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(Higgs)2 3 Quantum Fields in a Finite Volume

III. Renormalization

Tadeusz Baίaban*

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. This is the third paper of a series, and contains a proof of the bounds
on the effective actions needed in the two previous papers. The proof is based
on perturbative analysis of renormalization.

1. Introduction. Formulation of a Basic Estimate

In this paper we will prove the basic properties of the perturbation expansions
used in the two previous papers [1, 2]. These properties form a very important
part of the proof of ultraviolet stability. We will prove them for the considered
model, but the method extends in a natural way to more complicated models. The
characteristic feature of the method is that it almost does not use a momentum
representation for the expression in the perturbation expansion. It is based entirely
on real space properties of propagators. These properties hold for propagators in
more complicated theories also (e.g. non-abelian gauge theories, fermion field
theories) and it is the reason for these natural extensions.

In this paper we use notation, results and formulas of the two previous papers
[1, 2] and we will refer to them adding I or II before the numberings of the
corresponding papers. Many properties of perturbative expressions were used in
[1, 2] and it is difficult to formulate them in the form of separate theorems; the
formulations would be very long. Instead we will describe and analyze a general
expression and we will prove for it some basic estimate from which all the
necessary properties will follow easily. Let us recall the formula for interaction
terms of the action of the model after k renormalization transformations and let us
write it in the form appearing in the proof of the upper bound. We will write this
formula rescaled to the unit lattice with respect to "new" field variables after k
steps. The torus Tη is replaced by the corresponding subset B\Λ(%~'1)Λ), which will
be denoted by Ω. The set A%~i)f is a sum of big blocks, so the assumptions of
Propositions 1.2.1-1.2.3 are satisfied for Ω. The "old" vector field can be represent-
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ed in the following way :

η = L~k, (1.1)

where

A^ = aj(LjηΓ2G]QJA^ 7 = 1, ...,/c- 1 , Λ'<°> * = ,4'0, (1.2)

and the fields ̂  are defined on ZΛj-lattice. The formula (1.2) extends to A(k} with
^ replaced by the "new" field Ak on the unit lattice. Let us remind the reader also
of the definition (1.3.34) of A(Γ^ xeBk(y):

A(Γ^} = *Σ A'U \iy+»x) + A<k\φ , (1.3)
j = o

where x7 is defined by the condition xeBj(Xj), x0 = x, and the contours are defined
in Chap. 1.2. For an arbitrary vector field A defined on ^-lattice and an arbitrary
contour Γ of this lattice we put A(Γ)= Σ nAb. Now we define an auxiliary
function bcr

Ek(e',λ',Ω,Aw,φ)=-log π
j = o

exp (- KΦ', (- Aη

e,gkA, + AW + m2(Lkε)2)φ'y
\

— λ'λ(Lkε) Σ *7d |0'MI4~2 Σ ^m2(X> 0/c>'

(1.4)
y j j

where Ω1 = Bk(A(k~1}/) and δm2(e\ gk, λ', £21? x), E^(e', gk, λ\ ΩJ will be defined later.
The function gk is a smooth function with supp0 f ccΩ l 5 gk(x) = l if dist(x, dΩJ^M
and bounded by 1 together with derivatives up to second order. The interaction
after fc steps is given by the formula

/ Aβ+β \

• (1.5)

We will give a graphical description of this expression, giving vertices and
propagators, but at first let us describe how this expression is changed when the
operations in the fe+1 step are being done. In the first operation we remove the
interaction from the set Bk(A(k~ 1)/n/l(

7

fc)c) estimating it as in Proposition II.2.1. This
estimate will follow easily from our general result on perturbation expressions
with vertices localized in unit cubes. The next operation is the translation (Π.2.80)
and an expansion with respect to the small field Θk+1A

(k} + B(k\ Let us write the
corresponding expansion for the expressions in (1.5) with A(k] replaced by A + B
and the expansion taken with respect to A, where A and B are quite general fields
satisfying some regularity conditions. More precisely we will assume \A\9 \dηA\,
\dηB\ and their Holder norms with exponent α0 are ^0(l)p(Lkε) and
dist(suρp A, dΩ) > 2r(Lkε). (In [2] the Holder norms were not estimated, but similar
considerations as for derivatives lead to the desired bounds.) The expansion we get
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can be represented graphically. Let us begin this description by writing down all
the vertices. The first two describe self-interaction of scalar fields:

-λ(Lkε) £ ηd\φ'(x)\\ φ'(x) is a scalar field leg, (1.6)
xeΩj.

-i £ ηdδm2(x)(Lke)2\φ'(x)\2,

δmf(x) is one of the renormalization mass counterterms. (1.7)

The next group of vertices describes an interaction of scalar and vector fields:

(e(Lkε))" + "' - £ η«l(Dlφ') (b) q" + n'φ'(b _
n .n .

l, (1.8)

and the corresponding jR-vertices

ϊb)
n(Abγ

+1

9 n^n. (1.9)
b

Furthermore

n + n'even, n, n'^n, n + n'^2, (1-10)

and the ^-vertices

(e(Lkε))" + Γ<+l'~"n "
n\(n+l)\

^ (1.11)

These vertices come from an expansion of the original lattice action. If k is so large
that Lkε^l, ηπz, and if we take ε^O, then only the vertices (1.8) with n + ri = l
and (1.10) with n + ri = 2 will survive the limit and will give the vertices of the
classical continuous action the rest will tend to 0. Unfortunately for fixed ε and η,
ε<η^l, we have to take into account all of them. In fact, the renormalization
counterterms are defined by the non-classical vertices also. The remaining vertices
are connected with the expansion of the renormalization transformation for scalar
fields. The expressions we get have always two summations over the ^-lattice, so it
is convenient to represent them by two vertices. Thus we will have

φ(y), yeT[k)nΩ, (1.12)

-(Qk(B)Φ')(y)=- Σ ηdU(B(Γ^)φ'(x)9 (1.13)
xeBk(y)

-(β(Lfcε)r>''-ί- X η\A\Γ^)r(A(Γy^
nln lxeBk(y)

1, (1.14)
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and the K-vertices

(1.15)

Now the expressions of the expansion are formed in the following way : we take an
arbitrary pair of two expressions from (1.12)-(1.15), with the restriction that at
least one of them has to be of the form (1.14) or (1.15), and we take their scalar
product. We multiply it by —ak if the expressions are different, or by — \ak if they
are equal, and finally we sum over yeT^r^Ω. In the sequel we will treat
(1.13)-(1.15) as the vertices, and (1.12) is an external field. Thus we have described
all the vertices of the perturbation expansion. Let us notice that the vertices of (1.5)
are given by (1.6H1.8), (1.10), (1.13), and (1.14) with nf = 0 and B = A(k\ Finally let
us recall that Rn+ί(qA) is an analytic function of AeR with values in linear
operators on RN satisfying the inequality |jR-+1(^)|^l.

Next we have to describe propagators. From the formula (1.4) it follows that A'j
are independent Gaussian fields with covariances c(j}'LJη. The formulas (1.1) and
(1.2) and the basic composition formula (1.2.43) imply that the field A' has the
covariance Gk. The basic propagator for the scalar field φ' is Gk(Ω, B), but there are
other propagators also. One of the operations in our procedure is a change of the
set Ω. We replace it by another set Ω^CΩ satisfying the same conditions as Ω, and
we replace the propagator Gk(Ω,B) by Gk(£22,£), so we will have also the
propagators δGk(Ω, Ω2,B) = Gk(Ω,B) — Gk(Ω2,B). Finally if we expand the pro-
pagator Gk(Ω, A + B) using the formulas (1.3.44), (1.3.45), then in the last term of
this expansion, equal to

[Gt(Ω, B)Vk(A, B)-]"Gk(Ω, A + B) \Vk(A, B)Gk(Ω, £)]"' , (1.16)

we have the propagator Gk(Ω, A + B). There are several possible ways of treating
the above expression. Perhaps the simplest way is to treat it as an external field,
because for n,ri sufficiently large, a kernel of the operator (1.16) is a sufficiently
regular function of both variables. More exactly the Holder norms of the covariant
derivatives of this kernel, the norms defined for example in the inequalities (1.2.24)
and (1.2.25) of Proposition 1.2.1, are exponentially decaying with the distance of the
arguments and are uniformly bounded by 0(l)(e(Lkε)1~Λ)n + n'9 where α>0 but
can be arbitrarily small. This estimate follows easily from the properties of the
propagators Gk(Ω, A] proved in the next paper. Also the propagator δGk(Ω, Ω2,B)
will be treated as an external field when the estimates of perturbative expressions
will be considered.

Now we can describe an arbitrary expression in the expansion. It consists of a
number of vertices. The maximal number of vertices depends in a simple way on n,
but it is unessential here. All the A'-legs are contracted, i.e. they are divided into
pairs and each pair is replaced by the corresponding propagator. Some φ'-legs are
replaced by external scalar fields and the remaining are again divided into pairs
and each pair is replaced by a propagator, i.e. by Gk(Ω, B\ Gk(Ω2, B), δGk(Ω, Ω2, B)
or the operator (1.16). Of course the whole expression is multiplied by a proper
combinatorial factor connected with the number of ways given expression can be
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obtained from Gaussian integrals in (1.5). The external scalar field is
akGk(Ω, B)Qk(B)φ or (1.12), but we can easily add the field Gk(Ω, B)f coming from
external sources in the generating functional for Schwinger functions. Later we will
consider a much wider class of external fields.

Now let us introduce a graphical description for the perturbative expressions.
Let us denote:

an external scalar field, or a leg in a vertex

an external vector field, or a leg in a vertex

the scalar field propagator Gk(Ω, B)

the vector field propagator Gh

the operator (1.13) acting on a scalar field leg

the operator Qk acting on a vector field leg k/w\

the vertices (1.14) or (1.15)

the vertex (1.6)

the vertex (1.7)

the vertices (1.8) or (1.9)

the vertices (1.10) or (1.11) _23^£_ (uγ)

We introduce also some further notational conventions concerning the
expressions obtained by the expansion of the kernel of the renormalization
transformations. They are obtained by taking a scalar product of two expressions
from (1.12)-(1.15) and multiplying it by — ak, or — \ak if they are equal. We denote
them as follows:

a product of (1.12) and (1.14) or (1.15)

a product of (1.13) and (1.14) or (1.15)

a product of two factors of the form (1.14) or (1.15). I^j ̂ 1 (1.18)

The above notations in (1.17) and (1.18) are not precise, but they can be made quite
precise if we specify a number and nature of legs. Now a graph for us is a collection
of internal lines, external legs, and vertices connected in the usual sense. There is at
least one internal line, and every internal line has a vertex at each endpoint. The
construction of graphs is otherwise arbitrary. We will never describe more
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precisely the external fields however. In the sequel we will apply the same graphical
description to slightly changed expressions.

To complete the definition of the expressions (1.4) and (1.5) we have to define
the mass renormalization and vacuum energy counterterms. Let us begin with the
mass renormalization counterterm δm2. It is determined by the two-point
Schwinger function

G'Jx, x') = (φa(x)φb(x')y = (Zc) -^dAldφe- s^φa(x)φb(x') , x,x'eTE,
(1.19)

where Sε(A, φ) is the lattice action of the model given by

(1.20)

and Zε is the partition function. The function Gε has a perturbative expansion of
the following structure

oo

Gε= Σ Cε

0[(-δm2 + Σε + dε*Σ{+Σε*dε + dε*Σε

2d
ε)Cε

oγ, (1.21)
H = 0

where CQ — ( — zlo + m2)"1 and Σε,Σε

ί,Σ
ε

2 are given by amputated, one-particle-
irreducible graphs of the expansion of Gε. Here we have a graphical description of
the same type as in (1.17), but with some simplifications. We have η = ε (hence
Lkε = 1) and the only vertices are (1.6), (1.7) [with δm2 instead of <5m?(x)], (1.8), and
(1.10) with rc' = 0, 5 = 0, 0fc = 1 (but without any restrictions on n). The propagators
are Q for the scalar field and Cε = ( — Aε + μ2

))~ί for the vector field (of course
internal indices and vector indices are understood here). Let us write a few terms of
the expansion of Σε :

Σε(x -x')=- 4(N + 2)lC£

0(0)(5£(x - x') + e2 dCε(tyq2δε(x - xf)

+

 2^-de^2(CWq4d\x-x'}-e2 X q(dε

μO0d
ε*)(x-xf)qCε(x-x')

^ μ= 1

+ 2de4q2Cε

0(x - xf}q2(Cε(x - x'})2 + 42(2N + 4)A2(C£

0(x - x'))3

+ e2 Σ Σ εV^Q)(^-^)^2(Cε

0^*)(x'/-

ξ 7

(122)

Here we did not write, and we will not write in the future, combinatoric factors
before the graphs, understanding that they are a part of the graphical description.
It is easily seen that the expressions in (1.22) are divergent as ε^O (except the
third). It will follow from our future considerations that Σε

l9 Σε

2 are convergent and
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the terms of order higher than 4 (in coupling constants) in the expansion of Σε are
convergent also. The mass renormalization counterterm δm2 is chosen in such a
way that — δm2 + Σε is convergent. Of course this condition does not determine
δm2 uniquely, and usually it is defined as a solution of the equation
— δm2 + Σ εdΣε(x) = 0. This equation can be solved recursively if δm2 and Σε are

xeTE

expanded into power series in e, λ. In our case δm2 will be defined by the terms of
order ^4. More exactly we write δm2= eaλβδm β} and we insert this

into Σε. This gives us an expansion of Σε in coupling constants and we take a sum
of terms of order ^ 4 : £ e*λβΣε

(a β}. The counterterms δmfa β} are defined by
2 ^ α + 2 / ? ^ 4

the equations — δmfa β) + £ εdΣε

(a ^(x) = 0. It is convenient to write them in a
xeΓ ε

different way. A term e*λβΣ*Λ β) can be written also as a sum of terms Σε

G, the
summation over a family of one-particle-irreducible graphs with two external legs
of scalar fields. The same for the term eaλβδmfatβ)9 and we define δmG by the
equation — δmG + ^ εdΣε

G(x) = 0. This implies some obvious graphical repre-
*eΓε

sentation of the terms of δm2. If a graph G representing Σε

G(x — x') has the external

legs localized in x, x', then δmG — ^ sdΣG(x — x') will be represented by the same
x'eΓε

graph G but with both external legs localized in x and with the summation over x.
For example the expressions in (1.22) define the following counterterms:

δm2 =-4(N + 2μcε

0(0) + e2dCε(Q)q2 + de4ε2(Cε(Q))2q4

-e2 Σ zd Σ q(d^df}(x-
x'eTε μ=l

ed(Cε

0(x-xO)3

x'eTε

+ e2

x',x"eTF μ=l

(1.23)

where δm\ denote a sum of terms δmfa β) of the order oc + 2β = 2. Thus we have
determined the counterterm δm2.

Now it is easy to define the vacuum energy counterterm Ev It is defined by the
following perturbation expansion:

ϊ ι= Σ / ϊ β ! defdλβ
(1.24)
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with ή> 12. In Sε, defined in (1. 1.11), we of course have dropped the term E. Terms
of this expansion are described by connected graphs without external legs (vacuum
graphs). To renormalize the theory it is sufficient to take the terms in the
expansion (1.24) restricted by the condition 2:gα-f2jβ^6; the other terms are
convergent as ε-»0.

Let us define now the expressions δm2(e', gk, λ', Ω1? x), E±(e\ gk, λ', ΩJ appearing
in (1.4). Let us recall that we finish our procedure for k = K, K is defined by the
conditions Lκεrgε0, Lκ + 1ε>ε0, where ε0>0 is some fixed sufficiently small
number, independent of ε, Tε. At first we replace the propagators Cε, Cε

0 in the
perturbative expansions of δm2, E1 by G£

κ, G
ε

κ(0) correspondingly, where G^(0)
= ( — AεQ + m2 + aκ(Lκs)~2Pκ)~1 and a similar formula for Gκ. We have

Co = Gε

κ(0) + aκ(Lκε)~ 2Gε

κ(0}PκC
ε

0 , (1.25)

similarly for Cε and the second term on the right side above is an operator with a
regular kernel, as it follows from Proposition 1.2.1 and the properties of Q.
"Regular" means here that the localized Holder norms of the derivatives for both
variables are uniformly bounded and exponentially decaying, i.e. as in the
formulation of Proposition 1.2.1. It will follow from our future analysis of
perturbative expansions that only a finite error is made by considering pro-
pagators Gε

κ instead of Cε. More exactly we have

δm2 = δm2

ίn(x) + δm2

κ(x) , El = £fin + Eκ , (1.26)

where δmj^x), Eκ are given by the same expressions (same graphs) as δm2, E19 but
with propagators Gε

κ, Gε

κ(0) instead of Cε, CQ, and (5raf

2

in(x), Enn are convergent as
ε— »0. The propagators Gε

κ, Gε

κ(0) are not translation invariant, so we have the
dependence on x. The terms <5m|(x), Eκ are transformed further. We have the
following equality [the normalization group equation (1.2.43)]

j = ι

k(0), (1.27)

and the same for Gε

κ. We substitute it in <5m|(x), Eκ and we get the following
decomposition

δm2

κ(x) = δm2

κ> k(x) + δm2

k(x) , EK = EK,k + Ek, (1.28)

where <5m£(x), Ek have the same form as 5m|(x), Eκ, only the propagators are
replaced by G£(0), Gk correspondingly, and δm^ fc(x), Eκk are formed by the
remaining terms. Future considerations will imply that 5m|>k(x) = 0((Lfcε)~1),
hence δm|>k(x)(Lfcε)2 = 0(Lfcε). Now it is convenient to rescale the expressions
defining the counterterms δmk(x), Ek from ε-lattice to //-lattice. The counterterms
δmk(x)(Lkε)2, Ek are then transformed into counterterms δm%(e(Lkε),λ(Lkε),x),
Ek(e(Lkε), λ(Lk&)) by rescaling from the ε-lattice to the ^/-lattice. Again they have the
same form as δmk(x\ Ek9 only with ε replaced by η and the coupling constants e, λ
replaced by e(Lkε), λ(Lkε). The final transformation is the localization. We localize
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the vertices (1.6) and (1.7) restricting summations to the set Ω x. The other vertices
are localized by functions gk multiplying each leg of the vector field (or each
coupling constant e). We get counterterms δml(e(Lk&)gk,λ(Lk&),Ω^x),
Ek(e(Lkε)gk,λ(Lkε),Ωi), and we define

δm2(e\qk,Λ/, Ω < , x ) ( L k ε ) 2 = δmln(e',λ',x)(Lkε)2 + δmί Je',λ',x)(Lkε)2

\ ' u κ7 ~ l" / v ' nnv " ' / v / Λ . , / C V ' ' / v '

+ δm2(efe(Lkε)gk, λ'λ(Lkε\ Ωl9x)9 (1.29)

E^e', gk9 λ', Ωj) = Efin(e'9 λ') + Eκ> k(e'9 λ') + Ek(e'e(Lkε)gk, λ'λ(Lkε)9 ΩJ, (1.30)

the dependence on e', A' is obtained by replacing e, λ by e'e, λ'λ. Let us illustrate the
definition (1.29) for one of the basic counterterms in (1.23):

-e2 Σ ed Σ q(d'μC
t

0d'*)(x-x')qσ(x-xl)(LkB)2, xeΓ ε,
x'eTε μ=l

is replaced by

d

— p2π(TKίΛ~2 V pd V π(rsεGE((\\P Cε ^ ε*Vv v'VϊΓ^Y v'V/"^2

tί w^.^jί^ oj /^ o / v *d\uu,^K\ ' K 0 u / \ ' /~/ \ — /v-^ ^/
x'6Γ ε μ=l

-e

2αt(L*ε)-2 Σ zd Σ 1(
x'eTε μ=l

d
2 V d V / O F /~<F

— e 7 εa 2_j qψμGκ,ι

Σ ε" Σ q(dlG*k(()W*)(X,X')qGlk(X,X')(Lkε)
'eTε μ=l

-(e(Lkε)}2 Σ ηd Σ
x'eTη μ=ί

(1-31)

Thus we have finished the description of the perturbative expressions and now we
will make some final preparations in order to formulate the basic theorem of this
paper. At first let us notice that we have to estimate also some expressions
obtained by an integration and a cumulant expansion in feth step, where some
external legs are contracted by propagators C(^(k)(Bk(Λ(k}), B), C ,̂ the others have
the field φ replaced by aL~2C(^w(B\Λ(k}},B}Q*(B}\p. In these expressions we have
to change some domains of summation, remove some boundary conditions, again
change domains of summation, and so on. Each time we have to estimate the
differences. Also let us recall that in the estimates we treat δGk(Ω, Ω2, B) and the
operators (1.16) as external fields. In order to have a formulation of the basic
theorem covering all necessary cases we will consider external fields in the form of
functions Φext(x, x', x",...), AQ^(y, /, /',...) of many variables instead of a product.
We will need some norms for these functions. The basic norm is the Holder norm
l l ' l l i . α appearing in the formulation of Proposition 1.2.1. Let us recall the
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definition. For a scalar field / of one variable we define

ll/llι,α=sup|/(x) |+sup|(Dϊ i μ/)(x) |
x x, μ

+ sup Γr^—iS\U(B(ΓXιX.))(D^ιμf)(^)-(Dltμf)(x)\, (1.32)
x,x' ,μ \X — X\

where Γx x, is a shortest contour connecting x and x'. This definition extends in a
natural way to functions of many variables. For external vector fields we have the
same definition, but with B = 0. The next thing we need is a further localization in
the vertices. For the vertices (1.6) and (1.7) we localize simply by representing Ω1 as
a sum of unit cubes of the ^-lattice. For the remaining vertices we localize, taking
for each leg of the vector field a smooth partition of unity satisfying the condition
that a support of each function is contained in a cube with sides of length 2. We
perform this localization for the terms of δm£(e(Lk&)gk, λ(Lk&), Ω l sx),
E^e^εJg^λ^εJ^Ω^ also. The expressions (1.12)-(1.15) are localized by fixing a
point yε Tjk)nΩ, or the unit cube Bk(y). Thus with each expression there is
connected some localization {\Σ\(v)}υeG (υ is a vertex of a graph G corresponding to
this expression).

Our last preparatory remark is most strictly connected with renormalization.
We gather some graphs into families denoted Gren. In the next chapter we will
describe precisely how it is done let us mention only that an ultimate aim is to
cancel divergencies. For example if a graph G contains a subgraph G0 with two
external scalar legs and the expression corresponding to G0 is divergent, then we
add another graph G which is obtained from G by replacing G0 by the vertex (1.7)
with the counterterm δm2

Go(x}. Let us denote by E(G9 {Ώ(ιή}veG, Φext,^ext) the
expression corresponding to graph G with localizations {O(v)}veG and external
fields Φext, Aext. The same symbol with Gren instead of G denotes a sum of these
expressions for Ge Gren. Let us denote by ds(υ) an order of the coupling constant λ
for the vertex v, and by dv(υ) an order of the coupling constant e. Finally let ds(G)
= £ ds(v), dυ(G)= £ dυ(υ). The numbers ds(G\ dv(G) are well-defined for Gren

υeG veG

because all graphs in the family Gren have the same orders. We have the following
basic estimate

Proposition 1. There exist positive constants <50, 0(1) such that

kJI^eJI^o, (133)

where 0<α 0<l, d({O(v)}veG) denotes a length of a shortest tree graph connecting
the vertices v localized in D(f ), veG, and the functions /z, hf describes localizations of
external fields. More exactly if in a vertex v there is a leg of external field, then we
multiply it by a smooth function h such that h = l on D(^) and h = 0 outside some
neighborhood of D(^) The constant δ0 depends on the dimension d only (in estimates
we always assume that a=l in the definition of the renormalization transformation
and M is fixed in an optimal way, i.e. the smallest possible). The constant 0(1)



(Higgs)2 3 Renormalization 421

depends on α0, ή (in fact on n only if α0 is chosen not too close to 0, e.g. if we take
αo —\)-> and is independent of ε, k, the domains Ω, Ωl9 Ω2, the vector field B (if they
satisfy the conditions mentioned previously). Π

The proof of this theorem is given in the rest of the paper. Now let us make a
few comments about the applications of this theorem. All the statements about
perturbative expansions used in the previous papers [1, 2] are rather easy
consequences of it. Let us make a short survey of them. Proposition 1.3.1 is
completely obvious if we sum over localizations, use the restrictions on the fields
and take n large enough, e.g. n>6. Proposition 1.3.2 is also obvious if we take the
external fields of the form (akGk(B(k+1))QΪ(B(k+1)))( ,x)φ'(x), (akGkQΪ)( ,x')A'(xf)9

x,xΈT[k\ i.e. with fields localized in one point. The same applies to the
corresponding theorems in paper [2], and for example in Proposition II.2.1 we
need really a localized form of the estimate, but there are some difficulties now.
They are connected with the weaker restrictions on new scalar fields. These fields

( n(Tko\ \
k 1/4 and we have to count carefully powers of Lkε. Let us

λ(L ε) I

consider all vertices. The worst situation is when all legs of the scalar field are
replaced by external fields with the above restrictions. For the vertex (1.6) there is
only one graph for which this situation can hold, the vertex itself with all external
legs, and the corresponding expression is treated separately, the positivity property
is used in estimates. For all other graphs the vertices (1.6) can have at most 3
external legs and we get a factor 0(λ(Lfcε)1/4p(Lfcε)3). The vertices (1.7) give also a
positive power of Lkε depending on a term in (1.29). The situation is similar for the
vertices (1.8)-(1.11), for (1.8) because the co variant derivative of the external scalar
field akGk(Ω9B)Q%(B)φ is of the order 0(p(Lkε)) by Lemma Π.2.4. Among the
vertices (1.18) only the first two can be dangerous for n + ri = l. For example, let us
consider the first, given by the expression

ake(Lkε)φ(y)
xeBh(y)

Again by Lemma 11.2.4 it is equal to

ake(Lkε)φ(y)
xeBk(y)

+ 0(e(Lkε)λ(LkεΓll4p(Lkε)2)

= ake(Lkε)(φ(y) qφ(y)) £ ηd

k 2= θ(Lkε) 4 p(Lks)

Similarly situation holds for the second vertex, thus in all cases we get some
4-d

positive power of Lkε, in fact we get 0\(Lkε) 4 κj for positive but arbitrarily
small β. This implies Proposition II.2.1 and the analogs of Propositions 1.2.1 and
1.3.2 in the case of the restrictions of paper [2] also, with n sufficiently large. The
above considerations give us ή> 12. The other estimates in [2] are connected with
changes of boundary conditions, changes of domains of summation, and are again
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the obvious consequences of Proposition 1 because very small factors 0(e~διr(Lkε})
are produced each time.

Finally there are some estimates which were not mentioned explicitly in [2],
except in the formula (Π.2.14), but which are clearly needed, as can be seen in the
definitions (1.29) and (1.30). Passing from k to k+1 we have to change some terms
in these expressions, more exactly the terms in δm^k(x)(Lkε)2 and Eκ k for which
the operators in the decomposition (1.27) have the indices j^k and at least one of
them is equal to fc. We have to rescale these terms from the ε-lattice to the ^-lattice
and then localize them properly, which means that we have to estimate the terms
with bad localizations. Let us discuss it briefly for mass renormalization counter-
terms. These terms are given by graphs with two external legs, one localized in a
point x. If a line of any such graph corresponds to the operator with the index fe,
then the kernel of this operator is a regular function of both variables and we can
treat it as an external field. This means that the line of the graph is replaced by two
external legs and we get a graph with four external legs. Now if we add all other
graphs of this type forming a renormalized graph, then we get a convergent
expression satisfying (1.33). Summing properly over localizations we get an
estimate of the terms with bad localizations by a constant proportional to a power
of rescaled coupling constants for x in a neighbourhood of a boundary of B\Λ(k)),
e.g. for xEBk(Λ(k}^A(k}c\ and by this constant times 0(e~διr(Lkε)) for xeBk(Λ(k}) (the
notations are the same as in [2]). These estimates are sufficient to estimate the
expressions containing the mass renormalization vertex with these counterterms
with bad localizations. The corresponding considerations for vacuum energy
counterterms are even simpler and we omit them.

2. Classification of Divergent Graphs and Their Renormalization

We will introduce now the fundamental notions needed in the renormalization. At
first we will define a notion of degree of a vertex in a given graph G. It is a sum of
dimensions of elements forming the vertex. We assume that the dimension of a leg

of scalar or vector field is equal to —, with the exception of legs of vector

fields in the vertices (1.4) and (1.15) for which we assume that the dimension is
d — 2

h 1. A dimension of differentiation is — 1, each factor η has a dimension

+1 and external fields have a dimension equal to 0. We define a degree DG(v) of a
vertex v in a graph G in the following way:

DG(v) = (the number of factors η in v) + (the number of legs of
scalar or vector fields in v belonging to internal lines

— d-\-2
of the graph G) (the number of differen-

tiations in v acting on internal lines of the graph
G) + [the number of legs of vector fields in v belonging
to internal lines of the graph G in the case when v is a
vertex of the form (1.14) and (1.15)]. (2.1)



(Higgs)2 3 Renormalization 423

Also we define a degree D(v) of a vertex v in the same way as above assuming that
G contains all the elements of the vertex v.

Let us write these degrees for all vertices:
7 i /^

(i) if t^ is the vertex (1.6), then D(v1) = d + 4—-— = 4-d,

-d + 2

T
to take into account a degree of mass renormalization counterterm (this will be
explained later),

(iii) if v3 is one of the vertices (1.8) and (1.9), then

-d+2 Λ 4-d ,

(ii) iϊv2 is the vertex (1.7), then D(ύ) = d + 2—-— = 2, but generally we have

Thus for all vertices we have D(v) ̂  —^—. Of course we have also DG(v) ̂  D(υ\

ri^n+l,

(iv) if v4 is one of the vertices (1.10) and (1.11), then

-d+2 4-d ,
—^— =n—^ t-n 52 2

n'^ή+1,

(v) (1.12) has only an external scalar field and for v5 of the form (1.13)-(1.15)

/ Λ , / ^~ r f + 2 d+2 4~dwe have D(v5) = d + (n+ 1)— \-n= — h n ,

4-d

T
except for the vertices (1.14) and (1.15). Now we will define the most important
notion, a degree of a connected graph. At first let us define it in a special case: if a
graph G does not have the vertices of the form (1.7) (mass renormalization
vertices), then we define

J)(G) = Σ DG(°) ~~ d (2-2)
veG

We take the same definition in the case when mass renormalization counterterms
are given by the terms of the first two expressions on the right side of (1.29), i.e.
^mπn or ^mκ k We will say also that the degrees of these counterterms are equal to
0. If we have a counterterm from δm%, then it corresponds to some graph G0 and
we define a degree of this counterterm as the degree of the graph G0. This is given
by (2.2) if the assumption stated before this definition is satisfied. In the general
case we take the following definition, which in fact is an inductive definition:

D(G)= Σ DG(v) — d + (& sum of degrees of mass renormalization
veG

counterterms connected with the vertices of the graph G). (2.3)

Thus the degree of G is the same as the degree of a graph G' obtained from G by
attaching the corresponding graphs to the mass renormalization vertices.

Graphs with a nonpositive degree play a special role. Usually they correspond
to divergent expressions, as it will be clarified later, so they have to be analyzed
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carefully. Now we will prove a theorem inverse in a certain sense to the above
statement. We will prove Proposition 1 in a special case. To have not too much
restricted formulation of this theorem, let us introduce the following special graph
with a degree equal to 0:

(2.4)

We have the following theorem which partly clarifies the meaning of the notion of
degree.

Proposition 2.1. Let G be a connected graph such that its each connected subgraph,
with the possible exception of the subgraphs (2.4), has a positive degree. Then we
define Gren = {G} and Proposition 1 holds in this case.

In the proof of this theorem we will present our basic strategy underlying all
the considerations of this paper. At first let us recall that some lines in the graph
correspond to the operators δGk(Ω, Ω2,B) or (1.16). In the estimates we treat them
as external fields and we use the inequalities:

||h(an operator δGk(Ω,Ω2,B) or (1.16))/ι'||
1 > α

where h, h are functions giving the localizations of the vertices. Replacing these
lines by pairs of external fields we get a new graph G ' . Of course connected
subgraphs of G have positive degrees, with the exception of subgraphs (2.4).

Our first step in the proof of the theorem is to write the expression

E(G, { Ώ(v)}veG, Φat, Λext) = E(G', { Ώ(v)}veG, Φ1^, Λβxt)

as a sum obtained by decomposing all the propagators corresponding to the lines
of G' according to the equality

fc-l

and the similar equality for the vector field propagator. Thus we get a sum of new
expressions obtained by replacing in each line / of the graph G the corresponding
propagator by a propagator G^ l)} O^j^/c— 1. Let us add index jl to the line and
let us denote by G'(/) the graph G' with indices added, 7 = {//}/eG' We can write
E(G') as a sum ^E(G(j)). The part of this sum with indices j different can be

j
represented in a natural way as a sum over orderings of the lines and for fixed
ordering / = {/(!), ...,i(m)} a sum over indices 7 satisfying the condition
Λ ( i ) < J i ( 2 ) < -" <Ji(mγ This sum can be supplemented to the sum over all indices) if
equalities are admitted in the above condition. Thus for each ordering / we assign
some set J(l) of the indices 7 satisfying the condition
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in such a way that (J J(ϊ) is the set of all indices and the components of this union

are disjoint sets. We get the equality

E(G\{0(v)}veG,Φ'ext,Aext)= X _ Σ^(σ(j),{0(v)}veG,Φ'exVAexi). (2.7)
orderingsf jeJίT)

To prove the theorem it is sufficient to prove the estimate (1.33) for the sum with
fixed ordering I on the right side above. This reduction is an important, although
very simple, step in the proof because an order of summations over indices j is
fixed now. For every such ordering we define an increasing sequence of subgraphs
G1? G2,..., Gm = Gf of the graph G in the following way: G1 is formed by the line
1(1) and two vertices at the endpoints of this line, ..., Gi+1 is built by adding to the
graph Gί the line l(i+ 1) and two vertices at the endpoints of /(i+ 1) (if they do not
belong to G{ already),....

In general the subgraphs G{ are not connected and we represent them as sums
of disjoint connected subgraphs: Gf = (J G|α). According to the assumption of the

α

theorem, we have that either D(Gία))>0, or G|α) is the graph (2.4). Thus there is a
possibility that the first few graphs G15 G

(

2

2), G(

3

3),... are graphs (2.4) (let us notice
that G2 = G1uG(

2

2), G3 = G1uG(

2

2)uG(

3

3),...)- Our next step is to transform the
whole expression in such a way that these graphs are replaced by graphs with
positive degrees. It can be done, e.g. by integration by parts. For a vertex in (2.4)
we have

-β(ZΛ>) X ηdL(DW)(b) qφ'(b_) ]g(b_)A'b
bcTn

= -e(Lkε) Σ ηdφ'(x) q(D^φ'gA')(x)
xeTn

= -e(LkB) Σ ηdlφ'(x) qφ'(x)-]g(x)(d''*A')(x)
xeTη

-e(Lkε) Σ ηd[.φ'(x) qφ'(x) ] Σ (dη;g)(x)A'μ(x-ηeμ)
xeTη μ = l

-e(Lkε) ΣldΣ [_Φ'(x) q(Dlμφ')(x)]g(x-ηeμ)A'μ(x-ηeβ}, (2.8)
xeTn μ= 1

and it can be written graphically in the following way

1* + 1 . (2.9)

(here we have defined the new graphical notations). The effect of this transfor-
mation is that the graphs (2.4) are replaced by the graphs with degree + 1. We do it
for all graphs G I } G2

2), G(

3

3),... described previously and this way we represent G' as
a sum of graphs {G'*}. Further let us notice that if the graph (2.4) is a subgraph of
some graph G0, then after the transformation (2.9) G0 is represented as a sum of
three graphs and the degrees of these graphs are ^ D(G0). It is so because the
degrees of the vertices on the right side of (2.8) or (2.9) are bigger or equal to the
degree of the left side. From this it follows that for each graph G'* the subgraphs
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G15 G2, . . ., Gm = G'* defined as previously have positive degrees. Thus it is sufficient
to prove the estimate (1.33) under this assumption. For simplicity let us denote G'*
by G again. In the next step we make a first estimate of the expression. We estimate
it taking absolute values of all factors. The external fields are estimated further by
the Holder norms and for the operators δGk and (1.16) we apply the inequality
(2.5). For the propagators G^ we apply the inequality

\Gl}(Ω,B;x,x')\^0(l)(LjηΓd + 2e-δί(LJηΓllx~x'^ (2.10)

and if the propagator is differentiated, then for each differentiation, there is an
additional factor (Ljη)~l on the right side. This applies also to Holder norms, e.g.
we have

) (Ω, B x2, x) - (DJLGjy (Ω, B ; X I , X ) \

. (2.11)

These inequalities will be used in the next chapter. They all are obtained by
rescaling from the ^-lattice to the L "^-lattice and application of Propositions 1.2.1
and 1.2.3. Of course the same inequalities hold for vector field propagators, but we
have to estimate some additional expressions also. If a leg A' of the line is in one of
the vertices (1.14) and (1.15), then we have the expression A ' ( j } > η ( Γ x

+

+

l

ί ί X ) on the basis
of (1.3). For each such expression we have an additional factor Ljη on the right
side, e.g. we have

l< )̂(/;(^ (2.12)

Finally in vertices we apply the inequalities |^|^1|K/1+1( )|^1. In the obtained
expression we make some partial summations. For a vertex veG(j) let j(v) be a
lowest index of the lines with an end in this vertex. We localize further the
expression to cubes A(v) of the size Lj(v}η, i.e. we have

Σ nd-= Σ αΛV
x(orb)eΠ(v) Δ(v)cΠ(v)

For each line we extract a part of the exponential factors on the right sides of (2.5),
(2.10), and (2.12) and we estimate them by expC- ̂  dist(Π(ι>)> DO/))], where
D(U), Π(tf') are localizations of endpoints of the line. After all these operations we
get the following inequality :

Σ

^ 0(1) (e(Z/Iε))'WG)(λ(L*ε))'WG) exp ^d({a(v)}DEG]2

JJΛ'ΛeJi Σ E(G(j),{D(v)}veG), (2.13)
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where 0(1) is a constant depending on n only, and

D(v)}veG) = Σ Π ((LMηf Π W~^
(A(v)} vertices υe G \ legs of lines /

with ends in v

Π (LilnTl

differentiations in v
acting on lines /

•[a proper power of Lmη for vertices (1.8), (1.9), (1.10), (1.11)].

Π Lilή Π
legs of l ines / of vector fields / lines IE G

in the case when υ is of the form (1.14), (1.15) (2 14)

To prove the theorem it is sufficient to prove that

Σ Σ E(G(j\{Δ(v)}veG)^0(i] (2.15)
j e J ( l ) (Δ(v)}

with 0(1) depending on ή and δ± only.
Now we will prove this inequality. We begin with summations connected with

the subgraph G1? i.e. the line 1(1) and two vertices v, v', The index 7' of the line is the
lowest index among J(l), so \Δ(v)\ = \Δ(vf)\ = (Ljη)d. Let us consider the case vή=vf

and let us take all lines /' of G outgoing from v'. We represent the exponential
factor for the line 1(1) as a product of as many equal factors as there are legs in υ'
(now by a leg we mean a leg of some line of the graph). These factors combined
with the exponential factors of the lines I' give us the factors

exp [ - δ2(Ul'ηΓl dist(Δ(v), Δ(v"}}~] ,

where v" is a second vertex of the line /'. We have still one exponential

exp[-<52(ZΛ/Γ l dist(A(v\ A(υ')J]

for the line / and we use it to make the summation over A(v'). We get some constant
0(1) depending on δ1 and n only, because the linear sizes of Δ(υ\ Δ(v') are equal to
Uη (δ2 depends on δί and n). We represent graphically these operations as
obtained by shrinking the line 1(1) to one point. After this shrinking the graph G1

becomes a new vertex v1 with the same external legs as the graph G1 and with
localization in A(v). We denote the new graph by G/Gr Next we fix a localization
Δ(VI) of the vertex vv \Δ(v1)\=(Lj(Vί}η)d, and we sum over Δ(v)CΔ(v^} using the
factor (Lj(v}η)d connected with the vertex v. Now it is easy to see that the remaining
powers of Ljη connected with the graph Gl give us (Ljη)D(Gί\ Because D(G1)>0 we
can make the summation over j and this gives us

Σ (ZA/)D(Gl) ̂  0(1) (Ljl^η)D(G^.
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In the case v = v' we make the same operations beginning with the summation over
A(v). The effect of these operations can be written in the form of the inequality

Σ Σ E(G(j),{A(v)}veG)
jejff) (A(υ)}υeG

^ Σ Σ 0(l)(L''»)ί;)D(G'>£(G/G1(7),{/l(»)}BβG/Gl). (2.15)
jeJ(T)ι {Δ(v)}υeG/Gl

The exponential factors for the expression on the right side have the exponent δ2

instead o(^δ1 J(ϊ)1 denotes a projection of J(Γ) obtained by omitting jj(1). Now we
can formulate an inductive assumption. A graph G/Gi is defined as a graph
obtained from G by shrinking all connected components Gjα) of Gt to points. This
way we get some new vertices ι; α) having the same external legs as the graphs Gjα)

and with the corresponding expressions defined as in (2.14). Here J(Γ)f denotes a set
of indices {/z(ί+i)» •••Jz(m)} obtained by projecting J(ί). We assume that

Σ Σ E(G(j),{A(v)}vsG)
76.7(1) {Δ(υ)}υeG

^ Σ Σ OίlXL^-^^^ίG/G^ί^W}^^^ (2.16)
jεJ(Γ)l {Δ(v}}veG/G.

where 0(1) depends on δ^n only and an exponent δί+ίm the exponential factors
on the right side is positive and depends on δ^ϊi. We can prove (2.16) for i + l
repeating the same reasoning as in the proof of (2.15). Thus we have (2.16) for all
irgm. For i = mwQ get the constant 0(1) only on the right side of (2.16), hence the
proof of the theorem is finished. In this proof the summations over localizations
and the use of exponential factors can be analyzed much more carefully and a
better dependence on n can be obtained, but it is unimportant here. In this simple
case we have illustrated the basic method of analyzing perturbation expressions. It
is easily seen from the proof that the theorem can be generalized to a much wider
class of graphs and expressions. We can have vertices with an arbitrary number of
legs and arbitrary power of η. We can have lines with the same exponential factors
but with arbitrary dimensions instead of — d + 2. The only thing which matters is
that propagators have representations corresponding to (2.6) with the estimates
corresponding to (2.10)-(2.12), so that we have the inequality (2.13) with the proper
generalization of (2.14). We can formulate these remarks as the theorem:

Proposition 2.2. Proposition 2. / holds for the described above generalized ex-

pressions and graphs.

Now we will analyze and describe the graphs with nonpositive degrees. Let us
consider at first a graph G with at least one vertex v of the form (1.13)-(1.15). There
is also a line IE G outgoing from v. If it is a vector field line, then we always have
DG(v) — d^O. If both endpoints o f / belong to v, then we have DG(v) — d>0, hence
D(G)>0. If not, then there is another vertex i/eG with positive degree, hence
D(G)>0 also. In the case when / is a scalar field line we have at least one vertex
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vΈG more and then

but analyzing more carefully the possibilities we arrive at the conclusion D(G)>0
again.

Also it is easy to notice that if a graph G has an ^-vertex of the form (1.9) and
(1.11), then it has positive degree. For the graphs G which do not contain vertices
of the form (1.13)-(1.15) we can easily prove the following estimate

D(G) ^ - 2 -̂  - 1 + ((a number of vertices) - 1) ̂ A

d — 2
+ ((a number of external legs)— 1) - , (2.17)

from which it follows that the graphs with more than four external legs have
positive degree in d = 3. In d = 2 graphs are more convergent, so degrees are still
positive. We formulate all these conclusions in

Corollary 2.3. If a graph G has a vertex of the form (1.13)-(1.15), or an R-vertex, or a
vertex (1.7) with finite counter terms, or it has more than four external legs, then
D(G)>0.

Now we can describe classes of divergent graphs i.e. graphs with nonpositive
degree. They can be built of the vertices (1.6)-(1.8) and (1.10) only, on the basis of
the above corollary.

There is only one graph with four external legs and it is the graph (2.4). In the
proof of Proposition 2.1 it was shown how to treat such graphs. There are many
graphs with three external legs and they fall into two classes : graphs with three
external legs of vector fields, and graphs with two external legs of scalar fields and
one external vector field leg. The first class will be considered later.

For the second class of graphs, the classes Gren are defined as the smallest sets
of graphs, symmetric with respect to permutation of external scalar field legs and
with each divergent subgraph renormalized, e.g. each pair of graphs below form
one class :

(2.18)

(2.19)

(2.20)
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In fact the only other divergent graphs of this class are:

(a) (b) (c)

(2.21)

and permuted graphs, and some of them have divergent subgraphs. We form
classes collecting all graphs necessary to renormalize each divergent subgraph, e.g.
we take as one class

and permuted graphs (2.22)

Thus our definition of the classes Gren is in fact inductive and relies on definitions
of these classes for lower order graphs of all kinds. The same applies to the
remaining definitions.

The next class of graphs is formed by graphs with two external scalar field legs.
The estimate (2.17) implies that we can have such graphs with at most four
vertices. We consider one-particle-irreducible graphs only. We form classes Gren

for these graphs taking all graphs necessary to renormalize all divergent proper
δrnκ(G)

subgraphs, and adding one-vertex graphs of the form — — with mass re-
normalization counterterms corresponding to the previous graphs, so we take one
counterterm for each graph.

There is a similar class of graphs with two external vector field legs, and these
graphs have at most four vertices again. To define the renormalized classes Greπ we
have to consider at first the Ward-Takahashi identities. These identities express a
gauge invariance of the scalar field part of the theory. The basic identity has the
form :

(2.23)

where ek = e(Lkε\ M2>0, F(φ) is an arbitrary gauge-invariant function of scalar
fields. Taking a first order differential with respect to λ we get :

J dφ exp [ - KΦ, ( - , d"λqφy = 0 . (2.24)

Now differentiating (2.24) with respect to A, connecting the vertices by properly
localized propagators, and calculating the Gaussian integrals [_F(φ) is chosen as a
polynomial, e.g. we can take F(φ)= — λk:\φ(x)\4:, or F(φ)= — ^δmf(x):\φ(x)\2 :, or
F(φ)= -4CV(0):|φ(x)|2:], we get a set of Ward-Takahashi identities. Let us give
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few examples. Taking F= 1, A = 0, we get

ίdμc!f2(φ)^φ9d
ηλqφy = 0. (2.25)

Taking F= 1, differentiating with respect to A and next taking A = 0 and using the
identity (2.25), we get

ek(d«φ, Aqφy) ( : <3"φ, d'λqφy :)

, A dηλq2φy - ek(d"

2dAb tτq(σM2d*) (&_, 6 0$(CJ,2S**) (&'_, 6) (3*λ) (6')

-ekΣ ηdηAb(d«λ) (b) trq2(C«M2d«) (b _ , fe) = 0 , (2.26)
b

or graphically

A ^ -- ̂ \ 3^λ A /^ -- ^\ δ^λ A Oar?λ A Oδ??λ

+ ΛΛΛΛ/Ό OWWΛ + ΛAA/VCXΛΛ/V^ + ΛΛΛ/V'CAA/VXΛ = 0

(2.27)

where now the propagators are Cη

M2. Doing next the same operations as above but

in the presence of F(φ)= — λk ^Γ ηd:\φ(x)\4:, we get the identities represented
xeΔ

graphically in the following way:

(2.28)

Taking other functions F, or differentiating (2.24) to higher order in A, we can get
all necessary Ward-Takahashi identities. They hold for free boundary conditions
also by taking a limit of the identities with periodic boundary conditions. Each
such identity is connected with some set of graphs. Now we define classes Gren as
containing all graphs necessary to renormalize divergent proper subgraphs and
next all graphs connected with these graphs by Ward-Takahashi identities. If we
refrain from taking the smallest classes, then we can describe simply the classes
Gren as containing all possible connected graphs of the considered type (i.e. having
two external vector field legs) of a fixed order in coupling constants.

There are no graphs with one external leg of scalar field and one external leg of
vector field, and there are no graphs with one external leg of scalar field [more
exactly every such graph necessarily has a vertex of the form (1.13), (1.14) or
(1.15)]. There are graphs with one external vector field leg. These graphs, the
graphs with three external vector field legs mentioned previously, and also the
graphs with two external scalar field legs, but at least one differentiated, do not
introduce any new divergences, and the classes Gren are formed by graphs
necessary to renormalize all divergent proper subgraphs.
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Graphs with no external legs, vacuum energy graphs, are gathered together
into classes Gren by the same condition on divergent subgraphs, and then all
vacuum energy counterterms corresponding to these graphs are added.

Finally for an arbitrary graph G we form a class Gren containing this graph
adding all graphs necessary to renormalίze all divergent proper subgraphs. Of
course localizations in these graphs should be in agreement.

3. A Proof of Proposition 1

Let us consider an arbitrary Gren and the corresponding properly localized

expression £(Gren, (Ώ(v)} veGreiί, Φe xt>^ext) At first we will enlarge essentially the set
of external fields. It was already stressed that the operators δGk and (1.16) are
considered as the external fields. Now if two vertices, v,v' have localizations
satisfying dist(Π(Λ D(^')) = l» t^en we consider every propagator corresponding
to a line connecting these vertices as an external field also. Such a possibility is
assured by the following estimates

||/ϊG fc(Ω,β)/ι/H1>α^O(l)e-'odis t (D(ι ; )'D(ι;')), (3.1)

and similarly for the vector field propagator, h, h' are localization functions. Thus
we remove from every GeG r e n all the lines corresponding to the operators of the
types described above, more exactly we replace these lines by pairs of external legs.
We get some new family of graphs {G'}, G' may be unconnected, and we have to
know that it can be represented as a sum of classes G'ren. Generally, if we replace a
line in an arbitrary graph G by a pair of external fields, then the degree of the new
graph is greater or equal to the degree of G, thus a convergent graph is
transformed into a convergent one. From our analysis in previous chapters it
follows that most of the divergent graphs are transformed into convergent ones,
with the possible exception of graphs with one external vector field leg and
vacuum graphs. These graphs occur together with all other graphs forming a
renormalized class, and inspecting all possible cases it is easily seen that if we
remove a line in any graph of the class, then for the obtained graph we can find in
this class all graphs necessary to form a new renormalized class. Thus we can
represent our expression as a sum of the expressions £(G'ren, {Ώ(v)} veG>retι, Φ'ext, ^4'extX
with the property that each line of each connected component of G'ren is localized
in cubes Π(ι>X Π(t/) with dist(Π(tf), Ώ(v')) = Q (by the definition of new graphs it
should be < 1, but by the construction of localizations it is then =0). From this it
follows that the localizations of each connected component are contained in some
cube of a linear size depending on a number of vertices, hence on n only. To prove
(1.33) it is sufficient to prove the estimates

|£(G;en, { D(t?)}Γ6Gίβn, Φ'ext, A'ext)|

^G->||Φ;xJ| l iβoM'ext|| l iβo, (3.2)

because these estimates and (2.5), (3.1) imply (1.33), and the exponential factor in
(1.33) is obtained from the estimates of external fields in (3.2).
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To prove (3.2) we will transform further the expression using the remark about
localizations of connected components of G'τen. We can consider the expressions
corresponding to these components separately. The localization cubes of each
component are contained in some cube of a size 0(n). We take a cube Q1 of size
r(Lkε) containing the above cube in the center, and next we take a cube Π of size
3r(Lkε) and with Π1 in the center. We assume that Π1 5 D are sums of big blocks of
the unit lattice. Now we replace each scalar field propagator Gk(Ω,B) [or
Gfc(Ω2,5)] in the expression by Gk(Π,β), more exactly we represent Gk(Ω,B)
= Gk(Π,£) + <5Gfc(Ω,Π,£), and we treat (5Gk(Ω,Π,B) as an external field. Thus
again we drop the lines corresponding to these operators and decompose the
obtained set of graphs into renormalized classes. The field B is regular in the sense
that \\dη

μB\\0tΛ^0(p(Lkε)). Hence there exists a constant field B0 such that \B-B0\
^0(r(Lk£)p(Lkε))^0(p(Lkε}2) on the cube Q. We have B = B0 + B', and we expand
in B' the expressions connected with each renormalized class of graphs using the
formulas (1.3.14), (1.3.44), and (1.3.45). After this expansion we get a sum of
expressions corresponding to some new big set of graphs, which can be decom-
posed into a sum of renormalized classes. We repeat some of the operations done
before, i.e. we localize new vertices in the way described in Chap. 1 and we include
the operators (1.16) and propagators with localizations Π(u), Π(^) satisfying the
condition dist(Πfa), D0/))^l into the external fields. These operations give us
again a sum of renormalized classes. If a class contains an old vertex coming from
the expression before the expansion, then all vertices of this class are localized in
Πi If a class does not contain any old vertex, then it is created by an expansion of
a propagator Gk(Π,#) and it consists of one graph having the form of a chain of
propagators Gk(Π,^α), with vertices of the form (1.8)-(1.11) and (1.13)-(1.15) with
external vector field B' only. For such chains, every subgraph has positive degree
or contains (2.4), and the estimate (3.2) for them is a consequence of Proposition
2.1. Thus we have to consider the renormalized classes having some old vertices
and localized in Πi Vertices are now of the same type (1.6)-(1.11) and
(1.13)-(1.15), but with B0 instead of B and with the new external vector field B'
beside the old one. A scalar field propagator is Gk(Π5£0). It is easy to see that the
expression corresponding to any such renormalized class is gauge-invariant with
respect to gauge transformations of the field #0, if the external scalar fields are
simultaneously transformed. Our next operation is the gauge transformation
which removes the field B0. It was described more precisely in the proof of Lemma
II.2.4. We get the same expressions as above with B0 =0 only (and external scalar
fields gauge transformed). Finally we replace the scalar field propagator Gfc(Π,0)
by Gfc(0), i.e. we substitute Gfc(Π,0) = Gk(0) + <5Gk(Π,*7Zd,0) and we treat δGk as an
external scalar field. After all these operations we get a sum of the expressions

£(Gren, {DMKeGren' ^ext> ^ext)w^ localizations in some cube of size 0(n) and with
the same graphical description as before, but with the scalar field propagator equal
to Gfc(0). We use the same graphical notations for these new expressions. We have
to prove the inequality (3.2) for these expressions. Considering each connected
component of Gren separately we can assume additionally that Gren is connected.
We can extract also all coupling constants, so finally we have to prove the estimate

| | 1 > C ( 0 |I/t e x t | ! l j α o. (3.3)



434 T. Baίaban

Let us remark that the norms on the right side above are defined in the usual way,
with the vector field £ —0, but the external scalar fields appear with the gauge
transformation, so these norms are equal to the norms defined by (1.32) with
B = BQ. When an expression under the norm depends on ]3, then the norm can be
estimated further by the norm (1.32) using the restrictions on the field B'. Thus we
get the estimate (3.2) exactly.

The inequality (3.3) will be proven following the same strategy as applied in the
proof of Proposition 2.1. We apply the decomposition (2.6) to the propagators
Gfc(0), Gk and we get

E(Grcn9{Ώ(v)}veGm9Φnt9AeJ = Σ Σ Σ E(G(ί)9{Ώ(v)}ΌeG9Φexi9Ant).
GeGren ordeπngsl jeJ(ί)

(3.4)

With each ordering / of lines of the graph G a sequence of subgraphs
G 1 ; G 2 , . . . ,Gm = G of G is connected. In Proposition 2.1 we had the assumption
that ^(G^O, with the possible exception of the graph (2.4). Now for a general
graph G we can have subgraphs with D(Gt)^0 and our method will be to
transform the corresponding expressions in such a way that we obtain the
expressions to which Proposition 2.2 can be applied. More exactly we will prove
the following statement: To each class Gren there corresponds some family G[ in of
generalized graphs such that

Σ Σ Σ,
eGren / jej(i

£(G(/),{D(^sG,Φext,,4ext)

= Σ Σ Σ y(G'J')E'(G'(Jl{Ώ(v)}veG.,Φ^,Aea), (3.5)
G'eGπn Γ' jeJ(Γ')

where E'(G',...) is a generalized expression corresponding to the graph G' and
y(G', F) is a characteristic function of some set of orderings ΐ. This set has the
property that a sequence of subgraphs G'1? G'2,..., G'm = G defined by an ordering /'
from the set consists of subgraphs with positive degrees D(GJ)>0. In the rest of this
chapter we will prove the above statement. In the proof we will describe the form
of generalized graphs and the corresponding generalized expressions. Of course
this statement and Proposition 2.2 imply the inequality (3.3).

We will prove (3.5) step by step, starting with the subgraphs of lowest order. At
first let us remark that the expressions corresponding to graphs with an odd
number of external vector field legs (and no other external legs) are equal to 0. This
follows from the fact that every graph of this type has at least one loop of scalar
field lines with an odd number of vector field legs, thus with an odd power of q, and
we have trg 2"+ 1=0. Thus we have no divergent subgraphs with one or three
external vector field legs.

Let us take an arbitrary GeGren, some ordering Γ of lines of this graph and the
corresponding sequence of subgraphs G15 G 2 , . . . , Gm = G. Some of them can have
nonpositive degrees and we will construct a representation (3.5) constructing
successively these representations for the subgraphs G .

Let us take a first divergent subgraph G0 in the sequence. If it is a graph of the
form (2.4), and if every subgraph in the sequence containing it is convergent, then
we can apply the same procedure as in the proof of Proposition 2.1, i.e. we apply
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the integration by parts formula (2.8). If it is a subgraph of some divergent
subgraph in the sequence, then we temporarily postpone considering it until we
will treat it with the larger subgraph. There are the following remaining
possibilities for nonvacuum graphs : G0 has two external scalar field legs, G0 has
two external vector field legs, G0 has two external scalar field legs and one vector
field leg. We will consider successively all these possibilities.

Let us start with self-energy graphs for scalar fields. The graphs of lowest order
are

0 (3.6)

and the renormalized class Gren contains the corresponding mass renormalization
counterterms also:

(3.7)

The two last terms in (3.7) cancel exactly the two last terms in (3.6), so the
expressions containing these terms vanish (Wick ordering). We will consider in
detail an expression corresponding to

The method described below, and even a simplified one, will be applied to all other
primitively divergent graphs (graphs whose every proper subgraph is convergent).
The expression corresponding to (3.8) is

- Σ Σ K, x')qg(x)G(n(x, x')g'(x') φ'(x')

Σ q(d"μG(j)(0)δ"μ*)(x,x')qg(x)G(jΊ(x,x')g'(x')
μ- 1

(3.5

where g, g' are localization functions. To this expression we apply Taylor's formula
in the form

Σ θv-*μ)(W*)+ Σ
μ = l bCΓx

\Ί
\υ _ X

(3.10)

where (b)x denotes a bond b parallel-transported to the point x. We apply it to a
leg φ', but let us notice that the expression (3.9) is symmetric in φ, φ1, so we could
equally well apply it to the leg φ. We choose the leg with a smaller -index and
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write it as φ'. We get

d Γ d

(the expression (3.9)) =— Σ Σ^^M* Σ^d Σ
μ= 1 x lx' v= 1

• 0(x)G(<n(x, xf)g'(x')(x'μ - xμ]

- Σ
d

'Σ
μ=l

The second expression above already has the right form because the factor
|x — x|1 +α adds to the degree of the graph the number 1 + α, thus the degree of the
expression is equal to — d + 3 + α now. The operator acting on the leg φ' is a
differentiation of the order 1 + α, so we will represent graphically this expression by
the generalized graph

^/NAA/VX,̂

(3.12)

To make the above statements about the degree quite clear let us show how this
expression will be estimated. We localize additionally the vertices in cubes Δ(υ\
Δ(υ'\ \Δ(v)\=(Δ(v')\=(Ljίη)dJ1=mm{jJ'}, and we have

(the expression (3.12))^ 0(1) Σ SUP \Φ(x)\(Lhη)2d(Ljη)~d

Δ(v),Δ(v') xεΔ(v)
ί dist(Δ(v), ΔWnΐ' ~d+2- δ0(LJ'η) ' l dist(Δ(v), Δ(υ'))

<τh M + α \(Bη

μΦ
f)(y)-(dlΦ')(χ)\ .....

•(LJίη)1+a sup sup -^ - - - -f - . (3.13)
x e Δ ( v ) , x ' e Δ ( υ ' ) y e Γ x > x > , μ \y ~ X\

We can estimate the factor ((LhηΓlά\si(Δ(υ\Δ(v'}}Y+* by 0(1) using half of the
exponential factor with index j\. If φ' is a leg of a propagator with an index /',
whose second leg is localized in Δ(v"\ then the last supremum in (3.13) can be
estimated by

0((\)(U"ηΓd+l~Λ sup expE-^L^-Mist^^^^))],
xeΔ(υ), x'eΔ(v')

and the exponential factor together with another exponential factor in (3.13) give
us the estimate

(the expression (3. 12))^ 0(1) Σ SUP \Φ(x)\(Lhη)2d(LjηΓd

Δ(υ),Δ(v') xεΔ(v)

• (U'η)1 +*(Lfηrd+ ' ~' exp[ -f δ0(LJ"ηΓ ' dist(J(t>), J(w"))]

(there may be an additional negative power of LJ"η

coming from differentiations in the vertex v"). (3.14)
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This estimate shows that for (3.12) we have exactly the same factors as in the
expression (2.14), but with different degrees; thus we have the generalized
expressions and generalized graphs in the sense explained before Proposition 2.2.
The same statements apply to all expressions appearing in the future and we will
not repeat them.

Let us consider the first expression on the right side of (3.11). The same
expression appears for all orderings of the lines of the graph G0 with the only
condition that they are earlier than the external lines. Making summations over
these orderings and indices means that we sum with respect to j,/ from 0 to /',
where /' is the lowest index of the external lines. After the summations we get

- Σ ΣfVM
μ=l x

Σnd Σ «(^G},(0)δf)(x,x')wWG}»(^x')0'(x')K-^)l(^Φ')W, (3-15)
JC' v = l J

and this expression is represented graphically by *> . Let us estimate the
coefficient in the vertex, i.e. the expression in the square brackets in (3.15).
Rescaling it from the ^-lattice to the L~ •'"-lattice (x, x', = LJ"ηy, Lj"ηyf, y, y'e TL-j»\
we get the same expression but with L~j" instead oϊη. For simplicity let us denote
L~j" = ξ. Next we replace Gj,,(0) by

d

Gj4Q)(l-mf,,-aΓPr,)Cξ. We have £ d*Cξd**

= — AξCξ = δξ— Cξ and δξ(y' — y)(y'μ — yμ) = Q9 so the expression is equal to

- q2 Σ ξdCS(y-y')g(y)GJ4y, /W) (/„ - yμ)

- m2

r -+ q2 Σ ? Σ (δvGJ~(
y' \ v = i

•g(y)Gj4y,y')dW(y'tt-ylt). (3.16)

Using the inequalities

e-&o\y-y'\

and the corresponding inequalities for derivatives, we can estimate (3.16) by a
constant.

Thus we have finished the analysis of (3.8) and we can summarize it in the
following graphical form

(3.17)

It is of the required form (3.5).
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Let us consider the other cases of self-energy graphs for scalar fields. All the
remaining divergent graphs of this type have degrees equal to 0. Primitively
divergent graphs, i.e. the graphs

are treated in a simpler way. If Σ(x, x') is an expression corresponding to any such
graph, then we have a graph with mass renormalization counterterm of the form
— Σ ηdΣ(x, x'), and we write

(3.19)= Σ η™φ(X) (Σ(X,x')\X'-x\«)«Φ'(*Ί~Φ'(X

We get a generalized expression of degree + α represented by some generalized
graph whose every subgraph has a positive degree also. Graphically we write it as
follows

(3.20)

The same procedure is applied to all divergent self-energy graphs G0 if no
divergent subgraphs appear within the given ordering, with the possible exception
of the graphs (2.4). When this graph appears, then we apply the integration by
parts formula (2.8) again. For graphs of higher orders usually there is a chain of
propagators connecting a vertex localized in x with a vertex localized in x', and
then we estimate |x' — x|α^|x' — x1\*+ ... +\xl — x\a. It is necessary to mention here
that G0 can have divergent subgraphs and there is a whole renormalized class of
graphs containing G0, but we treat graphs separately. This applies also to graphs
with renormalization mass counterterms. Within the considered ordering they do
not give any divergences.

We have to consider another class of graphs with two external scalar field legs,
the graphs with one leg differentiated. There are only two such graphs :

(3.21)

The expression corresponding to the first graph is in fact convergent, because
ηGk(x9x) is convergent to some finite constant as η->0. The second expression is
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transformed in a way similar to (3.17) and (3.20):

/^
4-^Λ C3 ̂

(3.22)

The first graph on the right side has positive degree, the second is treated in the
same way as the expression (3.15) : we sum over proper orderings and j-indices and
we get

Σ Σ rfΦW •[ «2 Σ ̂ G},(0)) (x, x')g(x)G].,(x, x')g'(x')} (δ"βφ') (x) . (3.23)
μ=ί x [ x' J

Further if we take g'(x') = g'(x)-\ -- τ—f - , — \xr — x\, then the expression in the
\x x\

square bracket in (3.23) containing the second term will be convergent and the
expression with the first term is equal to

q2g(x)g'(x) Σ η^G'j.m (x, xf)G^(x, x') .
x'

Rescaling from the ^/-lattice to the L~j" -lattice and using the same method as in
(3.16) we get some convergent expressions plus

q2g(x)g'(x) £ ξd(dξ

μC
ξ) (x — x')Cξ(x — x'}.

x'

We have further

(3 24)

and the expression on the right side has a finite limit as £—>0. Hence the last graph
in (3.22) defines a vertex — —^— with some convergent function.

The next class of graphs is the class of self-energy graphs for vector fields. The
graphs of lowest order are

/Λ/VX/\£ V\/VΛ/> , A/V\Λ<£ Vx/W* , A/\7\AxXA/X/Vrt , /Λ/VXΛXX^V/XΛΛ

(3.25)

and they form a renormalized class of graphs connected by Ward-Takahashi
identities (2.26) and (2.27). Let us analyze in detail the expressions corresponding



440 T. Baίaban

to these graphs. Applying the same transformations as for (3.9), we get

- Σ n2d Σ g(x)Aμ(x)tiq^Gl)(0)d^(x,x')(GlΊ(0)d^(x\x)gWA'μ,(xl
x,x' μ,μ'=ί

+ Σ n2ά Σ ίίMΛM trί2G^(0 x, x') (δj, 0^(0)3**) (x', xMx')4 (*')
x,x' μ,μ' — 1

d

-Σ>?d Σ 0(χ
x μ = 1

-Σnd Σ #(χ
x μ = l

= - [ Σ 'ί2' Σ
be, x' μ,μ' = 1

+ Σ ί?2d Σ
x, x' μ,μ' = 1

-Σ'/" Σ ̂
x μ=l

-Σ^ Σ έ/W^μW
X μ= 1

+ {έ Σ'?2" Σ
lv = 1 x, x' μ, μ' = 1

tπ/2[ - (G^iO)^) (x, x') (G^jWδf) (x', x) (x'v - xv)

+ GJ^O x, x') (aj -GJ!,.̂ ^ (x', x) (x'v - xv)] (d»vg'A'μ,) (x)

72<i Σ 0(xμ,(x)trί

2[-(GJD(0)5j;)(x,x')(G
x, x' μ,μ' = 1

(0 x, x') (fyGfa(0)df) (x', x)|x' - x| 1 +Ί

where ^4, ^4' are external vector field legs. The expressions in the last curly bracket
above are the generalized expressions of the same form as in (3.11), they have
positive degree — d + 3 + α and can be analyzed as in (3.13), (3.14), and
Proposition 2.2 can be applied.

The remaining expressions are analyzed in the same way as the first term in
(3.11). If j0 denotes a smallest j-index of external legs, then we sum with respect to 7,
/, / from 0 to JQ and we get the same expressions but with the propagator GJ0(0).
The expression in the square bracket on the right side of (3.26) has the form

Σnd Σ gM
x μ,μ'=l
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graphically it is Λ/WV*Λ/XΛΛΛ, and the expression in the first curly bracket has the
form

Σ Σ^ Σ gMAμ(x)Π^\x)(d^Aμ,)(x),
v = 1 x μ,μ' = 1

graphically V/XΛ/V/>*ΛΛ ̂  . Now let us rescale the functions Π(^μ/°\ Π(^} from the
//-lattice to the ZΓjo-lattice. We get

= (IJ°ηΓd+3 n(^°^(y} , y = (

We consider the case d = 39 so — d + 2= — 1, — d + 3 = 0. Next we replace the
propagator G7 o(0) by C% ξ = L~jo, using the same equation as in (3.16). If at least
one propagator Gjo(0) is replaced by Gjo(0)(ί — wή0 — ajoPjo)Cξ, then we get a
convergent expression. Hence it is enough to consider the expressions with the
propagator Cξ only. For the expression Π(^^° Jo\ we have to consider the term

^̂

ί)(/)δίtv-(μ^'). (3.27)
y'

We have used the identities Cξ(-y') = Cξ(y'), (dξ

μC
ξ}(-y'} = (dξ*Cξ)(yf} and the

integration by parts formula. Furthermore, for the last expression we have

Σ sin1?;

e^ (3 28)
which is symmetric in μ, μ', hence finally the term (3.27) is equal to 0. Let us
consider the corresponding term coming from Π^μ,

JO>jo\ and let us rescale the
external legs A, A from the ^-lattice to the ξ -lattice also. We get the expression

Σί2 d Σ
y,y' μ,μ' =

•(Cξdf)(y'-y)g'(y)A'μ,(y)

Σί2d Σ

-Σ? Σ g(y)Aμ(y)g'(y)A'μ,(y)tiq2Cξ(0)
y μ=ι

- Σϊ" Σ ff(>'Mμ(3'Mj'M; U')tr«2(C{3f)(0)|. (3.29)
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d

Now if we introduce the function λ(y')= £ g'(y)A'μ>(y)(y'μ, — yμ,\ then (dξ

μ,λ)(y')
μ' = 1

= g'(y)A'μ,(y\ and the expression in the square bracket above has exactly the form
appearing in the Ward-Takahashi identity (2.26) with M2 = 1, hence it is equal to 0.

Let us write the effect of the above transformations in the following graphical
form

ΛA/VXX^ CL/WXΛ + A/WVO^ ylΛ/W> + /vλ/\ΛXXAΛ/V> + Λ/vυVovvv\/* =

^_^̂  ^^-^

+(l+α)
*" ^ ^x

(3.30)

where the coefficient at the vertex Λ/WV*'V*^ is bounded, and the coefficient at the
vertex A/X/WXX/W^ is proportional to (Ljoη)~d + 2, andjΌ is the lowest -index of the
external legs.

The other primitively divergent graphs are considered in a simpler way,
because they have degree 0. We write

Ση2d Σ g(x)Aμ(x)Πμμ,(X,X')g'(x')A'μ,(x')
x,x' μ,μ' = l

^ 2d ^ ί \Λ ί \TJ ( >\\ i lα^'Mμ'M= Σ*1 Σ g(x)Aμ(x)Πμμ,(x,x)\x-x\* ιγ',
x,x' μ,μ' = l IΛ •

+ ΣΊ* Σ g(x)Aμ(x)iΣηdΠμμ,(x,x')\g'(x)A'μ,(x), (3.31)

and the first term on the right side is convergent. To the second term we apply the
same transformations as previously, i.e. we rescale it from the //-lattice to the ZΓjo-
lattice, we resum over proper orderings and j-indices, we replace the propagators
G_y0(0), Gjo by Cξ and finally to the expressions containing the propagators Cξ only
we apply a proper Ward-Takahashi identity. This gives us that the second term is
convergent and we can represent graphically the equality (3.31) in the form

+α

We have to remark that if the subgraph (2.4) appears in the first term on the right
side above and at least one of the vertices of this subgraph is different from the
vertices with external legs, then we apply the integration by parts formula (2.8) to
this vertex. If both vertices have external legs, then the factor \χ' — x\a renders the
integration by parts unnecessary.

Our last class of graphs is the class of graphs with two external scalar field legs
and one vector field leg. They were described graphically in (2.18)-(2.21). It is
possible to give a general description of renormalization, but there are only a few
graphs, so let us be more specific and consider them separately. At first let us recall
that the expression corresponding to the graph (2.21a) vanishes. Graph (2.21e) has
an additional power of 77, so we can treat it like the graph (2.4) multiplied by a finite
expression. The graphs (2.2Id) and (2.2If) are cancelled by the corresponding
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counterterms in (2.21g). Thus we have to consider the graphs (2.18)-(2.20), (2.21b),
and the counterterms (2.21g) and (2.21c). Only the first three classes are primitively
divergent. Generally an expression corresponding to these graphs has the form

g(x)Aμ(x)φW Γμ(x,x'9x'W(x") (3.33)

and the degree is 0. We transform this expression transporting all the legs to one
vertex. More precisely we transport the legs with the lowest j-indices to a vertex
having a leg with highest index. For example, if φ' is such a leg, then

(3.33)= Σ
μ — 1

• Γμ(x, x', x") \x - x' aφ"(x") + g(x')Aμ(x')φ'(x')

,ώ"(X")-φ"(x')
•Γ (x, x',x")\x'

+ Σl" Σ 9(x')Aμ(x')φ'(x') l Σ η2dΓμ(x,x',x"
x' μ= 1 \x,x"

(3.34)

A more detailed inspection of the difergent graphs shows that we can transport the
legs in such a way that the subgraphs (2.4) either are made convergent by a factor
of the form |x1 — x2|

α, or the formula for integration by parts can be applied
without differentiations acting on external legs. For example for the graphs (2.20)
we have within the indicated ordering :

(3.35)

This way all the expressions on the right side of (3.34) are convergent, except the
first two. We transform further this expression moving all localization functions to
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the corresponding vertex. This gives us a convergent expression plus the
expression

d

Σ^d Σ y(χ'}Aμ(x')φ'(x'} (a product of the values of all the
x' μ — 1

localization functions at the point x'} ( Σ η2dΓ^(x,x\x")\ φ"(x'), (3.36)
\χ,χ" I

where Γ'μ is given by the same formula as before, but with the summations
unrestricted. Next we sum the expressions (3.36) over admissible orderings and
indices and we get the expressions of the same type but with propagators G]o(0),
G]o, where jQ is the lowest index of the external legs.

Now we can analyze the factor Σ fl2*Γμ(x, xf, x") for all the renormalized
x,x"

classes. It is easily seen that it vanishes for the graphs (2.21b) and (2.21g) with the
proper renormalization mass counterterm. It vanishes also for the graphs (2.18)
because they correspond to the same expressions but with the opposite signs. To
analyze the remaining graphs we have to transform it further. The expression

Σ η2dΓ'μ(x, x', x"} is of degree 0, so it is equal to the same expression but on the
x,x"

scale ξ instead of η, ξ = L~jo. Now we replace the propagators GJ0(0), G]0 by Cξ in
the way described several times. We get a convergent expression plus

Σ ζ2dΓ"μ(y,y\y") defined with the help of the propagator Cξ. This expression for
y,y"

the graphs (2.19) equals

- q3 Σ ̂ (Cξdξ; )(y - y')Cξ(y - /) - (0« C«)(y - y')C^(y - /)] = 0 . (3.37)
y

For the graph (2.21c) it equals 0 also because by translation invariance it can be
written as a derivative of a constant. Finally for the graphs (2.20) it equals

-43 Σ Ϊ2d Σ
y,y" v = l

I')(y - y")C\y' - y")

=0, (3.38)

because the functions which we are summing are odd.
We have finished the renormalization of all primitively divergent graphs, or

primitively divergent within a given ordering, and we have proved the formula
(3.5) for such graphs. In fact we have a precise description of the class of
generalized graphs. Now we can prove the decomposition (3.5) for an arbitrary
divergent graph G0, assuming that it holds for all its subgraphs. We can assume
that G0 is not primitively divergent. We form a renormalized class G0 ren
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containing G0 and we consider all orderings of lines of the graphs in G0 ren, with j-
indices smaller that the lowest -index of the external legs. Each ordering defines a
sequence of subgraphs and we take the last divergent subgraph in this sequence.
We consider a subset of the set of all orderings consisting of the orderings for
which the given subgraph appears and we apply (3.5). It is necessary to notice here
that the differentiations acting on external legs of this subgraph and connected
with the construction of the decomposition (3.5) do not act on external legs of the
whole graph G0. Thus the degree of G0 is unchanged, and its situation inside some
larger graph is unmodified. This way we have decomposed the expressions
corresponding to G0 ren into a sum of expressions corresponding to some set of
generalized graphs. A graph of this set has the property that each of its subgraphs
appearing within some ordering has positive degree. Thus the only divergent
graphs can be the whole graphs of the set. Now we apply one of the formulas
(3.19), (3.31), (3.34) [graphically (3.20) and (3.32)], and we finally renormalize the
whole graphs, i.e. we have a representation (3.5) for them. Let us notice that in
order to cancel the divergent expressions we have to perform the same transfor-
mations in mass renormalization counterterms, or in the expressions in Ward-
Takahashi identities, as in the expressions corresponding to G0 ren. For divergent
vacuum graphs we do not need to do all these transformations because they are
canceled by vacuum energy counterterms. Thus we have finished the description of
the renormalization of divergent graphs.

Now for arbitrary Gren we get the decomposition (3.5) as above, taking these
decompositions for all divergent subgraphs appearing in all possible orderings.

This ends the proof of Proposition 1.
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