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Abstract. The asymptotic behaviour of random variables of the general form

KN

In Σ exp(Nllpβζt)
i = 1

with independent identically distributed random variables ζt is studied. This
generalizes the random energy model of Derrida. In the limit N-+co, there
occurs a particular kind of phase transition, which does not incorporate a
bifurcation phenomenon or symmetry breaking. The hypergeometric character
of the problem (see definitions of Sect. 4), its Φ-function, and its entropy
function are discussed.

1. Introduction

The great majority of solvable mathematical models of mean field type, which
show phase transitions, are closely related to bifurcation problems in the order
parameters. For example, many magnetic spin models are of this type. The general
features of these models may be roughly summarized in the following way: The
calculation of the free energy in the thermodynamic limit is equivalent to a large
deviation problem, which by Laplace's method goes over to a variational principle
for the free energy. At an extremum, the first derivative with respect to the order
parameters must necessarily vanish. In most interesting, exactly soluble examples
this condition implies a bifurcation phenomenon.

In this paper, we study a phase transition phenomenon of a completely
different type. In fact, we shall see below that we have to do with a kind of iterated
large deviation problem. It is this iteration which provokes the phase transition.
On the other hand, the models are simple enough so that no additional bifurcation
phenomena appear. Since the mean free energy is once, but not twice, continuously
differentiable at the critical point, we may speak of a third-order phase transition.

We now describe the models in more detail. Let us consider a probability
measure ρ on 1R, which has an exponentially decreasing tail distribution at + oo.
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This means roughly that

ρ[x, +oo)πexp(-bxpKp-ί)) for χ->oo (1.1)

for some p e [ l , oo) and b>0. (See Sect. 2 for the precise definition.) Take a
sequence (Q of independent random variables with the common distribution ρ,
and define for β^O, fee{2,3,...}

N = ZN(β,ρ,κ)= Σ explNU'βζt-NQnK + γβ*)}. (1.2)
ί = l

The term ln/c + yβp is introduced only for normalization. We are interested in the
limit oΐN~ίlnZN.

The main result of this paper is the stochastic convergence of N " 1 lnZ N to a
deterministic function ψ(β9ρ9lnκ) which exhibits the following non-analytic
behaviour in β: the function βt->ψ(β,ρ,\nκ) is once but not twice continuously
differentiable. More precisely, there exists βc = βc(ρ, In K) such that

::::: lit
l im—rφ = O, but lim —r~ ψ < 0. (1.4)
β\βcdβ β\βcdβ

Moreover,

In this sense, we say that the random variables lnZ^ give rise to a phase transition
of third order.

This problem has first been studied by Derrida [2] for the case of a Gaussian
distribution

*, (1.5)

i.e. b = 2, P = 29 and κ = 2. He showed by direct calculations that

Ό for β<,βc=γ2\n2,

•J8c-ln2 for β>βc. '

Derrida regarded the ζ. as independent energy levels and called the system the
random energy model. The expression (1.6) then corresponds to the mean free
energy in the thermodynamic limit. The random energy model has been in-
troduced in order to get a better understanding of the Sherrington-Kirkpatrick
(SK) model for spin glasses [8]. In spite of the many papers devoted to solving the
SK model, there is still no satisfactory theory for its solution. However, it is not
difficult to check that an iterated large deviation problem is also involved in the
SK model. One of the methods applied there was the replica trick, which however
gave incorrect results. (See [6] for a detailed discussion of the replica method.)

Though we shall not comment on the Sherrington-Kirkpatrick model in this
paper, we explain the replica method for our models in Sect. 6, and we shall see
that this method would also fail here. Moreover, we will point out that the
behaviour of N~1lnZN and the results obtained by the replica method contain
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different information about the Φ-function, namely its left and right derivatives at
zero, which are identical only in cases without phase transition. At the end of
Sect. 6, we shall propose a new method, which in our case gives the correct answer.

The generalization with respect to Derrida's result is various. First, we admit a
general probability measure ρ instead of the standard normal distribution.
Second, we treat the problem by the methods of the theory of large deviations,
instead of the special and complicated analytical calculations in [2]. In doing so,
we get a better insight into what really happens mathematically. Third, we show
not only that the mean N~1E\nZN converges, but the random variables them-
selves. Finally, we discuss the Φ-function and the entropy function and explain the
hypergeometric character of the problem.

In fact, if we write the Φ-function ΦN of lnZ N (see [6]) in the form

ΦN(ή = N~1lnEexp{tlnZN}

= N~1ln£exp NtN~ί\nκ-N Y Qxp{N(Na~p)/pβζ:-yβp)} , (1.7)

it becomes obvious that we have to do with an iterated application of the "large
deviation operator" N~1\nEexpN. Recall that informally Laplace's method
means

lim AΓ"1ln£expiV( )^esssup( ). (1.8)

By the form of (1.7), it is thus not surprising that, in some region, the asymptotic
behaviour of iV"1 \nZN is described by a hypergeometric entropy function, i.e.

ProbliV" 1 \nZNedx}&exp( — exp(Nj(x)) (1.9)

for some function j and some x e R Consequently, we shall also find a (one-sided)
hypergeometric convergence of N~ίlnZN. Unfortunately however, we were not
able to calculate the asymptotic Φ-function

Φ(t) = lim ΦN(t) for all t.
N

Here, we are left with some open questions.
In Sect. 2, the fundamental assumption (1.1) on the measure ρ is made precise

and presented in several equivalent versions. The limit of the means
N~ιE\nZN{β,Q,κ) and the occurrence of the third-order phase transition are
stated in Theorem 3.1. In Sect. 4, we discuss the hypergeometric character of the
problem in the region (— oo,φ(β,ρ,Ink)). We show then in Sect. 5 the different
types of convergence of the random variables N~1\nZN, depending on whether
β<βc or not. Finally, the Φ-function and the entropy function are discussed in
Sect. 6. The mathematical reason for the appearance of a phase transition
("sticking of the maximal point") is explained in Sect. 7, which gives the necessary
preparations for the proofs of the results. The proofs themselves are then described
in the rest of the paper.
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2. The Condition on the Measure ρ

In this section we investigate the condition on ρ which we shall need later. So let ρ
be a probability measure on IR which satisfies

(i) JQxp(tx)ρ(dx) < + oo for all teIR, (2.1)

(A) (ii) there exists pe[ l , oo) and ye(0, oo) such that

lim Γp\n$Gxp(tx)ρ(dx) = y. (2.2)

Define the transformed measure ρt on IR by

ρt(dx) = exp {tx)ρ(dx}/ j exp (tx')ρ{dx'). (2.3)

By FHospitaFs rule, (2.2) is equivalent to

yp. (2.4)

We start to give several examples of measures satisfying condition (2.2) using the
following result:

Proposition 2.1. The probability measure ρ on IR satisfies (2.2) with p=l if and only
if its restriction to (0, oo) has a nontrivial bounded support.

Proof If ρ ϊ (0, + oo) has a non-trivial bounded support, then clearly (2.2) holds
with p = 1 and

y = esssupρt (0, oo) = sup{iί;jR in the support of ρt (0, oo)}>0. (2.5)

Conversely, assume first that ρ(0, + oo) = 0. Then In Jexp(ίx)ρ(dx)^O for all ί^0,
and (2.2) cannot hold with γ>0.

Suppose now that the support of ρ Γ (0, + oo) were not bounded, i.e. ρ[r, oo)>0
for all r>0. Then for all positive functions feL1(ρ\ we find that

j f(x)ρt(dx)^ρ(ίr^)Γ1 J /(x)exp(ί(x-r))ρ(dx)-0 (2.6)
( - GO , r) ( - oo, r)

with f->oo. In particular,

ρί[r,cx)) = l - ρ ί ( - c x ) , r ) - ; ^ > l . (2.7)

Now by (2.6) and (2.7) for any r>0, 0<ε<l/2r,

\xρt{dx)=- J |x|ρf(dx)+ J xρf(dx)+ J xρf(dx)
(-oo,O) [0,r) [r, oo)

for sufficiently large t. Hence Jxρ^dx)-* + oo for ί-*oo5 and (2.4) or equivalently
(2.2) cannot hold with 0 < y < + oo and p = 1. •

We shall now give another important class of measures ρ satisfying the
condition (A), but where p φ l .

Proposition 2.2. Let

P(x)= t hxk (2.8)
k=l
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with bq>0 and q an even integer, ^ 2 . Define

ρ(dx) = C " 1 exp( - P(x))dx, (2.9)

where C = Jexp( — P(x))dx< -f oo. 77zerc ρ satisfies the condition (A) wfί/z p gw

- + - = 1 , (2.10)
p q

and

γ = p~1(qbqΓ
ip"1)>0. (2.11)

Proof By (2.4), we have to show that

lim ί~(/7~1) \xQt(dx) = py = (qb J ~ ( p l ) . (2.12)
ί-*oθ

For ί^O and xelR, we define

τ = (t/q-bq)
p~1, and y = x — τ, (2.13)

such that with g— 1 = l/(p— 1), we have

qbqτ
q~1=t. (2.14)

We make the following substitutions

P(x)-tx = b(χ~τy-hτ«-bt

q

q

i = 2i = 2 \ 1

ί=2

q
 '

i = 2 Z =

+ Σ Σ 6, ϊ /-V, (2.15)
i = 2 i = l \ V

where we set <i~1

Q(τ)=-(q-l)bq1*+ Σ V> (2.16)

using the fact that 1+ £ . (—l) ί = # - l . In the third expression of (2.15), the
i - 2 \ ϊ /

term with power τβ x has the coefficient — bq ^ . I i(— l)Γy = 0, while the fourth
i=2 W

expression does not have terms of power τq~1. The terms with the power τq~2 in
the two last expressions of (2.15) have together the coefficient

Thus we can rewrite (2.15) as

_1(q~ l)y + R(y, τ)], (2.18)
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where R has the form

R(y,τ)="Σ Σ V τ " J » < 1 1 9 >
J = l 1 = 1

with suitable coefficients αj7. Set

C = ί e x p { - τ 9 - 2 [ ^ ( ί - l ) j ; 2 / 2 + ί'9_1(«-l)y + Λ(>',τ)]}ίiy. (2.20)

Then

q (2.21)

where in {...} we have to repeat the argument of the exponential term in (2.20).
Now when t tends to infinity, then also τ-*co, and the second term in the
[ ]-bracket of (2.21) tends to zero. Hence

which is (2.12). The proposition is proven. •

Remark. The algebraic transformations in the preceding proof are essentially
involved in the proofs of Derrida's results [2]. Further on, however, we shall avoid
these calculations and use instead the theory of large deviations and Laplace's
method.

In our context, the interesting measures Q are those which satisfy the
condition (A) with p> 1. By Proposition 2.1, they do not have a bounded support
on [0, oo). The next theorem gives another characterisation for these measures.

Theorem 2.3. The probability measure ρ satisfies the condition (A) with p>l, if and
only if

b:=-limr p lnρ[ί p - 1 ,oo)e(0,oo). (2.22)
ί-> oo

// either of these conditions holds, then y from (2.2) and b from (2.22) are related by
the equation

p-1\ (2.23)

where q is dual to p in the sense of (2.10).

The somewhat lengthy proof of Theorem 2.3 is given in Sect. 12.
In Sect. 7, we shall use the following consequence of Theorem 2.3:

Corollary 2.4. Let ρ satisfy condition (A) with p>\ and let

1 <p1 <p<p2 < °o . (2.24)

Let q, qv and q2 denote the dual numbers of p, pv and p 2, respectively such that
I<q2<q<q1<co. Then, for all cvc2>0, we have

limsup {lnρ[x, oo) + c 1 x g i } - + oo, (2.25)
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and

lim {lnρ[x, oo) + c2x
q2} = - oo . (2.26)

Proof. Let cv c2 >0, and 0 < ε < b , where be(O, oo) is taken from (2.22). By (2.22), we
find arbitrarily large 3c with

Inρ[x, o o ) ^ - (b + ε)xq, (2.27)

and finally for all large x,

lnρ[x,oo)^-(ί>-ε)x*. (2.28)

Hence, for those 3c and x, respectively, we have

l n ρ [ x , oo) + c1x
qi ^c^1-(b + ε)xq ^ + o o > + o o , (2.29)

and

lnρ[x, oo) + c2x
qi ^-(b- ε)xq + c2x

q2

 χ_^^> - oo . (2.30)

This proves (2.25) and (2.26). •

For the rest of the paper, we assume that the probability measure ρ satisfies
condition (A).

3. The Phase Transition of the Mean

In this section we present the first result of this paper (Theorem 3.1): the
asymptotic behaviour of the mean of N~1\nZN, HmN" 1 £lnZ i V . Here
ZN ~ ZN(β, ρ5 K) is taken from (1.2), where the ζ. are independent random variables
with distribution ρ, and ρ satisfies the hypothesis (A) from Sect. 2. The proof of
Theorem 3.1 is postponed to Sect. 8.

We start with the following definitions:

where p and y are given by (2.2) and q is dual to p in the sense of (2.10).

f o r 0 < ^ Λ , * ) , ( 3 2 )
for βc(ρ,z)<β and p>ί. ( i Z)

We have ψ(β, ρ, z) ̂  0 with equality exactly for 0 < β ^ βc{ρ, z).
It is easy to check that for p>ί, ψ is - as a function of β - differentiable at
βc = βc{ρ,z)with

ψ(βc,ρ,z) = 0, (3.3)

and

( έ ) * ) = 0 ' (3 4)
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0
β

Fig. 1. The function β^ψ(β,ρ,z) for p>l

Fig. 2. The function z\->ψ(β,ρ,z) for p>l, β>βc

while

lim
β\βc dβ 2ψ)(β)=-yp(p-l)βp

c-
2<0. (3.5)

In the standard Gaussian case, βc and the function ψ are given by the righthand
side of (1.6). The generalization of (1.6) is now:

Theorem 3.1. If ρ satisfies hypothesis (A), then

lim
iV-> oo

(3.6)

Remark. In the Curie-Weiss model without external field, the specific energy is a
function which is continuous, but in general not continuously differentiable at the
critical Curie temperature. This is called a second-order phase transition.

In comparison with this, the result of Theorem 3.1 may be called a phase
transition of third order, since the mean energy ψ is once, but not twice,
continuously differentiable at the critical temperature. (The definition of "first-"
and "second-order" phase transition, given by Dyson [3, p. 8], corresponds in our
terminology to "first-" and "second- or higher-order" phase transition.)
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4. Hypergeometric Bound from below
and a Hypergeometric Entropy Function

In the preceding section, we showed that the expectation of the normalized
partition function N~1lnZN(β,ρ,κ) converges to ψ(jδ,ρ,lnκ;). But in fact, we even
have convergence in probability of the random variable N~ίlnZN(β,ρ,κ) to the
non-random function ψ = ψ(β,ρ,lnκ). To show this, we shall first prove that

"N~ί\nZN is hypergeometrically bounded from below by ip."

To explain this phrase, we first remind the reader of the notion of geometric one-
sided boundedness:

Definition 4Λ. (i) A sequence of random variables YN with normalizing constants
aN, aN-+co, is geometrically bounded from below (respectively, above) by α, if for all
ε > 0 there exists a δ>0 such that

lim sup aN~1ln Prob { YN/aN ^ α — ε} ^ — δ
N _ x (4.1)

/respectively, lim sup aN

 x In Prob {YN/aN ^ α + ε} ^ - δ\.

(ii) The sequence YN/aN converge geometrically to α, if (YN,aN) is geometrically
bounded by oc simultaneously from below and from above. (See also [4,
Definition II, 2.1].)

In part (i) of the definition, Prob { } denotes the probability of the event written
in the brackets. Informally, (4.1) means that

0 ^Prob {YN/aN ^ α - ε} ^ e x p ( - aNδ) (4.2)

for all large N. In many cases, geometric bounds are obtained from the entropy
function to the sequence (YNyaN\

For a subset A Q1R, define

^ j ^ A } ^ , (4.3)

and then for xeIR

(4.4)

where the supremum is taken over all intervals A £ IR, containing x in their interior.
Finally, let

(4.5)

where clcO'J denotes the largest closed ( = lower semicontinuous) convex function
majorized by i Then iί is called the limiting entropy function of {Yn,an). One can
show that iί is the Legendre transform of the limiting Φ-function φx of {Yn,an)

φ ^u) = lim a~N In Ezxp(tYN). (4.6)

The Legendre transformation φ\ of φγ is given by

)}. (4.7)
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We then have

<?!=&)*, and i 1 = φ * = i**. (4.8)

We tacitly assume here that φί exists and is finite at least on an open, non-empty
interval. Then α is a geometric lower bound for (YN9 aN) in the sense of (4.1) if and
only if for all ε > 0

inf i1{χ) = δ>0. (4.9)
x^(χ — ε

Similarly for a geometric upper bound.
In analogy to Definition 4.1, we introduce the notion of a hypergeometric

bound.

Definition 4.2. The random variables YN with normalization aN, aN-+oo, are
hyper-geometrically bounded from below (^respectively, above) by α, if for all ε > 0
there exists δ > 0 with

lim inf % * ln( — In Prob {YN/aN ^ α — ε}) ̂  (5

(respectively, lim inf a^1 In (— In Prob {YN/aN ^ a + ε}) ̂  δ).

Inequality (4.10) means informally

exp(aNδ)). (4.11)

Of course, (4.10) is much stronger than (4.1).
In analogy to part (ii) of Definition 4.1, one could also introduce the definition

of hypergeometric convergence. But since we do not know natural examples of
hypergeometric convergence at the moment, this would be a purely abstract
definition. We shall however introduce the definition of the hypergeometric entropy
function to (YN,aN):

' 1 ln(-\nFrob {YN/aNe A}), (4.12)

and

ϊ ϊ ) 9 (4.13)

where again the supremum is taken over all intervals A containing x in their
interior. The interesting region is of course {x,i2(x)>0}. For our problem
(lnZN,AΓ), Theorem 4.3 below will give a positive lower bound for i2(x) in the
region (— oo, ψ(β, ρ, lnκ)). At the moment, we do not know a natural definition of a
hypergeometric Φ-function φ 2 , nor do we know what kind of relation should hold
between φ2 and i2 in analogy to (4.6)-(4.8).

Let us define for qe(— oo,0)

iln/c if p =

In* if p>landq<-γβp, (4.14)

\nκ-\p-\β,ρ,q) if p>\ and -yβp^q^O,
where \p~1(β,ρ, •) is the inverse function of z^ψ(β,ρ, z) on [ — γβp,O) (see Fig. 3).

The following theorem states that j is a lower bound for the hypergoemetric
entropy function i2 of (In ZN, N). Its proof is given in Sect. 9.
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Fig. 3. The function qt +jXβ, ρ, q)

Theorem 4.3. For all q<0 we have

liminfJV-Mnt-lnProMiV"1 (4.15)

Remarks. 1. Of course, (4.15) is only of interest in the region qe(— ao,ψ(β,ρ,lnκ)\
where j is positive.

2. There are some hints which indicate that the estimate in (4.15) is sharp, and
that we can even replace lim inf by lim. If this were true, we could say that j is the
hypergeometric entropy function for lnZN in the region (—co9ψ(β,ρ,lnκ)).
However, we do not yet know how to prove the inverse inequality of (4.15).

3. The fact that the entropy function is of hypergeometric order in the region
(— oo,ψ(jβ,ρ,lnκ;))5 is obviously related to the iterated large deviation problem as
described in the introduction [see (1.7)]. However, there does not seem to exist a
simple cookbook recipe for boiling down an iterated large deviation problem to a
hypergeometric entropy.

With Definition 4.2, we get as an immediate consequence of Theorem 4.3:

Corollary4.4. The limit HmN~1ElnZN = ψ(β,ρ,lnκ) is a hypergeometric lower
bound for the random variables lnZN with normalization N.

Since now the probabilities ProbfiV"1 lnZN^ψ(β,ρ,lnκ) — ε} with ε > 0 are
summable, we have by the Borel-Cantelli lemma:

Corollary 4.5.
Prob {lim inf AT"* In ZN ^ ψ(β9 ρ, In k)} = 1. (4.16)

ί5. Convergence of N

In the last section we have shown that ψ(β, ρ, \nκ) is a hypergoemetric lower bound
for N~1\nZN. We want to show that indeed N~ίlnZN converges at least
stochastically to ψ(β,ρ,lnκ). For this purpose, we need the following result:

Lemma 5.1.
lim ,

N->oo

(5.1)

for all q.
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Proof. We apply the inequality

l [ β f+ «,)(*) ̂ * / α for x ^ O , α^O (5.2)

to x = ZN and oc = exp(Nq). Thus

k*. ̂ N~' 1 Π Z N ) = l[«p(Nβ), A ) ^ Z N exp( - Nq), (5.3)

or
lim N - 1 l n P r o b { Λ Γ - 1 l n Z N ^ ^ } ^ l i m A Γ - 1 l n E ( Z i V ) - ^ = - ^ , (5.4)

JV->oo iV

since by (2.2)

ί j / ) - 7 J =0. • (5.5)
The Borel-Cantelli lemma yields the simple consequence of Lemma 5.1.

Corollary 5.2. P r o b{limsupiV- 1 l n Z ^ O } = 0 . (5.6)

Combining Corollary 4.4 and Lemma 5.1, we get almost sure convergence in
the case

Theorem 5.3. // β^βo and in particular if p=ί, then N~1lnZN converges
geometrically, and a fortiori, almost surely to ψ(β9ρ9lnκ) = 0.

In the case of a phase transition, i.e. β > βc and p > 1, we have a weaker form of
convergence:

Theorem 5.4. // β>βc, then N~1lnZN converges stochastically to
ψ = ψ(β,ρ,lnκ)<0.

Proof The assertion of the theorem is known to be equivalent to the statement
that the distributions of N~1lnZN converge weakly to δψ. By Corollary 4.4 and
Lemma 5.1, the distributions of N~1lnZN are tight, and any limit probability
measure μ has its support on [ip,0]. By Theorem 3.1, we have

J χμ(dx) = \imN~ΛE\nZN = ψ. (5.7)

Hence μ = δψ, since δψ is the only probability measure which has support on [φ, 0]
and satisfies (5.7). Π

Remark. We believe that even in the case β>βcWQ have almost sure convergence
of N~1lnZN to ψ(β, ρ,lnκ). In fact, it is known that by Theorem 5.4, we can find a
subsequence (AT.) of (N) such that (JVΓ1 lnZ^.),. converges almost surely to ψ. By
the special form of ZN as a sum of independent random variables depending on JV,
it is most plausible that not only the subsequence, but also the whole sequence
N~1\nZN converges almost surely. At the moment, however, we do not have a
rigorous proof for the almost sure convergence. On the other hand, we believe that
for β>βc

N~1lnZN does not converge geometrically to ψ9 (5.8)

because we have a phase transition for β > βo and the entropy function vanishes in
the interval [φ,0]. (See also Remark 1 at the end of Sect. 6.)
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6. Discussion of the Φ-Function and its Entropy

Still, our main purpose is to compute the limit function Φ

φ (ί) = φ(β ρ9 κ) (ί) = KmΦN(ή = Urn N~' InE exp {t InZN(β, ρ, K)} . (6.1)

All ΦNi and hence also Φ, are convex functions. Once we know Φ, we get the
entropy function of (lnZN(/?,ρ, /c);JV) as the Legendre transform of Φ

I(β, ρ, fc) fa) = sup (q ί - Φ(j8, ρ, K) (ί)) = Φ*(jS, ρ, K) fe). (6.2)

For the case p = 1, a complete calculation of Φ is given by the following theorem,
the proof of which is postponed until Sect. 10.

Theorem 6.1. If p=ί, then

Φ(j8,ρ,ιc) = 0, (6.3)

and

; S: <«>
Remark. For ^ < 0 , the result (6.4) is a trivial consequence of Theorem 4.1, where
we have even shown that the hypergeometric entropy function J is greater than or
equal to lnκ. Informally, the relation between the entropy function / and the
hypergeometric entropy function J is given by

"IπlimN-^xpiNjy. (6.5)

If now J ^ l n / c > 0 in the region g<0, then / must be + oo. At the moment, we do
not know if lnZ N also has a non-zero hypergoemetric entropy function in the
region q > 0, as it might be suggested by the theorem.

Now we turn to the more difficult problem, the computation of Φ for p>ί.
First, we give a description of what we believe that the function Φ looks like. Later
we shall compute some of the values of Φ. There are however some questions
which remain unsolved.

Define for ί ̂  1, p> 1, and q dual to p [see (2.10)]

£ I:!:
Here χ is continuous and strictly decreasing with values in (0,q— 1].

From (3.1), we recall

βc = βc(ρjnκ) = ((q-l)\nκ/γ)1/p. (6.7)

Put
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Finally, we define

ίt"ψ(β,ρ91nκ) for

l for Ogί^ίOS), (6.9)

for t^t(β).

In Fig. 5a and b, the dotted curves are the analytic extension of Φ Γ (t(β\ + oo). For
β>βc, the function tπ>ί i/>(/?, ρ, In K) is just the tangent at t = βc/β of the analytic
extension of Φ ϊ (1, oo) which passes through zero.

We remark that for all β

Φ'{t{β) + )= \imΦf{t) = \nκ\(Vt{βγ \\βlβcγ-λ (6.10)
t\t(β) [\ p - 1 j L J

which is equal to zero exactly for β = βc(ρ,\nκ).

As the notation already indicates, we have the following

Conjecture. For p > l ,

Φ(β, ρ, K) (ί): = lim ΦN(β, ρ, K) (ί) = Φ(β, ρ, k) (ί). (6.11)
N

Unfortunately, we do not know how to prove (6.11) for all t. All that we can do is
the following partial result, which is proved in Sect. 11.

Theorem 6.2. Lei p > l . Then Φ(β,ρ,κ)(t) = Φ(β,ρ,κ)(t) for te(-OO,0~]IJ{12,3,...}.

Remarks. 1. Evidently Theorem 6.2 makes the conjecture Φ = Φ for all t rather
plausible. However, there remain some doubts, in particular in the case β > βc and
ίe(0,1), where Φ could also be negative. We do not know how to settle this
question.

2. Let ϊ = I(β,ρ,κ) be the Legendre transform of Φ, i.e. by (6.2)

,κ))*. (6.12)

/ has roughly the following shape:

ί +oo for q<ψ(β,ρ,lnκ),

0 for ψ(β,ρ,κ)^q^0, (6.13)
in (0, oo) for 0<q.

Under the conjecture Φ = Φ, the function / equals the entropy function of
N~ιlnZN, i.e. informally

Pτob{N'1lnZNedq}wGxp(-NI(q)) (6.14)
[see also (4.3)-(4.5)]. The fact that ϊ(q) = + oo for q < ψ(β, ρ, ln/c), is consistent with
Theorem 4.3, where we have shown that there exists even an hypergeometric
entropy function. Similarly, Lemma 5.1 gives a lower bound for / in the region
q>0:

I(q)^q for q>0. (6.15)
Finally, let β>βc. The existence of the non-empty interval [ψ{β, ρ, In κ\ 0] on
which / vanishes, is the usual mathematical phenomenon which occurs in the case
of a phase transition.
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Φ

0 1 t(β)

Φ

Fig. 5a and b. The function Φ = Φ{t), for β<βc (a), and for β>βc (b)

3. The random variable \nZN has a hypergeometric entropy function for
q > ψ(β, ρ, In κ\ while for ^ > 0 the usual entropy function is positive and finite. This
indicates that the central limit theorem cannot hold for lnZN with any suitable
normalization.

4. As in Theorem 6.2, also in the Sherrington-Kirkpatrick model, one is only
able to calculate the "replicas" Φ(n) for n = 0,1,2,.... If now the points (0,Φ(0)),
(1, Φ(l)), and (2, Φ(2)) are collinear in 1R2, then Φ(q) = q Φ(l) + Φ(0) for ^G [0,2] and

) = Φ(l). This is essentially the replica method. However, this does not give
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any information at all about Φ'(0 —), which in our model turns out to be the
important value, since the random variables iV~1lnZJV converge to it. But the
remark after (6.9) gives another method for computing Φ'(0 —) from the replica
values Φ(n), n = 1,2,.... For β ^ βc, Φ'(0 —) is exactly the slope of the tangent to the
analytical extension of (Φ(n))n, which passes through zero. It may be that a similar
procedure also works in the SK model. In fact, the above result confirms and
substantiates an older idea of van Hemmen, Palmer, and Sommers, who proposed
to take the convex hull of the "analytic" continuation of Φ(n), including Φ(0).
However, numerical data (Palmer, unpublished) were not in favour of this
proposal (private communication by J. L. van Hemmen).

7. The Random Variable exp(Nίlpβζ-Nγβp)

Before we give a proof of Theorem 3.1, we shall first investigate the random
variable

/ , (7.1)

its Φ-function and its entropy function. Here ζ is a random variable with
distribution ρ, p e [ l , oo), and ye(0, oo) stem from the condition (A) of Sect. 2.

In particular, we are interested in the asymptotic behaviour of η for large N.
First, let us define the Φ-function of η:

ΨM = φN(β, Q, II) = In f exp(w exp(Nllpβx - Nγβp))ρ(dx). (7.2)

The Φ-function is always convex (cf. [4]). Unfortunately, in our case the functions
φN are degenerate for p > l . More precisely, we have the following

Theorem7.1. Assume that p>l. Then

I+oo for w>0,

0 for u = 0, (7.3)

in (-oo,0) for u<0.
On (— oo,0), the function u^φN(u) is strictly increasing, convex and real analytic.
Moreover,

lim (— φN) (u) = J g(dx) exp(N1/pβx- Nyβp)< + oo . (7.4)
uτo \du j

Proof. We shall first prove φN(u)= + oo for u>0. Let again q denote the dual of p
and q1>q. For any R>0, we find by (2.28) arbitrarily large 3c with

(7.5)

whence for all x ^ 3c

u Qxp(N1/pβx) + lnρ[x, oo) ̂  R + u(cxp(N1/pβx)- xqi). (7.6)
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By partial integration, we get

J exp(u Qxp(N1/pβx - Nyβp))ρ(dx)

J exp{N1/pβx-Nyβp + R + u(exp(N1/pβx-Nyβp)-xqi}dx
— oo

-> + oo for x^> oo. (7.7)

This shows φN(u)= + oo for all u>0. That <pN(0) = 0 and φN(u)<0 for w<0 are
evident. So is the fact that φN is strictly increasing and real analytic on (— oo,0).
Finally, under the condition (2.1), Eq. (7.4) is an immediate consequence of
Lebesgue's theorem. •

Digression. Many theorems in the theory of large deviation are stated under the
general hypothesis that the (limit) Φ-function φ(t) is a finite, convex function in a
neighborhood of 0 (see [4, Hypothesis II.l.l]). Theorem 7.1 now yields natural
examples of free energy functions which do not satisfy this hypothesis. We shall
briefly point out some of the consequences. For the moment, we keep all the
parameters N, β, ρ fixed and drop the corresponding subscripts. We only assume
the conditions of Theorem 7.1 to hold. Let ηvη29... be independent copies of the
random variable η (6.1). Set

Yn= Σ It- (7-8)
i= 1

Of course, the Φ-function of Yn,

φ(u) = n~1\nEQxp(uYn), (7.9)

is independent of n and equal to φN(u) from (7.2). It does not satisfy the above
hypothesis. Moreover, φ is not even maximal (cf. [4, p. 13]), since

"' , f" s P.IO»
wφ(0 — ) for u>0

is a convex extension of φ Γ {u, φ(u) < + oo}. Here φ'(0 —) means the left-hand limit
of φ'{u) at zero. By the law of large numbers, we know that

= jρ(dx)εxp(N1/pβx-Nyβp) = φ'(O-), (7.11)
a.s.

where => denotes almost sure convergence.
a.s.

However, the entropy function i of η

i(z) = sup {uz -φ)}, (7.12)
u

which is given as the Legendre transform of φ, vanishes for z ^ E(η) = φ'(0 —) and is
positive otherwise:

>0 for z<φ'(0~),

= 0 for z^φ'φ-). ( '
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Since for nice sets A

lim n~ι lnProb {n~1 YneA} = - inf i(z), (7.14)
zeA

we find that n~1 Yn converges even geometrically from below to φ'(0 —), i.e. (Yn9 n) is
geometrically bounded from below by φ'(0 —). But n~1Yn does not converge
geometrically from above to φ'(0 —). Thus, Theorem 7.1 gives a natural example
where we have almost sure convergence, but not the stronger result of geometric
convergence. A similar discussion has been given in the fundamental paper of
Lanford (see [7, pp. 47-49]).

The singularities of the functions φN(u\ as stated in Theorem 7.1, force us to
look for more suitable functions which incorporate the relevant features of the
random variable η. We make the following proposal:

Definition?.2. For ίelR, let

] 1/<χ)), (7.15)
o

where again ye(0, -f oo) and p ^ 1 are given by (2.2).
The following equality shows the connection between gN and the Φ-function

Lemma 7.3. ln( l - ί i v ( ί ) ) = φN(-exp(-iVί)). (7.16)

Proof By partial integration and substitution u = Qxp(N1/pβx — N(t + γβp)), we get

o

= J ρ(d{(\n u + N{t + yβp))/βN1/p)e ~ u

= J ρ(dx) exp( - exp(Nllpβx - N(t + yβp)))

= exp(φN(-exp(-iVί))), (7.17)

which is just (7.16). •
Let us rewrite (7.17) as

ί ) ] . (7.18)

We collect some simple properties of gN(t\ which follow directly from the
definition or (7.18).

Lemma 7.4. (i) gN is real analytic and strictly decreasing. Moreover

1= lim gN(f)>gN(t)> lim gN(t') = O (7.19)

for all
(ii) For p = l, we have

l im gN(t) = ρ(t/β + γ,a>) + ρ{t/β + γ}-(l-e~1), (7.20)
V

while for p>ί ίl if t<-γβp,

im gN(t) = L(0, co)+ ρ{0}(l-e-1) if t=-γβ>, (7.21)
JV-»oo I

[0 if t>-γβ".
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The next lemma will later be used for an application of Lebesgue's dominated
convergence theorem.

Lemma 7.5. (i) For all ε>0 and all sufficiently large N we have

gN(t)^exp(-N(t-ε)) (7.22)

uniformly in t.

(ii) There exist cvc2>0 such that for all sufficiently large N

l-gN(t)^Clexp(c2(t + yβp)) (7.23)

uniformly in t.
Proof (i) We apply Jensen's inequality to (7.18), making use of the fact that the
function χt->l — exp( — x) is concave and strictly increasing:

gN(t) £ 1 - exp [ - ί ρ(dx) exp (N1/pβx - N(t + yβp))]

iV(ί-ε))]

(7.24)

where in the second inequality, we applied (2.2) in the form

J ρ(dx) exp(N1/pβx - Nγβp) S exp(iVε) (7.25)

for all ε > 0 and sufficiently large N.
(ii) It is possible to show that the property (2.1) of ρ implies that there exist

positive numbers cvc2>0 such that

ρ(— oo,x]^c1 exp(c2x) (7.26a)

and

)^c1 exp( — c2x) (7.26b)

for all x. (The reader might also take this as additional assumptions on ρ.)
Now we apply the inequality exp( — exp(x))^exp( — x + ) where x+ =max(x,0),

to (7.17). We introduce the abbreviations

z = N1/q(t + yβp)/β (or z = t/β - y if p = 1) and y = N1/pβ(x ~ z),

ρ(-oo,z)+ j ρ(dx)exp(-N1/pβ(x-z))
z

00

ρ(-oo,z)+ \

j dye~yρ(-oo, z + y/N1/pβ)
o

(7.27)
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Fig. 6

with a new constant c1>c1>0 and for N sufficiently large. If p = 1, then (7.27) is
equivalent to (7.23). Since 1 — gN(t)^ 1 for all N and ί, (7.27) is only interesting for
z<0, i.e. for t + γβp<0. But then, in the case p > l ,

= Nllq

and (7.23) follows again. •
Now we shall study the limiting behaviour of gN(t) for JV-»oo more precisely.

This will turn out to be the essential mathematical point, which also produces the
phase transition. While gN(t) converges to zero for t > — yβp as stated in (7.21), even
exponentially, the logarithmic rate of convergence depends in a peculiar way on t
To show this, we define for measures ρ, satisfying the hypothesis (A) with p > l ,
y>0

[O for t^-yβp,

\ 1/Pr for -γβp^t^(p- l)γβp, (7.28)

for (p-l)γβpύt,

while for a measure ρ with p= 1, we put

Ό for ί^

t for
(7.29)

In (7.29) r does not depend on β.

Example. If ρ is the standard Gaussian measure

ρ(dx) = exp ( - x2/2)/ ]/ΐπdx, (7.30)

then p = q = 2, y = \, and

(see Fig. 6).

(7.31)

[t
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Theorem 7.6.

l imiV- 1 ln^(ί)=-r(ί, i?,ρ). (7.32)

Proof. We first consider the case p> 1. Substituting u = exp(N(z— t — γβp)) in (7.15),
we obtain

+ 00

g^t) = N j dzεxp{N{z-t-yβp)-exp(N(z-t-yβp)) + \nρlN1/qz/β,oo)}.

(7.33)

Hence by (2.22) and arguments similar to (12.10)-(12.17), we get

= suplz-t-yβp + Urn \— exp(r(z-t-yβp)) + -lnρ[rllqz/β, oo)
z [ i^coL r r \

= sup {z-t-yβ"-b{zlβf-\0x){z)}. (7.34)
z^t + γβP

For t~\-yβp^O, the last expression is zero. Let t + γβp>0. The maximum of the
function

h(z) = z-t-γβp-b(z/β)" (7.35)

is attained at
(7.36)

by (2.23). Thus

(0 if t + γβp<0,

t + yβ") if O^t + yβp^pγβp, (7.37)

Λίpy/Ϊ') if pyβpύt + yβp.

It is now easy to show that

(7.3T)=-r(t,β,Q). (7.38)

Assume now that p = ί, i.e., by Proposition 2.1, that ρ has bounded support on

(0, oo) and
Then y = esssupρt (0, oo).

exp(-iVί)

gN(t)= j due-aQ[lnu/βN + t/β + y,ao)
0 l \\1

- ( - z - f ί-fy^), oo [,(7.39)
I)

1
-z-exp(-AΓz)/A^+—lnρ

t ( \ JM

such that
\imN~1 lngN(t) = sup { - z} - - r(ί). (7.40)

Thus (7.32) is proven for all cases. •

Remark. We notice that the important non-analyticity of limiV"1 In gN(t) at
t = (p— ΐ)yβp is caused by the condition that the supremum in (7.34) is taken only
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over z^t-\-yβp. To see this phenomenon in more detail, let ί>0. Now for small
values of β, we see from (7.36) that z*<t + yβp. But when β increases, then at
β = (t/(p—l)γ)1/p, z* ceases to satisfy the condition z^t + yβp. The supremum of
(7.34) is attained at zo = t + yβp<z*.

A similar phenomenon occurs in the spherical model of T.H. Berlin and M.
Kac. There the "sticking" of the saddle point in the three dimensional spherical
model is responsible for the phase transition (see [1, footnote 8, p. 835]). As a
mathematical mechanism for a phase transition, this "sticking" of the maximal
point is completely different from a bifurcation phenomenon, which usually occurs
in the phase transition of a mean field model.

In the next section we need the following consequence of Theorem 7.6:

Corollary 7.7. (I) Let p>ί. Then
(i) limln(-ln(l-gfN(ί)))= + oo for t<-yβp, (7.41)

(ii) limiV-1ln(-ln(l-^(ί)))=-r(ί?iS,ρ) for t^-yβp. (7.42)

(II) For p = ί, we have
(iii) limln(-ln(l-gf J V(ί)))>-oo for ί < 0 , (7.43)

(iv) l imiV- 1 ln(-ln(l-^(ί)))=-r(ί,iS,ρ) for ί^O. (7.44)

Proof (i) and (iii): (7.41) is an immediate consequence of (7.21), and (7.43) is a
consequence of (7.20).

We prove now (ii) and (iv) simultaneously, setting t0 = — yβp if p > 1 and ί0 = 0 if
p = l. Assume first that t>t0, and choose δ>0 such that 0<δ<r(ή — δ, which is
possible since r(ί)>0, for ί > ί 0 . Now take No so large that

No ^ In 2 (r(ί) - δ) ~1 ^ In 2/δ, (7.45)

and, by Theorem 7.7, such that

-riή + δ^N-'lng^ή^-riή-δ (7.46)

for all N^N0. We now use the inequality

x^-\n(l-x)S2x for 0^x^1/2, (7.47)

and notice that exp(-iV(r(ί)-<5))^l/2 by (7.45). Hence

2exp(-N(r(0-(5))^-ln(l-^(ί))^exp(-AΓ(r(ί) + ̂ )) (7.48)

for N^N0 or, since In2/N^δ9

- r ( ί ) - 5 . (7.49)

This shows (7.42) and also (7.44) for the case t > ί0, since δ > 0 can be made
arbitrarily small. If t = t0 and p>l, then (7.42) follows from (7.21) again, since
ρ(0, oo)>0. Finally let p=l and ί = 0. Since gN is decreasing, we have

t\0

Conversely, by (7.20) gN(0)< 1 - ί/2e for all large N. Hence
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8. Proof of Theorem 3.1

We define s = s(r) as the inverse function of r on [0, oo): i.e. if p> 1, then

M i R \ jPyβ((<l-l>/y)llq-yβP for
* ) = l ( r ' A ί ) = l r for (p-

while, for p = 1, we have simply

s(r) = r for r ^ O . (8.2)

It is easily checked that ψ, as defined by (3.2), satisfies

ψ(β, ρ, In K) = s(ln κ;, /?, ρ) - In K . (8.3)

Note that if p = l, then ψ = 0.
Equation (8.3) indicates a first connection between the random variable η from

(7.1) via (7.2), (7.16) and Theorem 7.6 to the right-hand side of Eq. (3.6) of
Theorem 3.1. To establish a second connection between η and lnZN, we introduce
the Φ-function of ZN with the scaling factor — exp( — Nt):

£ ί (8.4)

Lemma 8.1.

ΛiV(ί)=-exp{iVlnκ; + ln(-ln(l-gf i V(ί + lnκ:)))}^0. (8.5)

Proof. With (7.2) and Lemma 7.3, we get

JV :)))}. •
Lemma 8.2.

ί—oo for ί<φ(j8,ρ,lnκ;),
f , ^ , (8.6)

0 for t>ψ(β,ρ,mκ).
Proof. We set again ί0 = — yβp if p > 1 and ί0 > 0 if p = 1. We remark that by the

Definition (8.1), (8.2), and (8.3),

t § ψ{β, ρ, In K) = s(ln κ9β,ρ)-lnκ (8.7a)

is equivalent to
(8.7b)

Assume first that ί + ln/c<ί0, which implies r(t + InK) = 0<InK. By (7.41) and

for all N and a suitable constant C. Lemma 8.1 implies

)^>- oo for JV->oo.

Now take ί o ^ ί + lnκ: but r(t + lnκ)<\nκ. Then by (7.42) and (7.44), there exists
δ > 0 such that for all sufficiently large N

nκ)))>δ>0.
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Hence by (8.5) hN(t)^ — exp{JV<5}-> — oo. If r(ί + lnκ:)>lnκ;, which means in
particular ί + m/c>ί0, then for all N sufficiently large

for some <5>0. And thus

0^hN(t)^-exp(-Nδ)-*0 for N-^oo.

This shows (8.6). •

To reverse the step from N~1\nZNto ZN, we make use of the following version
of Frullani's integral formula (see [5, Sect. 495]):

+ 00

N~1lnx= j {exp(-exp(-AΓί))-exp(-xexp(-AΓί))}rfί
— oo

y y

= J Qxp(-Qxp(-Nt))dt- j Qxp(- xQxp(- Nt))dt
— oo — oo

00 00

— J {l-exp(-exp(-JVί))}dί + J {l-exp(-xexp(-iVί))}Λ, (8.8)
y y

where j/elRis arbitrary. We take y = ψ(β,ρ,lnκ)^O, and we can now write in the
same way as (8.8),

N = Iί+I2 + I2 + I4, (8.9)

with the following four integral expressions:

Il= J exp(-exp(-JVί))Λ, (8.10a)

I2=- j {l-exp(-exp(-iVί))}Λ, (8.10b)
ψ

ψ

I3=- J Eexp(-ZNexp(-Nt))dt, (8.10c)

/ 4 = j {l-Eexpί-Z^expί-iVί))}^. (8.10d)

We can directly apply Lebesgue's dominated convergence theorem to Ix and J2,
and we get

l i m / ^ 0 and lim I2=ψ. (8.11)
N-^oo iV-*oo

Furthermore, we have by (8.4)

J3 = - J exp(hN(Wt and / 4 = j {l-exp(Λw(ί))}Λ (8-12)
ψ

Assume for a moment that we are allowed to apply Lebesgue's theorem to I3 and
/ 4 also. Then Lemma 8.2 implies

lim / =o and l im/ 4 = 0. (8.13)
iV->oo JV-» oo
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Equations (8.11) and (8.13) together give the desired result

lim N~1ElnZN = ψ. (8.14)
iV-»oo

We now justify the application of Lebesgue's theorem to I3 and I4 by using
Lemma 7.5. For 73, we take advantage of part (ii) of Lemma 7.5 and find an integer
No and positive constants c 1 ?c 2>0, where we can a fortiori assume that c x ^ l ,
such that (7.23) holds for all N^N0 and all t. We define

Λ(ί) = min{l(_COfφ](ί),c1 exp(c2(ί + lnιc + y^))} ί (8.15)

which is clearly integrable with respect to Lebesgue measure, and we shall show
that for all t

^ ^ (8.16)

or equivalently, that

e x p ^ ί ) ) ^ exp(c2(t + lnιc + yjJ*)). (8.17)

With (8.5) and (7.23), we have

exp(AN(i)) = exp(exp(JV In K) ln(l - gN(t + In K)))

. (8.18)

This shows (8.17) as desired.
For J4, we choose a fixed ε > 0 and define the Lebesgue-integrable function

) = min{l[v, f00)(ί),exp(-(ί-ε-ln2)}. (8.19)

By Lemma 7.5(i) we have for all sufficiently large N

O^gN(t + \nκ)^exp(-N(t-ε + \nκ)) (8.20)

for all t. It suffices to show that (7.21) implies

0 g l[Vf w)(t)(l - exp(Mί))) ̂  ΛW (8.21)

The last inequality is equivalent to

1 - exp (hN(ή) g exp (- (ί - ε - In 2)) (8.22)

for all ί with ί -ε- ln2^0. But if ί - ε - l n 2 ^ 0 then also

ί-ε + lnκ^ln2. (8.23)

Now suppose (8.20) and (8.23). Both imply

(8.24)

such that we can apply the inequality (7.47) to χ = gN(t + lnκ). By this and (8.5), we
get
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^ 2gN(t + In K) exp (N In K)

( - N(t-ε))

ί-ε-ln2)), (8.25)

which is just (8.22). This completes the proof of Theorem 3.1. •

9. Proof of Theorem 4.3

First, we give another definition for the function j .

Lemma 9.1. For q<0 let τ(q) be the unique solution of

τ(q) + lnκ-r(τ(q) + \nκ)-q = 0. (9.1)

Then j(q) = q- τ(q) = \nκ- r(τ(q) + lnκ). (9.2)

Proof. If p= 1, then τ(q) = q-\nκ<0, and (9.2) holds by definition (4.14). Thus, let
p > 1. The function y — r(y) is strictly increasing on (— oo, (/?— l)yβp~\ onto (— co, 0].
So (9.1) has a unique solution for q<0 with τ(q)e(— oo,(p— l)yβp]. The second
equality of (9.2) is just another formulation of (9.1). To show the first equality, set
j(q) = q-τ(q). With (9.1), we get

j(q)-lnκ=-r(q-j(q) + \nκ) (9.3)

or, since 5 is the inverse function of r, and ψ(y) = s(y) — y by (8.3),

q = 5(ln K -j(q)) - (In K -j(q)) = ψQn K -j(q)). (9.4)

Hence, by the definition oϊ j(q) in (4.14), j(q) = \nκ — ψ'1(q)=j(q). •

To prove Theorem 4.3, we set

;iV(g) = iV- 1 ln(- lnProb{N- 1 Z i V ^g}) , (9.5)

and we have to show that for all q < 0 and ε > 0

ε. (9.6)
N

Take q'e(q,0) such that

j(q)^j(q')>j(q)-ε/2. (9.7)

We set η = mm(ε,qf — q)/2>0, such that

q-q' + η<0, and j(q')-v>j(q)-£- (9.8)

With τ' = τ(q') from (9.1), we get by (9.2)

j(q') = q' -τ' = lnκ-r(τ' + \nκ). (9.9)

We now use the inequality

-τ'))-ZNexp(-Nτ')}. (9.10)
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Hence, with the definition of hN(τ') in (8.4)

lnPτob{N-1lnZN^q}^Qxp{N(q-τ/)} + hN(τf). (9.11)

We replace hN(τ') by (8.5) and choose iV0 sufficiently large, such that by Corollary

7.7

,Q)-η (9.12)

for all N^N0. With (9.5), (9.9), we continue for such N

Qxp(NjN(q)) ̂  - exp {N(q - τ')} + exp {JV(ln K - r(τ' + In κ9 β, ρ) - η)}

= Qχp{N(j(q')-η)}ll-exp{N(q-q' + η)n. (9.13)

Using (9.8), we conclude for finally all N

which is equivalent to the desired inequality (9.6). •

10. Proof of Theorem 6.1

It is useful to rewrite ΦN in the following way:

ΦN(t) = N-1lnEexptt\nκ-N £ exp{#£(£.-y)}). (10.1)

We have to show that l i m Φ ^ Ξ O , if p = l . Recall that by (2.5)

y = esssupρ>0.

We have to consider the following three cases:

(I) Q = δy,

(II) ρ{y}>0andρ(-cx),y)>0;
(III) ρ(-oo,y) = l.
Case (I) is the trivial one, because then Ct — γ = 0 almost surely and thus

ΦN(ή = 0 ϊor sal N and all t
In the case (II), set

a n d η = ρ{y}e(0,l) (10.3)

ρ(A) = ρ((Λ + γ)n( - oo, y))/l - η, (10.4)

the conditional measure of ρ with respect to the condition (—oo,y). Let ζ. be
independent random variables, all distributed according to ρ, and E the corre-
sponding expectation. Actually E is the conditional expectation of the random
variables ζt — y under the condition {ζt — y<0 for z = l, ...,κN}. With this notation,
we have

XK

(10.5)
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where in the summation x runs through {0, l/κN,2/κN,..., 1}. Set

xo = [ηκN~]/κN. (10.6)

The square bracket [z] denotes the greatest integer, majorized by z. We now drop
the summation of x in (10.5) and take only the term with χ0. To evaluate the
logarithm of the binomial coefficients, we use Stirling's formula in the following
version :

k\ t

μk) 2

(10.7)
We get

f ζj\Y (10.8)

The function

x)), (10.9)

with XG[0, 1], is strictly concave, non-positive with

^ ( 1 0 1 0 )

Since |x0 — η\ ^κ~N, the first term in the right hand side of (10.8) converges to zero.
The same holds for the last term, since the expression

(l-xo)κN

7 = 1

~Nis bounded below by η — κ~N and above by 1; recall that (y<0 almost surely.
Hence

UmΦN(ή^-\nκ/2 for all t. (10.11)

We now prove that limΦ^ί) is also bounded from above. Indeed, we find using
(10.7) and (10.9)

/κ: 2

+ ln£exp [tln\x + κ~N ^ exp(Nβζj)

Laplace's method now yields

\imΦN(ή^lnκ/2 for all t. (10.12)
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But Φ = \imΦN is a convex function with

) = limΦN(0) = 0, (10.13)

and, by (10.8) and (10.9).

for all t. (10.14)

Hence Φ = 0, which we wanted to show.
Finally we reduce case (III) to case (II). Since ζ. — γ<0 almost surely, we have

for all N

•^0 for ίgO.

By (10.2), we can choose ε > 0 arbitrarily small such that

(10.16)

Define ζ. = max^., y) with y = y - ε. The distribution ρ of ζ. satisfies the condition of
case (II) with y replaced by y. In (10.1), we go from ΦN(ή to ΦN(t) by replacing ζ.
and y by ζ. and γ, respectively. Thus we get the following inequalities, where the
upper ^ holds for ί^0, while the lower S holds for ί^0.

^ (10.17)

Since we know from case (II) lim ΦN(ή = 0, we pass to the limit N-+ oo and then to
N

εvO in (10.17), thus getting

The results (10.15) and (10.18) together finish the proof in the case (III) and we are
completely done. •

11. Proof of Theorem 6.2

We keep the measure ρ with (2.2) and p > 1 fixed. Trivially, we have ΦN(0) = 0 for all
N, hence Φ(0) = 0. By (2.2), we get

= βp flim (N1/Pβyp In j exp(N1/pβx)ρ(dx) ~ y] = 0. (11.1)

Let now be ne[2,3,4,...]. Then

-ΛΓ'lnΣ Σ

Π E expiNWβkjζi, - Nk0p). (11.2)
j l

/ for Φ /'
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Hence
ί ι 1

Φ(n)= - winK- sup sup Ulnκ + γβp £ (tf-kM. (11.3)

z
The function (yv ...,};/)-> ^ (^f"y) i s convex, and on the simplex

J = l

Vi* •••JΛX 1 = ^ Σ ^j^^f' it attains its maximum in a corner of the simplex. But

the values of the function in the corners are all equal to (n— / + l ) p — (n— Z+l).
Now the function

is convex on [ 0 , n + l ] ^ [ l , n ] . Thus, we get from (11.3) with the definition of t(β)
and Φ in (6.8) and (6.9)

Φ(n) = max{O,γβp(np-n)-lnκ(n-ί)}

= lnκ max {0, (np - n) [_{q -1) (β/βc)
p - χ(n)]}

ίO for n<t(β),

-\\nκ(np-n)ί(q-l)(β/βcy-χ(n)-] for n^t(β),

= Φ{n). (11.4)

So far, we have shown Φ(rc) = Φ(ή) for n = 0,1,2,.... By means of Theorem 3.1, a
simple application of Jensen's inequality yields

Φ(ί)=limiV"1ln£;exp(ί lnZJV)

(11.5)

for all ί e R
To prove the converse inequality for f<0, fix ί < 0 and let ε with 0 < ε < l be

arbitrarily small. With ψ = ψ(β,ρ,lnκ), we have now

keZ

= N-1lnΣexp[N(t(ψ-ε + k)-IN([ψ-ε + k,ψ-ε + k+l)))'], (11.6)
k

where

/N([a,iS))=-iV" 1lnProb{iV" 1lnZNe[a,i8)}. (11.7)

By Theorem 4.1 we know that IN{\_ψ — ε + fc,tp — ε + fc+l))-> + oo for fe^ — 1, while
IN([ψ — ε,ψ — ε + l))^0. Thus, from (11.6) we conclude

ε). (11.8)
N

The limit ε\0 yields together with (11.5)

Φ(t) = t'ψ(β9Q9lnκ) (11.9)

for ίe(— oo,0]. This completes the proof of Theorem 6.2. •
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12. Proof of Theorem 2.3

Let p>l and q be dual to p in the sense of (2.10): l//?+l/g = l. We start with
several definitions. For be [0, oo], let

I+oo for fe = 0,

p~\qb)-{p-1] for fce(0,oo), (12.1)

0 for b = + oo .

Obviously,

γ(b)e(O9 oo) if and only if fte(0, oo). (12.2)

With

g(y,h): = y — byq for y^O, (12.3)

we get

(12.4)and since yo=py(b)>y(b)/2, even

s u p 0(j>, &) = )>(&). (12.5)

By partial integration, we have for t > 0

J exp(ίx)ρ(dx) = f exp(ί^)ρ(d(ί^ V)) = ίP J exp { ί ^ , ί)}dy, (12.6)

where

h(yj): = y + Γplnρltp-ίy,(X)) = y-yqb(tyq-1), (12.7)

with

b(τ):=-τ~p\nρ[_τp~\oo). (12.8)

For short, set

H(t): = Γ p In j exp {ί^%, ί)}<ty. (12.9)

Thus, we have to show that

o) (12.10)

is equivalent to

limH(ί) = y(b)e(0,oo). (12.11)

First, assume (12.10). Then for any εe(0,b), there exists C > 0 such that

b-sSb(τ)Sb + ε (12.12)

for all τ ̂  C. Now for all y ̂ y(b + e)/2 and all t ̂  C/(y(b + ε)/2)g~ \ we have by (12.7)
and (12.3)

£g(y9b-ε). (12.13)
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Hence for all such t

00 00

r p l n j exp{tpg{y,b + ε)}dySt~p In j exp{tph{y,t)}dy
y(b + ε)H y(b + ε)/2

00

^Γpln J exp{tpg(y,b-ε)}dy (12.14)
γφ + ε)/2

By Laplace's method (cf. E. T. Copson: Asymptotic Expansions, Cambr. Univ.
Press, 1971 Chap. 5) the left-, respectively, the right-hand side of (12.14) converges
for ί-> oo to

max g(y, b + ε) = y(b + ε) (12.15a)

by (12.5), respectively, to

max g{y,b-ε) = y{b-ε). (12.15b)

For y 5Ξ γ(b H- ε)/2, we have for all t

(12.16)

such that we can conclude

(12.17)

for all t sufficiently large. With ε->0, we finally get (12.11).
For the converse direction, we first show that

limZ?(τ)= + oo (12.18)

τ-> oo

implies

limsup#(ί)^0. (12.19)
ί->oo

Let ε>0, and 6>0 such that y(b)gε. By (12.18) b(τ)^b for all large τ. By (12.7), we
get for all y^ε and all t sufficiently large

h(y,t)£g(y9b)£y(b)£ε. (12.20)

Since h(y9 t)^y for all y ̂  ε, we get lim sup H(t) ̂  ε, which shows (12.19), since ε > 0
ί

can be made arbitrarily small.
Next, we prove that for be(0, oo),

l iminfb(τ)^ (12.21)
τ-> oo

implies

limsupff(ί)^y(&). (12.22)
ί->oo

Let ε>0. From (12.21), we get a sequence (τj, τM-> + oo, such that

(12.23)
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for all n. Set yo=py(b + ε). Then by (12.4)

g(y09 b + ε/2) > g(y0, b + ε) = y{b + ε). (12.24)

Now, choose η > 0 such that

g(y0+?> * + ε / 2 ) - 2n ^ yΦ+*) (12.25)

In order to show (12.22), we take the sequence (ίj, tn-+oo, with

*» = τ»(j'o + '/Γ ( β~1 )- (12.26)

For all y e [ j ; 0 - ^ j ; 0 + f7], we get

^ g(yo η, / ) 2 η ̂  γ(b + ε). (12.27)
(12.26) (12.25)
(12.23)

This implies limsup/f(ίj^y(fe + e), and since ε>0 was arbitrary, we get (12.22) as
desired.

Finally, we prove the following implication: If for foe(0, oo)

limsupZ)(τ)>fc^liminffo(τ), (12.28)
then τ->oo τ-^oo

lim inf H(t) < y(b) ^ lim sup H(t). (12.29)
i-*oo ί-» oo

The last inequality in (12.29) follows from (12.22). To show the first strict
inequality, take ε>0 and a sequence (τπ), τn-^oo, with

(12.30)

for all n. Since for y0 = py(b),

g(yo,b + ε)<g(yo,b) = y(b) (12.31)

and

g(y,b)<γ(b) for all y + y0, (12.32)

we find first η, 0<η<y(b)/2^yo/2, such that

g(yo-η,b + ε) + 3ηSy(b), (12.33)

and then δ, 0<δ<min(b,η\ with

max g(y,b-δ) + δ^y(b). (12.34)
y^[yo - η, yo + η]

By (12.28), we have

b(τ)^b-δ for all τ ^ C , (12.35)

with a suitable constant O O . We may assume that

1. (12.36)
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With

tn-φo-rjr^1^ (12.37)

we now prove that for all yelR and all n

h(y,tnUK(y), (12.38)

where

(y for y<η,

K(y)=\y(b)-η for ye[yo-η9yo + η-]Q[rι9 oo), (12.39)

[g(y,b-δ) for ye[η9 co)-[y0-η,y0 + η~].

Remark that by (12.34),

s\xpK{y)^y(b)-δ. (12.40)
y

For y<η, (12.38) is evident from (12.7). For yE[_yo — η,yo + η~], we get

S g(yo1> ) η ^ γ(b)-η = K(y). (12.41)
(12.30) (12.33)

Finally for ye[η9 oo)-iy0-η,y0 + η2, (12.36) and (12.37) yield

tnf'^C, (12.42)

and thus by (12.35)

Hy, 0=y-fb(ty-') s g(y, b-δ)=κ(y). (12.43)

This proves (12.38). But (12.38) and (12.40) imply

ί5? (12.44)

which indeed proves the strict inequality in (12.29).
The implications (12.18-19), (12.21-22), and (12.28-29) together cover the

converse direction of the equivalence (12.10) and (12.11). The proof of Theorem 2.3
is complete. •
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