, z) are the polynomials defining Sλ

and S, then

7=1

For a general monopole the topological weights can be defined from
[6, 13]. The ith topological weight is defined to be

(25)

(26)

Then we can show that S is a real, algebraic curve of degree 2m , so that Sλ is a
real algebraic curve of degree 4Λ.(*F°°).

We note that this result demonstrates that the topological weights of a
monopole are all non-negative. From the work of Taubes [13] there are
monopoles for each set of non-negative topological weights.

For SU(3), T00 must lie in the shaded region below:

Fig. 1

(27)
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Weinberg [15] has introduced the notion of a fundamental monopole, which
is an embedding of an SU(2) Prasad-Sommerfield monopole into K along a
simple root direction. For these, one of the spectral curves is the collection of the
lines through the monopole's center and the others are empty sets.

4. The Classical Groups

For each of the classical groups, SU(w), Sp(π), SO(2n), and SO(2n+l) we have
standard representations. Using these we can apply the twistor construction and
interpret the result in terms of the fundamental representations. We give some
details for SU(n).

From (11) the asymptotic expansion of the Higgs field along a line y is

(28)

with λ1 + ...+λn = Q = kί + ...+kn and λί>...>λn.
Then we define the space E(y) as usual and the subspaces E*(y) by

Ef(γ) = {v(t)εE(γ)\\\υ(t)Γkl/2e + λίt\\ is bounded as ί^ + oo}, (29)

and the analogous space E^(y) by

E-_i+1(γ) = {υ(t)eE(γ)\ \\v(t)t~ki/2eλlt\\ is bounded as ί-»-oo}. (30)

Again we have a pairing and now

<£j

+(y),£π-_ί(-y)> = 0 and <JBΓ(y),£π

+_.(-y)>=0. (31)

Using these we can define

7: = {y|£i

+ωn£B-_ί(y)Φθ}. (32)

Alternatively Tt is the collection of points y where

^γ)) (33)

vanishes. If we make the appropriate identifications it is not difficult to see that
St = Tt, the ith spectral curve. These curves must satisfy a constraint on the
intersections S^Sj when i and) are joined on the Dynkin diagram (see Sect. 5).

Now in [7] Hitchin recovered the monopole by building up the
(2-dimensional) bundle E from a 1 -dimensional bundle L+ using the spectral
curve. In a similar way we can use the whole flag E^ CE^ C ... CE and build up
the bundle in a series oίn—ί steps using the ith spectral curve at the zth stage. To
make this procedure work we need the technical requirement on the spectral
curves that S.nS^ is finite whenever the ith and /h simple root are joined on the
Dynkin diagram.

For each of the classical groups a similar procedure works and under the same
conditions the spectral curves determine the monopole. In the case of the
exceptional groups the adjoint representation is the obvious one to use and,
although complicated, this seems to work in principle.
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Recently Nahm [11] has extended his use of the ADHM method of construct-
ing monopoles to the SU(n) case and produced n— 1 algebraic curves associated
to each monopole. It would seem plausible that these are the spectral curves but
we have not verified this yet.

5. Further Details

We present some more details using the notation of [7]. The twistor cor-
respondence there can be generalized as follows. If we have a monopole for
P(IR3,K) with reduction at infinity to T a maximal torus there is a natural
holomorphic principal bundle Q(TΊP19 G), where G is the complexification of K. If
σ : G— >G is an antiholomorphic involution fixing K and B a Borel subgroup such
that KnB = T, then Q has a "real structure" σ:Q-»β covering τ on T1P1 and
satisfying σ(qg) = σ(q)σ(g) Vgeg #eG, and two reductions, R+ and R~ to B and
σ(B) respectively, satisfying σ(R+) = R~ and

R±(λ)^Lλ(φ~\ + 2λ(*F™)), (34)

where R + (λ) is the associated line bundle induced by the weight λ.
Then using these, and a representation Vλ= φ Vλ(μ\ where n(λ) are the

μeπ(λ)

weights of the representation Sλ is defined by

0 Vλ(μ}\ (35)
μ<λ }

Here if P(M, G) is a principal bundle and G acts on F on the left, we let P(X)
= P x GF be the standard associated bundle. Using (34) we see that

If we specialize to the case of λ a fundamental weight, and let Vλ. = Vt, then in
the natural ordering the next weight after λ. is λί — oci with multiplicity 1. So the
following diagram can be defined

a^, (36)
where - - -> indicates ξt is defined only where φt vanishes, that is on S .

We can also obtain the spectral curves by considering the induced sections
R~ of Q(G/B)^R + (G/B\ the flag bundle. Now G/B has a cell decomposition
stable under B so each fibre of R + (G/B) has a cell decomposition [2, 3]. The
cells of G/B are labelled by the elements of the Weyl group and we need to
know the following: (1) there is one cell of dimension G/B, (2) there are r cells
C1 ?..., Cr of codimension 1 corresponding to the reflections σί in the hyperplanes
orthogonal to α , (3) if <α.,α7.>=0, then Cir\Cj contains one cell Ctj (labelled by
σiσj = σjσi), and (4) if <αί? α7 > Φ0, then Cir\Cj contains two cells C{j and Cjt. Then
if we look at the intersection of Ci and the section R~ and project onto T1P1, we
obtain S.. Furthermore S.nSy is the union of two naturally defined subsets Stj
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and Sjt. Then the ξ. defined above vanishes on the union of the Stj for adjoined to
a. on the Dynkin diagram.

As an example for SU(3) we have two curves, Sί where E± CE2, and S2 where
E~ CE2'

 anc* tnen $12 is wnere EI =E~, and S21 where E2 = E2.
Then it is the S. and ξ., or the S. and the division SfΠS^SyuS-, which

determine the monopole.

6. Conclusion

The spectral curves provide some interesting insight into the properties of the
monopole solution for the case of maximal symmetry breaking. When there are
some coincident eigenvalues in the Higgs field at infinity it is not yet clear if the
spectral curves should be expected to determine the monopole.

It would be interesting also to understand why the Dynkin diagram appears in
the form it does and how this manifests itself in Nahm's work.
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Note added in proof. It has not yet been shown that the spectral curves determine the SO(2rc
monopole or the monopoles for the exceptional groups.






