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Abstract. We deal with a form of the chiral equation, for which first integrals
can be written explicitly. For these equations, we find a symplectic structure,
the Lagrangian and first integrals in involution.

Although chiral fields have been thoroughly studied (for a bibliography, see
[1,2]), when we became interested in the question whether local first integrals are
in involution, we found that the situation here is obscure. This situation is
complicated by the fact that there are two forms of the chiral field equations the
transition from one of them to the other can be performed by a transformation of
the Backlund type (a "gauge transformation"), the symplectic and the Lagrangian
structures being written for one of these forms and local first integrals for the
other. It is very difficult to establish the connection between the symplectic
structure and the first integrals.

In the present paper we concentrate solely on one of these forms of the chiral
equations (which is less popular), namely on the one in which the first integrals can
be written explicitly. For these equations we suggest a symplectic structure
(apparently a new one), find the Lagrangian and first integrals, and prove their
involutiveness.

This paper is very close to [3] and requires only a slight extension of the
apparatus developed in this work. Although all the definitions and assertions are
formulated independently, some proofs are replaced by references to [3].

The present paper is a natural continuation of the series of papers by Gelfand
and the author (e.g. [4, 5]).

1. Equations for Principal Chiral Fields

We consider the matrix equation

ΰt-vx=ιϋ9v], (l.i)
where U = ζ~ίUQ + U1 + ζA, V= -ζ~ιϋ0 + U^ζA; Uo, Uv A are NxN mat-
rices, and A is a constant diagonal matrix with distinct diagonal elements. The
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equations must be satisfied identically with respect to the parameter ζ.
Equation (1.1) is an example of the Zakharov-Shabat equations, see [6] (also
called zero curvature equations). Equation (1.1) is equivalent to the system of
equations

7 0 ] . (1.2)

Usually the name "chiral equations" is related to another system of equations:

(1.3)

Let us elucidate the connection between them. First we pass to the cone variables
t, η = x~t in (1.2):

UOξ=-[_UvUo-], Ulη = lA9U0-]. (1.4)

If Uo and Ux are solutions of (1.4), then h can be found from

[Equations (1.4) guarantee compatibility of these equations.] Let M =
N = 2hV, h~ι. Then M and N satisfy (1.3). Thus each solution of (1.2) generates a
solution of (1.3) for which M has a constant spectrum and vice versa. The
transition from one of the equations to the other is called a "gauge
transformation."

Remark. An additional requirement can be imposed on the matrices Uo, Ul9 and
A, namely, they can be considered as belonging to a Lie subalgebra of the whole
algebra gL(N), but this is of no importance to us.

2. Symplectic Structure

The symbol si will denote the differential algebra of the polynomials in matrix
elements of some matrices Uo, ...,£/„ and their derivatives with respect to x. Let
si = si/dsi (d = d/dx) be the space of the formal integrals (also called functionals)
/ = j/dx, where \fdx means/modulo exact derivatives. As in [3], let R_ consist of

n

matrices X = YjXiζ~ι~ι with the commutator
o

[X,Y]z = [X9Y](ζn+1 + z)9 (2.1)

where z is a fixed parameter on which the Lie algebra R_ depends, and the bar
symbolizes cutting out a segment of a series in ζ~λ from ζ~ι to ζ~n~ι. Let R +

n

consist of the matrices m= ^ m ^ 1 ; this is the dual to R_ with respect to the
o

coupling
n

(m,X) = tr res j mXdx = tr j Σ mjίfix,
o

n

where res denotes the coefficient in ζ~1. One of the elements of R+ is L/ = Σ Ukζ
k.

o
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Two extreme values of z will play the main role: 2 — 00 and z = 0. We denote

[X, Y] ( 1 ) = [X, Y] , [X, Y] ( 2 ) - [X, Y]ζπ+ x . (2.2)

A differentiation in J / can be assigned to every meR+:

ξm=ΣΣ Σ <βΛr-Σ t trm»a/ai7f«,
i = O k = θ j , I = l CUk,jl i = 0k = 0

where the asterisk denotes the transpose of a matrix, the superscript (ί) denotes the
fth derivative with respect to x, and jl are matrix indices. Let

d/dU*{ί)= £ ΐ k

k =

Then

The differentiations ξm commute with d = d/dx and can be transferred to J / . They
will also be called "vector fields." For / = \fdxesrf we have

mjL.dx, ^ r = Σ ^ Γ t - 1 e K - , (2.3)

where δf/δU* is a matrix consisting of the variational derivatives with respect to
the elements of Uk.

Let us define the mappingXeR_t->M xeR+ :

where L=U + Aζn+1 + d ζ, ̂ 4 is the diagonal matrix defined earlier, and the wavy
line symbolizes cutting out a segment of a series in ζ from ζ° to ζ". The two extreme
cases of this definition are

Mψ = [L,X], M?> = [L,X]ζπ + x . (2.4)

In the case m — Mx the differentiation ξm will be denoted as ξx.

Lemma 1.
Lsx>Sy] — ζ[χ,Y]z + ξxγ-ξγχ (2-5)

The proof is the same as in [3]. It should be noted that the only distinction
between the above definitions and those in [3] is the coefficient ζ in the term d ζ in
L. This does not affect the proof of this and the following assertions in this section.

Due to this lemma the vector fields ξx form a Lie algebra. Let us define a
differential 2-form ω:

ω(ξx,ξγ)^tΐKslMxYdx. (2.6)

Proposition. The form ω is closed.

The proof is given in [3]. Now to each functional f=\fdxestf a Hamiltonian
vector field can be assigned. Namely, let

(2.7)
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Lemma 2.

ξγf=-Cθ(ξf,ξy).

The proof follows immediately from (2.6) and (2.3).
The Poisson bracket is defined thus:

{/, g} = ξfg = ω{ξ~p ξ~) = tr res j Mδflδϋ. 'j^dx. (2.8)

The differential equation corresponding to a Hamiltonian / is

U = Mδf/δU*. (2.9)

We have constructed a more general theory (for an arbitrary n) than is
necessary here. The theory admits further generalisation by replacing d ζ by a
more general term <9 ζp, p^n. This is useful for the study of more general
Zakharov-Shabat equations than (1.1).

The case of chiral fields corresponds to n = l. Then we have Mx = MXf0

XΛ •(; for the first symplectic structure (z= oo) we have

:0] +x'o + IAXJ , MψΛ = IAXQ] , (2.10)
and

'δu*\)δui [ 9δut\δu*.
(2.11)

For the second one (z = 0) we have

M{2) =[U ,X ] , M ( 2 ) =\JJ ,X ~]+Xf +{.U0,XQ], (2.12)

and

(2.13)

Remark. For the first symplectic structure, the last of Eq. (2.9) (corresponding to ζn)
is ύn = \_A,δf/δU%]. Thus diag[/n = 0. This makes it possible to reduce Eq. (2.9) to
the submanifold diagl/n = 0 and to put

C/π = [ i4,φ 0 ] . (2.14)

3. The Hamiltonian for the Principal Chiral Field

It will be shown that Eq. (1.2) can be written as (2.9) with a Hamiltonian /. We
shall use the first symplectic structure. As to the second structure, we shall make a
relevant remark on it at the end of the section.

Equation (2.14) for n=l has the form U1 = [A,φ0]. Let

U2

0}. (3.1)
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Theorem. Equation (2.9) for f = H goes into (1.2).

Proof. From

δf δf

we have

Now

δf

where d{ ) denotes an exact differential. Hence

= HA, φol φ'o] - U'o

Equation (2.9) for n = l takes the form

= φ'o - 2U0 .

,= A,
'δU*

(3.2)

(3.3)

Substituting —δf/δφ$ for \_A,δf/δU*~\ and using (3.2), we obtain the required
system of Eqs. (1.2).

Changing slightly the Hamiltonian, namely putting

(3.4)

we obtain

and Eq. (2.9) goes into

UO = U'O, Ux = υ\. (3.5)

This simplest equation corresponds to the vector field ξ = d. For our further aims
the Hamiltonian H + H will be of particular interest. The corresponding equations
are

ί ) 0 = 2[L/0,ί71], ί / 1 =2[/ ' 1 -2[/ l , t7 0 ] . (3.6)

Remark. With the second symplectic form the situation is more complicated.
Instead of (3.3) we have

u δf

''δUfl \δU* °'δU*
(3.7)



510 L. A. Dickey

Equation (3.6) can be obtained from (3.7) without difficulty: it is only necessary to
take f = tr(Ul + 2AU0). However we cannot find a Hamiltonian for the vector
field ξ = d since the equation U'0 = [U0,X] has no solution in j / . In terms of the
Kirillov-Kostant's orbit theory the field ξ = d is not tangent to the orbit. This
means that in the second Hamiltonian structure equation (1.2) is not Hamiltonian,
at least within the algebraic framework outlined here.

4. Lagrangian

Equation (2.9) for the first symplectic structure will be obtained from a variational
principle.

The matrix Un is already replaced by φ0, according to (2.13). Now all the
n

matrices Ut will be expressed in terms of φv Let φ— Σφiζ~ι~1eR_ and let
o

U + Aζn+1+d ζ=ϊjTφΓ%^^ (4.1)

(In [3] C was not involved in the term d CO The last equation (corresponding to the
term with ζn) coincides with (2.13). Let

(4.2)

Theorem. The equation δ£?/δφ% = 0 is equivalent to (2.9).

Proof. We have δf= tr res (δf/δU*)δU + d( ), where d( ) is the derivative of a 1-form
which is unimportant to us now. Thus

Substituting

δU = (l + φy1δφ(l + φΓ1{Aζn+1+d ζ){l + φ) + (l + φy1(Aζn+1+d'ζ)δφ,

we get

δf
\L ou j

(dt = d/dt). Hence

δφ*

This means that δJ£/δφf are connected with Ui — (Mδf/δU*)i by a triangular
transformation with unities on the diagonal. Therefore δJ£/δφ*=0 is equivalent
to U-Mδf/δϋ. = 0. D

In the particular case of the chiral fields n = l , / = H w e have

- φ0Aφ1 - (piAψQ + Φo^Φo + 2 ΦoΦo) •> ( 4 3)



Chiral Fields 511

and

Uo = [A, φ j - φo[A, φ 0 ] + φ'Ό, U1 = [_A, <p0] .

5. Resolvent of an Operator Bundle

The following definitions will be used for the construction of first integrals of the
above equations. A resolvent of the operator L = U + Aζn+ * + d ζ is a series 5R(Q

00

= Σ-RfcC"*"1 (the elements of the matrices Rk belong to j/) which satisfies the
o

equation

[L,K]=0. (5.1)

Although the definition of the operator L here is slightly different from [3], the
theory of the resolvent remains exactly the same. Therefore we confine ourselves to
stating theorems and referring the reader to [3] for the proofs.
Let

k=0 1=0

where r0 is a fixed integer 0 ̂  r0 ^ n and z is a new parameter. It is clear that 9l(ζ)
= 5R(ζ"+1,0 Cro W e s h a l 1 c a l 1 W(z,0 the polarization of the resolvent. The
mapping M defined in Sect. 2 can be extended to R-((z~x)).

Proposition. The polarizations of the resolvents are all the solutions of the equation

Mw = [ A i ] I P T + ^ ) = 0. (5.2)

Lemma. Equation (5.2) is equivalent to the recurrence relations

M*1' +M<2) =0

/or any fixed r0.

This is an obvious corollary of the previous proposition (to this end one has to
expand (5.2) into series with respect to ζ).

Corollary. For any natural r the resolvents satisfy the equation

M& + M& =0. (5.3)

Theorem (on the existence of resolvents). For any constant diagonal matrix B, there
exists a resolvent 9ί for which Ro = B, and there are no constants in other Rk.

We denote such a resolvent by

Theorem (on the variational derivatives)

δ
= (-r+l)9 l r _ 1 . (5.4)

The subscript r denotes the coefficient in ζ~r, and the subscript ζ denotes the
derivative with respect to ζ.
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Now let

(5.5)
+ 1 ζ

Theorem (on the involutiveness oϊHr). For any constant diagonal matrices B and C,
we have

J tr res M $ B , 9t<C)dx = — f tr res M $ B , «(

s

C)dx - 0.

In particular, due to (5.4) this means that {H{

ί

B\Hf)}=0 for both symplectic

structures.

6. First Integrals of Chiral Field Equations

Theorem. The Hamiltonian H + H (see Sect. 3) is one of the coefficients Hr defined
above.

Proof Let us find several first terms of the resolvent W~2Λ). From the recurrence

formula

Λ i - 1 ] = 0 (6.1)

we find, in succession, Ro= —2Ά, R1 = — 2U1 = — 2[_A, <p0], R2 = 2φ'0 — 2U0 (out-
side the diagonal). Further, we have

and, according to Eq. (5.4), δHJδU* = JR2, and δHjδU* = R3. If H4 is taken as a
Hamiltonian, Eq. (3.3) take the form

i.e. the system of Eq. (3.6) is obtained. This means that H + H = H4_ with
B=-2A. •

Lemma. 77K? Hamiltonian H commutes (is in involution) with all Hr.

Proof. The vector field corresponding to H is d and therefore commutes with all

ξHr •

Theorem. Hr are first integrals (in involution) of the chiral field Eq. (1.6).

Proof. H + H = HA commutes with all Hr. H also commutes with them, and hence
H commutes with all Hr. Π

Remark. If we act from the very beginning in the cone variables ξ,η, Eq. (1.1) will
be replaced by

Uη-Vξ = lV,lΓ\, (6.2)

where U=—(U1 + ζA), V= — UQC"1. A resolvent is now a solution of the equation
Rξ = [U,R']. This coincides with a resolvent of the simplest matrix differential
operator L = d+U + ζA. The quantities jtvARdξ\r are first integrals of (6.2) which
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is easy to prove (see also [1]). They are in involution with respect to the Poisson

bracket f L4,—^— —~-dξ, but it is unclear whether this Poisson bracket has any

L δU*\δU*
connection to Eq. (6.2). The cone variables are characteristic to this equation, i.e.
the equation is not one of the Cauchy-Kovalevsky type and therefore cannot be
Hamiltonian.
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