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Abstract. An investigation of two-dimensional exactly and completely inte-
grable dynamical systems associated with the local part of an arbitrary Lie
algebra g whose grading is consistent with an arbitrary integral embedding of
3d-subalgebra in g has been carried out. We have constructed in an explicit
form the corresponding systems of nonlinear partial differential equations of
the second order and obtained their general solutions in the sense of a Goursat
problem. A method for the construction of a wide class of infinite-dimensional
Lie algebras of finite growth has been proposed.

1. Introduction

In papers [1] (see also [2, 3]) we proposed a general scheme for the construction of
exactly and completely integrable dynamical systems in two-dimensional space

+ 00

associated with an arbitrary graded Lie algebra or superalgebra g= £ ©gfl, and
— 00

developed a group method to find general solutions to these systems. The method
enables us to obtain closed expressions for the solutions. However, due to the
absence of a general procedure for the description (finding the structure constants)
of Lie algebras of "arbitrary position", it is not always possible to write the
equations of the corresponding systems in an explicit form. Furthermore the
formulation of the equations is essentially dependent on a choice of gauge
constraints.

In view of the aforementioned reasons, the proposed algebraic construction
was fully realized [4] [in the sense of explicit formulae for the general solutions
and the equations themselves) for the dynamical systems with an abelian

invariance subalgebra 9O = ^ 0 M ( 1 ) , r^rankg, which have no ambiguity related
1

with a choice of gauge constraint. Later on the basis of study of the Lie-Backlund
group transformation general criteria of exact or complete integrability for the
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systems of the special form (d2xj/dz+dz_ =ffx)) were worked out [5]. (Here and in
what follows, by exactly ίntegrable systems we mean conditionally the systems
admitting the solutions with the number of arbitrary functions sufficient for the
statement of the Goursat problem, which define initial data on the characteristics.
The systems with the relevant spectrum of soliton-type solutions are called
completely ίntegrable']. The final corollary is:

i) a system is exactly integrable if the corresponding internal symmetry group
with Lie-Backlund algebra is finite-dimensional and

ii) a system is completely integrable if the algebra is infinite-dimensional but
possesses finite-dimensional representations. (Note that the presence of the last
ones just allows one finally to introduce in a nontrivial way a spectral parameter in
Lax-type representation and to obtain soliton solutions by the inverse scattering
method (see e.g. [6]).) The class of nonlinear systems considered in Ref. [5]
contains the generalized Toda lattice, which is described in one of the equivalent
forms by equations [7]

d2xjdz+dz_ =exp(foc) . (1.1)

Here k is the Cartan matrix of a finite-dimensional simple Lie algebra in the
exactly integrable case (finite, nonperiodic problem) and an infinite-dimensional
simple Lie algebra of finite growth for completely integrable (periodic) systems. All
the other completely and exactly integrable systems of Ref. [5] result from a Toda
lattice through some asymptotic transition, which in terms of Lie group repre-
sentation theory corresponds to the Inόnϋ-Wigner contraction.

In the present paper we investigate nonlinear dynamical systems associated
with the definite-type embeddings of three-dimensional (3d-) subalgebra A1 in an
arbitrary simple Lie algebra g1. In this a grade of g is defined by the Cartan
element H of an embedding of 3d-subalgebra in g, with respect to which elements
of g are arranged into multiplets with the fixed values of Ax irreducible
representation weight, in other words, the values ί of the angular momentum. We
have confined ourselves to consideration of the embedding leading only to an
integral spectrum {<f}, i.e. when the spinor multiplets are absent. In physical
applications such systems are encountered in dual models [9], the problem of
relativistic string and minimal surfaces [3, 10], the Lund-Regge model [11], the
generalized Toda lattice [4,12], etc. In particular, the equations of this class are
encountered in investigation of cylindrically symmetric self-dual Yang-Mills field
configurations in Euclidean space JR4 for an arbitrary embedding of SU(2) in a
compact gauge group G [1, 2] 2 . Their one-dimensional version describes spheri-
cally symmetric monopoles in Minkowski space R3 x with a Higgs scalar field in
the adjoint representation of G, dyons and vortices (see e.g. [2, 13-15, 22].

In spite of the seemingly outward difference, all enumerated dynamical
systems are joined together due to the presence of non-trivial internal symmetry
groups. Just this fact allows one to find explicit expressions for the solutions of the

1 As it will be clear from below the requirement of simplicity of the algebra is not too essential
2 Here the requirement of the absence of spinor multiplets in the algebra of G is related to the
impossibility of constructing the invariants under a diagonal group of 3<2-rotations in terms of its
components and the spatial vector r
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corresponding equations in terms of Lie algebra and group representation theory.
In this two absolutely different approaches are applied:

i) the method based on a Lax-type representation [1] (which is used in quite
another way in the inverse scattering problem) and

ii) the technique of usual perturbation theory [20,21] (in classical and
quantum regions).

In the latter one the role of a coupling constant is played by a small parameter
of contraction procedure, which "straightens" the internal symmetry algebra of the
system and switches the dynamical system into an asymptotic region with non-
interacting fields.

The paper is organized as follows: In Sect. 2 we give the necessary information
about the embeddings of 3d-subalgebra in an arbitrary Lie algebra and describe its
multiplet structure in accordance with Av Section 3 presents the construction of
infinite-dimensional Lie algebras related to various embeddings of Λί in finite-
dimensional Lie algebras. In Sects. 4 and 5 an explicit form for the exactly and
completely integrable systems under consideration is given. In Sect. 6 we present
the Hamilton formalism for these systems. In Sect. 7 exact solutions of the
corresponding systems have been constructed. Concrete dynamical systems arising
in some physical applications are exposed in the appendix.

Let us complete the Introduction by giving a summary of the main notations
used in the text and some definitions: G is an arbitrary simple Lie group of rank r
with Lie algebra g (the same symbols will be taken also for "arbitrary position" Lie
algebras and groups); ί) is the Cartan subalgebra of g; R + {R_) is the system of
positive (negative) roots with respect to £) k is the Cartan matrix of g M( — M) is
the maximal (minimal) root, oc + MφR + , \/<xeR+ ;X±a are the elements of the root
space of the root α, ±oceR± h. ( = K) a r e t n e generators of ί), corresponding to
the simple roots α = π/, lrgjrgt. The elements X±j (=X±π) and h satisfy the
canonical commutation relations in the Cartan-Weyl form

[/z,/z.]=O, [/i,X±,] = ±kjtX±,, LXuX-jl-δijhj. (1.2)

By grading of the Lie algebra g we mean a decomposition of g (in the sense of
linear space) into a direct sum of finite-dimensional subspaces

00

9= Σ ©9 f l, d img α Ξd α <oo, (1.3)
a= — oo

for which

[9α>9jCgα + b . (1.4)

a

Growth of cj is defined as a limit of the following ratio: limln ]Γ djlna. The
α^oo b = _ f l

subspace Q^g_ 1 φ g 0 © g 1 is called a local part of the Lie algebra g; its generators
X°a andX*, l ^ α ^ d 0 , l ^ α ^ d ± 1 , satisfy the commutation relations
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In this the structure constants A, B, and C completely define the structure of the
algebra g as a whole and satisfy the relations following from the Jacobi identity

Here Aa, Ba, and C * are defined by their matrix elements, {Aa)aβ = Aa

φ {Ba)cd = Bd

ac,
{C^)aβ = C^f. It is obvious that in the particular case of a simple Lie algebra
supplied by the canonical grading when §0 = {hv ...,/zr}, Q±ι = {X±ί > ...,^f±r} one
has ^ E O , C±'=±<5β,fcαβ, Aa

aβ^δaβδM9 l£x9β,a,b£x,\nd Eqs. (1.5)"reduce
identically to (1.2). Note that the contragredient graded Lie algebras character-
ized by Eqs. (1.2) with some definite conditions on the matrix k lead to simple Lie
algebras of finite (including zero) growth [17]. The problem of their classifi-
cation is equivalent to the description of all possible forms of the relevant Cartan
matrices.

2. Embeddings of the 3d-Subalgebra in Lie Algebras

Consider an arbitrary Lie algebra g containing a subalgebra Aγ with generators
J ± , H, [if, J ± ] = ± 2 J ± J [ J + , J _ ] = H , embedded in g in some way. Then all
the elements of g are arranged into multiplets in accordance with finite-
dimensional irreducible representations of the subalgebra Av In this the com-
ponents F ^ v ' of the multiplets are labelled by the values £ of the angular
momentum (representation weight), its projections m e [ - / , / ] and the index vΛ

which characterizes multiplicity of the given *f in all its spectrum. This spectrum
{/} = {/1? . . . ,/J is fixed for each embedding. Denote by g0 a subalgebra of g
commuting with H3 and pick out in it a subalgebra g° invariant with respect to
Av LJ±,Qo']=0, whose elements are scalar under Av Denote by g£ a factor-
algebra go/go and classify its elements F^ (^>0) in accordance with irreducible
representations of Ax with weight *f,

This relation is invariant under g°, so the identification of the elements of algebra g
over index v̂  is carried out according to irreducible representations of g£.
Evidently for the complete description of the elements of an algebra g for a definite
embedding of the 3d-subalgebra in g it is sufficient to define its generators
corresponding to zero values of m, i.e. the elements of g0. Then all other elements
of g can be obtained by applying the raising and lowering operators constructed
with J± to F*o'\ / > 0 , i.e. by m times commuting with J±.

Therefore grading (1.3) of algebra g can be realized with respect to the
eigenvalues m of the Cartan element H. In this all the elements of g with the same
indices m are collected in the mth subspace of g and it is suitable to take m/2 as a
grading index for the integral embeddings. In particular the subspaces g ± 1 of the

3 Subalgebra g0 obviously contains all the components of multiplets with zero value of index m, and

its dimensionality d0 is equal to Σv^.,^fε{^}
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local part g of the algebra g are generated by the elements [ J ± , F Q ' V ' ] . It is
important to note that in the framework of this construction its dimensionalities
d±ί coincide with the dimensionality df

0 of factor-algebra g£. (The latter one is a
reflection of the fact that all integral multiplets with / > 0 contain the components
both with m = 0 and m= ±1.)

This approach applied to the simple Lie algebras allows us to describe all
possible embeddings of the 3d-subalgebra in g the problem of their complete
classification for the finite-dimensional case was solved in [16]. In this each
embedding is defined uniquely (up to equivalence) by the decomposition structure
of the Cartan element H of the subalgebra Aγ over the generators ί) of the algebra

X

g, H = ]Γ Cjhj. In turn the wanted structure constants c. of the embedding are

defined by the following scheme . The system of simple roots (π-system) of the
finite-dimensional simple Lie algebra g is supplied by the minimal root. As a result
there arises an extended π-system with the canonical generators satisfying the
commutation relations

(2.1)

Here k is a generalized Cartan matrix, ktj = kij91 ^ ij ^ r, with one zero eigenvalue,
^ + ( r + i ) Ξ ^ + M Further one extracts from the extended π-system a set
p ( s ) = {pv ...,p s,s^x} of any roots corresponding to some semisimple Lie sub-
algebra g(Λ) of rank r6.^r of the initial algebra g. Then the unknown element

s

H= Σ cthp, is found using the condition [ ϋ , X p ] =2Xpr Therefore the embedding
i=l

of the 3d-subalgebra in the simple Lie algebra g, for which the Cartan element
takes the same value on the root vectors of all simple roots of g, [H,Xi] = 2Xi,
l ^ i ^ r 5 , plays a peculiar role. The corresponding 3d-subalgebra is called the
principal 3d-subalgebra. Really, the description of all embeddings of A1 in the
simple Lie algebra g is reduced to consideration of the principal 3J-subalgebras in

/ rr 2] [V—3
all algebras g(s). (The exceptions are embeddings for the series Dx and

for Eχf r '=6,7,8; we will not deal with them here, referring to [16]. I In this the

structure constants c are expressed in an evident way via the elements of the
matrix k with the help of relations (2.1).

Let us stress that the scheme given above allows us to describe integral
embeddings as well as embeddings leading to spinor multiplets.

4 Note that the analogous scheme is used below in construction of infinite-dimensional simple Lie
algebras of finite growth starting from the finite-dimensional ones
5 Note that for this embedding, which naturally corresponds to the canonical grading of 9, the
spectrum {/} coincides with the values of the indices of the algebra [18]. In this the multiplicity v€ of a
multiplet is always equal to unity except the series Dτ with event when ^ r/2~^ r

 = r ~ 1
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3. Infinite-Dimensional Graded Lie Algebras
Associated with Embeddings of the 3d-Subalgebra
in Finite-Dimensional Lie Algebras

To each embedding of A1 in an arbitrary finite-dimensional Lie algebra g one can
put in correspondence an infinite-dimensional graded Lie algebra of finite growth
as well. The approach described below represents a special case of some wider
scheme for the construction of Lie algebras of finite (nonzero) growth associated
with an arbitrary finite-dimensional Lie algebra supplied with a grading and
completely defined by its local part g.

The solution of the problem lies in extension of subspaces g0 and g + 1 of a
finite-dimensional Lie algebra Q with the elements X°,X± [see Eq. (1.5)] through
inclusion of some number of additional generators Y° and Y±. In this, the
domains of finite-dimensional representations of the initial algebra Q and an
infinite-dimensional algebra § constructed with its help should coincide. For this
goal consider the highest and lowest components F*±v/ of multiplets of the elements
of g under Ax (for a fixed embedding) with a maximal value of the momentum
/ m a χ = L belonging to the spectrum {/}, i.e. F^V

L

L = F^, 1 ̂  v^v L . They satisfy the
commutation relations

where V® are some linear independent combinations of the elements of g0,
K ° = YjbiaX

Q

a. Now let us extend the subspaces g ± 1 to g ± 1 by adding to the
a

generators X*, l ^ α ^ d ± 1 , exactly \e elements Y*9 l ^ v ^ v L , i.e. g ± 1 = {X*, Y*}
with dimg± ί=d±ί=d±1 + vL, submitting them to the relations

[x;,yv-]=o, [x;,yv

+]=o, IY^Y ^ΣK^ + Y?)- (3-2)
i

In this we shall commit additionally introduced elements .̂° to subspace g0.
Jacobi identities similar to (1.52) single out nonzero elements Yt°, i.e. the
consistency requirements automatically restrict the set of these nonzero elements
°f §o/9o The constants Rι

vμ are defined in accordance with (3.1). Then define

where the constants Q*v

μ are fixed by relations (3.1). Note that (3.3) is a direct
modification of (3.1). It follows from (1.52) that ^° (φθ) form the centre of g, i.e.

ίYl),χ^=ίY°,γv

±i=ίYl>,χoj=o, [yi°,y/]=o, (3.4)

as well as of the whole algebra §. The reconstruction procedure of algebra § as a
whole is the same as in [17], which is based on introduction of a bilinear
symmetric invariant form on § with its subsequent extension on algebra g;
ΣλlμlX^-ΣC^X^X-l X(I,£,C)€§. Therefore commutation re-
b y

lations (1.5), (3.1)—(3.4) define the structure constants of the infinite-dimensional
Lie algebra with the local part g - i θ δ o Φ δ i a n <^ P^aY t n e s a m e r ° l e a s relations
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(1.5) for the finite-dimensional algebra g, whose extension is g. By the construction
the obtained algebra g is known to possess a series of representations of the initial
algebra g (finite-dimensional, in particular). Thus the question of consistency of
(3.1)—(3.4) is taken off automatically.

For the case of the principal (minimal) embedding of Λt in an arbitrary simple
Lie algebra g its local part (1.2) is added in accordance with the general scheme
given above by the elements Y~, Y° = [Y+, y~] 5 and Y+. The generators of the
local part g - i θ g o Φ δ i of the extended algebra g satisfy relations (2.1), and also
r+ 1

Σ λjhj belongs to the centre of g. Here λ = {λr} is the eigenvector of the Cartan
1=1 r+l

matrix k with zero eigenvalue, i.e. ]Γ kjjλj = 0. In this the construction leads to
J=l

one of the possible versions of simple Lie algebras of finite growth described
in [17].

Note that an algebra § = £ Θgα constructed by the indicated method seems
— oo

always to have a finite growth because each subspace gα for finite-dimensional
(degenerated) representations of g6 cannot contain more elements than the
dimensionality of the initial Lie algebra g as a whole. In any case the Lax pair
operators taking the values in these algebras (§) can be realized by finite-
dimensional matrices, which is known to be enough to find soliton-type solutions
of the corresponding dynamical systems by the inverse scattering method.

4. Exactly Integrable Systems

In accordance with general method [1] the nonlinear equations describing exactly
and completely integrable dynamical systems in 2d-space with coordinates (z+, z_)
arise from the relation of Lax-type representation [_d/dz+ +A + ,d/dz_ +Λ_~\=0
with operators A + , which take the values in subspaces g+α, α^O, of an arbitrary
graded Lie algebra or superalgebra g. The systems considered in the present paper
are connected with the local part g of the Lie algebra g, whose grading is consistent
with integral embeddings of the 3d-subalgebra in g. In this the starting point is the
representation in the form

[d/dz+ +E°0

+ +Eζ+ +EΪ,d/dz_ +E°0- +E{- + £ " ] = 0 , . (4.1)

where Eg*, E^, and Ef ( = E±ί) take the values in subspaces g£, g£, and g ± 1 of
da

the Lie algebra g, respectively E^ = £ φa

±a{z+,z_ )Xa

a, X
a

a e gfl. The decomposition
a— 1

of the local part ^ = Q-ι®{Q^®o)

f

0)®o>v taking account of property (1.4), induces
the subdivision of (4.1) into subsystems

[3/δz_+£g-+£^£ 1 ]=0, [ δ / a z + + ^ + + ^ + , E _ J = O ,
(4.2)

[ a / 5 z + + ^ + + 4 + , ^ z _ + E ^ ~ + £ ί - ] + [ ^ i ^ - i ] ^ 0 .

Due to the properties of embedding of Ax in g mentioned in Sect. 2 the
dimensionalities of g± x and g£ coincide (d±1= dζ) and some representation of g£ is

6 For these representations Y~ =F+ and l f = 0
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realized on subspaces g± 1, [<Jo,9±1]Ccf±1. All space gx (g_1) can be recovered
from a single element J+ (J _) known to be contained in it by means of
transformations of group Go with Lie algebra g0, i.e. g ± 1 = {goίJ+go}, go

eGo In
this due to commutativity of J+ with transformations of group G® with Lie
algebra g°, the parameters of g0 connected with g£ are absent in the last
reconstruction formula. The equality d±ί=dζ is just ensured by this fact. In other
words the elements q = gό1go9o> #oe^o> generate the stationary subgroup of the
"points" of the subspace Q±vQ±ί=q&±1q~ί, because GQ is the stationary
subgroup for J±. For this reason using the appropriate gauge transformation the
operator E1 can be reduced to J+ and then the first equation in (4.2) takes the form
[E%~ + £ £ - , J + ] = 0 , i.e. [ E £ ~ , J + ] = 0 . The last relation gives Ef

0~ ~0 due to the
fact that each element of gx can be constructed from the corresponding element of
qζ by the action of the raising operator (J + ). Thus system (4.2) is rewritten as

The last equation in (4.3) means the gradientness of E^ 1 , i.e. EQ* =(gQ

0)~ ιdgQJdz±,
and these quantities are eliminated from the remaining equations with the help of
the appropriate gauge transformation. Therefore we come to the following final
form of the initial system (4.2):

dE_Jdz++ίEi\E _,-]=$, dE'0
+/dz_+[E,vJ+]=Q. (4.4)

Having solved the first equation with respect to Eζ+ and substituting its
expression in the second one, we obtain the desired system of nonlinear partial
differential equations of the second order for the functions φiα(z + , z_). (Note once
more that d_1=dj

0, and consequently the number of functions φi_0[ and φ0/^
coincides.) For the explicit realization of this procedure one removes the com-
mutator [E{)

 + ,E_1]= Σ φ%f

aφ\βCipί^, where Cy

aβ is a matrix of representation

of g£ in g_ 1? [X%f,XJ'] = X Cy

aβX~, and puts this form with the notation of matrix

function Rya= ^ C J ^
β

operations we obtain

y

function Rya= ^ C J ^ ^ in the first equation (4.4). Then after trivial algebraic
β

β

In accordance with (4.5) the second equation in (4.4) is brought to a form

ΣKKβ^φlβ/dz+ydz, = ΣAβ<p-β> ( 4 6 i )
β β

or

d2φijdz + dz_ = Σ ίdRJdz_R~y

idφ1_y/dz+ +RaβAβγφίγ-] . (4.62)
β,y

Here the matrix Λaβ is defined from the relation [_Xβ,J+]= Σ^aβ^af ^ e t u s

a

stress that the matrix R is nondegenerated and thus formulae (4.5) and (4.6) are
quite correct.
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System (4.4) can be represented as a single operator equation of the second
order for a group element g0 of Go. Really, due to the definition E_ί=g0J_gQ1,
the first equation (4.4) is rewritten in a form of the commutator t_Qo1dgoldz+

+ gΰ1Eζ+go,J_]=0. Hence g~o

1dgo/dz++g'o
ιEf

o

 + go = E°o takes a value in the
subalgebra g° and Eζ+ =gQEig~ι — dgjdz+gu1. The gauge transformation
9o~*9odo w ^ n 0o 6 ^o conserving the form of E_ x permits us to make the element
E% zero and gives E{+ = — dgjdz+g^1. The latter equality means that between the
parameters of the elements g0 and their first derivatives over z+, there are d°0

relations, which play the role of constraints. Substituting it into the second
equation (4.4) we have7

(4.72)

(compare with system (4) of [3]). Equation (4.72) can be considered as an
additional (or initial) condition on the characteristic since it follows from (4.7x)
that the components of dgjdz+g^1 on g£j depend only on the argument z+ .
Naturally, this condition is trivial when the subspace g° is empty ( E ° ± Ξ 0 ) and
then systems (4.4) and (4.7) are completely equivalent. System (4.7) can be rewritten
as

Z~ ** θ0. ,+ g°' " " ' (4.8)

5. Systems Connected with Infinite-Dimensional Lie Algebras

In accordance with the construction given in Sect. 3, the local part g of the infinite-
dimensional graded Lie algebra § contains in addition to the generators X°,
l^a^d0, andX^, l ^ α ^ d ± 1 , of subspace g of the initial finite-dimensional Lie
algebra g, the elements Y.° and 7/ satisfying relations (3.2)-(3.4). In this the
reasonings leading to Eqs. (4.4) remain valid under corresponding modification.
Now the operators Eζ+ and E_ί entering Eqs. (4.4) take values in subspaces g£
and g_19 respectively. In the case under consideration by analogy with the
derivation of Eqs. (4.4) according to commutation relations (1.5), (3.2)-(3.4), one
obtains

dEf

0

+/dz_ + [ £ _ ! , J+1-IEVE_J = O, (5.1)

3E°0

+/dz_-lEvE_J' = 0,

dEJdz_=0,

7 Here symbol AEQI means that the corresponding operator A takes the values in ι
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where

o, ± i e 9 o , ± i > Eo, ± i 6 9 o , ± i / 9 o , ± i >

A matrix form of system (5.1) is

β,7

(5.23)

δφiJδz^O. (5.25)

(In what follows consider that l g α , β^d_1, l ^ μ , v^dL.) Subsystem (5.2J
coincides with those of Sect. 4 and leads to formula (4.5). It follows from Eq. (5.25)
that φ\μ are arbitrary functions depending only on argument z+, which can be
eliminated from the other equations using an appropriate transformation.

Therefore substituting Eqs. (4.5) in (5.23) we come to the quested equations of
the second order, which generalize Eqs. (4.6) for the case of infinite-dimensional
Lie algebras

β.y

where the functions φ\_ are related with φ\_β by equations

6. Hamilton Formalism

In this section we give the Hamilton formulation of the fundamental equations
(4.8) or (4.7) constructed above for the one-dimensional case, when all the
unknown functions depend on the unique argument t~z++z_ and these
equations take the form

Jl^, (6.1 x)
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with the supplementary condition

Consider an operator8

S = i K 2 + Sp(Sfό1J+flf0J-) ϊ ( 6 2 )

where K2 is the quadratic Casimir operator constructed with infinitesimal left

shifts Lα, l ^ α ^ d 0 , on Go, K 2 ΞΞ ^ L J. A Poisson bracket of § with a group
a

element g0 in some representation of Go with generators Ma has the form {ξ>,g0}
= ΣLaMa9o> o r {&0o}0o 1 = ΣLaMw N o w composing a Poisson bracket of §

α a

with the latter element one obtains

Here for simplicity we make use of the orthonormal basis in representation space
of Go, SpMaMb = δab, and take into account the permutability of the Casimir
operator with all generators. Therefore if one identifies operator § with the
Hamiltonian of a dynamical system, then the equations describing it coincide with
(6.1 J . In this condition (6.12) is fulfilled when one imposes the requirement for
vanishing of generalized momenta Ma (right shifts) for the elements g^dgjdt
= ΣLaMa> taking values in g°.

a

The presence of the Hamilton formalism for the considered dynamical systems
(4.8) allows us to apply standard perturbation methods of classical and quantum
mechanics for its investigation. In this the first term in expression (6.2) plays the
role of the free Hamiltonian, while the second one describes an interaction in the
system with some coupling constant λ, with which we supply this term.
Perturbation series in one- and two-dimensional cases turn out to be finite
polynomials over λ and reproduce exact solutions of corresponding systems,
giving another form completely equivalent to the expressions in Sect. 7. It should
be stressed once more that here the perturbation method is used not for establishing
approximate results but for the direct construction of the explicit expressions of
exact solutions. This approach has been developed in [20] for a particular case of
considered systems (4.8), namely for the generalized (finite, nonperiodic) Toda
lattice (1.1). The mentioned character of analytic dependence of the solutions
[more exactly, the definite dynamical quantities like exρ( — Xj) for (1.1)] admits
group interpretation in terms of Inδnϋ-Wigner contraction operation. With the
help of the latter one with a contraction parameter λ the internal symmetry
algebra of the corresponding dynamical system is transformed into an algebra
associated with the non-perturbative part of the Hamiltonian. Then dynamical
quantities of the initial system are obtained from the "asymptotical fields"

8 The form of the Hamiltonian (6.2) for some particular cases is encountered in the papers on the
inverse scattering method, see e.g. [23]
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(solutions when λ = 0) by a tangential Lie-Backlund transformation in the classical
case and Moeller S-matrix, S(t, — oo), on the quantum level, which are finite
polynomials over λ for exactly integrable systems [21].

7. Solutions for Exactly Integrable Systems

Representation (4.1) means the operators A±=E°0

± + £ £ ± +E^ are gradients in
the sense

A±=g-1dg/dz±9 (7.1)

where g is an element of the complex hull corresponding to the Lie group G with
Lie algebra g parametrized by the modified Gaussian decomposition

g = M + N_g0+=M_N+g0_. (7.2)

Here M±9N± belong to the nilpotent subgroups of G related with subspaces g± a,
fl^l; Qo±EGo. In accordance with the general method [1] we shall subject the
elements M + to the equations of S-matrix type,

dM±/δz± =M± "Σ φ±a(z±)X^M±L± , (7.3)
α = 1

where φ + a(z+\ φ_a(z_) are arbitrary functions of its arguments. Introduce

& = M-1M_=N_go + g^N-+

1, (7.4)

which uniquely defines (for regular g) the elements N+> N_, and g0 = 90 + θo~ ^ n

this their parameters are the functions of group parameters of the element it, i.e.
M + (z+), M_{z_).

The elements M + , N + , and g0 define general solutions of system (4.2). To prove
this statement let us use the relations dSK/dz^ =&L_, d$t/dz+ = —L+SK following
from formulae (7.3) and (7.4), or in the equivalent form

JVI ιdNJdz_ =g0L_g-ι, g~ ldgQjdz_ - N~ 1dNJ3z_ =N~ 'L_N+ -L_ ,

(7.5)

(compare with those of [2]). So taking account of (7.3) the operators Λ± from (7.1)
in decomposition (7.2) are

A+ =go-N-1dN+/dz+go_ +g^ldgQ_/dz+ ,

A_ =g-olNZ1dNJd id/d

The comparison of (7.6) with (7.5) shows that the operators A+ and A_ take the
values in subspaces c o ® ^ and 90Θg_ l 9 respectively. Therefore formulae (7.3) and
(7.4) provide a complete solution of the integration problem for the dynamical
systems with the operator form (4.2). Note that it automatically follows from
relations (7.5) that the gauge invariant element g0 satisfies Eq. (4.7).

For the construction of solutions to the nonlinear system (4.6) with operator
form (4.4) containing d±ί unknown functions in accordance with the results of



Two-Dimensional Integrable Systems 71

Sect. 2, one can transform to a definite gauge, in which

A+=E'0
++J+, A_=E_γ. (7.7)

Comparing formulae (7.6) and (7.7) we become convinced that dgo+/dz_ = 0, i.e.
9o+=QoΛzΛN+ldN+/dz+=z0o-J+9o^ a n d t h e element g~±dgo_/dz+ takes the
values in g£. So relations (7.5) give the equality

which defines the element g0+ up to the right shifts from G£ commuting with J ± .
Thus we assume that the parameters related with G° are not contained in g0 + 9 i.e.
g0+ =gζ+ depends only on d_ ι parameters. The latter ones in their turn define the
functional dependence of the operator L + . The element go_ is equal to gQίg{ι

 + .
It follows from equalities (7.5)—(7.7) that

Using the last relation in (7.5) and formula (7.8) one finds

so goldgo_/dz+ takes the values in qζ. Thus the gauge under consideration leads
to the correct expressions for the operators A± from (7.7). In this the coefficient
functions fa entering the decomposition

d-i

satisfy the system of equations (4.6) we are interested in.
Therefore the general scheme for the construction of the solutions of the

dynamical system described by Eqs. (4.6) is as follows:
i) Introduce two arbitrary elements g$ (z±) of the complex hull of Lie group Go

with Lie algebra g0.
ii) Construct the operators L± = #o ^±(#o )"* depending functionally on d±ί

arbitrary functions φ±a(z±); in terms of these operators find the solutions of two
iS-matrix-type equations dM+/dz+ —M+L+ represented via multiplicative in-
tegrals according to the known formulae (see, for instance, [19]).

iii) Define from the equality

(M+g^-\M_g-) = N_g0N-1, N^(g^Γ'N±g± , ffo^oTW

the element g0.
iv) Consider the coefficients of the decomposition of E_ v taking the values in

subspace g_15 E_x=g0J_g~0

1, with its generators X~. These coefficients provide
the complete solution of the dynamical systems under consideration.

Note that the simplicity of the Lie algebra g has not been used anywhere in the
derivation of the given relations. Thus the formulae obtained in this section give
the solutions of dynamical systems associated with a local part of "arbitrary
position" Lie algebras containing the 3d-subalgebra. Under the latter one all the
elements of the Lie algebra g are organized into the multiplets with the integral
values of angular momentum.
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Appendix

Here we illustrate by a few examples of the known exactly integrable dynamical
systems the general algebraic scheme given above. As a starting point consider the
equations in form (4.6). Evidently the problem of its explicit realization is in
concretization of a local part § of the corresponding graded Lie algebra and then
in a choice of the suitable parametrization of the functions φ l α = / α ( z + , z _ ) ,
l ^ α ^ d _ 1 ? adequate to the systems under consideration. Thus on the first stage
one has to define the explicit form of the matrices Raβ and Aaβ.

First let us consider the generalized Toda lattice with fixed endpoints. In the
framework of our construction it is connected with the canonical grading (i.e.
minimal embedding) of an arbitrary finite-dimensional simple Lie algebra g, when

Then Rtj= — k{-f{, Atj= —δ.j and putting /. = exp(fex)f one comes to system (1.1).
Note that infinite-dimensional simple Lie algebra § of finite growth (with the
Cartan matrix k) in the same grading and parametrization leads in accordance
with formula (5.3) to the system d2xjdz+dz_ =exp(foc)J. analogous in a form. This
system corresponds to the appropriate periodic problem for the Toda lattice.

The string-type equations constructed in [3] with the Lagrangian

are connected with such a grading of the algebra Bx when the 3d-subalgebra has
the generators

- Σ hj + ht_19

. 7 = 1

r - l

In this g o = ( ^ ®u(l)jφBv g° = {At}, gS = { V ^ r - 2 , t f , Z ± t } ,

kQ is the Cartan matrix of the Lie algebra g the matrix function Raβ and Aaβ have
the form

Λ=-diagC/i,...,/t+1)

0 - 1 2

0 - 1 2

0

f,+ 1/fr

0

0

-fr-l/fr

2fjft+ί

- 2

0

0

0

0

0

- 1

0

0

1

0

0

0

0

0

1
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Choose a numeration of the indices of /α, l ^ α ^ r - f l , consistent with the
arrangement of the root vectors of subspace g_x and parametrize them by the
relations f. = QxpQp l ^ ^ r — 2, / r _ 1 =x ( 1 ) expσ, /rΞΞjχoexpσ, / r + 1 = x ( 2 ) e x p σ ,
xg + x (1)x (25 = l. Then we obtain

r - 2

δ2ρi/δz+δz_= Σ kff~2QXPQj> l^i^x — 2;
7 = 1

δ <j/δz+δz_ —2(1 — x x ) expσ,

δ(δx(ε)/dz+/(ί-xwxi2))ilz)/dz_ =2x ( ε )expσ, 8 = 1,2.

Using the notations σΞ(ρ r _ 1 +ρ r )/2, δ = {ρv_ι-ρt)/2,

the substitution dθ/dz+ = cosh"2(5/2-coshδ-δω/δz+, dθ/dz_ = cosh~2δ/2'δω/δz_
leads to the desired system of equations for the functions ρp 1 SjS*, and ω. It is
obvious that the system identically reduces to the Toda lattice related with the
series Dv when ω is a constant.

Consider another class of string-type equations corresponding in the frame-
work of our approach to a different embedding of Aί in algebra J5r, for which

( π 2 + ... +π r)J '

±(π

(This case coincides naturally with the previous one when r=2.) Denoting
ω y ; ( ) ^ ^ e x p ί - σ ) , x o Ξ / r e x p ( - σ ) , X - / 2 r _ , l ^ ^ 1

comes from Eqs. (4.6) to the system

d{δxiε)/dz+/ll - (x(1)x(2))] ll2)/dz_ = 2x(ε) expσ, ε = 1,2.

In parametrization χίε) = (— l) ε ~ γ sinhδ exp[(— l)ε~ 1Θ.] nί? n
2 = 1, these equations

take the form

d2σ/δz+dz_ =2cosh(5 expσ, d2δ/dz+δz_ =2sinh5 expσ—tanhδ Zl,

niDθi + {δθjδz+δnjδz _ + δθjδz _ δnjδz+) = 0,

Dnf + nfiθjδz+dθjdz _ - ntΔ = 0,

where

D = δ2/δz+δz_ +2sinh-12(W(yδz_δ/δz+ +coth(5δ<5/fe+a/az_ ,

^ = Σ [3^/3z+5θyδz_n) - δnj/δz+δnj/δz_'] .

Using the representation of the (r—l)-dimensional unit vector n in generalized
Euler angles it is easy to carry out further reduction over the dimensionality and to
receive a symmetrical form (with respect to z+ and z_). The system of equations
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for the series Dx supplied by the grading with QO = U(1)®DV_1 can be constructed
absolutely analogously.

It is important to note that in the framework of the geometrical construction
this system represents the parametric formulation of the Gauss, Peterson-Codazzi,
and Ricci equations for 2d-minimal surfaces in JV-dimensional Euclidean or
pseudo-Euclidean space (N = 2x + 1 for Bx and N = 2x for Dx)

9. The components of
the fundamental tensor, torsion vector and second fundamental forms are ex-
pressed just via solutions of the system constructed in Sect. 7. On the whole this
interpretation of the corresponding subclass of systems (4.6) is connected with the
intrinsic geometry of surfaces in Euclidean, pseudo-Euclidean or affine space
(minimal and constant curvature two-dimensional surfaces).

In the same way starting from Eqs. (5.3) one can obtain the corresponding
equations of completely integrable systems associated with infinite-dimensional
Lie algebras of finite growth, in particular, the Lund-Regge model.
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