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Abstract. We prove that, for spin systems with a continuous symmetry group
on lattices of arbitrary dimension, the surface tension vanishes at all tempera-
tures. For the classical X Y model in zero magnetic field, this result is shown to
imply absence of interfaces in the thermodynamic limit, at arbitrary tempera-
ture. We show that, at values of the temperature at which the free energy of
that model is continuously differentiable, i.e. at all except possibly countably
many temperatures, there is either a unique translation-invariant equilibrium
state, or all such states are labelled by the elements of the symmetry group,
SO (2). Moreover, there are no non-translation-invariant, but periodic equilib-
rium states. We also reconsider the representation of the X Y model as a gas of
spin waves and vortices and discuss the possibility that, in four or more
dimensions, translation invariance may be broken by imposing boundary
conditions which force an (open) vortex sheet through the system. Among our
main tools are new correlation inequalities.

1. Introduction

In this paper we investigate the structure of the equilibrium states of the classical
XY model in zero magnetic field.1 It is well-known that there is only one
translation invariant equilibrium state in two dimensions [1, 2]. There is however
a phase transition (the Berezinskii-Kosterlitz-Thouless transition). A mathemati-
cal proof thereof has been given in [3]. In three or more dimensions the XY model
exhibits spontaneous magnetization and symmetry breaking at sufficiently low
temperatures [4, 5]. In this paper we give a complete description of all extremal,
translation invariant equilibrium states, i.e. the pure phases, whenever the free
energy is differentiable with respect to the temperature (Sect. 3.3): We prove that
either the set of pure phases is in one-to-one correspondence with the internal
symmetry group, or else there is only one translation invariant state. We use new

1 This model is of interest in connection with the theory of superίluid Helium and with
superconductivity, for example
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correlation inequalities to establish this result. Some of our results have been
extended to a rather general class of models in [6]. We also investigate in detail the
question whether the classically model admits non-translation invariant equilib-
rium states. We use our new correlation inequalities to prove that there are no
equilibrium states which describe the coexistence of two pure phases, in the
thermodynamic limit. Indeed we can show that the "Bloch wall" between two
distinct phases has an infinite thickness in the thermodynamic limit: This is a
direct manifestation of the continuous character of the internal symmetry group.
The spins have the tendency of turning very slowly from one direction to a
different one. This fact is responsible for the absence of spontaneous symmetry
breaking in two dimensions [7-9]. In Sect. 3 we show that the same property
prevents the existence of non-translation invariant states exhibiting an interface of
the type considered by Dobrushin in the Ising model, independently oj the
dimension oj the system. In the Ising model the "topologically stable" defects are
the Peierls contours (Bloch walls). In three dimensions they are two-dimensional,
and we can impose boundary conditions which force a contour through the entire
system. Since this defect is stable at low temperatures, there are non-translation
invariant states [10]. The results concerning the Ising model are briefly re-
capitulated in Sect. 2. In the XΎ model, the topologically stable defects are the
vortices which have dimension d — 2. We show in Sect. 4 that they might provide a
mechanism jor the breakdown of translation invariance, analogous to the one
provided by Peierls contours in the Ising model. Therefore we conjecture that the
XΎ model has non-translation invariant equilibrium states in dimension ^4. (In
four dimensions, vortices are two-dimensional sheets which are expected to
undergo a roughening transition very similar to the one described by the solid-on-
solid model [3], In five or more dimensions, vortices presumably remain rigid up
to the critical temperature. There are in general no periodic states, like "vortex
crystals", for arbitrary d.} Some of our results have been announced and described
in [11]. Generalizations and new applications of our methods appear in [6] and
[12]. Among the results established in [12] are:

(1) Consider a classical, two-component, charge-symmetric Coulomb gas in
dimension d^2, and suppose the charged particles are confined between two
condensor plates of diameter L which carry a surface charge per unit "area" σ, — σ,
respectively, and are separated by a distance ocL, say. Then the limiting state, as
L—»oo (and averaged over translations), is independent of σ, i.e. arbitrary surface
charges can be screened, and there is no net electric field in the bulk. Our methods
can also be applied to lattice gauge theory. For example:

(2) If the string tension in a pure, abelian lattice gauge theory (with Wilson
action, to be specific) vanishes, then electric flux sheets are "rough", i.e. the theory
has already passed the roughening transition. Thus, in such models

/"roughening = A^deconf ining '

as expected. Here β = e~2, and e is the gauge coupling constant.
(3) In the thermodynamic limit the state of an abelian lattice gauge theory, with

Wilson action and with boundary conditions which preserve the positivity of the
state as a measure, is unique, provided the vacuum energy density (or "free energy
density") is continuously differentiable in β. Hence vacuum degeneracy can occur
only at a point of a first order transition.
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2. The Ising Model

In this section we briefly review the structure of equilibrium states in the Ising
model, in order to introduce some of the main concepts which are discussed in
subsequent sections. The reader may find a more detailed exposition of the subject
in [13]. We consider the Ising model on the lattice

The spin at x takes the values σ(x)= ± 1, and the Hamiltonian is

H=- Σ σ(x)σ(y)9

where <(xy> denotes, as usual, a pair of nearest neighbors of IL. Such a pair is called
a bond. The pure phase with non-negative magnetization is constructed as the
thermodynamic limit of finite volume Gibbs states with + boundary conditions.
We choose for example a sequence of boxes Λ(L, T),

and the value of the spins outside Λ(L, T) is equal to + 1. Then we let L and T tend
to infinity. At low temperatures, the configurations of the model are naturally
described by the so-called Peίerls contours. These geometrical objects represent the
"topologically stable" dejects of the model. They specify all frustrated bonds of IL,
i.e. all bonds <xy> in a configuration with the property that σ(x)σ(y)= — 1. These
contours are usually defined as subsets of the dual lattice, IL* = TLd, and are made of
all (a— l)-dimensional unit cells of IL*, which are the dual cells of frustrated bonds.
In the case of + boundary conditions, all Peierls contours are (a— l)-dimensional,
closed surfaces. We construct an equilibrium state, at low temperatures, which
describes the coexistence of two phases with opposite magnetization, by modifying
the boundary conditions: We reverse all spins outside Λ(L,T) with x1 <0. This
defines the so-called ± boundary conditions. At this point one usually takes the
limit T going to infinity. One obtains in this way an equilibrium state <(( ))L in an

infinitely high cylinder with finite cross-section. In this state the expectation value
(σCx^O, ...,0)>* is positive for xί>0 and, by symmetry, negative for x1 <0.
Moreover the limit of <σ(x1,0, ...,0)>^, when x1 tends to infinity, is reached
exponentially fast and is larger than m*(j3), the spontaneous magnetization of the
infinite volume system. In other words, this state describes a transition region
between two domains with opposite magnetization. Such a transition region is
called a Block wall. It is interesting to analyze the effect of the modification of the
boundary conditions on the structure of configurations. The ± boundary
condition enforces the presence of one open Peierls contour, whose boundary is
given by the intersection of the plane x1 =0 with the boundary of Λ(L]
= { x : xΊ^L, z'^2}. All other Peierls contours are closed, as in the case of +
boundary conditions. At low temperature, one can show that the Bloch wall has a
finite intrinsic thickness, which is essentially independent of L, even in the two-
dimensional Ising model [14, 15]. A Bloch wall gives a contribution to the free
energy of order 0(Ld~ *). Hence we define the specific free energy of the Bloch wall
by
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where Z*^,Z^ Γ are the partition functions of the system in Λ(L, T) with ±
boundary conditions and + boundary conditions, respectively. The quantity
τ = τ(β) is also called surface tension. One knows the following lower and upper
bounds on τ, [16, 17] :

τ(jβ)^2(m*G8))2, (2.2)

and

(2.3)
P o

These bounds imply that the surface tension is nonzero if and only if the
spontaneous magnetization is nonzero, i.e. if and only if the inverse temperature is
greater than βc, the inverse critical temperature. It is important to realize that a
nonzero surface tension corresponds to a finite, intrinsic thickness of the Bloch wall,
and that this property does not mean that the themodynamic limit (L->oo) of
(('))L gives a non-translation invariant state. Indeed, thermal fluctuations
(surface waves) can delocalize the Bloch wall, and therefore the equilibrium state
may be translation invariant in the thermodynamic limit, even if the surface tension
is positive. This is precisely what happens in the two-dimensional Ising model [14].
By contrast, in the three-dimensional model, the Bloch wall has not only a finite
thickness, but it is rigid, i.e. localized in space, at sufficiently low temperatures
[10, 18].

As a consequence, the equilibrium state constructed with + boundary
conditions breaks the translation invariance of the "dynamics" (Hamilton
function) of this model.

The s-o-s model [3] may be used to provide a simplified description of the
large fluctuations of the Bloch wall, or interface, of the three-dimensional Ising
model which one expects to be asymptotically exact, as the roughening transition
is approached. In this model, the interface is described by a height function

with

fe(x) = 0, for xφΛ.

The statistical weight of the interface corresponding to a given height function h is
given by

z-ι p| e-β\*(*)-hWf (2.4)
<xy>cΛ

Let <(•)>/? denote the expectation in the state given by (2.4), in the limit A\TL2. It
has been proven in [3] that ((h(x) — h(y))2yβ^ const, uniformly in x and y, if β is
sufficiently large, but

c logflx - y\ + 1) ̂  <(ή(x) - h(y))2yβ g d log(|x -y\ + l)

if β<β0, for some finite, positive β0.
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Thus, one expects that, above the roughening temperature, the interfaces of
models like the three-dimensional Ising model exhibit logarithmic fluctuations,
and translation invariance is restored. But a rigorous analysis is s t i l l missing.

When β < βc (the critical temperature) the surface tension of the Ising model
vanishes, and the interface becomes "fat". One of the results proven in the next
section is that if the surface tension in an abelian spin system, like the Ising- oΐXY
model, vanishes then the state with ± boundary conditions is translation
invariant.

3. The Structure of the Pure Phases, and Absence of Interfaces in the XY Model

3.1. Specific Free Energy of a Bloch Wall The spins S(x), xelL, in the X Y model are
random variables with values in S1. We parametrize them by angles, Θ(x)e [0, 2π),
i.e. S(x) = (cos <9(x), sin Θ(x)). The Hamiltonian is formally given by

H=- Σ cos(0(x)-0(3>)). (3.1)
<χy>

The pure phases at low temperatures (i.e. the extremal translation invariant
equilibrium states [19]) are obtained by taking as boundary conditions Θ(x) = φ,
for all x outside Λ(L, T\ where 0 ̂  φ< 2π. One of the new results of this section is
that all pure phases are constructed in this manner. Therefore, we speak of the
pure phase φ. We first investigate the Bloch wall between the pure phases φ = Q
and φ = α. We show that the Bloch wall has infinite thickness in the thermody-
namic limit, since we prove that the specific free energy of the Bloch wall is zero.
This result is independent of the dimension d of the lattice. We proceed as in the
Ising model (see Sect. 2) and we define the specific free energy of a Bloch wall by

where Z{?'^, Z£ Γ are the partition functions of the model in A(L9 T] with (0, α)- and
0-boundary conditions, respectively. These two boundary conditions are the
analogues of the ± and + boundary conditions in the Ising model, and they are
defined in the same way. In particular, the analogue of the state <( )>L > denoted by
((' )}£'*' describes the coexistence of the pure phases φ — 0 and 0 = α in the
infinitely high cylinder A(L)9 (see Sect. 2). Let T> L and

π(L,Γ) = l o g § £ . (3.3)

The following estimation of π(L, T) implies immediately that τ = 0, in any
dimension d, which will yield the desired results.

Lemma 3.1. For the XY model and for T> L, 0^ -π(L, Γ)^<

Proof. We consider Z°L>"T. Let Ω(L, T) be the set of points in Λ(L, T) which are at
distance one from IL\/1(L, Γ). The Hamiltonian in the box Λ(L9 T) with (0, α)-
boundary condition is

HL.T= ~ Σ cos(0(x)- 0(y))- £ cos(6>(x)-
<*>>>

xeΩ(L, T)
L, T)
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where Θ(y) = 0 for all y with y 1 > 0 and Θ(y) = α for all y with y 1 < 0. The partition
function Z°'^ is

f. '.J Π dΘ(x)exp(-βH% τ).
-π xeA(L,T)

We make a change of variables, in order to obtain 0-boundary conditions. Let

Θ(x) = φ(x) + γ(x) with y(x) = 0 if xeΩ(L,T), x^O, and y(x) = α if xeΩ(L,Γ),
x1 <0. After this change of variables we can write the quotient Z£'^/Z° τ as

(xyycΛ(L,T) L, T

where <(•)>/• Γ *s tne expectation value in the state with 0-boundary conditions.
Using Jensen's inequality we get

L, T

Since <sin(φ(x) — φ(y))>£ Γ = 0, because of the symmetry φ(x)-> — φ(x), we get,
using the inequality cosx— 1 ̂ — ̂ x2,

(3.4)

We choose γ(x) as follows: Let λ = λ(y2, ...,yd) be the line

Let m(λ) = max{\y2\, ...,|yd|}. On the line λ, γ(x) is given by

y(x) = 0, if >

if
-m

[Of course y(x) is already fixed on £2(L, Γ).] It is not difficult to estimate the
quantity

and to show that it is O(Ld~2logL).
The positivity of — τr(L, T) follows from the fact that the function

Πexp{j8cos(<9(x)-0GO)}
<*y>

is of positive type (or, alternatively, from correlation inequalities). Π

Remark. It is possible to show that, for a quantity closely related to π(L, T), the
estimate in Lemma 3.1 cannot be improved at low temperatures. The transfor-
mation Θ(x) = φ(x) + y(x), defined in (3.5), suggests that — π(L, T) is related to the
mean energy of a vortex (i.e. a "topologically stable" defect of the XY model,
analogous to the Peierls contours in the Ising model) winding around
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L, T). One can actually show that the mean energy of a vortex,

located on {x:x1=0} at a distance & — from Ω(L, T), is proportional to

Ld~ 2logL, at sufficiently low temperatures, while at large temperatures the same
quantity behaves like Ld~2. These matters are studied in more detail in Sect. 4.

3.2. The State <( ))°'α is Translation Invariant. We now study the thermodynamic
limit of the state <( )>£'α describing the coexistence of the phases 0 = 0 and φ = α in
the infinitely high cylinder A(L). We shall assume that <( )>°'α = lim <(•)>£'α is

L->oo

invariant under the translations α = (0,α2, ...,αd). (This is most likely the case, and,
for periodic boundary conditions in the 2-, ..., ^-directions, it is plainly true.)
Using the fact that the specific free energy of the Bloch wall between the phases
0 = 0 and φ = a vanishes in the thermodynamic limit, we prove that <( ))°'α is
translation invariant. We wish to emphasize that the reason why <( ))°'α is
translation invariant is very different from the reason why ((O)1 is translation
invariant in the two-dimensional Ising model: In the former case, the reason is
that the "Bloch wall" disappears, in the sense that its thickness, i.e. its transverse
extension, diverges to + oo. In the latter case, the translation invariance is restored

by fluctuations (surface waves) on a scale of 0( j/L) of the Bloch wall.
Our proof of translation invariance of <( ))°'α is divided into three steps: We

first show that

(3.6)

for all <xj7>ClL. Here <( ))° is the pure phase φ = Q. The next step is to prove that
(3.6) implies the stronger result

/cos /£ m(x)Θ(x)\\° = /cos /£ m(x)Θ(x) )\°'α (3.7)
\ \ x }/ \ \ x II

for all functions m:IL-»Z of finite support satisfying ^m(x) = 0. To prove (3.7) we
X

use new correlation inequalities. The details of this step are presented in Sect. 3.3.
The final step consists in proving that one finds only translation invariant states
when one decomposes <( ))°'α int° extremal states.

First Step. Using the correlation inequality (Proposition 1 in [2])
α, (3.8)

which is valid for any region A, we can find a lower bound for — π(L, T). Indeed,
let K be any fixed positive number and let T> K. Then we obtain immediately the
following lower bound, leaving out positive terms :

^ Σ

Let

= -2 Σ Σ (<cos(0(x)-®ω)>2τ-<cos(β(x)-00;))>2 α

r).
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Then using again (3.8) we get

_d*M^ Σ /Lr(χ2,...,^. (3.9)
dβ |*'||L/2

For any fixed (x2, . ..,xd) we have

O^lim lim/L Γ(x)=/(0).
L-χχ> T-> oo

At this point we assume the invariance of the state

<^(.))°'α= lim <( ))£'α— lim lim <( ))L'T
Γ—> rm T.-+πn T—>• m '

with respect to the horizontal translations α = (0,a2, ...,αd).

lim -Lj- lim Σ A,r(x)=/(0);
L->oo L T->oo | v i | < r / 2

Therefore

and by Lemma 3.1

0= - lim lim
L-^oo L Γ->oo o 0

This implies that, for almost all β,

<cos(Θ(x)-Θ(y))y0 = (cos(Θ(x)-Θ(y))y°>«, (3.10)

for all <xy>, since K is arbitrary.

Third Step. Using correlation inequalities we prove in the

Second Step (postponed to Sect. 3.3) that

/cos /Σ m(x)Θ(x)]\° = /cos βΓ m(x)β(x)]\0» α , (3.1 1)
\ \ x / / \ \x !/

for all functions m of finite support and with ]Γ m(x) = 0. It is well known that the
X

set of equilibrium states is convex, and that every equilibrium state has a unique
representation as a convex superposition of extremal equilibrium states [19].
Therefore, in order to prove that <( )>°'α is translation invariant, it is sufficient to
show that <( ))°'α is a convex superposition of translation invariant equilibrium
states. We now show that this property follows from the equalities (3.11).

Let ρ be any extremal equilibrium state which appears in the decomposition of
< >°'α. Let ρφ be the extremal state obtained by a rotation, φ, of the state ρ. We
also introduce

Q=\dφQφ. (3.12)
s1

By construction

ρ(cos(Σm(x)Θ(x)\\ =ρίsmί^m(x)Θ(x)\\ =0
V \χ II \ \χ II

for all functions m such that ]Γm(.x)Φθ. We use now the following correlation
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inequalities

/cos /Σ m(x)Θ(x)}\° ^ /cos /Σ w(x)0(x) + ψ)\ , (3.13)
\ \ x / / \ \x II

which are valid for any equilibrium state <(•))> any function m and any ψ. Let

ΣW(X) = O. Since (3.11) and (3.13) hold, we must have
JC

ρ (cos (Σ m(x)Θ(x)]\ = /cos (X m(x)Θ(x))\° , (3.14)
\ \ x // \ V x II

for any ρ which appears in the extremal decomposition of <( )>°'α The result
(3.14) implies (Theorem 1 in [2]) that

(3.15)

Indeed, we can write using (3.13)

ρ /cos /Σ m(x)Θ(x) ± ιp\\ = cosιp ρ (cos /Σ m(x)Θ(x)\\
\ \ x II \ \ x II

+ sιnφ ρ/s ιnΠ
V \-

= cosψ /cos/Σm l

\ \ x

+ sin ψ ρ /sin /Σ m(x)Θ(x)

Let 0<ψ<π. Then

+ ρ (sin Σ m(x)<9(x) \ g _ . / s /^ m(χ)Θ(χ)\\ o _
\

Letting ψ tend to zero we get (3.15). Therefore Eqs. (3.14) and (3.15) are also true
for ρ, and this is equivalent to

(where <( )>^ is obtained by a rotation by φ of <( )> ° = lim <(•))£, ΓX since the two

states, ρ and J dφ(( })φ, coincide on all local observables co^(Yjm(x)Θ(x)\ and

However, (3.12) and (3.16) provide us with two extremal decompositions of the
same state. Since the extremal decomposition is unique, we have ρ = <( ))ψ> for
some φ, and therefore ρ is translation invariant.

3.3. New Correlation Inequalities, and the Structure of the Pure Phases. In this
subsection, we prove new correlation inequalities and use them to prove (3.11) and
to determine all pure phases of the classical X Ύ model.
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Let m be any function defined on IL with values in TL and such that m(x) Φ 0 for
a finite number of x only. We write

mΘ = Σm(x)Θ(x} .
X

Let <( )>° be the Gibbs state in the finite volume A with 0-boundary conditions,
and let <( )Xι be a Gibbs state in Λ with some arbitrary, but fixed boundary
conditions.

We take two copies of the system, form their product and consider the product
state (measure)

<( )>S®<( )Xι = <( )>- (3 17)
Let cosmΘ be an observable for the first copy and cos m& the same observable for
the second copy.

Lemma 3.2. For any positive λ and arbitrary m and n (with supports in A)

<(cosm<9 ± cosmΘ') exp( ± λ cos nΘ cos nΘ')) = 0

Proof. We use Ginibre's method [20] and write

cos nΘ cos nΘ' = (1/2) (cos n(Θ' + Θ) + cos n(Θ' - Θ)) .

We make the usual change of variables

φ(x) = (1/2) (0'(χ) + 6>(x)) , φ'(x) = (1/2) (β'(χ) - β(x)) .

After this change of variables the exponential factorizes, and we can repeat the
arguments of Ginibre. Π

Remark. Since, in Lemma 3.2, A is arbitrary, we can take the thermodynamic limit
and use Lemma 3.2 for the product measure <( )> = <( )>°® <(•)>'> where <(•)>' is
an arbitrary equilibrium state.

Lemma 3.3. For an arbitrary equilibrium state <(•)>', if

and

then

<cos(m + n)Θy° = <cos(m +

Proof. We expand the exponential

exp( + λ cos nΘ - cos nΘ') = l±λ cosnΘ - cos nΘ' + 0(λ2) .

Therefore, using Lemma 3.2,

<cosm<9>° — <cosm<9y^ ±/l(<cosft<9 cosra<9>°<cosn6)>/
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But the left-hand side is zero, by hypothesis, and we can divide by λ. Letting λ tend
to zero and using the positivity of <cosrc0>°, we get

cosm<9>° = <cosn<9 cosmθ>' .

This last equality can be written as

Using (3.13), we conclude that

<cos(w±ro)Θ>° = <cos(n±m)Θ>'. D

It is now clear that (3.10) implies (3.11), since we can apply Lemma 3.3 inductively.
(The positivity of <cos((9(x)— (9(y))>° is a consequence of Ginibre inequalities
[20].)

Using the results of Sect. 3.2 and Lemma 3.3, we can prove the following
proposition on the structure of the pure phases of the model.

Proposition 3.4. The following two assertions, A) and B), are equivalent :
A) The free energy oj the XΎ model is differentiable with respect to β, at some

value β0 of β.
B) All pure phases of the X Y model are given by { <( )>φ, 0 ̂  φ < 2π}, for β = β0.

Proof. The condition A) is equivalent to

<cos(Θ(x)- Θ(y))y° = <cos(<9(x)- Θ(y))y

for any translation invariant equilibrium state and any <xy). Therefore <(cosra<9>°
= <cosm<9>, for all m with ]Γm(x) = 0, by Lemma 3.3. The "Third Step" in

Λ:

Sect. 3.2 then completes the proof of Proposition 3.4. D

Remarks. 1) Generalizations of this Proposition for a large class of ferromagnetic
models can be found in [6].

2) All results of Sect. 3 are valid for the Villain model.
3) With the results of [1], we have the following situation (if condition A) is

satisfied): Either <cos <9>° = 0, and therefore all equilibrium states are rotation
invariant and there is only one translation invariant state, or <cos<9>^>0, and
each φ, 0 ̂  φ< 2π, corresponds to a distinct pure phase.

We wish to conclude this section with a result on the absence of periodic states.

Proposition 3.5. At temperatures at which the free energy oj the classical XΎ model
is continuously differentiable, there are no non-translation invariant, but periodic
equilibrium states, in any dimension d.

Proof. Since, for an arbitrary equilibrium state, ρ, of the classical XY model,

(cos(Θ(x)-Θ(y))y°^ρ(cos(Θ(x)-Θ(y))),

and since for any periodic state, ρ, with domain of periodicity CcIL, the derivative
of the free energy with respect to the inverse temperature β is given by

ρ(cos (θ(x') - β(/))) = d<cos (Θ(x) -
c'eC

χ'-/| = ι



314 J. Frohlich and C.-E. Pfister

for arbitrary <xy>, we conclude that

ρ(cos(Θ(x)- Θ(y))) = <cos(<9(x)- Θ(y))y° ,

for all <xy>. It now follows from Lemma 3.3 and the "Third Step" of Sect. 3.2 that

Q=$dμ(φK( )>+,
s1

for some probability measure μ. In particular, ρ is translation invariant. This
completes the proof. D

Remark. This result shows (among other things) that, in the threedimensional,
classically model there are no states describing periodic arrays of parallel vortex
lines, provided the free energy is continuously differentiable in β. (For a discussion
of vortices see Sect. 4.)

4. Non-translation Invariant Equilibrium States
and Specific Free Energy of Vortices

4.1. Main Conjecture. In this section we show how one might go about construct-
ing a non-translation invariant equilibrium state for the classical XT model. We
have proven in the last section that such a state cannot be constructed in a way
similar to the one by which Dobrushin constructed non-translation invariant
equilibrium states for the three- or higher dimensional Ising model. The reason is
that the Bloch walls are not stable defects of the XY model. Rather, the stable
defects of the X Y model are the vortices. The vortices are (d — 2)-dimensional
defects. For d = 3, respectively d = 4, we can force a line defect, respectively a planar
defect, into the system which are the counterparts of the line defect, respectively
planar defect, produced in the Ising model by the ± boundary condition when
d = 2 respectively d = 3. (See Sect. 2.) We do not expect that a non-translation
invariant state can be constructed for the three-dimensional X Y model, because a
line defect undergoes macroscopic fluctuations. For the four dimensional model,
energy-entropy considerations on the simplest deformations of the planar vortex
indicate that this defect is presumably stable at very low temperatures. Therefore
we conjecture :

Conjecture. Translation invariance of the XY model can be broken if the
dimension of the lattice is larger or equal to four.

In the next Subsections we discuss this conjecture in some detail for the Villain
model2, which describes the same physics as the X Y model, but which has the
advantage that the introduction of defects, the vortices, is particularly transparent
[21]. The Villain model is a planar spin model. The spins, parametrized by angles
Θ(x\ xelL, are random variables with values in S1. We consider the model in the
finite box

Λ = {xe^\xi\^L,i = l,...,d}. (4.1)

A boundary condition, φ, is given by fixing the value of Θ(x) for χeΊL\Λ, i.e.
Θ(x) = φ(x). The Boltzmann factor of the model with this boundary condition is

2 Our arguments extend to the X Y model, but are less transparent in that case
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Π gp(θ(x)-Θ(y))9 (4.2)
<χy>

with

/ R \
(4.3)

neZ

The corresponding partition function is obtained by integrating all angular
variables Θ(x\ xeA, over S1. Before we express the Villain model in terms of spin
waves and vortices (Subsect. 4.4), we have to introduce some formalism, in
Subsect. 4.2 and 4.3. The discussion of our main conjecture starts in Subsect. 4.5.

4.2. Cell Complexes. It is useful to use geometrical concepts in the description of
the Villain model. This is fairly standard; see e.g. [21-24].

The lattice IL is considered as a cell complex, which consists of the
v-dimensional unit cells of IL (called hereafter v-cells), v==0, l,...,d. Thus, the
0-cells are the lattice sites, the 1 -cells the bonds and the 2-cells the plaquettes of IL.
Each cell has two possible orientations. If c is a cell, then c is the same cell with
opposite orientation. The orientation is the conventional one, and the incidence
function, /, of IL is defined as usual. Let c be a v-cell and c' a (v— l)-cell. Then
/(c, c')= + 1, respectively — 1, if c is contained in dc, and the orientation induced
on c' is equal, respectively opposite, to the orientation of c'. Otherwise I(c, c') = 0.
The main property of / is

/)/(c/,c//) = 0, (4.4)

where c is a v-cell, c" a (v — 2)-cell and c' are (v— l)-cells. A v-chain is a real function
/ defined on the v-cells, with finite support and such that /(c)=— /(c). The
boundary operation δ transforms a v-chain into a (v— l)-chain:

δf(c) = Σf(c')I(c',c); (4.5)
c'

(δf = 0 if / is a 0-chain). Using (4.4) we see easily that δ2 = Q. The coboundary
operation d transforms a v-chain into a (v-f l)-chain

I(c,έ). (4.6)
c'

The operator δ is the adjoint of d with respect to the scalar product

ttff) = Σ/(c)ff(c), (4.7)
C

where in (4.7) we sum only over positively oriented cells. Indeed, one verifies
immediately that

(df,g) = (f,δg). (4.8)

The dual complex IL* is TLd, considered as a cell complex. To every v-cell c of IL,
there corresponds exactly one (d— v)-cell c* of IL*, such that c and c* have exactly
one point in common and I(c,c1) = I(c*,c*). The star operation transforms a
v-chain / on IL into a(d— v)-chain on IL*, which we also denote by/, in such a way
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that f(c*)=f(c). If δf = g on IL, then df = g on L*, where d is now the coboundary
operation on IL*. We also consider, in the next subsections, subsets of IL, or of IL*,
which are closed. A subset of IL, Ω, is closed if it contains with every cell also the
cells on its boundary. If we restrict the incidence function / to this subset, then the
property (4.4) is still valid. Therefore we can interpret this subset as a cell complex,
and it is possible to define the boundary and the coboundary operations, with
respect to this cell complex, by (4.5) and (4.6). They do not coincide with the
corresponding operations in IL. All the cell complexes, which we introduce later,
have trivial homology. In particular, Poincare's Lemma is true : If / is a IR-valued,
respectively Z-valued, v-chain such that df = Q, then there exists a IR-valued,
respectively TL- valued, (v — l)-chain g, such that f = dg. A similar statement holds
for chains/ with the property that <5/ = 0. We shall use the same notations, d and δ,
for the coboundary and boundary operations of the cell complex Ω, since it will be
clear from context which operator is meant.

43. Remarks on the Laplacian. We introduce several subsets of the cell complexes
IL and IL* :

(4.9)

where the subset A of IL has been defined in (4.1),

Ω* = {c*eIL*,ceΩ}, (4.10)

Ω = the closure of Ω . (4. 1 1)

The last subset is obtained by adding to each element of Ω its boundary cells. The
subsets Ω*c!L* and ΩcIL are closed and can therefore be interpreted as cell
complexes (see Subsect. 4.2).

Let A be the operator
A = dδ, (4.12)

defined on the cell complex Ω. We collect here a few remarks on A, as an operator
on the 2-chains of the cell complex Ω. First we suppose that the dimension of the
underlying lattice is two. If we label each plaquette of Ω by its center, it is easy to
verify that the action of — A on the 2-chains coincides with the action of the lattice
Laplacian on functions supported in the box {xeZ2:|x l |^L, f=l,2}, with
Dίrichlet boundary conditions. Therefore A~ 1 exists on the space of 2-chains of Ω.
Let us suppose now that the dimension d of the underlying lattice is larger or equal
to three. We study the action of A on those 2-chains, n, of Ω for which an = 0. They
form a linear subspace C° of the space of 2-chains, and from the identity d2 = 0 we
obtain immediately that A leaves this subspace invariant. The space C° contains

- subspaces C? , i<j, i and ;=1, . . . , r f : The subspace C?. consists of all

2-chains, π, of Ω such that an = 0 and the support of n contains only plaquettes
parallel to the 2-dimensional plane Σij={x:xk = 0, fcΦij}. Using the condition
an = 0, one may verify that the operator A leaves the spaces C? invariant. If we
label each plaquette p of Ω, which is parallel to the plane Σ.j? by its center, then the
action of — A on C? is the same as the action of the lattice Laplacian in an
appropriate box with mixed boundary conditions : We have Neumann boundary
conditions in all but the directions i and 7, where we have Dirichlet boundary
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conditions. Therefore the restriction of A to C? is invertible in the subspace C? .
On the cell complex Ώ* we define the operator

B = δd, (4.13)

acting on the space of (d — 2)-chains with the property that δn = Q. As above, we
notice that this space contains d(d— l)/2 subspaces. The action of —B on one of
these subspaces is the same as the action of the lattice Laplacian, as above, but
now Dirichlet boundary conditions are replaced by Neumann boundary con-
ditions and vice-versa.

4.4. Spin Waves and Vortices in the Villain Model. We first rewrite the Boltzmann
factor (4.2) of the Villain model, using the formalism of Sects. 4.2 and 4.3. A spin
configuration in A defines a 0-chain Θ with values in S1. It is extended to a 0-chain
on Ω by putting

Θ(x) = φ(x) if xeΩ\A, (4.16)

where φ is a given boundary condition. The Boltzmann factor with boundary
condition φ is then given by

Yl9β(dΘ(b))9 (4.17)
beΩ

where in (4.17) we take the product only over the positively oriented 1-cells b. The
corresponding partition function, Zφ, is obtained by integrating, in (4.17), all spin
variables Θ(x\ xeA, over S1. It is convenient to introduce a generalized
Boltzmann factor

T[gβ(dΘ(b) + y(b))9 (4.18)

where we impose Q-boundary conditions, and where γ is an arbitrary l-chain on Ω.
The corresponding partition function is denoted Z(y). From now on we study Z(γ).
On account of (4.3), the partition function Z(γ) is given by

2π

0 beΩ \m(b)eZ j

with

Γ R
(4.20)

We shall henceforth omit writing the integration measure Y[ dΘ(x).
X

We first consider the sum over the variables m(b). The dual of Ω is Ω* (see
(4.10)), and £2* is a cell complex. Let m be the (d— l)-chain on £2* defined by

m(b*} = m(b), beΩ. (4.21)

Since m(b)eTL is arbitrary, we see that m is an arbitrary ^-valued (d- l)-chain on
Ω*. We decompose such chains into equivalence classes: Two chains m1 and m2

belong to the same class iί δm1 =δm2. The classes are labelled by n = δm, n being a



318 J. Frδhlich and C.-E. Pfister

(d — 2)-chaίn. Since Ω* is a cell complex with trivial homology, the equation

δm = 0 (4.22)

is easily solved, using Poincare's lemma:

m = δk, (4.23)

k being a TL-valued d-chain on ί2*. Moreover, the solution is unique, since δk = Q
implies k — 0 on £2*. From (4.23) we get

mί=m2 + δk, if δm1=δm2. (4.24)

The set of (d — 2)-chains, n, which label the equivalence classes, is exactly the set of
all (d— 2)-chains such that

δn = 0. (4.25)

In each equivalence class, labelled by n, we choose one representative and denote it
by m'. Therefore we may rewrite (4.19) as

= i"J Σ Σ Π
0 n: m: b*eΩ*

δn—0 δm~n

— oo n: b*eΩ*
δn=0

= ί-ί Σ Π fβ(δΦ(b*) + 2πm'(b*) + y(b*)), (4.26)
— oo n:

δn=(

after the change of variables

φ(x*) = θ(x*) + 2π/c(x*) . (4.27)

Since <5n = 0, we can define (see Subsect. 4.3)

m(b*) = (dB"1n)(b*). (4.28)

By definition we have

dm = 0, 5m = n. (4.29)

Therefore, by Poincare's lemma, there exists a real-valued d-chain q on £2* such
that

(4.30)

Moreover, g is unique. Let

φ(x*) = φ(x*) + 2πg(x*) . (4.3 1)

Using (4.30) and (4.31), we get

= Σ ί - J Π //ϊW(fc*) + 2πm(fe*) + y(&*)). (4.32)
n: - oo

The product in (4.32) can be written as

n I

- W + 2πm + y,^-f 2πm + y)L (4.33)
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where ( , •) is the scalar product introduced in Subsect. 4.2. From (4.29) and (4.28)
we get

(δφ, m) = (m, δφ) = (dm, φ) = Q, (4.34)

and

(m, m) - (B- V δdB~1n) = (B-1n, n). (4.35)

Therefore our final expression for the generalized partition function on the dual
lattice Ω* is

Z(γ) = exp f - I (y, y)) f !.?f exp - | (δφ, δφ) - β(δφ, y)l
\ ^ / - x ^ J

exp[-β2π2(n,B-1n)-2πβ(δγ,B-1n) ] . (4.36)

In the special case where y = 0, this is the partition function for the Villain model
with 0-boundary conditions. This partition function, Z(y = 0) = Z°, is the product
of a partition function of a gas of spin waves (with 0-boundary conditions)

+ co Γ β 1

Zs°w.=ί JΠexp \-j(dφ(b))2 L (4.37)
- oo beΩ [ ^ \

and a partition function of a vortex gas, expressed on the dual lattice,

n:
δn=0

It is easy to generalize the computation of Z(y), in order to deal with the
expectation value of local observables, Qxpίi^a(x)Θ(x)\ a(x}eTL: We get

\ x

exp li Σ a(x)Θ(x)\\° = /exp (i £ a
\ x // \ \ x

(4.39)

where q is defined by (4.30). Since the local observable is periodic, the final result
does not depend on the particular choice of m'. We now discuss a special case: Let
x and y be a pair of points in A, such that there exists a path of positively oriented
bonds b, starting at x and ending at y. Let fxy(b)=l, if b belongs to the path and
fxy(b) = Q otherwise. Since εxpi(Θ(y)— Θ(x)) = expi(fxy, dΘ), we get

(Qxpi(Θ(y)—Θ(x))y° = <exp i(φ(y) — </>(x))>s°w

(4.40)

where, in the last expectation, fxy is the (d— l)-chain dual to the 1-chain, also
denoted fxy, defined above.

4.5. Non-Translation Invariant States. The (topologically) stable defects of the
classical X Y model are the vortices, which are described by the (d — 2)-chains, n,
introduced in the last subsection. We recall that δn = Q. Thus, the vortices form
(d— 2)-dimensional, closed "networks." These vortices play a role analogous to the
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one played by the Peierls contours in the Ising model. Indeed, in the X Y model, in
d ̂  3 dimensions one can prove the existence of spontaneous magnetization at low
temperatures by means of a Peierls type argument [5]. In order to construct a non-
translation invariant state, we try to find boundary conditions which force a line
defect through the system, if d = 3, and a 2-dimensional defect, if d = 4. As we
already mentioned, we expect that the resulting equilibrium state is translation
invariant in the thermodynamic limit in three dimensions, due to fluctuations of
that line. However, we give a simple argument, suggesting that vortex sheets in
four dimensions are rigid and well localized if the temperature is sufficiently low.
Therefore we expect that, by forcing a vortex sheet through the system, translation
invariance may be broken at low temperatures.

We begin by considering the three-dimensional model, since this case is simpler
to visualize. The generalization of our arguments to four or more dimensions is
then easy. Let α be the 2-chain on Ω defined by

α(p) = l , if p* is a bond of Ώ* with xί=x2 = 0\

= 0, otherwise. J

Since dα = 0, on Ω, we can define A~IQL\ (see Subsect. 4.3). The support of the
2-chain >l~1α on Ω contains only plaquettes p, which are orthogonal to the
x3-axis. The restriction of A~ *α to the plaquettes p contained in a plane x3 = c is
independent of c. Moreover, if we define a 0-chain ε on

by

e(x1,x2) = A"1α(p), (4.42)

where (x1,*2, c) is the center of the plaquette p, then ε is the solution of

i f*1=χ2 = 0 (4.43)
0 , otherwise ,

where —A is the lattice Laplacian acting on functions defined on the subset
introduced above, with Dirichlet boundary conditions. Let

γ = 2π δA~1a. (4.44)

By construction we have

δy = 0 and dy = 2πa. (4.45)

Lemma 4.1. There exists a Q-chaίn χ on Ω such that

Proof. As for A 1a we verify easily that the support of the 1-chain y contains only
bonds of Ω, which are orthogonal to the x3-axis. Moreover the restriction of y to
the bonds contained in a plane x3 = c is independent of c. Therefore it is sufficient
to prove the lemma for the restriction of y to such a plane. Let / be the line

3 χ is analogous to the potential of the magnetic field generated by an infinitely long, conducting
wire
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S = {(xί,x2,c):x2=Q,x1^Q}. (4.46)

We set

χ(l/2,l/2,c) = 0. (4.47)

Let fej be the bond with starting point (1/2, 1/2, c) and endpoint (- 1/2, 1/2, c). We
define χ( - 1/2, 1/2, c) by

<W = y(&ι). (4.48)

Let fo2 be the bond with starting point (- 1/2, 1/2, c) and endpoint (- 1/2, - 1/2, c).
We define χ (- 1/2, - 1/2, c) by

dχ(b2) = y(b2). (4.49)

In this way we can define, everywhere on Ω, a 0-chain χ, and, in that definition,
only bonds are involved which do not cross the line /. This is a consequence of
Stokes theorem and property (4.45). Using again (4.45) it is immediate that, for
each bond b crossing /,

Π (4.50)

We introduce boundary conditions for the Villain model in the box A by setting

xφA. (4.51)

This boundary condition produces a vortex line crossing the box A. To see this,
we express Zφ, the corresponding partition function, as in Subsect. 4.4 : Zφ is given

by
ί JΓUWO), (4.52)

0 beΩ

where Θ(x) = φ(x) if xeΩ\A. We change variables: We replace Θ(y) by Θ(y) + χ(y),
for ye A. Therefore

Zφ = ί.".ίU9^.dθ(b) + dχ(b)). (4.53)
0 beΩ

Since gβ(Θ) is a periodic function we can write, using Lemma 4.1,

(4.54)
0 beΩ

where y is the 1 -chain defined by (4.44). This last expression for Zφ coincides with
Z(y), as given by (4.19). The generalized partition function, Z(y), has been
factorized in a spin wave - and a vortex contribution in (4.36). Since δy = Q, we
have

(dφ,γ) = (φ,δγ) = 0. (4.55)

We have to compute

(δy.B^n), (4.56)

with n and γ defined on *.
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In (4.56) 7 is the dual chain of the 1-chain defined by (4.44) on Ω. Therefore, if
2πm = δy on Ω*, we get

m(p*) = α(p*), (4.57)

for every (d— 2)-cell p* in Ω* which is not on the boundary. If p* is contained in the
boundary of Ω*m(p*) is determined by the values which 7 takes on 1 -cells beΩ\Ω.
Moreover we have δm = 0. We can write the partition function Zφ as a product of
the partition function Zs°w, (4.37), of the gas of spin waves, with 0-boundary
contditions, and the partition function of the vortices, Z™, given by

Z™= Σ exp[-j82π2(n + m,jB~Hn + w))]. (4.58)
n:

δn=0

The last equality is obtained by noticing that (4.45) implies ^7 = 0 for the (d— 1)-
chain 7 on Ω*. Therefore there exists a (d — 2)-chain η on Ω* such that dη = 7. Since
2πm = δy, we have

2πB-1m = B-1δy = B~1δdη. (4.59)

B~l is the inverse of δd on the space of (d — 2)-chains n such that δn = Q. Therefore
B~1δdη = λ with (5/1 = 0, and B'1δdη — η is in the kernel of B. This means that

with <fw = 0. (4.60)

Therefore we get

)) = ( y , y ) . (4.61)

We have thus proved that the boundary condition φ given by (4.51) produces a
line defect through the box A.

The generalization to the four-dimensional case is easy. On Ω we introduce a
2-chain α such that

α(p) = 1 , if p* is a plaquette of Ω* with x 1 = x2 = 0

= 0, otherwise. (4.62)

Again dα = 0 on Ω and we can define A~1oc. The 2-chain A~^VL has the same
structure as before. We define 7 by (4.44) and by construction (4.45) holds.
Lemma 4. 1 can be proved in exactly the same way. Therefore we define the
boundary condition φ by (4.51). The computation of Zφ is the same as before, and
the final result is again given by

ZΦ = zL.'zΐ> (4 63)

where Zs°w is defined in (4.37) and Z* in (4.58). Thus the boundary condition φ
produces a two-dimensional defect crossing the box A.

At very low temperatures, there are few vortices. The configuration of vortices
m + n can be decomposed into connected components. If m and n are disconnected,
then the defect imposed by the boundary condition φ is the plane x1 =x2 = 0 on
the dual lattice. But if m and n are not disconnected, this planar defect is slightly
deformed. At low temperatures we expect that an approximate description of this
defect, like the s-o-s description of the Ising interface, should be qualitatively
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correct. In such an approximate description, one only considers configurations, n,
with the property that the connected component of m + n only takes the values
±1,0, and one only permits local deformations without overhang. Using the
inequality

faB-^^fan) (4.64)

and an explicit calculation, one may show by a standard energy-entropy argument,
that these deformations can deform the vortex sheet in the χ1=χ2 = Q plane
only locally and that the defect is therefore rigid if the temperature is small enough
(/?>!). This is analogous to the proof of the rigidity of the interface in the s-o-s
model at low temperature.

4.6. Specific Free Energy of Vortices. The surface tension τ in the Ising model is
defined by (2.1). This thermodynamic quantity can be used to distinguish between
the low temperature behaviour and the high temperature behaviour of the model.
If the temperature Tis below the critical temperature, then τ>0. Otherwise τ — 0.
[See (2.2) and (2.3).] Heuristically, the fact that τ is nonzero at low temperatures is a
consequence of the Peierls contour, imposed by the + boundary conditions, which
produces a Bloch wall of finite thickness. It is thus natural to introduce a
thermodynamic quantity τ associated with vortices, which are forced into the
system by the boundary condition φ [see (4.51)]. We define

ί = - l o g (465)

Here Zf, respectively Z°, are the partition functions of the system in the box A
with boundary conditions φ, respectively 0. Using (4.38) and (4.58) we get

Σ

n:δn=0 (4

where 2πm = δy and y is defined by (4.44). Instead of considering the quantity τ, we
can introduce an analogous quantity τq as follows. Let £2 be the (d—1)-
dimensional box in IL*, given by

& = {xeJL*;\xi\^L'9i=l,...,d-i9x
d = Q} (4.67)

with L' <L. Let mL

f be either one of the two (d — 2)-chains on IL*, such that δmL/ = 0
and

mL,(c)= 1 , if c is a (d — 2)-cell in the boundary of & ,

wL,(c) = 0, otherwise. (4.68)

We replace m in (4.66) by q mL,9 and we define

' (469)
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Both quantities τq and τ have, most likely, the same quantitative behaviour as
functions of β. At low temperatures they are nonzero and at high temperatures
they vanish. One can therefore use them to distinguish between the low-
temperature and the high-temperature regimes of the model in every dimension
d^2. (lϊd = 2, the boundary of <£ consists of two points and the condition δmL, = Q
is replaced by the usual neutrality condition.) Finally we notice that τq is also
related to the quantity τ defined by (3.2). (The difference between τq and τ is similar
to the difference between the short long-range order and the long long-range order
[25].) The next proposition is essentially contained in [26, 3].

Proposition 4.2. // q is not an integer and for d ̂  2, τq > 0 if β is large enough and

τq = 0 if β is small enough.

Proof. We define on Ω*

1mL,. (4.65)

Therefore dγL,=0 and δyL, = 2πqmu. (If d = 2 we impose the usual neutrality
condition. Then B~lmL, exists.) Using the results of Sect. 4.4, we get

τ = - i lim — -^ - - lim ZL^ . (4.66)
q ' ° V '

In (4.66), the partition functions are defined on Ω, and therefore yL, is a 1-chain on
Ω, and its support is contained in Ω. In particular

ZM = ί - ί Π 9e(dΘ(b) + yL.(b)) . (4.67)
0 beΩ

We perform a duality transformation. The Fourier series of gβ(Θ + yL,) is

?L') = Σ 9β(m}eίmΘeim^ , (4.68)

with

<469)

Inserting (4.68) in (4.67) and integrating the variables Θ, we get

), (4-70)

where we sum over all 1 -chains m with supports in Ω. On Ώ* the same quantity is
written as

ZL(7L')°c Σ exp -— (m,m) exp/(m,7L0, (4.71)

where m is now a(d— l)-chain. Since dm = Q, there exists a ^-valued (d— 2)-chain α
on ί2*, such that

m = da. (4.72)
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Therefore

_ / 1 \
Z r ( y τ , ) c c ) exp ^(doc,da) expz ϊα,δy τ , ) , (4.73)

L, \ ' L, ' ^_^ A I / K / A \ ' ' ̂  ' ' \ x

[α] \ ^P /

where £ ranges over all equivalence classes of (d —2)-chains, α, labelled by doc, and
[α]

L

 0

L/ = J dμL(α) exp z(α, (5yL,), (4.74)

where dμL(α) is the probability measure given by

Γ 1 1
(4.75)

(The measure dμL is actually defined on the equivalence classes [α].) In the two-
dimensional case, d — 2, we obtain for τg exactly the fractional charge correlation,
since δyL, = 2πqmL,. In this case, the Proposition has been proven in [3]. Thus, let
d^.3. We modify the probability measure dμL((x) as follows: We multiply the
density of dμL by

M

2
Π'exp

2

(4.76)

where the product in (4.76) is taken over all (d— 2)-cells of £2*, which are not
perpendicular to the two-dimensional plane x1 = ... =xd~2 = Q. We normalize this
new measure and denote the resulting probability measure by dμL M2. Using
inequalities related to ones proven by Park [27], we get

f dμL((ή exp /(α, δyL.) ̂  j dμL M2(α) exp ί(α, δyL,). (4.77)

In the limit M2->oo, the probability measure dμL ^ is concentrated on the (d — 2)-
chains α with α(p*) = 0, if p* is not perpendicular to the plane x1 = ... =xd~2 = 0.
Therefore the measure factorizes in Ld~2 independent factors. Each of these
measures is concentrated on the (d— 2)-chains α, the supports of which contain
only (d— 2)-cells p*, whose centers h&vε fixed (x1, ...^"^-coordinates, and which
are of course perpendicular to the plane x1 = ... =xd~2 = Q. Therefore we have
obtained the following lower bound for τq:

τq(d - dim) ̂  τq(2 - dim), (4.78)

which proves that τq (d-dim) is positive at sufficiently large values of β, by [3].
Using a standard high-temperature expansion one can prove that

^^=expO((Z/)d-2), (4.79)

and therefore τq = 0, if β is small enough. This proof is carried out conveniently by
studying the quotient ZL(yL,)/Z^ in the original spin representation (in terms of
angular variables). It is then given by a convergent high temperature expansion,
for small enough β.
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