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Abstract. The tetrahedron equations arise in field theory as the condition for
the S-matrix in 2+ 1-dimensions to be factorizable, and in statistical mechanics
as the condition that the transfer matrices of three-dimensional models
commute. Zamolodchikov has proposed what appear (from numerical evi-
dence and special cases) to be non-trivial particular solutions of these
equations, but has not fully verified them. Here it is proved that they are indeed
solutions.

1. Introduction

A number of two-dimensional models in statistical mechanics have been exactly
solved [1-4] by using the "star-triangle equations" (or simply "triangle equa-
tions") [5-7], which are generalizations of the star-triangle relation of the Ising
model [8, 9]. These equations are the conditions for two row-to-row transfer
matrices to commute.

Alternatively, these models can be put into field-theoretic form by considering
the transfer matrix that adds a single face to the lattice [10], and regarding this as
an S-matrix. The star-triangle relations then become the condition for the 5-matrix
to factorize [11].

These equations can be generalized to three-dimensional models in statistical
mechanics, corresponding to a 1 + 2-dimensional field theory. Unfortunately, the
resulting "tetrahedron" equations are immensely more complicated, the main
problem being that there are 21 4 individual equations to satisfy for an Ising-type
model, as against 26 in two-dimensions. Symmetries reduce this number some-
what, but there are still apparently many more equations than unknowns and until
recently there was little reason to suppose that the equations permitted any
interesting solutions at all.

However, by what appears to be an extraordinary feat of intuition,
Zamolodchikov [12, 13] has written down particular possible solutions and has
shown that they satisfy some of the tetrahedron equations in various limiting
cases. Extensive numerical tests have also been made by V. Bajanov and Yu.
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Fig. 1. Arrangement of the spins α,...,/? on the corner sites of a cube

Stroganov, but a complete algebraic proof has hitherto not been obtained. Here (in
Sects. 3-5) I give the required proof, which depends very much on classical
nineteenth (and eighteenth) century mathematics, in particular on spherical
trigonometry.

Let me refer to Zamolodchikov's two papers [12] and [13] as ZI and ZΠ,
respectively. In ZI he considers the "static limit," when his solution simplifies
considerably. Some of the Boltzmann weights then vanish, and the others satisfy
various symmetry and anti-symmetry relations. In Sect. 6 I show that it is the only
solution of the tetrahedron equations with these zero elements, symmetries and
anti-symmetries.

From the statistical mechanical point of view, the anti-symmetry relations are
rather unsatisfactory as they require that some of the Boltzmann weights be
negative. We should like to replace them by strict symmetry relations, but
unfortunately the tetrahedron equations then no longer admit a solution.

2. Interactions-Round-a-Cube Model and the Tetrahedron Equations

Just as the two-dimensional star-triangle relations can be obtained in convenient
generality for an "Interactions-Round-a-Face" (IRF) model [7, 10], so can the
three-dimensional tetrahedron relations be obtained for an "Interactions-Round-
a-Cube" (IRC) model.

Consider a simple cubic lattice if of N sites. At each site i there is a "spin" σ ,
free to take some set of values. Each cube of the lattice has eight corner sites: let
the spins thereon be a,b,...,h, arranged as in Fig. 1, and allow all possible
interactions between them. Then the Boltzmann weight of the cube will be some
function of a,b,...,h: let us write it (omitting commas) as W(a\efg\bcd\h). The
partition function is

where the product is over all N cubes of the lattice; for each cube ij, ...,p are the
eight corner sites the summation is over all values of all the N spins.

Let T be the layer-to-layer transfer matrix of the model. It depends on W, so
can be written as T(W). Consider another model, with a different weight function
W. Then, as has been shown by Jaekel and Maiίlard [14], the two-dimensional
argument [7,10] can be generalized to establish that T{W) and T(W) commute if
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Fig. 2. The graph (a rhombic dodecahedron) whose partition function is the left hand side of (2.2). Some
edges are shown by broken lines: this is merely to help visualisation

there exist two other weight functions W" and W" such that

= Σ W"Xb1\cίc4c3\a2a4a3\d)W"(c1\b2a3a4\dc2c6\a1)
b

Wf(a4\c2dc3\a2b3a1\c5)W{d\a1a3a2\c4c5c6\b4)

(2.2)

for all values of the 14 spins ava2,a3,a4,b1,b2,b3,b4,cvc2, ...,c6. I shall refer to
these 14 spins as "external," and to d as the "internal" spin.

We can think of each side of (2.2) as the partition function of four skewed cubes
joined together, with a common interior spin d. This graph is a rhombic
dodecahedron. For the left hand side of (2.2), the graph can be drawn (by
distorting the angles) as in Fig. 2 for the right hand side, the centre spin d is to be
connected to av . . . ,α 4 , instead of bv ...,b4. In either case the lattice is bipartite:
av ..., α4, bv ..., b4 lie on one sub-lattice cv ..., c6, d on the other.

Now suppose that each spin σt can only take values + 1 and — 1, and that W is
unchanged by negating all its eight arguments, i.e.

W{-a\-e,-f,-g\-b,-c,-d\-h)=W(a\efg\bcd\h). (2.3)

The Eq. (2.2) are then the tetrahedron equations used by Zamolodchikov. To see
this, work with the duals <£Ώ of the lattices discussed above. The cube shown in
Fig. 1 is then replaced by three planes intersecting at a point, dividing three-
dimensional space into eight volumes associated with the spins a,...,h. Two
parallel cross-sections of this diagram (one above the point of intersection, the
other below) are shown in Fig. 3.

Adjacent spins are separated by faces of ifD (shown as lines in Fig. 3). Colour
each face white if the spins on either side of it are equal, black if they are different.
Then by letting the spins a,...,h take all possible values, one obtains the allowed
colourings shown in Eq. (6.1) of ZI, a typical example being shown in Fig. 4.
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Λ d

Fig. 3. Two cross-sections through the dual graph of Fig. 1: the spins a, ...,h are here associated with
volumes

-VA

Fig. 4. A typical set of values of a,...,h, and Zamolodchikov's corresponding plaquette colouring
(heavy lines denote "black," lighter lines "white")

Conversely, any allowed colouring corresponds to just two sets of values of the
spins a, ...,h, one set being obtained from the other by negating all of them. From
(1.3), this negation leaves W unchanged, so the Boltzmann weight of the
configuration is uniquely determined by the colouring of the faces. We can
therefore replace the function W of the eight spins by a function S of the colours of
the 12 faces. If we write "white" and "black" simply as " + " and " —", then the
colour on the face between two spins c and g is simply the product eg of the spins.
We can therefore explicitly define S by

eg, ae, df, bh

S de,af,bg,ch= W(a\efg\bcd\h). (2.4)
bf, ag, ce, dh

Define S', S\ Sr" similarly, with W replaced repsectively by W, W", W". Then (2.2)
becomes precisely Eq. (3.9) of ZI, except only that in Zamolodchikov's notation S,
S', S", S'" become

(_(23) (12) M3)\ CYV(24) _(12) ~(14)\

S ( z ( 3 4 ) , z ( 1 3 ) , z ( 1 4 ) ) , S ( z ( 3 4 ) , z ( 2 3 ) , z ( 2 4 ) ) ,
respectively.

3. Zamolodchikov's Model

Zamolodchikov's model has the "black-white" symmetry property that S is
unchanged by reversing the colours of all 12 faces. This means that W not only
satisfies (2.3), but has the stronger sub-lattice symmetry properties

W(-a\efg\-b9-c, -d\h)=W(a\-e, -/, -g\bcd\-h)

= W{a\efg\bcd\h). (3.1)
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Table 1. Values of the function H the spin products λ, μ, v, are defined by (3.3), the parameters P o , ..., R3

by (3.13)

W{a\ejg\bcd\h)

P0-cώcdQ0

abP] +cdQι

acP2+bdQ2

adP3+bcQ3

To express the function W in terms of Zamolodchikov's matrix elements
(7,5, a ...,K,H, V, we simply note that W{a\efg\bcd\h) corresponds to the spins as
arranged in Fig. 3, translate each set of spin values to a face colouring, and look up
the corresponding matrix element in Eq. (6.1) of ZI (using if necessary the black-
white colour symmetry). For instance, using Fig. 4, considering also the effect of
negating h:

W(-\- + +\+-+\+) = H{θ2,θ1). (3.2)

Doing this, using Eqs. (2.2) and (4.9) of ZΠ, we find that W is "almost determined"
by the values of the three spin products

λ = abeh, μ = acfh, v = adgh. (3.3)

More precisely, W has the values given in Table 1, where P o , . . . , P3, β 0,.. ., Q3, and
Ro,..., JR3 are constants, independent of the spins α, ...,h. The functions W\ W",
W" are also given by Table 1, but with different values of Po, ...R3.

Spin Symmetries

Before specifying these constants, it is worth considering the symmetries of W and
the tetrahedron equations (2.2). Since (2.2) has to be valid for all values of all the 14
spins ava2, ...c6, it consists of 2 1 4 individual equations: a dauntingly large
number! The spin reversal symmetry (2.3) helps: it reduces the number to 2 1 3 . The
stronger symmetry (3.1), together with the fact that the graph in Fig. 2 is bi-partite
(the a. and bi lie on one sub-lattice, the cf and d on the other), implies that (2.2) is
unchanged not only by reversing all spins, but also by reversing all those on one
sub-lattice. This reduces the number of distinct equations in (2.2) to 2 1 2 .

This is still a very large number, but fortunately when we use the specific form
of W given in Table 1 we find some dramatic simplifications. If W (and W, W",
W") depended only on λ, μ, v, then it would be true that (2.2) involved the 14
external spins av...,c6 only via the 10 products α1fc1, a2b2, a3b3, aAb^ a3a4cv

axa^c2, a2a^c3, a2a3c^ aγa2c5, aγa3c^. Further, negating either the first four of
these products, or the last six, would merely be equivalent to negating d. This



190 R. J. Baxter

would mean that (2.2) depended only on eight combinations of the external spin,s

e.g.
aίa2b1b2, a1a3b1b3, a1a4b1b4, a1a3c1c2,

a2a3c1c3, a2a4rc1c4_, a1a4c1c6, aιa2a3a4c1c5.

Hence there would only be 28 = 256 distinct equations. In fact W depends not only
on λ, μ, v: from Table 1 it has the form

W(a\efg\bcd\h) = τF(λ, μ, v, abed), (3.5)

where F is a function of four spin products and τ is a sign factor, equal to either 1,
αfc, ac or ad. Also, the terms involving abed have λμv = 1, i.e. abed —efgh. It follows
that abed in (3.5) can be replaced by efgh if desired.

Using the form (3.5) (and corresponding forms for W\ W\ W") in (2.2), the
eight abed (or efgh) arguments that occur can be taken to be bjo2b3a4, bγb2a3b4,
b1a2b3b4, a^φ^b^ b1a2a3a49 α 1 ^ 2 α 3 α 4 , axa2b3a4, ata2a3b4. The ratios of these
depend only on the first three products in (3.4), so they are determined by the
products (3.4), apart from a single overall sign factor. This means that each of the
previously mentioned 28 equations is in fact a pair of equations, one being
obtained from the other by negating (say) ava2, α3, α4. Equivalently, one equation
can be obtained from the other by negating Rφ Qo, Qv Q2, Q3 in Table 1, for all
four functions W, W\ W\ W".

It still remains to examine the contributions to (2.2) of the τ sign factor in (3.5).
I have done this (aided by a computer) for each of the 2 8 pairs of equations. In
every case it is true that the multiplied contributions also depend only on bγb2b3a4

and the eight spin products in (3.4) [apart possibly from an overall sign factor
multiplying both sides of (2.2)].

Thus there are just 2 x 2 8 = 512 distinct equations: a great reduction on the
original 2 1 4 !

There are still further simplifications: the function W has the "diagonal
reversal" property:

W(a\efg\bed\h) = W(h\bed\efg\a), (3.6)

and similarly for W\ W", W". It follows that the two sides of (2.2) are interchanged
by the transformation

a- <-• i> , i = l , ...,4,
(3.7)

ci <-> c5, c2 *-> c 4 , c3 ^ c6.

This means that 64 of the 512 equations are satisfied identically, the right hand
side being the same as the left hand side. The remaining 448 occur in pairs of type
B = A and A = B, so there are only 224 distinct equations remaining. These can
conveniently be regarded as 112 pairs, one being obtained from the other by
negating Ro, QQ9...,Q3 for all four functions W, W\ W", and W".

Set
X P Q YJ = PJ-QJ (3.8)

for 7 = 0,1,2,3, and take W to be also given by Table 1 and (3.8), but with Pp Qj9

Rp Xj, Y. replaced by P'p Q'p R'p X'p Y'.. Similarly for W\ W". Then two typical
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equations [obtained from (2.2) by taking all the external spins positive except av

and except a1 and α 2] are

YoY^Rfs + RoR
f

2RlxfS = YSfRoRf3Ri + RoYΐYlYi > (3 9 )

Yo Y^R'ίR'ϊ + R0RWS = R!'W2X2 + Yϊ" Y';R'0R2. (3.10)

Two other equations can be obtained immediately from these by negating
Ro, ...,RQ and Qp ...,QJ, i.e. by negating each Ro and replacing every X by a Y,
and every Y by an X.

The Constants Po,..., jR3

Now let us return to the procedure described before (3.2), so as to obtain the
constants Po, ...,R3 in Table 1, and hence the Xp Y. in (3.8), from Eqs. (2.2) and
(4.9) of ZΠ. To do this we need various functions of the angles φv φ2, φ3 of a
spherical triangle, namely the spherical excesses

and the quantities

ί. = [tan(α /2)] 1 / 2 , s . = [sin(α /2)] 1 / 2 , c = [cos(α /2)] 1 / 2 , (3.12)

for i = 0,l,2,3. We then find that P 0 , . . . ,K 3 are given by

Po = 1 ' Qo = W2h > Ro = so/(cic2c3),

Pi = *h> Qi = toti> R^sJiWjC,),

for all permutations (ij, k) of (1,2,3). (Here φ 1 ? φ 2 , φ3 are Zamolodchikov's angles

It is convenient to regard Table 1 and Eqs. (3.11)—(3.13) as defining W as a
function of the angles 0 t , φ2, φ3, as well as of the spins a,..., h. We can write it as

W[_φvφ2,φ3 a\efg\bcd\K], (3.14)

or, if the explicit spin dependence is not required, as W\_φv φ2, φ3~\. The other
weights W\ W'\ W" are also given by this function, but with different values of the
arguments φvφ2,φ3. Zamolodchikov's assertion is that (2.2) is satisfied if W, W\
W\ W" therein are given by

W=Wlθ29θ19θ3], W=Wlπ-θ69θvπ-ΘJ,

θθ-]

where θv ...9Θ6 are the six angles of a spherical quadrilateral, as shown in Fig. 5,
and equivalently in Fig. 7 of ZII. These angles are not independent: they
necessarily satisfy the relation (3.2) of ZII.
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Fig. 5. A segment of a spherical quadrilateral, showing its associated four triangles, with interior angles

The parameters P' , P", P'"9 Q[,..., R3 are of course given by adding primes to P9

Q, R in (3.13) and substituting the appropriate values of φv φ2, φ3 into (3.11), and
thence into (3.12) and (3.13). For instance, the double-primed parameters
P'ό, . . . ,#3 are obtained by taking φv< !)3 to be 0 5, π — π — ί

4. Angle Symmetries

We want to verify Zamolodchikov's assertion that (2.2) is satisfied by (3.15).
Fortunately we do not have to prove each of the 224 equations individually. We
can regard each of them as an identity, to be verified for all values of θv ...,06

satisfying the spherical quadrilateral constraint (3.2) of ZΠ. It turns out that many
of these identities are simple corollaries of one another.

Q Negation

We can regard θv 02, θ3 as determined by 04,05, θ6 and the arc lengths LM, MN in
Fig. 5. These parameters can be varied so as to shift the line AB in Fig. 5 upwards
through the point C. The (01 502,03) triangle first shrinks to a point, and then
reappears in an inverted configuration, as shown in Fig. 6. This gives a new
spherical quadrilateral, with angles θv θ2, 03, π — 04, π — 05, π — θ6.

Since θι+θ2Λ-θ3 — π is the area of the (01 502,03) triangle [15], it cannot
become negative during this process: it has a double zero when the triangle
shrinks to a point. This means that [tan(0 1+ 02 + 03 —π)/4]1 / 2 has a simple zero,
so is negated when analytically continued from Fig. 5 to Fig. 6. The same is true of
[sin(01 + 02-l-03 — π)/4]1 / 2. All other square roots retain their original positive
sign.
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Fig. 6. The spherical quadrilateral of Fig. 5, after the line ΛB has been shifted through C. Here ι
denotes the supplement π — θj of the angle 0.

It follows that for each of our equations, we can obtain another by the
following procedure:

Use (3.15) and (3.11 )-(3.13) to write the equation explicitly in terms of θx,...θ6

negate [tan(θ1 + 0 2 + 0 3 - π ) / 4 ] 1 / 2 and [ s i n ^ + θ 2 + θ 3 - π ) / 4 ] 1 / 2 throughout; re-
place 0 4,0 5,0 6

 b y π~θ4.> π~θ5> π~θ6-
Let us call this procedure P 1 2 3 , and define P 1 4 6 , P 3 4 5 , P25β similarly. (Each

corresponds to shrinking one of the triangles in Fig. 5 through a point.) By itself,
each such procedure gives an equation which is not in our original set, but if we
perform all four sequentially, then the result is to return θv ...,θ6 to their original
values, having negated Ro and Q for 7 = 0,1,2,3 and for all four functions W, W,
W", W". (This corresponds to inverting each S matrix.) This is the (.Ro, Q)-negation
pair symmetry discussed between (3.5) and (3.11).

The 224 equations therefore occur in 112 pairs, each equation of a pair being a
corollary of the other.

Negation of θί

Another way to analytically continue θv ..., θ6 is to allow the great circles ΛB and
CD in Fig. 5 to first become coincident and then cross one another. The result
(after vertically mirror inverting) is to replace θv...,θ6 in Fig. 5 by —θv π — θ2,
π — Θ3,π — 04, 05, π — 06, respectively i.e. to negate θί and supplement 02, 03, 04, θ6.
In this process the spherical excesses (triangle areas)

+ Θ 1 - Θ 2 - Θ 3 ,

-04-06.

(4.1)
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all pass through zero and become negative, their ratios remaining positive. Thus
for each such spherical excess E in (4.1), [tan(£/4)]1/2 and [sin(£/4)]1/2 should be
replaced by ϊ[tan(-£/4)] 1 / 2 and i[sin(-£/4)]1 / 2, and this should be done before
transforming θv ...,06.

This procedure can be simplified by following it by procedures P 1 2 3 and P 1 4 6 ,
the effect of which is to restore θ2, 03, 04, θ6 to their original values. (It also keeps
us within our original set of equations.) The result is to change W by replacing the
parameters (Po, Pv P 2 , P 3 β 0 , Qv β 2 , β 3 Ro, Rv R2, R3) by ξ(P2, iβ 3, P o, iQχ

β 2 , - Ϊ P 3 , β 0 , - i P ^ -iΛ2, R3, J#o> #i)> t n e common factor ξ being P J 1 . The
same changes are made in W (all the parameters being primed), but the functions
W" and W" are unaltered.

For instance, under this transformation (3.9) becomes (after cancelling the
common ξ factors)

which is another of our 112 equations [obtainable from (2.2) by taking b2, c2,
c6 = — 1, all other external spins = + 1]. Applying the transformation to any of the
equations gives another equation of the set (not obtainable from the first by Q
negation), and repeating it gives back the original equation. The 224 equations can
therefore now be grouped in 56 sets of 4, any three equations of a set being
corollaries of the fourth.

Permutation Symmetry

The weight function (3.14) has various symmetry properties, in particular

W(φi9 φp φk a\eiejek\bibjbk\h) = unchanged by permuting i, j , h, (4.3)
and

W[φvφ2,φ3 a\efg\bcd\h] = W[π—φvπ—φ3,φ2 f\dba\geh\c]

= W[φv π-φ3,π-φ2; b\hfg\acd\e~\

= Wlφvφ29φ3;h\bcd\efg\ά]. (4.4)

Using these, (2.2) can be put into the more obviously symmetric form

Σ ^ ΐ ^ 2 ' ̂ 3' ̂ i ' ^4k2c3c1|fe1ί?2fe3|ίi] W[θv θ6, θ4 ^3 |c1c6c4 |64&1fc2 |(ί]

-, θ6, θ2 bΐ\c1c3cja2a3a4\d~] W[_θ4,03, θ5 b2\c2c6c1\a3a4a1\d~]

96, θ4 b3\c5c3c2\a4axa2\d^ W\β29 θ3, θx b^c^φ^a^d] . (4.5)

For some purposes it is convenient to replace the angles θr and the spins cr by

(4.6)

Ψij and where

c 4 =

^ 3 4 ,

= ί > 34 '

= e 2 3 ,

Θ2 =

C2 =

C5 =
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Making these substitutions into (4.5), all indices are integers between 1 and 4,
and it is easy to check by using (4.3) that the equation is unchanged by permuting
the integers 1, 2, 3, 4. Further, any such permutation is equivalent to merely re-
drawing Fig. 5, by extending the quadrilateral to another part of the spherical
surface and possibly rotating or reflecting it. Thus the permutation takes one set of
quadrilateral angles θv...θ6 to another.

There are 24 such permutations (we can think of them as the permutations of
the four vertices of the tetrahedron in Fig. 2, θv...,θ6 being associated with the
edges). Each takes one of the 224 equations to itself or another, so this is a very
strong symmetry. In fact, when use is also made of the g-negation and θ1 -negation
symmetries, it turns out that all the 224 equations are corollaries of just two
archetypical equations, which we can take to be Eqs. (3.9) and (3.10) above. Thus
our original 2 1 4 equations have finally reduced to two!

[We cannot get down to just one equation with the above transformations:
they all take ^-parameters to jR-parameters, and X or ^parameters to X or
Y-parameters. Since each term in (3.9) has an odd number of each, and each term in
(3.10) has an even number, one equation cannot be transformed to the other. The
224 equations fall into two distinct classes: an "odd" class with 128 members, and
an "even" class with 96.]

5. Proof of the two Archetypal Identities

To verify that Zamolodchikov's solution does indeed satisfy the tetrahedron
equations, it remains only to prove that (3.9) and (3.10) are satisfied for all sets
(θv ...,06) of spherical quadrilateral angles.

First let us follow Zamolodchikov's notation [Eqs. (4.9) and (2.2) of ZΠ] and
define functions <7, S, d, U, CO, V of φv φ2, φ3 by

a(ΦvΦ29Φ3)=so/(Clc2c3)9

φ \ φ ) / ( )

where ί , si9 ci are defined in terms of φv φ2, φ3 by (3.12) and (3.11). (The functions
CΓ, S, αare symmetric in φv φ2, φ3;U9 OXV are symmetric only in φγ and φ2.)

The 48 parameters X., Yp Rp...,RJ are given by (3.11)-(3.13) and (3.8), with
arguments φv φ2i φ3 determined by (3.15). They are equal to particular values of
the functions <j,..., F (possibly negated). For instance, setting φv φ2, φ3 to be 05,
π - 0 3 , π - 0 4 , we can verify that YJ' = - V(θ3,04|05). Doing this for all the
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parameters in (3.9) and (3.10), these equations can be written more explicitly as

s ( 0 l s θ2, Θ3) s(0 1 5 θA, θ6) s(0 3, 04, θ5) aφ2, 05, Θ6)

+ aφv θ2, θ3) a(θv θ4, θ6) o(03, <?4, θ5) σ(θ2, θ5, θ6)

= uφ,, Θ3\θ2) u(θv θA\θ6) u(θ3, Θ4\θ5) s(θ2, θ5, θ6)

+ V(θv Θ3\θ2) V(θv Θ4\θ6) 7(03, 04 |05) a{02, θ5, θ6), (5.2)

S(θv θ2,03) S(θv 04, θ6) a(03,04,0S) fl(02,0S> 06)

+ aφίt θ2,03) 0(0!, 04, θ6) σ(03,04,05) σ(02 > 05, θ6)

=ω(02,03I0J ω(0 4 ,0 6 |0 !) [7(03, ΘJΘ5) u(θ2, Θ6\θ5)

+ [/(02.03I0!) [7(04,0610!) 7(03 A | 0 5 ) 7(02, 0 6 |0 5). (5.3)

[Equation (5.2) is precisely Eq. (3.1) of ZIL]

Simplification of (J,...,V

An irritating feature of these equations is the proliferation of square roots that
enter via (3.12). We can remove these by introducing the lengths of the sides of the
spherical triangles, as well as their angles.

To do this, we need some basic formulae of spherical trigonometry, which are

given by Todhunter and Leathern [15], here referred to as TL. Let A, B, C be the

interior angles of a spherical triangle, and a, b, c the lengths of the corresponding

(opposite) sides. Let E = A + B + Cπ (5.4)

(5.5)

(E is the "spherical excess" of the triangle, 2s is the perimeter). Then, from (5.1),
(3.12), and (3.11),

E 2A-E 2B-E 2C-E 1 / 2

tan — tan tan tan
4 4 4 4

(5.6)

The square-root expression in (5.6) is the "Lhuilierian" of the triangle (Sect. 137 of
TL) and is equal to tan(£/4)cot(s/2). It follows at once that

σ{A9 B,Q = 1 + tan(E/4)/coψ/2)

= sin [(2s + E)/4]/cos - s i n - . (5.7)

Similarly,

S(A, B, C) = sin [(2s - £)/4]/cos - sin | . (5.8)

As is shown in Sect. 28 of TL, any relation in spherical trigonometry remains
true if the angles are changed into the supplements of the corresponding sides, and
vice-versa. Applying this duality principle to Eq. (32) of Sect. 139 of TL, we obtain

• 2 1

sin2 - s =
2

. E 2A-E 2B-E 2C-E
sm — cos — cos — - — cos —

4 4 4 4
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and from this and (5.1), (3.11), and (3.12) we can verify that

sin(E/4)
a{ ' ' Q " . s\ . A . B . Cf 2 '

sin - sin — sm —- sin —

Using Cagnoli's theorem (Sect. 132 of TL), we can establish that

sin\E sin (C — \E) = sin2 - sin A sin B,

(5.10)

(5.11)

while from (5.1), (3.11), and (3.12),

U(A,B\C) Γsin(C-^E)

a(A,B\Q

1/2

(5.12)

Eliminating sin(C — ^E) between (5.11) and (5.12), then using (5.10), we obtain

sin-

U(A,B\C) =

A B
cos —cos —

E . s Γ . C
cos — s i n - sin —

1/2

1/2 ' (5.13)

Taking the duals of Eqs. (34) and (35) of Sect. 140 of TL, then dividing by (5.9),
gives the formulae

s-c) ί 2 ^ - E 2 5 - £ A 51
- U a n — - — t a n — - — t a n y tan —^

cos±(s-c) ί E 2C-E A B}1'2
^ — - = <cot — tan tan — tan —} .

smh 1 4 4 2 2 J

1/2

(5.14)

(5.15)

Using these, it follows from (5.1), (3.11), and (3.12) that

ω(A,B\C)=-

tan — cos -— 1- sin ——-

s\ A B
sin - tan — tan —

1/2

cos — sin - tan — tan —

(5.16)

Similarly,

V(A,B\C) =
s] yϊ B]1/2

cos —sin- t a n y t a n —

(5.17)

For the purpose of verifying (5.2) and (5.3), these expressions for (J, S, d, (7, CO,
V are more convenient than the original definitions (5.1). They contain square
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roots only of multiplicative functions of individual angles, and these cancel out of
Eqs. (5.2) and (5.3).

To use these forms, we need a notation for the lengths of the sides of the four
triangles (θv 03, θ2), (04, θv 06), (03, 04, 05), (02, 06, 05) in Fig. 5. If 0. and θ} are two
interior angles of a triangle, let rij( = rji) be the length of the side joining them. Thus
r65 = r56 = LM, r 6 4 = MAfand r45=NP. Since every great circle has length 2π, and
any two great circles bisect each other, the length LP (along either circle) is π. The
lengths rtj therefore satisfy the four relations

Γ56 + r64 + Γ45=::r52 + r 23+ r 35 = = : r i2 + r 2 6 + r 6 1 = π ' (5 1 8 )

We shall also need following quantities associated with a triangle (ϋh0Γ0k):

2 0 ^ = ̂  + 0.+ ^ - 7 1 , (5.20)

2sijk = rij + rjk + rki, (5.21)

e{ = exp \θ{, x. = cos {0{, y. = sin \θ{, (5.22)

Fijk =sin fajk + α o *) ' Gijk =sin i ( s o /c - %k)

Hijk = \ sin ccijk, Lijk = ύn\rip

M y f c = sini(αo.fc + s o . f c -r y ), (5.23)

From (5.18). (5.19), and (5.21) it is apparent that

S132 + S 4 1 6 + S 3 4 5 + S 2 6 5 = 2 π ( 5 2 4 )

First Identity

Substituting the forms given in (5.7)—(5.17) for the functions <j,..., V into the first
identity (5.2), cancelling common factors, and using the definitions (5.22) and
(5.23), the identity becomes

/^l 32^416^345^265+^132^416^345^265

= λμLl32L4ί6L3,5G265+λN132N416N345H265, (5.25)

where
(5.26)

Each of H 2 6 5 , i^δs' ̂ 26 5 i s defined by (5.23) in terms of a sine function. For
these quantities, it is convenient to write sinu as Im[expiw] (or, for G 2 6 5 , as
— Im[exp( — iu)~\. The resulting expressions can be factored, using (5.20) and (5.24),
into a product of 3 terms associated with the other triangles, e.g.

F265=Im(Ai32A4ί6A345), (5.27)
where

+ θk-2Sijl)/4]. (5.28)

(I use the convention that where i occurs as an index, it is an integer between 1 and
6; elsewhere it is the square root of — 1.)
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Subtracting the right hand side from the left hand side, it follows that (5.25) can
be written as

Im(J) = 0, (5.29)

where

J = —^iμϋ1 32^416^345 ~~ ei^3^4^ 1 3 2^416^*345

and

Hijk = Hijk exp [i(0k - 0. - 0. - π + 2r y - 2syk)/4]
A = ί e χ p [ ϊ ' ( α + s ) ]

Each of Gίj7c, ...,Nijk is a property of a single spherical triangle, with angles 0.,
0y, 0fe. We can express them in terms of two angles and an included side; in
particular of 0., θp and rir This will give J as a function only of θv θ4, θ3 and r 1 3,
^41, ^ 3 4 These variables are independent except for the simple relation (5.19), so we
should be able to verify explicitly that (5.29) is satisfied.

In fact we can simplify this procedure. Using only (5.20), (5.23), and (5.31), it is
readily seen that each of Gijk, Hijk, Lijk, Nijk is a linear combination of the
expressions

exp[i(250.k + 0k)/4] , exp[ - ί(2sijk + 0J/4] ,

exp[i(-2s i i k + 30k)/4],

with coefficients that are simple explicit functions of 0ί? θp and riy

We can relate the three expressions (5.32) by using spherical trigonometry. The
duals of Eqs. (25) and (26) of Sect. 138 of TL are

sins = sinecos^A cos-^Bcosec-^C,

coss = [ — sin-^4 sin-^B + cos|v4 cos^B cosc] cosec^C.

From these it follows that

' ί c - sin^A sin^5] . (5.34)

Expanding sin^C on the left hand side in terms of exp(±^z'C), then multiplying by
exp[i(2>s + C)/4] and replacing A, B, C, s, c by 0., θp θk, sijk, ru, we obtain a linear
relation between the expressions (5.32). Thus we can write Gijki...,Nijk as linear
combinations of any two of the expressions (5.32), with coefficients that are simple
explicit functions of 0., θj9 and rir

More conveniently, we can write them as linear combinations of
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[which are themselves linear combinations of the expressions (5.32)]. We find that

GίJk = 2xiXjPijk + [ - cos^θ, - θj) + i sin^θ, + θj)]qi]k,

Hij^XiXjPijt-ytf/itjk,

^ijk — ~ Pijk + Qίjk •>

Nijk = ~ [ c o s ^ - ΘJ + i s i n ^ . + Θfipijk + 2yiyjqίjk.

Substituting these expressions into (5.30) and re-arranging, we obtain (after many
cancellations)

(5.37)

Using (5.19), we find from (5.35) that q132

(l4i6(l345 *s P u r e imaginary. Since xp yp

pijk are real, it follows that J is real. We have therefore verified (5.29), and hence the
identities (5.2) and (3.9).

It is interesting to note that after (5.36) we have only used the definitions (5.35)
to note that P132P416P345 a n c * ^132^416^345 a r e r e a ^ Thus (5.29) is true for any
expression J given by (5.30) and (5.36), the only restrictions on pijk and qijk being
these two reality conditions.

Second Identity

The same general techniques can be used to verify the second identity (5.3), but
there is no longer such a simple symmetry between triangles (132), (416), and (345).

Substituting into (5.3) the expressions for (J, S,...,V given in (5.7)—(5.17),
cancelling common factors and using the definitions (5.23), we obtain

3>iG132G146#345#265 + ̂ 5 ^ 1 32^146^345^265

= ρy1M231MbA1L345L265 + ρy5L231L641N345N265, (5.38)

where
ρ = x2x3x4x6. (5.39)

Writing the sine functions associated with triangle (256) as imaginary parts of
exponentials, and using (5.18)—(5.20) and (5.24) to share out these exponentials
between the other three triangles, (5.38) can be written as

0, (5.40)
where

^ ^ Λ Λ

K=2ίy iG132Gl46 ί ί345~ei ί ί132 ί ί146 f'345

+ ! > 1 x 3 x 4 M 1 3 2 M 1 4 6 L 3 4 5 +e~ 1 x 3 x 4 Z 1 3 2 Z 1 4 6 i V 3 4 5 , (5.41)

G, H being defined by (5.36), and M, ...,N by

MtJk = xkMkji exp [ - \i(π + r t t)] ,

Zijk = xkLkji exp [i(π + θt + θk- 0, + 2siJk - 2r ίk)/4],

'34 " π ) ] ' ( 5 4 2 )

345 =) ; 5 F345 e X P[i ί ( O ί 345 ~ S345 + ̂ 34)] '

^345 =^5-^345 e X p C t ^ S + S345)]
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Again we look for linear relations between the functions associated with each
triangle, the coefficients being explicit functions of 01? 03, 04, r 1 3, r 1 4, r 3 4 . Using
(5.34), we find that

Mijk=XiCjPίjk - ytyflijk - iχιyfltjk >

* * (5 43)
Γ 345 — Γ 1 3 4 5 " t ~ Λ 3 Λ 4 1 "345 '

^345=^345-^3^345'

qf k being the complex conjugate of qijk.
Substituting these expressions, and the expressions (5.36) for G and H, into

(5.41), one finds that K can be written as

ί 2 , (5.44)
where

Kl = 0>l4l 32^146[2^3~ * βl ^ 3 4 5 ~ X

(5.46)

Plainly X 2 + X* ^s r e a ^ s o t° verify (5.40) we have only to show that K 1 is real.
Using (5.42), (5.23), (5.35), (5.19) and the spherical trigonometric formula

sin θ3 sin θ4 cos r 3 4 = cos θ5 + cos θ3 cos θ4

(Sect. 54 of TL), we can establish that

Thus Kγ is real; we have verified (5.40) and hence the identities (5.3) and (3.10).
I have assumed that θv ...,06 and r 1 2, . . .,r 5 6 are real numbers: this is really

just a notational device to avoid writing (5.30) and (5.41) twice, once as given and
once with i replaced by — i. The identities (5.2) and (5.3) are basically algebraic, so
must of course be true for complex values of the parameters as well as real ones (so
long as consistent choices are made of the branches of multi-valued functions).

6. The Static Solution

In the first of his two papers, i.e. in ZI, Zamolodchikov considers the "static limit"
of the tetrahedron equations. This can be thought of as the limit when the
(θv 02,03) and (02,05,06) triangles in Fig. 5 are infinitesimally small, in which case

= 02 + β5 + 06 = π. (6.1)

The spherical quadrilateral becomes planar, as in Fig. 7 of ZΠ.
In this case the parameters Qo, Qv Q2, g 3 , Ro in Table 1 vanish, for all four

functions W, W\ W'\ W". Thus each W is determined by just seven parameters:
P o , P 1 ? P 2 , P 3 , Rv R2, R3.



202 R. J. Baxter

It is interesting to see if the tetrahedron equations (2.2) admit some more
general solution than that found by Zamolodchikov, containing Zamolodchikov's
as a special case. In general this is a very difficult problem, but one possible start is
to attempt to generalize the static limit solution, i.e. to look for solutions of (2.2)
such that the weight functions W, W, W", W" all have the form given in Table 1
(different functions having different values of the constants), with Qo, Qv Q2, β 3 ,
Ro all equal to zero.

Many simplifications arise in this limit. For arbitrary Po,..., R^ we can still use
the spin symmetries of Sect. 3 to reduce the number of equations to 224, occurring
in 112 pairs, each equation of a pair being obtained from the other by negating
every Q.. However, since we are taking every Q. to be zero, this means that the two
equations of a pair are identical, so there are only 112 distinct equations.

Each of these equations is of the form

±A±B=±C±D, (6.2)

where each of A, B, C, D is a product of four of the parameters P o,.. ., R™ (one for
each of the four weight functions W, W\ W", W"). Since Ro in Table 1 is zero, some
of A, B, C, D may vanish. Indeed, 18 of the 112 equations are simply

0 + 0 = 0 + 0. (6.3)

This leaves us with 94 non-trivial distinct equations, which break up into the
following four main sets:

(i) 28 equations of the form

,4 + 0 - C + O (6.4)

(i.e. one non-zero product on each side),
(ii) 12 equations of the form

, 4 - 5 = 0 + 0, (6.5)

(iii) 36 equations of the form

A±B = C + 0, (6.6)

(iv) 18 equations of the form

A±B = C±D. (6.7)

Obviously (2.2) is unchanged by multplying any of the four weight functions by
a constant. Assuming that Po is non-zero, we can without further loss of generality
choose it to be unity, for each of the functions W, W\ W", W". Thus

This leaves us with six available parameters for each function, giving us 24 in all.
We now seek to systematically solve the 94 equations for these 24 unknowns.

The 40 equations of types (i) and (ii) involve only two products, so are quite easy to
examine. Assuming that our remaining 24 parameters are all non-zero, we could
linearize these equations by taking logarithms. It turns out that they are satisfied if
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and only if there exist 12 parameters xv ...,x 6, yv ...,y6 such that

F 1 = ( z 1 z 3 ) 1 ' 2 , P2 = (z2z3)
il2, P3=(Zlz2)

ίl2,

( 6 9 )

^ ' = (y 5/x 2x 6) 1 / 2, P .2=(V^5^) 1 / 2 > R'"=(y6/χ2χ5)
112,

where for brevity I have introduced z15 ...,z6 such that

and the \ powers are introduced for later convenience.
At this stage it may be noted that if the equations of type (ii) are changed from

A — B = 0toA + B = 0, then the combined set of 40 equations has no solutions with
Pv...,R

f3 all non-zero. This means that the sign factors ab, ac9 ad in Table 1 are
essential and that W cannot be chosen to have all its values non-negative. This is
unfortunate from the viewpoint of statistical mechanics.

Now we substitute these expressions for PV...,R™ into the 36 equations of
type (iii), and obtain

(β.ii)

(The first 12 equations occur twice, the last 3 occur four times.)
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Eliminating x3 and y3 between the first three equations gives

A,=A2, (6.12)
where

^ = (^2 + ^ - l ) / ( x Λ ) . (6.13)

By symmetry, it follows from the first three equations that A1=A2 = A3. Similarly,
the next three sets of three give — A1 = A4 = A6, A3 = Δ4= — Δ5, A2 = Δ5 = Δ6.

The only solution of these equations is

Δ. = 0, 7 = 1,. ..,6, (6.14)

so that

x* + y* = l. (6.15)

We can therefore choose six unknowns 019 ...,06 such that

Xj = cos^θj, y. = sin\θj (6.16)

for 7 = 1, ...,6. The first twelve equations in (6.11) then reduce to

(6.17)

(apart from additive multiples of 2π which can be absorbed into θv ...,06). These
are precisely Eqs. (6.1), so we can regard 015 ...,06 as the angles of a plane
quadrilateral. Comparing these results with (3.11)—(3.15), we find that we have
regained Zamolodchikov's solution in the static limit. Thus this is the only
solution of (2.2) in which the weights W, W\ W'\ W" have the form given in Table
1, with β 0 , Qv Q2, Q3, Ro all zero.

The last three equations in (6.11), as well as all the type (iv) equations, are now
satisfied automatically: indeed they have to be, as these are just special cases of the
general equations which have been verified in Sects. 3-5.

7. Summary

The tetrahedron equations are given in (2.2) and Zamolodchikov's solution in
Table 1 and Eqs. (3.11)—(3.15). For this solution, the 2 1 4 tetrahedron equations
reduce, first to 224 non-trivial distinct equations, and then to just two identities. In
Sect. 5 I have proved these identities, thereby verifying Zamolodchikov's solution.

This solution is very special: it does contain three adjustable parameters for
any particular Boltzmann weight function W, namely the three angles θv02, θ3 of
a spherical triangle. However, these parameters are probably "irrelevant" (in the
language of renormalization group theory), just as the corresponding elliptic
function argument u (or v) for the two-dimensional eight-vertex model is irrelevant
[1]. If so, then no critical behaviour can be observed by varying these parameters.
The solution also has the property that some weights occur in anti-symmetric
pairs of opposite sign, which is unfortunate from the point of view of statistical
mechanics.
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Even so, it is remarkable that the tetrahedron equations have any non-trivial
solutions at all, and this leads one to hope that other three-dimensional solutions
may be found, perhaps by generalizing Zamolodchikov's result. In Sect. 6 I have
attempted to do this in a modest way by restricting the weight functions to have
the same symmetries, anti-symmetries and zero elements as Zamolodchikov's
"static limit" solution. Unfortunately it turns out that no such generalization is
possible: Zamolodchikov's is the only solution of this form. This is disappointing,
but one can still hope that other, less restricted, generalizations or alternative
solutions remain to be found.

Ultimately, of course, one is interested in statistical mechanics in calculating
the partition-function per site Z1/N. Zamolodchikov calls this the "unitarizing
factor" (dropping the superfix 1/N), and writes down the inversion equation for it
in (5.2) of ZII. Unfortunately this determines Z1/N only if appropriate analyticity
assumptions are made [16, 17], and it is not obvious what these are, or precisely
how to use them. Again, one would like to generalize W to include a temperature-
like variable. The analyticity assumptions could then be checked against low- or
high-temperature series expansions, as can be done for two-dimensional exactly
solved models [10].
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