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Abstract. We determine and classify certain algebraic structures, defined on the
space of all complex-valued polynomials in In real variables, which admit
affίne contact transformations as automorphisms. These are the structures
which have the minimum symmetry necessary to define the basic linear and
angular momentum observables of classical and quantum mechanics. The
results relate to the so-called Dirac problem of finding an appropriate
mathematical characterization of the canonical quantization procedure.

Introduction

Consider the space P of complex-valued polynomials in two real variables. The
Poisson bracket operation Λ _ n Λ _ «

{faxJldA_dldA
U ' g ί dx dy dy dx

makes P into a complex Lie algebra. The Dirac problem asks if it is possible to
derive from first principles a mapping θ from P to the algebra D of differential
operators [with polynomial coefficients, acting on L2(1R)] which produces the
correct spin zero quantization of classical mechanical systems [2, 3]. For definite-
ness, we take this to mean that θ should transform each function on IR2 in the form
of a Hamiltonian of a classical system

where V is a polynomial, into the Schrodinger operator on L2(IR),

Here θ should certainly be a linear mapping, which hopefully would transform
Poisson brackets into commutator brackets in the following sense:

θ(f)θ(g) - θ(g)θ(f) = J/=T0({/, g}). (0.1)
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Assuming that θ is surjective, it is not hard to see from (0.1) alone that θ is injective,
and thus the Lie algebras P and D would be isomorphic. This is known to be false
[13, 6], or see Sects. 3 and 4 below.

Let q,p be the canonical coordinate functions: q(x,y) = x, p(x,y) = y. Another
property one might hope to find is

θ(q) = Q, θ(p) = P, (0.2)

where Q and P are, respectively, multiplication by x and (1/]/— \){d/dx). Again,
(0.1) and (0.2) lead to a contradiction, and in fact Chernoff [2] and Joseph [6] have
shown this to be the state of affairs even if one allows Q and P to act with finite
multiplicity on vector-valued functions in L2(IR). If one allows infinite multiplicity
for P and g, then it is possible to satisfy (0.1) and (0.2) [1]. Nevertheless, the
relevance of that positive mathematical result to the problem originally considered
by Dirac is rather dubious, because in the correct Schrδdinger operator

θ(h)=-±Δ + V=±P2+V(Q), (0.3)

the pair (Q, P) is irreducible and therefore has multiplicity one, not infinity.
Our starting point has been to take seriously the fact that P and D fail to be

isomorphic as Lie algebras, and we have consequently abandoned the hypothesis
(0.1) altogether. We ask instead about the existence and uniqueness of non-
classical structures defined on P, having the minimum symmetry necessary to
define the basic linear and angular momentum observables. In both cases
considered below (Lie structures in Sect. 2, algebra structures in Sect. 3), there is
precisely one non-classical isomorphism class, and these considerations give rise to
a naturally defined linear map θ having properties (0.2) and (0.3).

In this paper, all configuration spaces are flat (i.e., there are no constraints) and
finite dimensional. While it is not clear how one might correctly formulate these
results for systems with constraints, a significant part of the development can be
generalized to the flat infinite-dimensional case appropriate for quantization
problems involving nonlinear field equations [10], such as

Πφ + m2φ + gφ3=0 (0.4)

in the realistic case of four-dimensional spacetime. Specifically, the algebras P(λ)
and A(λ) of Sects. 3 and 4 have been constructed in this case, and the existence of
Hubert space representations of A(λ) for imaginary λ has been established. These
matters will be taken up elsewhere.

1. Bilinear Maps

Throughout this paper, (Σ, ω) will denote a symplectic vector space that is, Σ is a
finite-dimensional real vector space and ω is a distinguished bilinear mapping of Σ
into the reals satisfying

(i) ω(x, y)=- ω(y, x),

(ii) ω(x, ) = 0 => x = 0.
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There is no loss of generality if one considers Σ to be the direct sum E®E' of a real
"configuration space" E with its dual E\ and ω to be given by ω((x, /),(y, g))
=f(y) — g(x). The simplest example is of course Σ=IR 2, with

ω((xvy1\ (χ2, y2)) = x2yx -x1y2.

Now C°°(Σ) (or merely C°° if there is no chance for confusion) will denote the
algebra of all complex-valued smooth functions on Σ. A polynomial is an element in
the complex subalgebra of C00 generated by the constants and the real linear
functional ueΣ'. Here P will denote the complex vector space of all polynomials.
By a known polarization argument, one can see that every polynomial / is a
complex linear combination of elementary polynomials f(x) = u(x)n,
n = 0,l,...,weΓ, [4].

The purpose of this section is to determine all bilinear maps of P into itself
which are invariant under the action of affine contact transformations. The
principal result is that such a mapping is a unique infinite linear combination of
basic ones { , }p, p = 0,1,..., which are higher order analogues of Poisson brackets
(for odd p) and of functional multiplication (for even p).

We begin by recalling the definition of Poisson brackets. Let/be a reα/-valued
smooth function. For each x e l w e obtain a linear functional on Σ by

Since ω is nondegenerate, there is a unique vector Df(x)eΣ satisfying the condition

)f

for all yεΣ. Thus x^-Df(x) is a nonlinear smooth mapping of Σ into itself. If / i s a
polynomial of degree w, then Df is a polynomial mapping of degree n— 1.

For real-valued f,geC°°, the Poisson bracket is defined to be the smooth

For complex / and g, {/, g} is defined by bilinearity

If/and g are polynomials of respective degrees m and n, then {/ g} is a polynomial
of degree at most m + n — 2. Note also that i f/and g are linear functionals on Σ,
then {/ g) is a constant whose value is ω{f, g\ where for example /is the element of
Σ defined by ω(/,x)=/(x), xeΣ.

We now define a sequence { , }p of bilinear maps of C00 into itself as follows.
Put {f,g}0=f g, {f,g}i = {f>g}> I n order to define { 9-}p for p ̂  2 we require some
preliminaries. Fix p and let Σ p denote the symmetric tensor product of p copies of
Σ. There is a bilinear form ωp on Σp which is determined uniquely by the condition

ωp(x{p\ yip)) = ω(x, # ,

where z(p) denotes the elementary tensor z®z® ... ®zeΣp. Since ω is nonde-
generate, ω p is nondegenerate for every p ^ l . ω p is symmetric for even values
of p and antisymmetric for the rest.
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Now choose a real-valued / i n C°° and fix xeΣ. We may define a symplectic pth

order derivative Dpf(x)eΣp by the requirement that

dp

a?(D*f(x\y™)=—f(x + ty)\t = 0 (1.1)

should hold for all yeΣ. In more detail, the function

dp

/

is a real-valued homogeneous polynomial of degree p onΣ and therefore defines a
linear functional on Σp via

^ 4 ^
j=ί 7 = 1 " Γ

n = l,2, . . . ,α 1 5 ...,αneIR, j/ l 9...,y nεΣ. The existence and uniqueness of Dpf(x)
in Eq. (1.1) now follow from the fact that ωp is nondegenerate and {yip):yeΣ}
spans Σp.

Here Dpf is a smooth mapping of Σ into Σ p and, if/ is a polynomial of degree ft,
then Dpf vanishes for p > n and is a polynomial of degree n — piϊp^n. For /, g real-
valued functions in C00, we put {/, g}p(x) = ωp(Dpf(x\ Dpg(x)). As before, the
definition of {/ g}p is extended to complex-valued / and g by bilinearity over (C. If
/ and g are polynomials of degree m^p and n^p, respectively, then {fg}p is a
polynomial of degree at most m + n — 2p; if p is larger than the minimum of the
degrees of/ and #, then {/ g}p = 0. Here { , }p is symmetric for even p and
antisymmetric for odd p.

A contact transformation is a self-diffeomorphism of Σ which preserves the two-
form associated with ω. It is well-known [1] that every contact transformation φ
leaves the Poisson bracket invariant in the sense that {f°φ,g°φ} = {/ g} °φ, for all
/ ^ e C 0 0 . While this is false for the higher order brackets { , }p5 p=^2, these
structures are invariant under a large enough subgroup of contact transformations
to enable one to define the basic linear and angular momentum observables of
classical mechanics. An affine contact transformation is a contact transformation
that preserves the affine structure of the vector space Σ. The most general affine
contact transformation has the form φ(x) = Ax + x0, where xoeΣ and A belongs to
the symplectic group sp(Γ), i.e., A is a linear automorphism of Σ such that
ω(Ax, Ay) = ω(x, y) for all x,y. The set AC(Σ) of all affine contact transformations
has the structure of a semidirect product of Lie groups AC(Σ) = Σ® sp(2Γ), where Σ
denotes the additive group of the vector space structure on Γ, and AC(Σ) is of
course itself a Lie group.

Proposition 1.2. For each p^O and φeAC(Σ), we have

for each fgeC00.

Proof It suffices to verify the formula for real-valued / and g. For p = 0, the
assertion is simply that the map f^f°φ preserves the multiplicative structure of
C00. So fix p ^ l .



Uniqueness of Quantizations 81

Because of the semidirect product structure of AC(Σ), it suffices to verify
{f°φ,g°φ}p=

i{fg}p

oφ for maps φ which are either translations or belong to
sp(Σ). Suppose first that φ(x) = xJrx0, xoeΣ. Then

{/> g}p(x + x0) = ωp(Dpf(x + χ 0), Dpg(x + x0)),

and it suffices to notice that Dpf(x-\-x0) = Dp(f°φ)(x\ a fact that follows immedi-
ately from the definition of Dp:

ωp(Dp(foφ) (x), /*»)= ^-pf°Φ(x + ty)\t = 0

for all x,yeΣ.
Now assume φ belong to sp(Σ). There is a unique representation Γp of sp(Σ) on

the vector space Σp, defined on elementary tensors by Γp(A)x(p) = (Λx)ip\ for xeΣ,
Aesp(Σ). Note first that for each Aesp(Σ\ we have ωp(Γp(A)ξ, Γp(A)η) = ωp(ξ, η\ for
all ξ,ηeΣp. Indeed, it suffices to check this on elementary tensors ξ = x{p\ η = y{p\
and then we have

ωp(Γp(Λ)xip\ Γp(Λ)y(p)) = ωp((Λx)(p\ (Ay)ip)) = ω(Ax, Ay)p = ω(x, y)p = ωp(x(p\ yip)),

because A leaves ω invariant.
Next we claim that Dp(foA)(x) = Γμ(AΓ1Dpf(Ax)9 for each xeΣ. Indeed, for

each yeΣ we can write

= ωp(Dpf(Ax\ (Ay)ip)) = ωp(Dpf(Ax\ Γp(A)y{p))

proving the claim.
Finally, we have the required identity

{foA, goA}p(x) = ωp(Dp(foA) (x), Dp(g°A) (x))

= ωp(Γp(AΓ ιDpf(Ax\ Γp(A)- ιDpg(Ax))

= ωp(Dpf(Ax\ Dpg(Ax)) = {/, g}p(Ax). •

Let ao,ava2,... be an arbitrary sequence of complex numbers. Since for any
two fixed polynomials / g the brackets {/, g)p vanish for large p, the infinite series

00

Σ ap{f>g)p

is only finitely nonzero and it therefore defines a bilinear mapping [/, g~] of P x P
into P. The preceding proposition implies that this bilinear map is invariant under
all affine contact transformations. Conversely, we have

Theorem 1.3. Every bilinear mapping [ , •] of P into itself satisfying
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for all affine contact transformations φ has the form

oo

[/>#]= Σ ap{f>g}P
p=0

for a unique sequence of complex numbers ao,av

Thus, the brackets { , }p form in a natural sense a linear basis for the vector
space of all bilinear maps of polynomials which are invariant under the action of
AC(Σ).

Before giving the proof, we require a result from classical invariant theory [12,
Theorem 6.1 A] in a form appropriate for our purposes. For the reader's con-
venience, we sketch a proof.

Lemma 1. Let φ:Σ' xΣ"->ΊR be a real-valued polynomial in two vector variables
which is invariant under the action of the symplectic group:

<Mf°A,goA) = φ(f,g), f,geΣ',

for all Aesp(Σ). Then φ has the form

Φ(f,g)= Σ ak{f,g}k,
fc = O

for some a0, ...,απeIR, n^O.

Proof φ decomposes uniquely into a finite sum

Φ(f,g)= Σ Φpq(f,g),

where φpq'Σ
f x Σ'-»IR is a homogeneous polynomial of degree (p,q) in the sense

that φpq(sf tg) = sptqφpq(f g\ for scalars s, t. Thus it suffices to show that φpq = 0 if
pφq, and that φpp(fg) = λp{fg}p, for some λ p eR

Recall first the representations Γp? p = 0,1,2,... of sp(Σ) on Σp defined in the
proof of 1.2 (for p = 0, Σ° is taken as 1R and Γo is the trivial representation). It is
classical that each of these representations is irreducible in the sense that it has no
nontrivial invariant subspace. This implies that if L:ΣP~+Σq is a nonzero linear
transformation which intertwines Γp and Γψ

LΓp(A) = Γq(A)L, ^Gsp(Σ), (1.4)

then p = q and L is a scalar multiple of the identity. Indeed, since L + 0 and Γp and
Γq are irreducible, (1.4) implies that L is one-to-one and onto. Since Σp and Σq have
different dimensions if p φ q, we must have p = q and since L commutes with the
irreducible set of operators Γp(sp(Σ)\ Burnside's theorem [5, p. 276] implies that L
is a scalar.

Now fix p, q such that φpq φθ. Define a polynomial ψpq: Σ x Σ->JR. by ψpq(x, y)
= φpq(x,y), where χκ>3c is the linear isomorphism of Σ onto Σr defined by the
condition x(y) = ω(x,y), x,yeΣ. We have x°A = (A~ίxY for each symplectic
automorphism A of Σ, and hence ψpq is a nonzero homogeneous polynomial of
degree (p, g) which satisfies i/;pq(̂ 4x, Ay) = ψpq(x, y). We have to show that p = q and
φpp(x, y) = Aω(x, y)p for some scalar λ.
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Now for each xeΣ, there is a unique vector x' in Σq such that ωq(x\y(q))
= ψpq(x,y\ for all yeΣ [because ωq is nondegenerate and yt-*ψpq(x,y) is a
homogeneous polynomial in y of degree q]. Since for each fixed y, χ\->ψpq(x, y) is a
homogeneous polynomial of degree p, there is a unique linear operator L:ΣP-+Σq

satisfying L(x{p)) = x' for each xeΣ, i.e., ωg(L(x(p)),yiq)) = \ppq{x,y\ x,yeΣ. Here L is
nonzero because ΨMΦO, and we have LΓp(Λ) = Γq(A)L because

ωq(LΓp(A)x{p\ yiq)) =

g ^yM) = ωq(Γq(A)L{x{p)\ y{q)),

for all x,yeΣ and because the elementary tensors span Σp and Σq. The preceding
remarks now imply that p = q and L = λ, /lelR. Hence,

= λωp(xip\ yip)) = λω(x, y)p,

as required. •
We shall also require a convenient formula for {/, g}p when / and g have a

particular form. Let F:1R-»C be a complex-valued smooth function of a real
variable. For every linear functional ueΣ\ we can form the composite function
F(u)εC°(Σ),F(u):χv->FMx)).

Lemma 2. Let u.υeΣ' and F, GeC°°(IR). Then we have

{F(u\ G(v)}p = {M, ϋ } ¥ 1 M ) G ( 1 ή ,

w/iere F ( p ), G(p) denote ί/ιβ pth derivatives of F, G.

Proof. To avoid confusion between the notation for pth derivatives and elementary
tensors in Σp, in the proof to follow we will write Fp for the pth derivative of F and
reserve x{p) for elementary tensors x(χ)... ®x in Σp.

Using bilinearity, the proof of Lemma 2 reduces to the case where both F and
G are real-valued. We claim first that one has the following variant of the chain
rule:

x) = Fp(u(x))u{p\ xeΣ,

where for ueΣ', u is the vector in Σ defined by the condition ω(u,z) = u(z\ zeΣ.
Indeed, for each x,yeΣ we have

dp dp

— F(u(x + ί3,))|t=0 - — F(u(x) + tu(y))\t = 0 = Fp(u(x))u(y)p

άtp dv

= Fp(u(x))ωp(uip\ /p)) = ωp(Fp(u(x))u{p\ y{p)),

and the formula follows from the definition of Dph for fiGC°°(Σ).
Noting that Du is the constant function Du(x) = u, we obtain

{F(u), G(v)}p{x) = ωp(Fp(u(x))uip\ Gpv(x))v{p))

= ωp(u{p\ v{p))Fp(u{x))Gp(v(x))

= ω(u,v)pFp(u(x))Gp(v(x))

= {u,v}pFp(u(x))Gp(v(x)). Π
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Proof of Theorem 13 (Existence). Let [ , ] be a bilinear map of P having the
stated invariance property. For each p,g^0, define a function φpq:Σ

f x Σ'->IR by

j

Note that φpq is a homogeneous polynomial of degree (p, q) in its two variables
and, for each A in the symplectic group of Σ, we have

ΦJUOA, ϋ«i)= - ί γ lu'°A, tfloA] (0)

By applying Lemma 1 separately to the real and imaginary parts of φpφ we
conclude that Φpq = 0 if p + g, and that φpp has the form φpp(u,v) = ap{u,v}p, for
some αpe(C. This defines the sequence α 0 , α 1 ? . . . .

Now choose u,veΣ' and fix m,/t = 0,1,2, Using the binomial theorem and
translation invariance of [ , •], we write

[wm, i/1] (x) = [(t/ + t/(x)l)m, (v + ι (x)l)"] (0)

_ "^n (rn\/n\ p

p,q = o\p)\<l)

Thus we have

' J (m-p)Γ (n-q)\

n

p = 0

where the last equality uses the formula from Lemma 2. Notice that since
{um,vn}p = 0 for all p>n, we can rewrite this formula as

GO

p = 0

holding simultaneously for all u,veΣ' and all nonnegative integers m,n. Since
polynomials of the form ww, weΓ, n^O, span P, we are done.

of Uniqueness. Let α ^ α ^ ... be a sequence of complex numbers such that

p=0

for all/,06P. We have to show that α =0 for all p. Taking f=g=l yields α o=0.
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Assume ap = 0 for all pf^n. Then for every pair u,veΣf, we have {un+1,vn+1}p = 0
for all p>n+l, and

{u"+\vn+1}n+1=(n+iy.2{u,v}n+1

by Lemma 2 above. So if we choose u and v so that {u, v} = 1, then we obtain

Hence an+1 = 0, and the proof is completed by induction. •

2. Lie Structures

In this paper we use the term Lie algebra to denote a complex vector space E
endowed with a bilinear mapping [ , ] of £ into itself which satisfies [x,y]
= — [y,x], together with the Jacobi identity

It is well known that the Poisson bracket operation defines a Lie algebra structure
on C™(Σ\ [1]. This is false for the higher order brackets { , }p9 p^2. Indeed, for
even values of p the bracket { , }p is not even antisymmetric, and for odd values of
p the Jacobi identity fails. In order to obtain a new Lie bracket on P which is
invariant under the action of AC(Σ\ it is necessary to form an infinite linear
combination of the { , }p in such a way that the combined defects from the Jacobi
identity cancel out. The purpose of this section is to show that there is one way,
and essentially only one way, to accomplish this.

We begin by considering bilinear maps which are finite linear combinations of
the basic brackets { , }p. Let φ be a polynomial in a complex variable z:
φ(z) = ao + a1z+ ... +aNzN. We can define a bilinear operation [ , •] on smooth
functions f9geC°° by

We shall use the notation

</, g, h>φ = [/, [0, K\φ-\φ + [0, lh,f]φ}Φ + [Λ, [/, 0]*] φ (2.0)

for triples of functions /, g, h in C00, and we will consider along with φ the three-
variable polynomial Φ:(C3-»(C defined by

Φ(Λ;, j/, z) = 0(z)^(x + y) + φ( - y)φ(z -x) + φ(x)φ( -y-z).

Proposition 2.1. For every u,v,weΣ' we have

O", e", ew}φ = Φ({u, v}, {u, w}, {υ, w})e"+"+ w .

Proo/ By Lemma 2 of the preceding section we have
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Hence,

The required equation follows by permuting u, v, w cyclically in this formula and
adding the three expressions. •

For each u^O, let Pn denote the space of all polynomials fe P having degree at
most n. We will say that < , , }φ vanishes on Pn if </, g, h}φ = 0, for all /, g, h in Pn.
We have to connect this property with the polynomial Φ in a way that is
independent of the degree of φ. For that, let

Φ(x,y,z)= Σ Apqrx*y*/
p,q,r^0

be the (finite) power series expansion of Φ. Then we have:

Proposition 2.2. Let φ be a polynomial and let n be a positive integer.

(i) If < , , )φ vanishes on Pn, then Apqr = 0 for all p, q, r satisfying p + q + r^-.

(ii) // Λpqr = 0 for all p,q,r satisfying p + q + r^—-, then <(•,-, )φ vanishes

on Pn.

Proof, fi) We write ez = p(z) + zn+1q(z), where

and q(z) is the entire function defined by the above formula. Fix three linear
functionals u, v, we Σ''. Using trilinearity of < , , )^, we can write (eu, ev, ez}φ as a
sum of eight terms

where, for each j , at least one of the entire functions fp gp h. has a zero of order
n + 1 at the origin. Since p(u\ p(v\ p(w) all belong to Pn, the first term vanishes, and
hence for each real number t we can write <eίM, etv, etw}φ in the form tn+ 1h(t), where
h :JR->P is a P-valued analytic function which, of course, depends on u, v9 w. Using
Proposition 2.1, we conclude that the complex-valued polynomial in t,

ίeRκ>Φ(ί2{w, v}9 t
2{u, w}, t2{v, w}), (2.3)

vanishes at ί = 0 at least to order n+1.
Let (x, y, z) denote the (fixed) triple of real numbers ({w, ϋ}, {w, w}, {t;, w}). Using

the power series expansion for Φ in the function of t defined by (2.3) we conclude
that
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vanishes at t = 0 at least to order n+ 1. It follows that

for every nonnegative integer v satisfying v ̂  , and every triple (x, y, z) of real

numbers arising from a triple w, υ, weΣ' as above. Since the image of the mapping

(u, v, w) e Σ' x Σ' x Σ' κ>(x, 3;, z) e IR3

has nonvoid interior (for example, if we choose any pair/ geΣ' such that {/ g} = l,
then the image of all triples of the form (α/ bg, c{f+g)\ α, b, ceIR, contains the set
{(ab.ac, — bc):a,b,ceIR}, which has nontrivial interior), it follows that the homo-
geneous polynomial on the left in (2.4) must vanish identically in x,y,z. We

conclude that Apqr = 0 for all p,q,r satisfying p + q + r^- ^ , as required.

(ii) For each integer v^O, define a function MV:Σ' x Σ' x Σ'->P by

Mv(w, v, w) =

Here M v is a polynomial in (u, 1;, w), and notice that for every triple ij, k of
nonnegative integers satisfying ί + j + /c=v, we have

Qi + j + k

(u\v\w }φ = dχίdyjδzkMv(xu,yv,zw)l(0>0>0). (2.5)

We claim that Mv = 0 for all v ̂  3n. To see this, fix w, ϋ, w in Z1'. Letting p be the
complex polynomial,

3n k

we can write ez = p(z) + z3"+1^f(z), where q is an entire function. Using trilinearity,
we may expand <eίM, etv, etw}φ to obtain

where the remainder R(t) is a sum of seven terms, each of which vanishes at ί = 0 at
least to order ί3lI+1. Write

3n

<P(tu),P(tv),p(tw)yφ= Σ
i

9n

= Σ ίvM>,ϋ5w),
v = 0

where M v is as defined in the preceding paragraph. Utilizing Proposition 2.1, we
have

9n

Σ ί v M > , ϋ, w) + Λ(ί) = Φ(ί2x, ί 2 j , ί2z)β ίM+ίϋ + ί w , (2.6)
v = 0

where we have taken x = {u, υ}, y = {u, w}, z={v,w}.
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Notice that the right side of (2.6) vanishes at ί = 0 to order at least ί3n+1.
Indeed, since Apqr = 0 for 2p 4- 2q 4- 2r ̂  3n by hypothesis, the lowest power of ί that
can appear in

yf̂ /y.2 .̂ f2,, f 2_\ V/4 f2p+ 2# + 2r^pΛ q r
Ψyi Λ, I y^l Z) — Δi JΛ. I X y Z

is ί3"+1, and the assertion follows. Thus,

9n

X ί v M > , ι?, w) = Φ(ί2x, 12y, t2z)etu+tv + tw- R(ή

vanishes to order t3n+1 att = 0, and hence Mv(u, v, w) = 0 for all v ^ 3n, which is the
original claim we wanted to prove.

To complete the proof, we have to show that (fg,h}φ = 0 for all f,g,h in Pn.
Since Pn is spanned by elements of the form u\ where ueΣ' and i = 0,1, ...,n, it
suffices to show that (u\ v\ wk}φ = 0 for all u, v, we Σ', ij, k = 0,1,..., n. So fix these
six quantities and let v = i +j 4- k. Since v ̂  3n, the preceding paragraphs imply that
M v = 0, and so Eq. (2.5) provides the conclusion. •

We now show that Proposition 2.2 can be extended to the case of bilinear maps
which are infinite linear combinations of the basic brackets { , }p. Let φ be an
arbitrary formal power series with complex coefficients

oo

φ(z)= Σ apz\
p=0

and let [ , ] be the associated bilinear mapping of polynomials

00

p=0

We may form the power series Φ(x,y, z) much as we did before when φ was a
polynomial,

Φ(x, y, z) = φ(z)φ(x + y) + φ(- y)φ(z -x) + φ(x)φ( -y-z), (2.7)

but now Φ must be interpreted as an element of the algebra of all formal power
series in three variables:

where the coefficients Apqr are uniquely determined by the coefficients of φ via
(2.7). Let < , , >φ be the trilinear mapping of polynomials defined by the formula
(2.0).

Proposition 2.8. Let n be a positive integer and let φ be a formal power series.

(i) // < , , >φ vanishes on Pn, then Apqr = 0 for all p, q9 r satisfying + + ^L

r(ii) // A p q r = 0 for all p,q,r satisfying p + q + r^~, then < - , - , • > vanishes
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Proof. For each rc^l, let φn be nth order polynomial obtained by truncating φ,
φn(z) = a0 + a1z + ... +anz

n. We claim first that if f,g, he Pn, then

']φ]φ = [/, [g, h]φJφn,

Indeed, since {/ g}p vanishes when p is larger than the minimum of the degrees of/
and g, we have {/, {g, h}p}q = 0, f,g,hePn, whenever either one of the indices p,q
exceeds n. It follows that

00

U,Vg^W= Σ apaq{f,{g,h}P}q

p,q=O

n

p,q = O

The proof of the second formula is similar.
It follows that the restrictions of < , , ) φ and < , , >φv to Pn x Pn x Pn agree

whenever v^n.
To prove (i), fix n ^ l . For each v^n, we form φv and the polynomial Φv

obtained from it via (2.7). Let

00

Φv(x,y,z)= X Apqr( )xpyqzr

p,q,r = O

be its finite series expansion. Now it is clear from the definition of the Φ's in terms
of the φ's that, for fixed p, q, r, we will have Apqr(v) = Apqr for large enough values of
v (which will, of course, depend on p, q, r). Thus, assuming that < , , }φ vanishes
on Pn, we see from the preceding comments that < , . >ψv vanishes on Pn for every
v^n. Proposition 2.2 implies that Apqr(v) = 0 for every triple p,q,r satisfying p + q

-f r ^ - and for every v ̂  n. Since there are only a finite number of such triples, we

may choose v so large that Apqr(v) = Apqr for all such p, q, r, hence the conclusion

Assertion (ii) follows along similar lines. Fix n ^ l and assume that Apqr = 0

whenever p + q + r ^ —. Again, since there are only a finite number of such triples

p,g,r, we may find v ^ π s o that

for all p,q,r in the stated region. Applying 2.2(i) to the polynomial φv, we
conclude that < , , }φv vanishes on Pn and since < , , }φ and < , , }φv agree on
PnxPnx Pn whenever v ̂  n, the proof is complete. •

Let α o ,α 1 ? . . . be the numbers defined by the power series expansion

sinx v « x2 x*
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For every complex number λ, define

U,9\= Σ ^λ"{f,g}n+1

for polynomials fg. The results of the preceding section imply that [ , -~\λ is a
bilinear map of P into itself which is invariant under the action of all affine contact
transformations. This bracket is antisymmetric because { , }p is antisymmetric for
odd values of p. Notice also that, for fixed / and g, the function λ\->\_fg~\λ is a
P-valued polynomial in the complex variable λ, which coincides with the Poisson
bracket {f,g} when A = 0. We are now in position to show that [ , ] Λ is a Lie
bracket for all complex λ.

Theorem 2.9. [ , ] λ satisfies the Jacobi identity for every λe<£.

Proof We may assume /ίφO. Fix λ, and let φ be the power series

(λz)3 (λz)5

λ z + +

We can write [fg^λ = λ~1[fg~]φ, and therefore it suffices to show that [-,•]</>
satisfies the Jacobi identity. By Proposition 2.8, this is equivalent to the condition
that

Φ(x, y, z) = φ(z)φ(x + y) + φ(- y)φ{z - x) + φ(x)φ( -y-z)

should vanish in the ring of formal power series in three variables. But the
standard trigonometric identities sin ( — Λ)= — sin ,4, and

sin 04 + B) = sin A cosB + cos^ sinB

imply the formal identities

φ(-z)=-φ(z),
(2.10)

φ ( z 1 + z 2 ) = φ(zΐ)ψ(z2) + ( ^ ( )

where ψ is the power series

) = cos(λz) = l

and a routine substitution of (2.10) in the expression for Φ(x,y,z) implies that

Φ = 0. D

Remark. Paul Chernoff has pointed out that this bracket is essentially the same as
the Lie bracket introduced by J. E. Moyal using quite a different method [8]. The
definition of Moyal brackets involves operator methods and the Fourier trans-
form consequently it becomes a formal expression when applied to polynomials.
But the formalism is essentially equivalent to the above definition of [ , ] λ , and
with care can be reformulated rigorously.

We show now that the brackets [ , ] λ are essentially the only ones possible.
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Theorem 2.11. Let [ , •] be a Lie bracket on the space P which is invariant under all
affine contact transformations. Then [ , •] has the form [/,^]=α[/,gf]λ for some
pair of complex numbers α, λ.

Proof. The results of Sect. 1 imply that [ , ] has the form

00

p = 0

for a unique sequence of complex numbers ap. Since [/, g] + [g, /] =0 and {g, f}p

= ( - W , 0 k , w e h a v e

By the uniqueness assertion of Theorem 1.3, we conclude that ap = 0 for even
values of p.

It follows that the power series

φ(z)= £ apz
p

p = 0

satisfies the formal identity φ( — z)=—φ(z). Moreover, by Proposition 2.8(i) we
may conclude that φ satisfies the formal identity

φ(z)φ(x + y) + φ(- y)φ(z - x) + φ(x)φ( -y-z) = O (2.12)

in the ring of formal power series in x, y, z.
The remainder of the proof simply consists of showing that the only formal

power series solutions of (2.12) satisfying φ( — z)= —φ(z) are of the form

for some A, λ in C. Note that this implies the conclusion of the theorem by setting
oc = Aλ.

We may clearly assume that φή=O. Using φ( — z)= —φ(z% we rewrite (2.12) in
the form

φ(z)φ(x + y) = φ(y)φ(z - x) + φ(x)φ(y + z).

We may formally differentiate this once with respect to y and twice with respect to
z, and then set y = 0 and z = x to obtain

φ"(x)φ'(x) = Φ'(O)φ"(O) + φ(x)φ'"(x).

Since φ"(0) = 2a2 = 0, we have

φ"(χ)Φ'(χ)-φ(χ)Φ'"(χ)=O.

We will make use of the following result from the elementary theory of formal
power series

Lemma. Let φ, ψ be formal power series in a single variable such that φ'ψ — φψ' = 0.
Then φ and ψ are proportional.



92 W. Arveson

Applying this to the pair φ,φ" and using the fact that φφO, we conclude that
there is a complex number λ such that φ"(x) = —λ2φ(x). By a familiar argument,
the only power series solutions of the formal differential equation φ" + λ2φ = 0, are
of the form φ(z) = Asin(λz) + Bcos(λz). Since φ satisfies φ( — z)=—φ(z), we
conclude that B = 0. •

We now take up the question of equivalence among the various Lie structures
described in Theorem 2.11. By an isomorphism of two Lie algebras s#vsί2 we
mean the usual complex linear isomorphism φ\si1-

j>si2 which satisfies
[0(x), θ(yj]2 = 0([x, y] x) for all x, ye ^ / r Note that if sf is any Lie algebra and α is a
nonzero complex number, we can define a new Lie bracket [ , •]' on si by
[x, y]' = α[x, j;]. The resulting Lie algebra si' is however isomorphic to the original
one via the mapping θ:s/->s/' given by Θ(X) = OL~1X.

For every complex number i, let P(λ) denote the Lie algebra of all complex
polynomials on Σ, relative to the bracket

; 4

By (2.11) and the preceding remarks, every nontrivial ,4C(Σ)-invariant Lie
structure on P gives rise to a Lie algebra isomorphic to P(λ) for some complex
number λ.

Theorem 2.13. The Lie algebras P(λ) are mutually isomorphic for all nonzero λ.

The proof of 2.13 uses a universal property of polynomials for which we lack
an appropriate reference. We state this result as a lemma and sketch the proof, a
routine application of the lore of tensor products.

Lemma. Let Ebe a complex vector space, let fo£E and, for each n^ 1, let fn: Σ'-+E
be a homogeneous polynomial mapping of real vector spaces of degree n. Then there
is a unique linear map F: P(Σ)-+E satisfying

F(tι") = /„(«),

for every ueΣ\ w^l .

Sketch of Proof Let Qn denote the space of all complex-valued homogeneous
polynomials of degree n in P(Σ). Then we have a direct sum decomposition
P(Σ) = Q0 + Q1+ ..., and so it suffices to show that for each n^ 1 there is a unique
linear map Ln:Qn-+E satisfying Ln(un) = fn(u\ ueΣ'.

Now Qn is the complexification of the space ReQn of all real-valued poly-
nomials in Qn. Moreover, if (Σ')n denotes the symmetric tensor product of n copies
of Σ\ then there is a natural real-linear isomorphism α of (Σ')n onto Reβ n satisfying
a(u(n)) = un, ueΣ' [the existence of α follows from the familiar universal property of
tensor products, and injectivity of α is equivalent to the fact that the natural
pairing of (Σ')n with Σn identifies {Σ'f with the dual of Σ71]. It follows that Qn is
naturally isomorphic to the complexification of (Σ")Λ, and the assertion now
follows from the universal property of tensor products. •

Proof of 2J3. Fix λή=0. We will exhibit a Lie isomorphism of P(λ) onto P(l).
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Let μ be any nonzero complex number. By the lemma, there is a unique linear
mapping θ of P onto itself such that 0(1) = 1, and θ(un) = μnun, weΣ", w_ 1. The same
lemma implies that θ is a linear automorphism whose inverse is given by
θ" 1 ( l) = l, θ~ι(un) = λ-nun.

Let Qn denote the space of all homogeneous polynomials of degree n in P. Then
Qn is spanned by [un:ueΣ'}, and hence θ(f) = μnf for all / e β w . It follows that
θ(upυq) = μp+qupυq for all nonnegative integers p, q and all U,VEΣ'.

We claim that {Θ(f\θ(g)}p = μ2pθ({f,g}p). Indeed, for all u,veΣf and m , ^ 0 ,
we have

{θ(um\ θ(υn)}p = { μ V , μ V } p = μM + Λ{iΛ t;"}p.

On the other hand, using Lemma 2 of the preceding section, we can write

{u^vn}p = Cmnp{u,v}pum-pv"-p

for appropriate coefficients Cmnp9 and hence

= μm + "{θ(um), θ(υ")}p={θ(um), θ(v")}p

The claim follows because P is spanned by {ι/":mϊ;0, ueΣ'}.
Now choose μ to be a square root of λ. Then we have

Thus /l"1^ is the required Lie isomorphism of P(λ) onto P(l). Π
The only question remaining is whether or not P(l) is isomorphic to P(0). The

answer is no. A theorem of Wollenberg [13] implies that the Poisson algebra P(0)
admits Lie derivations which are outer, whereas Joseph [6] has shown that every
Lie derivation of a certain Lie algebra, which is isomorphic to P(l) by the
discussion of the following sections, is inner.

3. Associative Algebra Structures

We indicate in this section how the methods of Sect. 2 allow one to determine all
associative algebra structures on P which admit the group AC(Σ) as automor-
phisms. Again, there are exactly two isomorphism classes, the usual commutative
algebra structure determined by pointwise multiplication and a new algebra
which, in Sect. 4, we show is the complex algebra generated by the canonical
commutation relations for an appropriate number of degrees of freedom. By a
multiplication in P we mean a bilinear mapping [ , •] :PxP-+P which is
associative, [/, [#, hj] = [[/, #], h], and is nontrivial in the sense that [/, g] Φ 0 for at
least one pair f,g of polynomials. The multiplication is called invariant if
\_foφ,g°φ] = [_f>9]°Φ for every affine contact transformation φ. Of course, the
usual pointwise multiplication of functions defines an invariant multiplication
which is also commutative.
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Let φ(z) = ao + a1z+ ... be a formal power series in a single variable and let
[ , ]φ be its associated bilinear map,

oo

p=0

To measure the defect of [ , ] ψ from the associative law we define a trilinear form

</, 9, h)φ = [[/, 0],, ft], - [/, [0, ft]^, (3.0)

and a three-variable formal power series Φ(x, y, z) = φ(x)φ(y + z) — φ(z)φ(x + y).
In the special case where φ is a polynomial, then of course so is Φ, and we may

define \_f,g~\φ and (fg,h}φ for arbitrary smooth functions /,^,/zeC°°(Γ) as in
Sect. 2.

Proposition 3.1. // φ is a polynomial then, for every u,υ,weΣ', we have

The proof of 3.1 is a trivial variation of the proof of Proposition 2.1, and we
omit it. In general, let

00

Φ(x y z ) - y A x^y^zr

p,q,r = 0

be the power series expansion of Φ.

Proposition 3.2. Let n be a positive integer and let φ be a formal power series.
(i) // < , , }φ vanishes on Pn, then Apqr = 0 for all p,q,r satisfying p + q

onPn.

(ii) // A p q r = Q for all p,q,r satisfying p + q + r^—, then < , , - } φ vanishes

Proof. Once we are given Proposition 3.1, the arguments of Propositions 2.2 and
2.8 can be repeated verbatim to establish (i) and (ii). •

As an immediate consequence, we have

Corollary. Let φ + 0 be a formal power series. In order that [ , -~\φ should define a
multiplication on P, it is necessary and sufficient that φ should satisfy the formal
equation

φ()φ( + ) φ()φ( + ). (3.3)
It is a simple matter to verify that the most general solution φ of (3.3) is given

φ(z) = Aeλ\ (3.4)

where A and λ are complex numbers. Indeed, assuming φ satisfies (3.3), we may
formally differentiate (3.3) with respect to y and set y = 0 to obtain φ(x)φ'(z)
= φ(z)φ'(x). This implies that φ'(z) = λφ{z) for some complex constant λ, and (3.4)
follows. That (3.4) implies (3.3) is apparent. Thus we may conclude as in Sect. 2
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Theorem 3.5. The most general invariant multiplication in P is given by

P = o P]-

where A, λ are complex numbers with A φ 0.

We now determine the isomorphism classes of these algebras as λ and A vary.
In general, if s/ is any complex associative algebra and A is a nonzero complex

number, we can define a new associative multiplication on s$ by [x, y~]=Ax- y,
thereby obtaining a new algebra stf'. The map θ(x) = A~1x is an isomorphism of sd
onto $#'.

Thus we need only consider multiplications on P of the form

P = O P-

where λeC Let stf{λ) denote the corresponding algebra. Note that J / ( 0 ) has the
usual commutative algebra structure of pointwise multiplication.

Theorem 3.6. The algebras jtf(λ) are mutually isomorphic for all nonzero λ. jtf(l) is
not isomorphic to s/(0).

Proof Let μeC satisfy μ2 = λ and let θ: P-+P be the unique linear automorphism
satisfying 0(1) = 1, θ(un) = μnu\ ueΣ\ n ^ l , as in the proof of 2.12. The proof of 2.12
also shows that {θ{f\θ(g)}p = λpθ({fg}p). It follows that

So if we consider θ as a linear map of jrf(λ) to J/(1) , then θ is in fact an
isomorphism of complex algebras.

Certainly, stf{\) cannot be isomorphic to jtf(0) because j</(0) is commutative
while J / ( 1 ) is not. •

We first want to relate the algebras stf(λ) to the Lie algebra P(l) of the

preceding section. We may select any nonzero λ we like, and it is convenient to

take λ= ]/— 1. We will also write f*g for the multiplication in s0(]/ — 1):

CO jp

f*9= Σ Γft/'^p-

It follows that

/ * ^ - ^ / = 2ίί{/,^}-— {/,#}3+— {/,^}5- +

where [ , •] denotes the Lie bracket operation in P(l). We may conclude:
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Proposition 3.8. The mapping ft-* — f is a Lie isomorphism of P(l) onto the Lie

algebra srf{y —\) relative to the commutator bracket operation.

Notice that the constant function 1 is a multiplicative unit for sί(]/ — 1).

Letting / denote the complex conjugate of the polynomial /, we may also see (cf.

3.9 below) that f\->J induces a ^-operation in J / ( ]/—1) that is to say f*g = g*f,

for all fgeP. We conclude that srf(]/ — 1) is a unital *-algebra. More generally, let

us say that a multiplication [ , ] on P is self-adjoint if [/, g~\ = [g, / ] for all fgeP.

Proposition 3.9. The self-adjoint invariant multiplications on P are precisely those
of the form

p=0 P-

where A ΦO is real and λ is pure imaginary.

Proof. It suffices to verify that

defines a self-adjoint multiplication if, and only if, A is real and λ is imaginary. This
verification is a straightforward application of the relations {/,g}p= {fg}p in the
above formula defining the multiplication. •

It is of interest to consider the *-algebras defined by Proposition 3.9 as A and λ
vary. By the remark following Theorem 3.5, the algebra determined by the pair
(A,λ) (with A + Q real and λ imaginary) is *-isomorphic to the algebra determined
by the pair (l,λ). Thus we need only consider algebras of the form j/(α]/—1),
where α is real and nonzero. We will see presently that these are mutually
*-isomorphic, but in the proof, the cases α > 0 and α < 0 must be handled
separately.

Lemma 1. S^(OL\/ — 1) is *~isomorphic (respectively *-anti-isomorphic) to srf(\/ — 1)
if α > 0 (respectively OL<§).

Remark. Theorem 3.6 implies that S#(OL]/ — 1) is isomorphic to <$/(]/—1) for all
nonzero real α, but the reader should note that when α is negative it is not possible
to produce a ^-preserving isomorphism by the method of Theorem 3.6. See
Lemma 2 below.

Proof of Lemma 1. If α>0, then we may choose μ = |/α and define θ: P-+P as in
the proof of 3.6: θ(u") = μ"u", ueΣ', n^O. As in the proof of 3.6, we have
{#(/), θ(g)}p = otpθ({fg}p), and it follows that θ is an algebra isomorphism of
j / ( α | / — 1) onto j / ( | /—1) . We need only check that θ is a self-adjoint linear
mapping. But every real-valued polynomial is a real-linear combination of
monomials of the form un, ueΣ', n^O, and hence θ maps real polynomials to real
polynomials. It follows that θ(f) = θ(f\ as required.
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Now assume α<0. Choose μ to be the positive real number μ=γ —a and let θ
be defined by the same formula as in the preceding paragraph. We have

p = μ2pθ({fg}p)

= (-oc)pθ({fg}p)

= apθ({gj}p),

where the last equality results from {fg}p = ( — {)p{g,f}p> Thus

i ί (i)

Σ -Wf)Άg)}P=θl Σ -jίgJ
p = 0 V \p=0 P

This shows that θ is an algebraic anti-isomorphism of j/(α]/—1) onto ja/(]/—1),
and it only remains to observe that, by an argument in the preceding paragraph, θ
is a self-adjoint linear mapping. •

By a reversal of a symplectic vector space (Σ, ω) we mean a linear automor-
phism τ of Σ satisfying

(i) τ2 = U
(3.10)

(ii) ω(τx, τy) = — ω(x, y).

The easiest way to see that reversals exist is to realize Σ as the direct sum E®E' of a
vector space E with its dual, where ω is given by ω((^1,p1),(^2,p2)) = p1(ςf2)
— p2i<li\ <ϊiGE> Vί^E1. In this case we can simply put τ(q,p) = (q9—p). This
terminology is intended to suggest the operation of reversing the time sense of the
flow of a classical mechanical system. We content ourselves with that brief remark,
since an adequate discussion of this interpretation would involve a substantial
digression from the development of this paper. In any case, reversals give rise to
anti-automorphisms of the algebras j/(λ) in the following way.

Lemma 2. Let τ be a reversal of (Σ,ω) and let λe<E. Then θ(f) = f°τ is an anti-
automorphism of stf(λ) satisfying

(i) 6>2 = id,

(ii) 0(7) = 0(7), /eP.

Proof The map θ is clearly a linear automorphism of P which satisfies (i) and (ii),
and we need only prove that θ reverses the multiplication in jaf(λ). By taking ap-
propriate linear combinations, it is enough to verify that {f°τ,g°τ}p = {g,f}p°τ
for each figeP9p = 0,1,2,....

Now as in the proof of Proposition 1.2, there is a unique linear operator Γp(τ)
on Σp satisfying Γp(τ)x{p) = (τx){p\ xeΣ. Moreover, we have ωp{Γp(τ)ξ, Γp{τ)η)
= (— l)pωp(ξ,η) for all ξ,ηeΣp, a fact easily seen by taking ξ,η to be elementary
tensors x{p\ y{p) and using the fact that the action of τ changes the sign of ω. It
follows that ωp(ξ, Γp(τ)η) = (— l)pωp(Γp(τ~ x)ξ, η). Thus we may argue as in the proof
of 1.2 to conclude that

Dp(foτ)(x) = (- l)pΓp(τ-ί)Dpf(τx) = (- \)pΓp(τ)Dpf(τx).
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Finally, we arrive at the desired conclusion by writing

{f°τ,g°τ}p(x) = ω'(Dp(f°τ)(x),D''(g°τ)(x))

= ωp(Γp(τ)D»f(τx), Γp(τ)D"g(τx))

= (- l)pω»(Γp(τ- 1)Γp(τ)D"/(τx),i)^(τx))

M-lf{f,g}p(τχ)

= {g,f}p(τx). D

Theorem 3.11. For every real αΦO, j3/(α]/— 1) is *-ίsornorphic to j / ( ]/— 1).

Proof. If α>0 there is nothing more to prove because of Lemma 1. If α<0,

Lemma 1 implies that stf(a]/ — 1) is *-anti-isomorphic to stf(]/ — 1), and Lemma 2

implies J/( j / — 1) is *-anti-isomorphic to itself. Hence j/(α]/— 1) is *-isomorphic

The algebras jaf(A) contain many abelian subalgebras in which the multipli-
cation reduces to ordinary multiplication. The following result, which we collect
here for use later in Sect. 4, summarizes the situation.

Proposition 3.12. Let uv...,uneΣf be such that {ui,uj}=0 for all ij\ and let %
denote the space of all polynomials of the form F(uvu29... ,un), where F is a
complex-valued polynomial in n real variables.

Then % is a subalgebra of jtf(λ), for every complex λ, in which multiplication in
stf(λ) coincides with ordinary multiplication.

Proof. Let F, G be two complex-valued polynomials in n real variables. We have to
show that the product of F(uv... ,wπ) and G(uv... ,wn) in jrf(λ) coincides with
F(uv...,un)G{uv...,un).

Now every complex-valued polynomial in n real variables is a (complex) linear
combination of polynomials of the form

( x 1 ; . . . , x J κ > ( α Λ + . . . + α Λ ) \ (3.13)

where k ̂  0 and av ..., an are real numbers. Thus we need only prove the assertion
when F and G are of the form (3.13) (for perhaps different sets of k, av ... ,an, of
course). This reduces to considering the product of uk and v\ where k,l are
nonnegative integers and u,v both belong to the (real) linear span of {uv... ,un}.
But for such u,v we clearly have {u,v}=0, because {u0Uj}=O for all ij. By
Lemma 2 of Sect. 1 we have

vι, if p = 0

and by taking linear combinations we see that

{«*,«'}

which is the required formula. •
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4. Representations and Quantization

Let si be a complex unital associative algebra which is generated by elements
Pv ... , Pn, <215... ,(2Π satisfying the canonical commutation relations

Using these relations, one can see that the elements of the form

where α = (α 1 ? . . . ,αw) and β = (βv ... ,βn) are multi-indices of nonnegative integers,
constitute a linear basis for si. The product of eα/5 with eyδ is a linear combination
of the e's, where the coefficients are universal constants depending only on (α, β),
(y, (5), and the indices of summation.

It follows from these observations that if P' , Q. are elements of a complex
algebra si1 which satisfy (4.1), then there is a unique homomorphism of complex
algebras θ'.si-^si' such that θ(Qj) = Q'p θ(Pj) = P.. This universal property implies
that the algebra si is unique up to isomorphism, and that it contains no nontrivial
two-sided ideals. We denote this simple algebra by ^n. By a slight variation of
these considerations, one can see that there is a natural *-operation on ^ n , which is
the unique complex algebra involution obtained by requiring the Q's and P's to be
self-adjoint: Q* = Qp P* = Pp 1 Sj S n.

Now let (Σ, ω) be a 2rc-dimensional symplectic vector space. By a system of
canonical coordinates we m e a n a set of l i n e a r f u n c t i o n a l s qv...,qn9pv...,pneΣ'
which satisfy the conditions {pi,Pj} = {qi,qj}=0, {q_i,Pj} = &ij> Such a set forms a
linear basis for Σ\ and if {q'v ..., q'n, p'v..., p'n} is another such system, then there is
a unique symplectic automorphism ^4esp(Σ) such that q'. = q.oA, p'. = p.°A,
j= 1,2,..., n. The existence of canonical coordinates is clear if one realizes Σ as a
direct sum E@E\ where ω((x, /), (y, g)) — f(y) — g(x\ x.yeE, f,geE'. In this case,
we can choose any linear basis ev ... ,en for £, choose e'v ... ,e'nto be the dual basis
for £', and define qfxj) = f{e), pj{x,f)=-e'j(x).

We can now easily see that the algebras si(λ), λ φ 0, of Sect. 3 are isomorphic to

- 1
n. It is convenient here to work with the value λ= ^—^—, and we will write f*g

for the multiplication in si

Notice that this convention conflicts with the notation used in Sect. 3 for the

multiplication in si( ]/— 1), but no problems will arise because we have no further

use for the algebra si(]/— 1).

Theorem 4.2. There is a unique ^-isomorphism θ:si\— \~^^n determined by
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Proof. Note first that qv... ,qn, pv... ,pn satisfy the canonical commutation

relations 4.1 relative to the algeb
any two linear functionals, then
relations 4.1 relative to the algebra structure of siM——I. Indeed, iϊ f,geΣ' are

1 fi\p

•f*9= Σ -τ[~)
= O P - \

Hence f*g — g*f= ]/—l{fg}, and the assertion follows from the definition of
canonical coordinate systems. ,—

Let si0 be the complex subalgebra of si I— 1 generated by

qv-.-,qn9pv...,pn. Every element ueΣ' is a (unique) real linear combination of
qv ... ,pn, and hence Σ'Qsi0. Now Proposition 3.12 implies that, for each ueΣ' and
π > l , we have n

~~ u*u*...*u = u .

Thus si0 contains all polynomials of the form un, ft ̂  1, and it contains the constant
1 because .

1 ( )

Since these elements span P as a complex vector space, we conclude that

2
By the universal property of the CCR's discussed above, it follows that there is

a unique isomorphism θ of complex algebras satisfying θ{q) = Qp θ(pj) = Pr

Finally, by definition of the involution in <&„, it must correspond through θ to the

involution in si\^—— , simply because qv ... ,qn, pv ... ,pn are self-adjoint

elements of si\^—-— which satisfy (4.1). •

Remark. Theorem 4.2 has a coordinate-free reformulation which is of interest. Let
^ be any unital complex associative *-algebra, and let θ0 '.Σ'-^Ή be a real-linear
mapping of the dual of Σ into the self-adjoint elements of ^ which satisfies
θo(u)θo(υ) — θo(v)θo{u) =γ—l{u,v}l. Then θ0 extends uniquely to a ̂ -monomor-

IV 1\

phism of siw—— into %!. The proof is a trivial variation of the proof of 4.3.

As for the Lie algebras P(λ) of Sect. 2, we conclude

Corollary. For each λ φ 0, P{λ) is isomorphic to the Lie algebra c€n relative to the
commutator bracket operation

[χ,y']=χy-yχ.

Theorem 4.2 implies that the ^-algebraic structure defined on si I— is

the correct structure for quantum mechanics, but the question remains as to
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whether or not the map θ actually represents the process called "canonical
quantization" [7]. We will show now that it does.

Let pv... ,pn, qv... ,qn be a canonical coordinate system for (Σ,ω). Let
h :Σ->IR be a polynomial which is in the form of the Hamiltonian of a classical
system relative to the coordinates {q^Pj} this is to say that h has the form

where F:IR"-»IR is a polynomial representing the potential energy of the
interaction forces. The corresponding quantum mechanical Hamiltonian is the
Schrόdinger operator on L2(W) given by H = — \ A + V, where A is the Laplacian
in n variables and V is the multiplication operator

f(xv ... , x n ) ^ > V ( x v ... , x n ) f ( x v ... , x n ) .

Quantization is this more or less ad hoc procedure of passing from h to H.
Let D Q L2(IR") be the dense space of all complex-valued smooth functions of

compact support, and let c€n be the algebra of all differential operators in n
variables having complex-valued polynomial coefficients. We may consider (€n as
an algebra of operators acting on D. For each Le(€n there is a unique adjoint
L*e^ n defined by <L/,g} = </,L*g}, f9g£D, where < , •> is the complex inner
product in L2(]RM). Thus, <^n is a *-algebra of unbounded operators. If we define

Pj9Qj in the usual way, P.f=—=—-, Q.f(xv ... ,xr) = χ.f(x19... ,xΛ), then
]/ — 1 clχj

{PpQj} generates c€n as a complex algebra and satisfies the canonical com-
mutation relations. Moreover, the set of operators ^n is irreducible in an
appropriate sense for ^-algebras of unbounded operators ([11, Eqs. (3)-(8)] and
C 9 ] )

/ i / ϊ \
Now let θ\sέ\~- \-*c3n be the ^-isomorphism defined by θ(p.) =
^ v By 3.12, θ is multiplicative on polynomials which are functions of

pv. .,pn alone, and hence θ(^YJpj) = ̂ YJPj = —\A. For the same reason,
θ(V(qv... ,qn))=V(Qv... ,Qn), and so by linearity it follows that θ carries the
classical Hamiltonian h to the correct Schrόdinger operator H.

These remarks show that, from a purely mathematical point of view, one may
consider (or define) quantization to be nothing more than an irreducible

^-representation of the algebra of functions ί\
2

The essential ingredient in the preceding discussion is the fact that if uv . . .,u n

are linear functionals on Σ such that {ui,uj}=0 for all i and j , then the operators
Xj = θ(uJ) mutually commute, and

θ(f(uv...,un)) = f(X1,...,Xn) (4.3)

for any n-variate polynomial /. It is less simple to calculate quantities such as
θ(umvn) when u and v are linear functionals whose Poisson bracket is not zero. In
order to quantize such polynomials, one must appeal to the special case of the
formula (4.3) for n= 1.
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To illustrate this, consider the symplectic space Γ = IR2, ω((x, y\ (x\ /))

= yxf — xy\ together with the canonical coordinate system q(x,y) = y, p(x,y) = x.

Let P,<2 be the usual operators on L2(IR), P= . —-, Q~ multiplication by x,
. y-idx

and let θ:jrfl * ~ ] - ^ be defined by θ(p) = P, θ(q) = Q. Let us quantize a

homogeneous cubic polynomial such as f(x,y) = x2y. We first express / as a
monomial in p anάq,f=p2q. Noting that 3p2q is the coefficient of st2 in the formal
expansion of (sq + tp)3, it follows that 3θ(f) = 3θ(p2q) is the coefficient of st2 in the
expansion of θ((sq + tp)3) = (sζ) + tP)3. From this we obtain

This method has an obvious generalization in which, for the case where Σ has
dimension 2n, one quantizes homogeneous polynomials of degree k by working
with the formal expansion of

in an entirely similar way.

Acknowledgement. We want to thank George Bergman and Paul Chernoff for some useful discussions
about the algebra generated by the canonical commutation relations.
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