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Abstract. In quantum mechanical potential scattering theory we use selected
observables to describe the asymptotic properties of scattering states for long
times. E.g., we show for the position and momentum operators that for

x
-

and that the set of outgoing states is absorbing. This is obtained easily without
any detailed analysis of the interacting time evolution. The class of forces
includes highly singular and very long range potentials.
The results may serve as an intermediate step in a proof of asymptotic
completeness; as a particular application we present a simple proof of
completeness for Coulomb systems.

I. Introduction

In potential scattering theory the states in the continuous spectral subspace of the
Hamiltonian are well known to have a simple time evolution asymptotically if the
perturbation is suitably localized. If the potential is of short range, then the free time
evolution is a good approximation of the interacting one in the far future and in the
remote past. Similarly a modified free time evolution can be used if long-range forces
are present. This fact, called asymptotic completeness, allows one to deduce various
properties of the asymptotic motion since free or modified free time evolutions can
be controlled easily. E.g., the position and the momentum vectors become parallel at
large times and have been antiparallel in the remote past.

Sometimes one is interested in obtaining partial information about a state
without first proving asymptotic completeness, i.e. by studying the interacting time
evolution itself. In particular we think of two reasons for doing this. In the case of
very long range forces it may be hard to construct and control a modified free time
evolution or its existence may be unknown (e.g. if V(x) ~ [In(lnlxl)]"1 as |x|-»oo).
Nevertheless physical intuition suggests that for the position and momentum of a
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particle at time t

x(ί)
m - ~p(ί) as |t |->αo, (1.1)

as it is true for the free time evolution. We will give a basically simple proof below
which does not assume or use any detailed information about the interacting time
evolution.

Another application is to use (1.1) as a first step in a proof of asymptotic com-
pleteness. That part of the state space where the particle is far from the scatterer
and outgoing is absorbing under the full time evolution as a consequence of (1.1).
Then one shows by different methods that the (modified) free time evolution is a
good approximation of the interacting one on this absorbing subset of the state
space. (See e.g. the first version of the completeness proof in Sect. 9 of [8].) For
special long range forces like the Coulomb potential this approach allows one to
simplify the proof of asymptotic completeness considerably, and it turned out to be a
crucial step in the proof for three body systems [9, 11].

It is a very difficult problem to follow the (interacting) time evolution of a
scattering state in a good approximation for long times. Therefore we ask more
modest questions and study how certain observables evolve on scattering states. The
choice of these observables ( = self-adjoint operators) has to meet two conflicting
requirements. The observables have to provide enough information about the state
to be useful. On the other hand they must have a sufficiently simple time evolution
which can be controlled even when strong interactions take place. It turns out that
there is a simple family which meets both requirements. Denote for an operator A its
time translated one by A(t)

A(t) = eiHtAe~iHt. (1.2)

Then on the continuous spectral subspace Jjf cont(H\

f^Lπ; (1.3)

2H, £>=4(x p + p x); (1.4)

H0(fH/f, H0 = ~p2; (1.5)
2m

as \t I -> oo in the sense of strong resolvent convergence.

0, (1.6,

thus the desired relation (1.1) follows from (1.3)-(1.5). Moreover there is an
intuitive explanation why it should be easy to control the interacting time evolution.
For a classical point particle which is reflected elastically at the origin the interacting
and free time evolutions are identical for the observables above. Thus the main effect
of scattering, the deflection of the trajectory, is not seen by the observables. The
other effects which come from the extension of the potential, e.g. time delay,
disappear because of the inverse powers of the time t in (1.3) and (1.4).
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The assumptions about the potential and the main results are given in the next
section. A discussion of domain questions and the proof follow in Sects. Ill and IV.
We conclude with some applications to scattering theory, in particular a simple
proof of asymptotic completeness for Coulomb-potentials is given.

In the "algebraic approach" to scattering theory the asymptotics of the time
evolution viewed as an automorphism group on suitable algebras of observables
have been studied extensively for long-range forces [1]. An equivalent of the
modified wave operators was constructed which required detailed knowledge of the
interacting dynamics. In contrast to that we restrict the set of observables further
such that the effects of the interaction disappear completely. We need not have any
detailed knowledge about the interacting time evolution.

While it is clear that eigenvectors of the Hamiltonian are bound states, it requires
more work to show that states from the continuous spectral subspace become
asymptotically "free" as is suggested by experience from scattering experiments.
Various notions have been proposed to describe in which sense a particle becomes
free. As the weakest version Ruelle showed that the states will leave any bounded
region in the time average [2]. The stronger notion of a particle which "flees the
origin with velocity" was proposed by Dollard [3]. This property follows for all
continuum states from our Corollary 2.2. Our results state that in addition to the
scaled position operator x(t)/t, a few more observables asymptotically behave in the
same way as they would do under the free time evolution.

Unless we assume rotational symmetry of the potential, there need not exist an
asymptotic angular distribution. Therefore, the results related to "scattering into
cones" [4] are generally stronger. Still stronger are the results in the algebraic
approach mentioned above and the strongest is asymptotic completeness, where all
states are known to have asymptotically a (modified) free time evolution. Clearly at
each of these steps stronger assumptions have to be made about the potentials, the
methods of proof change and their complexity increases.

Our main results appeared as Sect. 7 in the lecture notes [8]. There the proof was
given only under the simplifying condition (3.31) which made the conceptual and
mathematical simplicity especially clear. We did not care to state Theorem 2.4 at
that time since its applications to long-range scattering and in particular to
multiparticle systems came up later. The present paper is worked out technically to
include a very wide class of potentials which tend in some sense to zero towards
infinity. We regret that the technical generality might hide the basic simplicity of our
arguments. For related results see also Sinha and Muthuramalingam [23].

For multiparticle systems the corresponding results were partially announced
and proved in [9]. The full results will be given in a forthcoming paper.

After completion of Sect. V of this manuscript we learned about the work of
Muthuramalingam [18], where slightly weaker results on completeness for
Coulomb potentials are proved with essentially the same method.

II. Assumptions and Results

We consider a quantum mechanical particle moving in v-dimensional space. The
state of a particle is described by a vector in the Hubert space JV = L2(^V). The
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unitary time evolution is generated by the self-adjoint Hamiltonian

H = HQ + V=H0 + Vl+Va9 (2.1)

which is obtained as a perturbation of the free Hamiltonian

H0=(2mΓ1P2=-(2mΓ1Δ. (2.2)

The long range part Vl of the potential is a multiplication operator in x-space with a
real continuously differentiable function Vt(\) which satisfies

K /(x)->Oandχ (VK/)(x)^0 as |x|->oo. (2.3)

The symmetric short-range potential

V8=Vί + V2 (2.4)

may consist of a form-bounded part Vl :

\\Ψ\\2, α<\ (2.5)

for all Ψe£(HQ), the form domain of H0. The positive self-adjoint part V2 may be
used to describe highly singular positive perturbations. We assume

0) n J( V2) n j2(x2) is dense in tf. (2.6)

Then by standard results [12, 15, 21], H is a closed quadratic form with form
domain

= J2{#0)nj2(72), (2.7)

corresponding to a unique self-adjoint semibounded operator H with domain
Let zetR be any (sufficiently negative) number which is in the resolvent set of the
three operators //, H 0, and

#, = #0+7,. (2.8)

All statements below using z are independent of the particular choice. The decay
requirements can be expressed as follows.

(#0 -z)~1 / 2(l + x2)1 / 2J/(# -z)'1 is compact, (2.9)

or equivalently

(1 +x2)1/2(H0-zΓ1/2Vs(H-zΓ1 is compact. (2.10)

Note that it follows from our assumptions that the operator in (2.10) without the
factor (1 + x2)1/2 is bounded. The same proof works if we assume instead that the
operator in (2.9) or (2.10) is bounded and

\\F(\x\>R)'\x\'(H0-zΓίl2Vs(H-zΓί\\-+ΰasR^oo. (2.1 1)

This slightly weaker assumption will hardly matter in applications. Therefore we use
the compactness condition which avoids the necessity to split many terms into two
pieces.

These conditions are sufficient if the potential is local, i.e. if it commutes with all
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bounded functions of x. Otherwise we have to require in addition

(H - z)~ l/2{x2 Vs - Vsx
2} (H - z)~ 1/2 is bounded. (2.12)

This may be interpreted by first regularizing x2 -+ x2(l + λx2)~ \ and then studying
the limit λ -> 0. If the non-local part of Vs is a polynomial in p with x-dependent
coefficients of short range, then (2.12) holds since the derivatives of x2 grow at most
linearly. The other non-local potentials of importance are separable ones as used,
e.g. in nuclear physics. Typically they have exponential decay and thus satisfy (2.12).

Our decay condition for the short range part is a bit weaker than the integrability
conditions often used in scattering theory. E.g. a potential

F(x) = [ |x | ln |x |]" 1 for | x | > 2 (2.13)

satisfies (2.9) but it gives rise to modified wave operators.
Parts of the proof, in particular domain questions, simplify considerably if the

short-range part Vs is a local, Kato-bounded perturbation of H0 which satisfies

(1 +\x\2)1/2Vs(H0-zΓί is compact. (2.14)

Since this case covers most applications we will give some of the simplifications
below.

Denote by Pcont the projection onto the continuous spectral subspace 2tf cont of
the Hamiltonian H. For an operator A the time translated one is

A(t) = eiHtAe-iHt.

For the notion of strong resolvent convergence, see e.g. [15, 20]. F(-) denotes the
spectral projection of the self-adjoint operator to the part of the spectrum as
indicated in the parenthesis.

D=±(p x+x p) (2.15)

is the generator of the dilations.
Now we are ready to state our main results.

Theorem 2.1. LetH = H0+ V satisfy (2. l)-(2. 6), (2. 9), and (2. 12). Then in the sense of
strong resolvent convergence

t, (2.16)
f |-oo 2 ί2

lira — = 2HPmM. (2.17)
|t|->oo

Corollary 2.2 Let H be as above and

a) lim \\W-F(υ1\t\<\x\<v2\tme-iHt

t,f ) ? P | | = 0 (2.18)
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for any 0 ̂  v1 < v2 ^ oo.

b) lim | | F ( | Λ ; | < Λ ) ^ - / f l ί ί P | | = O f o r a l l Λ . (2.19)
|ί| ->• oo

c) lim || F(D < 2Et)e~iHtF(H >E)Ψ\\=0. (2.20)
ί-» 00

d) lim || F(D > 2Et)e~imF(H > E)Ψ \\ = 0. (2.20')
ί-> — oo

e) lim |
|r|-»oo

Proof, a)

e-π-^ιίκiχκ,,ιίme- = h-Ffe?<^<%i= Γι-,
2 ί2

ι;2<#<%2ΛΊ. (2.22)

The last convergence is strong convergence on Jf00"' which follows from (2.16).
Since all operators involved have only continuous spectrum, it is permitted to use
discontinuous bounded functions.

b) follows from a) since for any fe=?fcont and ε > 0 there is a vl > 0 such that

(2.23)

c) eimF(D < 2Et)e~ίHt = F(D(t)/t < 2E)-^F(2H < 2E) by (2.17).
d) The expression for negative times has the same limit.
e) Analogous to the proof of b). Π

We do not know whether our assumptions on the potential exclude the
possibility of singular continuous spectrum of H. Nevertheless we could show the
local decay (2.19) and exclude recurrence. This is well known for states in the
absolutely continuous spectral subspace of H. Moreover (2.18) says that a state
propagates into those regions of space where it should be according to its energy
support. We will see below that the full energy and the kinetic energy coincide
asymptotically.

The sign of the dilation generator D describes whether the angle between x and
p is acute or obtuse, i.e. whether the velocity of a particle at x points away from the
scatterer or more towards it. The spectral projections of D have been introduced by
Mourre [17, Sect. V in 8] to characterize incoming and outgoing states. According
to (2.20) and (2.21) any state in J^conΐ has been incoming in the remote past and will
be outgoing in the far future.

Corollary 2.3. Let H be as above,

a) w-lime-imΨ = Q. (2.24)
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b) On Jf cont in the sense of strong resolvent convergence

lim H0(t) = H. (2.25)
| t | ->oo

Proof, a) Fix Φ and ε > 0. For any

d)e-imΨ\\. (2.26)

Choosing d big enough, the first summand is smaller than ε/2. For this d choose T
large enough such that the second summand is smaller than ε/2 for all | ί | > T by
(2.21).

b) (H0 - z)~ * - (H - z)~ 1 is compact. Therefore

z)-1-(H-z)-1]eίHί!P-.0, (2.27)

as I f I -> oo by a) for any ΨeJ^con\ D

Theorem 2.4. Lei # 6e as above, ΨeJ^fconί. Let / 6<? the Fourier transform of an
integr able function, i.e. feL1(Uv,dvq). Then for the operators x and p

lim
|ί|-+oo

= 0. (2.28)

T/ze same holds if I-/ /zas integrable Fourier transform.
This theorem states that the average velocity between time zero and t has a
distribution which coincides with the velocity distribution at a large time t.
Although we know from (2.25) that the distribution of the modulus of the
momentum converges we cannot conclude this for the direction of p. In fact one can
imagine a potential which satisfies our assumptions but the momentum direction
continues to turn, although slowly.

For smoothed cutoff functions / we conclude from (2.28) a strong correlation
between the localization of (a part of) a state at time t and its momentum. This means
a localization in classical phase space. A state evolves into a smaller and smaller
subset of the outgoing subspace. This behaviour is common to the free time
evolution and a very wide class of interacting ones. The basically simple proof of the
theorems which we give in the next sections does not use any detailed information
about the interacting time evolution, but merely controls that the deviation from the
free time evolution is small for these particular observables.

III. Domain Questions

In this section we provide estimates which are necessary to control commutators of
unbounded operators and related questions which are used in the next section. The
results are trivial if the potential is a continuously differentiable function which
satisfies (2.3). They are simple if one adds an operator bounded short range part Vs

which satisfies (2.14) (see below). Only our inclusion of perturbations which are
form-bounded or highly singular requires more efforts. The reason for the additional
problems seems to be the fact that the domain of the Hamiltonian need not be
invariant under dilations in this case.
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Our first proposition is a slight extension of a result of Radin and Simon [19] to
the larger class of potentials which we admit. Part a) also follows from results of
Kato [16] which have been rediscovered several times, see e.g. [13, 19] and
references given there, also [14] for earlier results.

Proposition 3.1. Let H satisfy (2.1)-(2.6), (2.9), and (2.12).
a) J(x2) n £(H) is dense and invariant under exp ( — iHt).
b) ( Ψ , x 2 ( t ) Ψ ) £ c 2 ( Ψ ) ( l + \ t \ ) 2 (3.1)

for any <Fej2(x2)n £(H).

Proof. The density is guaranteed by (2.6) and the invariance of Ά(H) is clear. A
vector Φ is in J(x2) iff (Φ, (1 + λx2)~ *x2Φ) is bounded uniformly as λ -> 0. Both a) and
b) follow if we show that

(Ψ,eiHt(l + λx2Γίx2e-ίmΨ)^c2(Ψ)(\ + |ί|)2 (3.2)

for any ΨeΆ(H)π£(x2) with a constant c(Ψ) which is independent of λ. It follows
from (2.9) that

as a bounded mapping from @(H) into the dual of J(H0) can be written as a sum;
moreover

3(H) c 2(H0) = (1 + /be2)' * (1 +' x2)£(H0) for λ > 0.

Therefore for any 0 < λ < 1 and Ψε®(H),

g ( t ) 2 : = (Ψ,eilίt(\ +λx2)~1(l +x2)e~iHtlF)^l (3.3)

is continuously differentiable with derivative

(Ψ,eiHtί[_H0,(l +λx2Γ1(l +x2)le-ίHtΨ)

+ (Ψ,eiHti[Vs9(l +λx2Γl(\ +x2)~]e-imΨ\ (3.4)

The second summand is bounded uniformly in ί and λ by

cί(Ψί(H-z)Ψ\ (3.5)

where cί is simply related to the norm of (2.12). The commutator in the first
summand can be calculated as a quadratic form on «2(#0) to be

L-*-*O'V ' —" / V " ' •"" /-i \ r — / ι I I 2Vwι y (.1 r Λ^C j

The Schwarz inequality permits us to estimate the expectation value of this by

2 , , , ,
,__ „_ „ _,. (3.7)

where we have used that p2 is bounded by H — z as a quadratic form. Thus we have
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shown

^g(t)^^-(Ψ,(H-z)Ψ) + c2(Ψ,(H-z)Ψ)V2 (3.8)
dt 2g(t)

with a constant c3 independent of λ. Integration gives for all λ

\+λx2
ψ \t\c3V+(Ψ,(H-z)Ψ)l. (3.9)

By continuity the estimate extends to all Ψe£(H). If we choose Ψe£(H)n£(x2) we
obtain the uniform estimate in λ

(Ψ,eim(\ + λx2Γ1x2e-iHtΨ)^c2(Ψ)(l +|ί|)2, (3.10)

where

c(^) = { | |(l+x 2) 1 / 2^| |+c 3[l+( ίF,(//-z)^)]}. (3.11)

D

Corollary 3.2. Let H be as above. Then for any Ψe£(H)π £(x2\

(3.12)

|ί|). (3.13)

Proof.

\(Ψ,eίHt±(x'p + p'x)e~iHtΨ)\^ \\\p\e-iHtΨ\\-\\\x\e-ίHtΨ\\

^const\\(H-z)1/2Ψ\\'c(Ψ)(\ +\t\) .(3.14)

In the case of an operator bounded perturbation which satisfies (2.14), the domain
questions are even simpler [16, 13] and one obtains [19]

Lemma 3.3. Let H satisfy (2.1)-(2.3\ and (2.14). Then ^(x2)n^(H0) is dense and
invariant under exp( - iHt). Moreover for any Ψ<Ξ@(x2)n@(H0): e~iHtΨe^(D\

\\De-imΨ\\^c(Ψ}(\+\t\\ (3.15)

\\χ2e-iHtψ\\ ^C(ψ)(\ + \ t \ ) 2 . (3.16)

In the next section we want to show that

*»
are not only bounded but both tend to the Hamiltonian. For that we need better
control of the time derivative which is formally

βίHίί[fl,D]e"ίHt. (3.17)
dt

If we still consider the operator bounded case (2.14), then (3.17) is for all t naturally
defined as a quadratic form on @(HQ}r\ί£)(x2} and on these vectors H = H0 + V.



254 V. Enss

Thus we can calculate

(3.18)

The operator in curly brackets extends naturally to a compact operator from
to the dual of =2(H0) by (2.3) and (2.14). It seems to be difficult to give a meaning to
[VS9D] in the case of singular perturbations. We avoid this problem by using
resolvents. Regularizing the operator (3.18) gives

= (H-zΓ22H-K, (3.19)

where K is compact. We will show next that this result holds in the general case as
well. By the canonical commutation relations

D,p x, and x p (3.20)

differ only by a bounded operator, ± iv/2. Therefore it is irrelevant in many cases
which order of the factors we use. The commutator

iCAίH-zΓ1] (3.21)

is naturally defined as a quadratic form on £(x2) because e.g. (H — z)~lp-x is then
bounded. We show in the next proposition that it has an extension to a bounded
operator of a particular form.

Proposition 3.4. Let H satisfy (2.7)-(2.6), (2.9). Then

i[D, (H - z)~ *] = 2H(H - z)~2 + K, (3.22)

where K is compact.

Proof. We split the commutator

i[D,(H-z)-1] = i[A(H1-zΓ1]

+ iD{(H-zΓ1-(Hl-zΓ1}-i{(H-zΓi-(Hl-zΓ1}D.
(3.23)

The last two terms are adjoints of each other; Hl = H0 + Vl = H — Vs. All three
terms are naturally defined as quadratic forms on «2(x2). Due to the boundedness of
Vt we can calculate

= (H,-zΓ1{2H0-x (VVl)}(Hl-zΓ1

= (Hl-zΓ22Hl-Kl

= (H-zΓ22H-K1-2K2. (3.24)

Clearly Kl is compact as a product of a bounded decaying function of x with the
resolvent of Hl

z)'1. (3.25)
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To show the compactness of K2 we decompose

K2=(H- z)~2H - (Hl - z)~2Hl

= (H-zΓ1-(Hl-zΓ1+z{(H-zΓ2-(Hl-zΓ2}. (3.26)

Since H0 and Hl are bounded relative to each other,

is compact by (2.9). This implies also compactness of the difference of the squares of
the resolvents.

Finally

+ (H ϊ-z)-1(H0-z){p(/ί0-z)-1/2-(H0-z)-1/2x75(H-zΓ1

+ l-v(H0-zΓ1Vs(H-zΓί}. (3.28)

The factor (Hl - z)~l (H0 - z) is bounded and also i[_D,(Hl - z)~1](H0 - z) by the
calculations made in (3.24) and (3.25). All other factors are compact by (2.9) which
implies compactness of K3. Consequently

-K = K1+2K2+K3+K*

is compact. Π

Remark 3.5. The rather technical arguments in this section are caused by the very
large class of potentials which we admitted. Equation (3.22) can formally be written
for local potentials as

= (H~zΓί{2H0-X'(VV)}(H-zΓ1

= (H-zΓ1{2H-[2V+X'VV]}(H-zΓl. (3.29)

The construction in the proof of Proposition 3.4 is needed only to give a rigorous
meaning to the formal expression

K= -(H-z)~1[2F+x-(VK)](f/-z)"1, (3.30)

and to show its compactness. In applications it is often sufficient to treat local
potentials which are f/0-compact. If moreover the distributional derivative of V(x)
satisfies

x (VV)(H0 -z)'1 is compact, (3.31)

then (3.22) is trivially satisfied and one has the stronger

(H - z)i[D,(H - z)-1] = 2H(H - z)'1 + C, (3.32)

where C = (H — z)K is compact. The Coulomb- and Yukawa-potentials belong to
this class. If only (2.3) and (2.14) are assumed, the proof of Proposition 3.4 is still very
short and simple.
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Finally we use Proposition 3.4 to prove a variant of the virial theorem. Denote
by Dλ the regularized dilation generator for λ > 0,

For any Φ, Ψe j2(x2)n

(^
Thus, in particular for such Φ,

(3.34)

With the calculation made in the proof of Proposition 3.4 it is easy to check that
i[Dλ,(H — z)"1] is uniformly bounded as /l-»0, therefore the convergence (3.34)
holds for any Φ, Ψe3f. Let now Φ and Ψ be eigenvectors of H for the same
eigenvalue £, then

(Φ, [Dλ9(H - z)"1] Ψ) = 0 for all 1 (3.35)

This implies

PE{2H(H - z)~2 + K}PE = 0, (3.36)

where PE is the projection onto the eigenspace corresponding to some eigenvalue E
of the Hamiltonian H. If in particular (3.31) holds, this can be rewritten as

PE{2H + C(H - z)}PE = 0. (3.37)

For local potentials of a suitable class, (3.36) can be expressed using (3.30) as

PE{2H0-x VV}PE = Q. (3.38)

This is the traditional way to state the virial theorem. See Chapter 5 of [24] and the
Notes for other proofs of (3.38) and detailed references to the literature. Our proof of
(3.36) admits stronger singularities and non-locality for the short range part of the
potential. We elaborate on this point and give applications in [25].

IV. Proofs of the Theorems

We show Theorem 2.1 first under the simplifying condition (3.31), (3.32) in order to
explain the main idea of proof. We begin with (2.17). The following commutator is
naturally defined as a quadratic form with domain @(x2)

= 2H-(2V+x-VV)

= 2H + C-(H-z). (4.1)

It defines uniquely an operator on this domain (recall that C is compact). By Lemma
3.3 the following calculation is justified for
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r
= D(Q)Ψ + l d s e i H s i [ _ ~

o

= D(Q)Ψ + t 2HΨ + dsC(s)(H-z)Ψ. (4.2)
o

Dividing by t we obtain for

ΓlD(t)Ψ = 2HPconiΨ + Γ1DΨ+-]dsC(s)Pcont(H-z)Ψ. (4.3)
* o

The first term is the desired limit, the second obviously tends to zero, and the same is
true for the last term since

-\dsC(s)Pconί
> 0 a s | f | - > o o (4.4)

for any time evolution and any compact operator C (see e.g. Lemma 4.2 in [8] ). This
is a simple consequence of Wiener's theorem, cf. Appendix to Section XI. 17 in [22].

If ^(x2)n^(//)n Jfcont is a core of the limiting operator HΓ^fcont (this will
typically be the case, otherwise a little extra argument is needed), then we have
shown that ί~ ̂ (ί) converges in strong resolvent sense to //Pcon1on JΊfconί. It remains
to show convergence to zero on the point spectral subspace. This follows easily from
the fact that for any bounded continuous function / and any eigenvector HΦ = EΦ

fίD(t)/ί]Φ = exp[i(H - E)i]f(D/t)Φ-+f(0)Φ. (4.5)

If Ψe@(D)n J f pp one can give an alternative proof of this result using (4.2) and the
special form of the virial theorem (3.37) together with (4.9). A generalization of this
latter approach is used below.

This finishes the proof of (2.17) under the condition (3.31). If the weaker
assumption (2.14) is used almost the same proof applies. We turn now to the general
case.

Let Ψe(H-zΓ1l£(H)n£(x2)]<=[2(H)n£(x2)']9 then (Ψ9D(t)Ψ) is well de-
fined for all ί by Corollary 3.2 and continuously differentiable :

= ((H-z)Ψ9(H-zΓ1eiHtilH9D']e-iHt(H--zΓ1(H-z)Ψ)
at

= ((H-z)Ψ,eίHtilD,(H-zΓί~]e-im(H-z)Ψ)

= (Ψ9 2HΨ) + ((H - z)Ψ9 K(t)(H - z)Ψ). (4.6)

We have used Proposition 3.4 in the last step. Note that also (H - z)~^D(t)Ψ is well
defined and it is strongly differentiable by (4.6):

—(H - zΓlD(t)Ψ = (H- zΓ^HΨ + K(H - z)Ψ.
at

Integration from zero to t yields

(H - zΓ^D(t)Ψ = (H- zΓ'DΨ + t(H - z)~l2HΨ

+ }dτK(τ)(H-z)Ψ. (4.7)
o
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We divide by t and obtain

tf-z1 — Ψ = (H-zΓ

(4.8)
Ob viously t l(H — z) 1DΨ tends to zero as 1 1 \ -> oo . For the remaining terms on the
right hand side of (4.8), we split Ψ into its components in the continuous spectral
subspace and in the orthogonal complement spanned by the eigenvectors of the
Hamiltonian :

ψ _ pconίψ I pppψ

Then (H — z)~12HPcontΨ is the desired limit and the second summand vanishes
asymptotically by (4.4) since K is compact.

On the point-spectral subspace the first two summands on the right hand side of
(4.8) cancel asymptotically by (3.36) and by

-lim - J ds exp [ί\H - E)s] = PE. (4.9)

Thus we have shown

lim (H-z) -2HP c o n t Vψ

for any Ψe(H -z)"1[J(//)n J(x2)]. This implies

lim F(H < E)
D(t)

-2HPconi\ψ (4.10)

for any E < oo. To eliminate the energy restriction on the left, note that

lim || F(H > E)2HPcont Ψ\\=Q. (4.11)

We will show next that the same applies to the first summand. As used by Davies [6]
this is equivalent to finding an increasing function g with 1 ̂  g(ω) ̂  (1 + ω)1/2 and
g(ω) -+00 as ω -> oo such that

(4.12)

is bounded uniformly in ί. The formal calculation

-\\g(H}De-imΨ\\^-

-l\g(H)(H-ZΓ
1De-i"'(H-Z)Ψ\\ (4.13)

is justified for Ψe(H-z)-1 [J(H)n J2(x2)], and iϊ g is chosen such that g(H)[D,
(H — z)"1] is bounded. The uniform boundedness of the second term in (4.13)
follows from the boundedness of

g(H)(H-zΓll2 (H-zΓl'2\P\ (4.14)
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and from Proposition 3.1 which states that

Γ1\\\x\e-iHt(H-z)Ψ\\ ^ const.

With Proposition 3.4

ig(H)lD,(H - z)-1] = g(H)2H(H - z)~2 + g(H)K.

(4.15)

(4.16)

The first summand is bounded. For any compact operator K and any self-adjoint H
there is an increasing function g such that g(H)K is bounded. Using such a function g
we have shown

lim sup F(H > E) = 0,

and consequently

lim
D(t)

-2HPcon{ \Ψ = 0 (4.17)

for any Ψε(H — z) 1[£(H)n J(x2)]. In particular we have shown that this set is an
invariant domain contained in &(D\ Moreover it is a core for the limiting operator
HPconi. This implies [15, 20] the strong resolvent convergence (2.17).

Next we will prove (2.16). The proof for the general case is given below. To show
the main idea we first give the very simple proof under the special assumption (2.14).
Then the following commutator is naturally defined as a quadratic form on

(4.18)

It obviously determines uniquely a self-adjoint operator which has Q>(x2) n @(H0) as
a time-invariant core (see Lemma 3.3). This justifies for any Ψe@(x2)n@(H0) to
write

Γ2$dt'D(t')Ψ. (4.19)

The first summand tends to zero as |ί| -> oo. For the second we use the convergence
(4.17) of D(t'\

Γ2] dt'D(t')Ψ = HPcontΨ + Γ1 J dt'-i^r ~ 2HPconl)ψ
o o t V t /

>HPcontΨ as > oo. (4.20)

Since @(x2)n@(H0) is a core for H Pcon\ the strong resolvent convergence (2.16)
follows.

In the general case it is difficult to determine a time invariant domain which
is included in @(x2). We avoid this problem using quadratic forms. Let
Ψe(H -z)~1[J(x2)n^(//)]. Then (^x2^)?*) is continuously differentiate and

(4.21)
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Moreover each of these terms can be approximated arbitrarily well by the
expressions where x2 is replaced by x2(l + λx2)~1 as λ-»0. Since multiplication by
x2(\ +λx2)~1 maps £(H0) into itself, we then can write the Hamiltonian in the
commutator term in (4.21) as a sum:

/,-x2(l H-Ax 2)' 1 \e~iHτΨ

= ( Ψ,eίHτί\ H0~x2(\ + λx2Γl \e~imΨ

-ί((H-z)Ψ,eiHτ(H-zΓ1{x2(\

-Vsx\\ • z)~1e~iHτ(H — z)Ψ). (4.22)

Vl commutes with functions of x and does not contribute. The second summand in
(4.22) vanishes if the potential Vs is local, and it is uniformly bounded if λ ->• 0 for non-
local potentials by assumption (2.12). For the given expectation value in the first
term of (4.22)

as λ-+Q.

(4.23)

(4.24)

Dividing (4.21) by t2 we thus obtain

Ψ^^Ψ\^Γ2$dτ(Ψ,D(τ)Ψ).
2 t / Q

Now we can use the limiting behavior of D(τ).

(4.25)

The latter term converges to zero for the given set of vectors Ψ by (4.17). Thus we
have shown for any Ψe(H -z)-1[J(//)n J(x2)],

y™2_±lψ\-->(ψ9Hpconlψ\ as \t\->00. (4.26)

'2 t2 J

Below we will give the proof of Theorem 2.4 using only the results shown so far.
We use the statement (2.28) to finish the proof of (2.16). Let φeC^(0,oo), and split
the vector Ψ = Ψp + Ψconi into its spectral components. For any eigenvector

mx
110(0)^11=0,

thus
,mx2(t)

hm φl --- \Ψ=lvca
|ί|-.oo

,Λ™(4.27)
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If φ is considered as a function on Uv it satisfies the assumptions of Theorem 2.4 and
the right hand side of (4.27) equals, by (2.28),

lim φ(H0(t))Ψconi = φ(H)Ψcon\ (4.28)
|ί|-xx>

The last equality follows from Corollary 2.3 b). With φ(H)Ψconi = φ(H Pconί)ΨGoni

- φ(HPcont)Ψ, we have shown for any

l i m φ - Ψ =
|ί|->oo \2 t /

This implies the strong resolvent convergence (2.16). D

Remark 4.1. In the paragraph following (1.6) we pointed out that the interacting
time evolution can be controlled since the observables considered here do not "see"
the main effects of the interaction. This becomes apparent in the proof, too. In the
time evolution of D(t)/t, the interactions enter only through the time average of a
compact operator C or K which vanishes on the continuous spectral subspace (4.4).
The subtle parts in the remainder of the proof are mainly domain questions which
are necessary but not essential.

Proof of Theorem 2.4. Note that Eq. (2.17) of Theorem 2.1 and its proof were used
alone to show (2.20)-(2.21) and all of Corollary 2.3. We will show Theorem 2.4 using
this and Eq. (4.26). In (2.28) we use the Fourier representation for the functions of the
operators x and p, respectively,

- exp(ίq p)

7 ~ P - 2y - 1 • (4 29)

We have used the Baker-Campbell-Hausdorff formula in the last step. By the
dominated convergence theorem it is sufficient for (2.28) to show that

exp /q >0 (4.30)

for (a dense set of) Ψe Jjfconl and pointwise in qe Uv. If every eigenvector of H lies in
j2(x2), then £(H) n J(x2) n 2tfcont is dense in tfcont and one can verify (4.30) for Ts in
the dense set (H — z)~ *\_Ά(H) n J(x2) n2tf c o n t]. In general we can approximate any
Ψ = (H-z)-1ΦeJecont by Ψε = (H-z)~lΦε such that | |Φ-ΦJ<ε/2 and
Φεe[ j2(Ή)n ^(x2)]. Then for small enough z

sup \\(H-HPconί)e-iHtΨE\\ <s. (4.31)
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We will show that

lim sup
|ί|-*oo

for any ε > 0 which implies (4.30).
Then

V. Enss

< const ε

(4.32)

exp iq(m*-p\ -1 iέΓ1'1"^

I x \ / x
isq[ m p ] q ί m p]e~ίHtΨt

<l m--P\e~lHtΨε+ I fc

(4.33)

The first two summands in the expectation value converge as |ί| -> oo to
( Ψε,HPcon(Ψε) and - 2( Ψε,HPCOM Ψe), respectively, by (4.26) and (4. 1 7). Using (4.3 1 ) it
remains to estimate

lim
|f|-*oo

- lim sup\(Φε,e
iHt(H - z)-\H - H0)(H -

^ const || Φ - Φ J | + lim sup||(H- zΓ\
|ί|->oo

- H0)(H -
l ~ i m

Φ\\ £

The last summand vanishes asymptotically by Corollary 2.3a), since (H — z)~l

(H - H0)(H - z)"1 is compact and

V. Application to Scattering Theory with Coulomb Interaction

Although we do not prove new results here, we want to illustrate how the asymptotic
observables can be used as a covenient tool in two-body scattering theory.

A useful dense set of vectors in J^cont consists of those with strictly positive and
finite energies, i.e. for any Ψ, there are 0 < a < b < oo such that

Ψ =

By Corollary 2.3b),

lim D -F\a< — <b] \e-imψ
L V 2m /J

(5.1)

(5.2)

On the spherical shell in momentum space we can find & finite decomposition of the
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identity such that

there are v f such that with υi = |v f |,

supp0 f c{p | Ip-
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(5.3)

(5.4)

(5.5)

The precise support condition is not essential. We have chosen it such that
Ojέ slippy and that any two vectors in the support of a given 0. include an acute
angle. With (5.2) we obtain

lim I
I τ l -> oo

Theorem 2.4 implies

lim
| τ | ->oo

= 0.

With the canonical commutation relations it is easy to verify that

lim 9i(p)99i(m-} = 0.
M-oo L V τ / J

Consequently we obtain

lim
| τ |-»oo

e~ίHτψ
= 0.

(5.6)

(5.7)

(5.8)

(5.9)

Thus for long times a scattering state can be approximated by a sum of terms in the
ranges of the finitely many operators

(5.10)

with

A state in the range of P has strictly positive kinetic energy, it is essentially
localized far from the origin: |x | >^|τ| up to rapidly decaying tails with decay
uniform in τ. For large positive τ it is outgoing and for negative times incoming, the
phase space localization is much sharper than those usually applied in geometric
time-dependent scattering theory, (see Sect. V of [8] and references therein for
various related characterizations.)

On the range of a Pf it is easy to control the localization of the state if it
propagates with the free or a modified free time evolution. We will give here a
geometric time-dependent proof of asymptotic completeness for short-range and
Coulomb forces which is particularly simple. There are geometric time-dependent
proofs which cover a wider class of long-range forces [5] and there are many more
using time-independent methods. The point of our proof is the following. The
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information about a scattering state at a late time τ obtained from our asymptotic
observables alone is sufficient to show that the further true time evolution is well
approximated by Dollard's modified free time evolution. Therefore we neither need
an "intermediate" time evolution nor detailed information about the interacting
time evolution. For applications to three body scattering this turns out to be useful
[11] because it is tedious to control intermediate time evolutions, and detailed
information about the interacting time evolution of multiparticle systems is hard to
obtain.

Let the long-range potential be

Vl(x) = q(l+x2Γ1/2, (5.11)

which differs from the Coulomb potential of a pointlike charge by a correction of
short range. For a weaker condition see Remark 5.2 below. In the proof we will use
for the short range part the convenient sufficient condition that it is a local, Kato-
bounded potential with decay

\\Vsg(H0)F(\x\>R)\\εL\U + ,dR) (5.12)

for any geCJ^R). This is sufficient for almost all applications of interest in physics.
Under these assumptions the proofs in Sects. Ill and IV are rather simple. It is a
standard exercise [8] to include a wider class of short-range potentials such that e.g.
the assumptions of Theorem 2.1 are satisfied and the decay assumption is

\\g(H)VaάH0)F(\x\>R)\\eL*(R + ,dR). (5.13)

In our case the modified free time evolution is as given by Dollard [7]

U(t + τ,τ) = e-ίHotU'(t + τ,τ), (5.14)

(5.15)

Theorem 5.1. Let H = H0 + Vs + Vl satisfy (5.77), (5.72) (or as discussed above), then
asymptotic completeness holds, i.e. for any

lim sup || [e~ίm - U(t + τ9τ)^e~iHτΨ\\ = 0. (5.16)
τ-> oo ί ^0

Proof. An approximation of Vl is

VR(X)' — \ L * " J / j j7\
^(x) for #^ |x |<oo,

then

(5.18)

1 H- R

It is sufficient to verify (5.16) for the dense subset of Jfcont which satisfies (5.1). With
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(5.9) we thus have to show
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lim sup [e - '"' - U(t + τ, e ~ <"* ψ = 0 (5.20)
τ->oo ί^O

for each of the finitely many terms labelled by i. With v0 = min^. we have gt(p) = 0 if

|p I ̂  WVQ for all z. It is an easy consequence of Theorem 2.4 and

[?•*'] >0,

that also

With

[p,t/'(ί + τ,τ)] = 0,

[ V W7 ' τ S /

m-,l/'(ί + τ,τ) =-l/'(ί +τ,τ) f ds-(VK,)(
τ J τ J

τ m V

we obtain on the range of g,(p)

[ί X ^ rru ^Ίm p ) , U (t + τ, τ)
IΛ τ / J

(5.21)

(5.22)

(5.23)

(p) f m
t + ~ τ s const

: τ τ m (t;0s)
2 < const-

(5.24)

This implies

x
m p

τ

x
m—

τ
+ const

ln(l + ί/τ)

(5.25)

Now we are ready to apply the Cook estimate to (5.20)

sup || (>-<»' - U(t + τ,

τ) t/(f + τ,

(5.26a)

/ x \
f(l^l < ϋ0(ί + τ))l/(ί + τ, T)^(p)^i m- J

(5.26b)
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+ -VR[±(t + τ) (5.26c)

Here we have regularized Vs by inserting some geC^(U) which satisfies g^^gfo) =
#;(p) for all L The parameter R is chosen such that

D _ /; (f I τ\ (Z ?7\
-fv — l/Q^l ι ^ C^ ? \^J,έ*l f

then by (5.18) [^(x)-ί^(x)] has support in |x | < v0(t + τ) and ϊ^((ί+ τ)p/w) =
VR((t + τ)p/m) on the range of all .̂(p). The integral (5.26b) vanishes as τ-> αo by
(5.12). The same is true for (5.26a) since

F(|x|<ι;0(ί + τ))E/(ί.
x

m—
τ

(5.28)

for any rceN. This is a simple extension of well known propagation properties under
the free time evolution for states well localized in phase space. It is given explicitly as
Corollary 2.12 in [10]. It remains to estimate (5.26c). Since by the functional calculus

_ _ P

m

we have to treat

(5.29)

(5.30)

An elementary calculation with the canonical commutation relations and the Baker
Campbell Hausdorff formula gives for suitable functions h

fcx - τ + (ίm m

This implies with (5.19)

^(x + -i)-M"( i + T)Λ l m / V m

- τ +
m m

x τ
m

m

R2m
m p Φ

(5.31)

- I I Φ I I . (5.32)

With (5.25) and the choice (5.27) we obtain for (5.30)

^ const {(ί + τ)~ 2 [τ/(τ) + In (1 + ί/τ)] + (ί + τ)1 ~α}. (5.33)

The ί-integral over the positive half line exists and vanishes as τ -> oo. This completes
the proof of (5.20) and Theorem 5.1. Π

Remark 5.2. The new ingredient of our proof is the combination of the general
estimate (5.32) with the bound (5.25). The latter is a direct consequence of our results
on asymptotic observables. This is the only place where we have to treat the
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interacting time evolution. A closely related approach was given independently by
Muthuramalingam [18] to show the same results. As assumptions on the long-range
force we have used only (5.19) and integrable decay in (5.18). Thus the class of Vl is
slightly larger than the typical example (5.11). This shows that the special features of
the Coulomb potential, its rotational symmetry and its scaling property, have not
been used.
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