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Abstract. We study a singular boundary value problem introduced by Glimm
and Jaffe for the purpose of obtaining solutions of the Euclidean Yang-Mills
equations with isolated singularities along an axis. Using comparison tech-
niques, we prove existence, asymptotic behavior and also uniqueness in some
special cases.

1. Introduction

In this note we study solutions of the singular boundary value problem

) = 0 in R 2

+ 9 (1.1)

w(0,x2) = (-iy, aj<x2<aj+1, j = 0 to 2n, (1.2)

where R2

+ = {x = (x1x2)eR2 :xί >0} and

-co = a0<a1<...<a2n<a2n+1= + GO. (1.3)

The boundary value problem (1.1), (1.2) was introduced by Glimm and Jaffe
[4] for the purpose of obtaining solutions of the Euclidean Yang-Mills equations
in R4 with isolated singularities along an axis. The existence of a solution was
obtained heuristically in [4] and established in a rigorous way using variational
methods in [6]. The solutions of the Yang-Mills equations that arise from (1.1),
(1.2) are known as multimeron solutions and may be thought of as describing
"pseudoparticles" located at the singular points (see [5]).

The two-meron solution (n = 1) of (1.1), (1.2) is given explicitly by the formula

xe2\

(where ev e2 is the standard basis of R2). Here we exploit this fact and the
invariance of Eq. (1.1) under change of scale u(x)-+u(λx) and inversions about a
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-v bp

point in the x2-axis: u(x)-^v(y), y — ae2= τ~\ΐ t o s n o w Λat any solution of
\x ue2\

(1.1), (1.2) can be controlled by two-meron solutions. More precisely, we let φk be
the explicit two meron solution with

1+1 on (akak+1)
k [-1 otherwise

and define

-φk. (1.6)φ f e ,
fceven fcodd

Then (see Sect. 3) Φ and Ψ are weak sub- and supersolutions of (1.1) respectively
with ΦS Ψ and Φ, Ψ satisfy (1.2)

Theorem 1.1. There exist solutions w± of (1.1), (1.2) satisfying

i) Φ^u~^u+SΨ
ii) w* are maximal and minimal solutions respectively, i.e. for any solution u of

iii) If either u+ oru~ depends continuously on the parameters αi5 then u+ =u~ so
there is uniqueness.

Corollary 1.2. i) The two-meron solution is unique, ii) // u is any solution of (1.1),
(1.2) then near x = ate2

iφc)-
\x-a2e2

(1.7)

Part i) of Corollary 1.2 follows from the fact that for n= 1, u = u+ is the two-meron
solution which depends continuously on its endpoints while part ii) follows from
the explicit form of Φ and Ψ. In Sect. 4 we show that the asymptotic formula (1.7)
remains true if u is only a local solution of (1.1), (1.2) with a " + , — singularity" at
x = aie2.

Using our methods it is very easy to obtain solutions to Eq. (1.1) with more
general boundary conditions. As an example, we state

Theorem 1.3. Let 0 be an arbitrary open set on the line xι=0. Then there exists a
solution u of (1.1) withu= — 1 on 0 and u= + 1 on the interior of Oc, the complement
of 0.

We next state a result on the removability of certain isolated singularities.

Theorem 1.4. Let Ωλ μ = {xeR2

+ :0<x1 <μ, -λ<x2<λ}.
Suppose that u(x) is a C2(ΩA?μ)nC0(Ωλμ\{0}) solution of (1.1) such that

φ ) = + l (or-1) on x ^ O , 0<φ 2 |<A. (1.8)

Then the singularity at x = 0 is removable.

A consequence of Theorem 1.4 is that there is no solution of (1.1) with an odd
number of singularities, i.e. merons always come in pairs. This justifies the form of
the boundary condition (1.2) (see also Lemma 2.2).
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The plan of the paper is as follows: In Sect. 2 we establish some technical
lemmas which are needed in proving the main results. Section 3 contains the
construction of the maximal and minimal solutions of (1.1), (1.2) given in Theorem
1.1 as well as some more general solutions of (1.1). Section 4 contains the proof of
parts ii) and iii) of Theorem 1.1 as well as our local results on the nature of isolated
singularities.

2. Technical Lemmas

In this section we derive some technical estimates which are needed in the
following sections. Our first lemma is a special case of a result of Cheng and Yau
[2]. But we provide here a self-contained proof.

Lemma 2.1. Let u be a C\R\) solution of (1.1). Then

-\ύu{x)^\ for all xeR\. (2.1)

Proof Assume that u(xo)> 1 for some point x0eR2

+. By a translation and scaling
we may assume x0 = 1/2 ev We map R2

+ onto the unit ball Bί = {yeR2 : \y\ ^ 1) by
the conformal inversion

and set v(y) = u(x). Then v satisfies

z b +

( 1 - ^ i 2 ) 2 ( ι " u 3 ) = 0 i n β ' ( 1 3 )

and

I;(0) = M(XO)>1 .

Let r = \y\ and set v(r) = ί/2π j v + (r,θ)dθ,v+ =max(ι;,O). Then (see Lemma 3.2)
o

1,_... 4 ,_

Integrating (2.4) we find

(2.5)

2ε
Since ι (O) > 1, (u3 - v(0)) = ε > 0 and (2.5) implies υ'(r) > 0 and so rv'(r) > j ~ 2 ε

1 . . .
which says u>cln ^ a s ^~^1 To derive a contradiction we change variables by

ρ = lnγ—-2, ψ(ρ) = v(r). Then

β " β ) " 1 ψ / ^ ( l - β " T 1 ( V 3 - ^ ) on (0,oo). (2.6)
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For ρ ̂  R large enough, ψ is a subsolution of the equation

φ" + aφ' = ̂ φ3, α>0,

and so ψ^φ. As before φ'>0. Multiplying (2.7) by 2φ' and integrating gives

φ \Q) + 2a]φ'2(t)dt=^-+Cί, (2.8)

so φ'2{ρ)S +CV Using this again in (2.7) gives

ψr2{ρ)^c2

2φ\ρ) for ρ > ρ x large. (2.9)

Integrating (2.9) gives —-\—-—r^cJρ — ρ.) which gives the desired con-

tradiction as ρ->oo.
The next lemma determines the boundary values of a solution of (1.1). It will

not be used in the sequel.

Lemma 2.2. Let x0 be a boundary point of R2

+, and let ΩR = {xeR2

+:\x — x0\<R}.
If u{x) is a C2{ΩR)nC°(ΩRu{x0}) solution of (1.1), then u(x0) is 0, + 1 , or - 1 .

Proof Set vλ{x) = u(x0 + λ(x-x0). Then \vλ\^l and vλ satisfies (1.1) in ΩRjλ. As
2->0, υλ-^u(x0) in C2+α(iC) for any compact subset K of R2

+ by elliptic regularity

theory. Hence 0 E ^ ^ " ^ so that
x\

M(XO) = O, -1-1, or - 1 .

Next we recall the maximum principle for Eq. (1.1).

Lemma 2.3. Let Ω be a bounded open set in R2

+. Suppose that u(x), v(x) are two
C2(Ω) solutions of (1.1) such that u(x)^υ(x). Then u(x)>v(x) in Ω, unless u(x) = v(x).

Proof. Let h(x) = u(x) — v(x) and suppose h(xo) = 0 for x0eΩ. Then

Δh + c(x)h(x) = 0,

where

c(x) = —j (1 — u2 — uυ — v2).
x\

Let B c Ω b e a small ball about x0 and set M = supφc). Then (since h^O in Ω)
B

Ah-(M-c(x))h= -M/z^O,

so the lemma follows via the maximum principle.

Corollary 2.4. Let u(x) be a C2(R\) solution of (1.1) in R2

+. Then u(x) cannot attain
the values ± 1 in the interior of R\.

The following lemma plays the role of the Hopf boundary point lemma and is
central to the analysis of Sect. 4.
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Lemma 2.4. Let Ωλ μ = {xeR2 : 0 < x 1 <μ, | x 2 |<λ} .
Suppose u, υ are solutions of (1.1) in Ωλ>μ, μ<2λ. Then
i) If u^vinΩλμ

u-v>—-Yxl in Ω x , (2.10)

(where ra(μ) = inf(u — v) on xι=μ, \x2\<λ).
ii) // in addition to i) u,veC0(Ωλμ), u(05x2) = ι;(0,x2) = l then

u-v^cxj in Ωλ/2tμ/2. (2.11)

Proof i) Let w = u — υ. Then

^ 2 2 = 0. (2.12)

In particular, since \u\ ^ 1 |t;| ̂  1

^ in β A p μ . (2.13)
x1

Set

ax\ + fox^ — cx\x\,

1 _ 1

μ2 5λ:

(2.14)
m(μ)

m(μ)

Then using (2.14) h = 0 on χ 1 ==0, h = x2

ί{{a-c)λ2+ bx2

1)^x2

ί{(a-cλ2) + bμ2) = O
on |x2 | = A, 0 < x 1 < μ and h = μ2(a + bμ2 — cx2

ι)Sμ2(a + bμ2) = m(μ)'^w on x 1

= μ | x 2 | < λ Finally

A ι~
Applying the maximum principle, w^/ι in Ωλμ. In particular for | x 2 | ^ — γ = ,

c u , s 2 |/ 5

ii) We observe that it suffices to prove ii) in the special case w Ξ 1 for supposing this
case

u-v = (u-l) + (l-v)^l-v<,cxl in Ωλι^μί2.

2 1 5

Let w = 1 - and take 2 = μ. Then

2w— 3w2
 + H

x 2

or Lw = Δw

?3 2w — 3 w 2

= χ\

v-3w2) ^ 0
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Set h(x) = ax\ — bx4 + ex4, where

7 ^ (2.16)

M(μ) = sup w.
flμ,M

Then

Lh= -{\Qb-?>a2)x\-?>bx\{2a-bxl)

x4

in Ωμ μ for μ small enough. Moreover, k ^ w o n dΩμ μ as is easily seen from 2.16.

Hence by the maximum principle h^w on Ωμμ. In particular, w(x l 90)^ -x\,

0<x1<μ. Since "0 is an arbitrary point" on x1 = 0 the lemma follows.

Remarks 2.5. i) Lemmas 2.3 and 2.4 i) remain true if u is a supersolution, υ is a
subsolution if (1.1) and \u\ ^ 1, \υ\ ̂  1.

ii) Lemma 2.4 ii) has been observed earlier in [1].

We end this section by deriving a bound of an explicit solution of (1.1). The
function

is a solution of (1.1) in R2

+, and has two isolated singularities located at x = 0 and
x = oo. We displace the two singularities at points ae2 and be2,a,beR, by using the
conformal transformation

1

y-ae2 =

x —

(2.18)

a-b

and defining ψa' h(y) = φ(x). This gives

a,b( \_ a ~ b (y-^2)'(y-be2)

\a — b\ \y — ae2\\y — be2\

This is the "two-meron" solution mentioned in the introduction. We set ψε(y)

—ψε'~ε{y), ΐ e
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If ε > 0 is sufficiently small, then the following bounds hold for small enough yί:

)ύ%y\ for y2e(-ε,ε), (2.21a)

ε2y\ for | y 2 | > ε , (2.21b)

ε2

—y for |j;| large. (2.21c)
ιyι m

Here c 1 ? . . . ,c 6 are strictly positive constants. Estimates (2.21) are obtained by
straightforward computation. They give the rate of convergence of ψε(y) to ± 1 ,
and are consistent with Lemma 2.4.

3. Existence of Multimeron Solutions

In this section we prove the existence of a solution of the boundary value problem
(1.1), (1.3) and an extension to the case when there is an infinite number of isolated
singularities accumulating at a point. Our proof is via the classical Perron's
method of sub- and supersolutions.

Definition 3.1. A function ueH1(Ω)nLcc(Ω) is said to be an L-subsolution (super-
solution) if for all sufficiently small balls B CΩ

^O (^0) (3.1)

In the following, by sufficiently small balls B CΩ, we will mean that —A ^is
xί

strictly coercive on H^B). This will be the case, for example, if the first Dirichlet
eigenvalue λ^B) satisfies

i f i , (3.2)
Assuming this is the case, it follows (see [3, 7]) that the Dirichlet problem Lu = 0
is uniquely solvable in B for arbitrary continuous boundary data.

The following properties of weak sub- and supersolutions are well-known [7].

Lemma 3.1. Let u be a C°(B) weak L-subsolution and v a C°(B) weak L-super-
solution with u^v on dB. Then u^v in B.

Lemma 3.2. Let u, v be weak L-supersolutions (subsolutions). Then
min(u, u)(max(w, v)) is a weak L-super solution (sub solution).

Lemma 3.3. Let v be a weak L-subsolution in Ω and BCΩ. Let u denote the solution
of Lu = 0 in B with u = υ on dB. Then

ίw(x) in B
v ; \v(x) in Ω-B

is a weak L-subsolution in Ω.



492 L. Caffarelli, B. Gidas, and J. Spruck

Let Ij={x = (x1,x2):x1=O,aj<x2<aj+1}, j = 0, ...,2n, where the α/s are
defined in (1.3). We seek a solution of (1.1) which is + 1 on l for j even, and — 1 on
Ij for j odd. Let ψj be the two meron solution defined by (1.5) and let Φ, Ψ be given
by (1.6). Note that Φ, Ψ satisfy the boundary conditions (1.2).

Since ± φ. are solutions of (1.1) it follows from Lemma 3.2 that Φ, Ψ are weak
L sub- and supersolutions respectively. Using the explicit expression for φ. (or the
arguments in Sect. 4) it is easily seen that φ. ^ — φk with j even, k odd. Hence
Φ^Ψ. Let F+ (respectively F~) denote the class of weak L subsolutions
(supersolutions) v(x) on R2

+ such that Φ^υ(x)^Ψ. Note that ΦeF+, ΨeF~. We
are now set up to use Perron's method to construct w±(x), the maximal and
minimal solutions.

Theorem 3.4. The functions

u+(x)=supv(x),

(3.3)
u (x) = inf υ(x)

veF~

are solutions of (1.1), (1.2) with Φ^u~ ^u+ ^Ψ.

We do not give the details, which are standard [3]. Instead, we provide an
alternative construction of w± well known to afficionados of bifurcation theory.

To construct u~(u+) we define a sequence {uk} as follows:

uo =

1 . -uLu = Auk+1 2uk+ι = — τ ~ m R2+> (3 4 )

Uk+1 = Φ on x 1 = 0 .

The boundary value problem can be uniquely solved using the Perron process
described earlier. This is done inductively: given uk, Φ^uk^Ψ, we observe that

Φ uh

2 — Λr2 '
X

so Φ, Ψ are weak " L + - | " sub- and supersolutions. We can therefore, uniquely
x

solve for uk+1. By the maximum principle Φ^u1 ύ-- ^ukSuk+1 ^ . . . ^ Ψ (re-

spectively ι F ^ w 1 ^ ι / 2 = = % = wk+i = = φ ) Clearly

u~(x)= limMΛ(x), uo = Φ,

+ " ° ° (3-5)
u (x)= limMk(x)5 uo = Ψ.

fc-> oo

We end the section with the generalization of the boundary value problem
(1.1), (1.2) mentioned in the introduction.
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Theorem 3.5. Let 0 be an arbitrary open set on the line xι = 0, then there exists a
solution u(x) of (1.1) satisfying

w= — 1 on O,
(3.6)

u = + 1 on interior Oc.

The proof of Theorem 3.5 is similar to the proof of Theorem 3.4 and will not be
repeated here. We only observe that on the line, an arbitrary open set is the
countable union of open intervals and that the construction of Φ, Ψ [see (1.6)]
involves locally only a finite number of functions. As with Theorem 3.4 the
boundary value problem (1.1), (3.6) has a maximal and minimal solution Φ^u~

In the next section we show that any solution of (1.1), (1.2) (or (1.1), (3.6)) lies
between u+ and u~.lt seems quite likely that u+ =u~ but this remains to be
shown.

4. Uniqueness and Local Results

We begin with a removable singularities theorem.

Theorem 4.1. Let ΩR = {xeR2

+:\x\<R} and suppose that u is a C2(ΩR)
nC°{ΩR\{0}) solution of (1.1) such that

M ( x ) = + 1 (or -1) on xx=0, 0<\x2\<R.

Then the singularity at x = 0 is removable.

Proof We first show u^O in a neighborhood of 0 minus "a narrow cusp" centered
on x1 =0. To be precise consider the family of two meron solutions ψa>b given by
(2.19) with a>b^0. We fix a so small that ψa>0<u in a full neighborhood of
1x1 = 1*, xx =•(). For b near aψa>b<uin ΩR by (2.21) and Lemmas 2.3 and 2.4. We
claim that ψa'b<u in ΩR for all a>b>0. For if not, let bo = inϊ{be(0,a) :ψa>t<uin
ΏR, O^t^b}. Then applying Lemma 2.4, u — ψa'bo^cxl in a neighborhood of

x
x 1 = 0 . To see that we can decrease b0 further, note that the two meron —

(conformally equivalent to ψa'b) tends to 1 more slowly than 1 — cx\ in a suitable
neighborhood of 0. Therefore if we choose b' < b°, b° — b1 sufficiently small we can
make ιpa'b < u near x1 = 0 and so ψa'b < u in ΩR, a contradiction. Therefore b = 0 so
u^\pa'°. By the same argument we find also u^ψ°'~a. Therefore
w^max(φ f l'°, ψ°'~a) which precise our claim.

To prove the theorem, assume for contradiction that m = liminfw(x)< 1. Let xk

x x~*°
be a sequence tending to 0 with m = \imu(xk) and lim—^ =y. Define

\xk\\x\<^. (4.1)

As fc-»oo, vk converges to a solution v^O of (1.1) in R2 uniformly in C 2 + α on
compacta. Moreover, v=+l on x 1 = 0 , | x 2 | > 0 [this is easily seen from
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w^max(φα'°,t/;0' α)] and υ has an interior min at y, since vk -—- =u(xk)-+m. But
3 \W/

zr — v
Av= —~— ^0, a contradiction.

xf
Corollary 4.2. Let u{x) be a C2{R\) solution of (1.1) which is continuous up to x1 = 0
except possibly at the points a1e2,...,aNe2, aι<a2<...<aN. Assume that
w ( 0 5 x 2 ) = + l (or —1) for x2 + aί9...,aN and u(x)-* + l(—l) as |x|-^oo. Then
u(x) = ί(or-ί).

Proof By Theorem 4.1, u is continuous up to xί =0. Hence using the argument of
the first part of Theorem 4.1, u^ψa'b for all a>b. Since i/;α'&-> + l uniformly on
compacta as a-> + oo, fe-> — oo the corollary follows.

Next we characterize " + , — " singularities.

Theorem 4.3. Let ΩR = {xeR2

+:\x\<R} and suppose u is a C2{ΩR)nC°(ΩR\{0})
solution of (1.1) satisfying

1 -R<x2<0.

Then as x->0

κ(x)-(i9(x) = 0(xϊ), (4.2)

where φ(x) = -r^.
\x\

Proof The proof is very similar to the first part of the proof of Theorem 4.1. Fix
a>0 so small that xpa'°<u in a full neighborhood of \x\ = R, xί>0. Arguing as
before, it then follows that \pa>0^u. Similarly, u ^ — ψ°'~a so that for a small,

xpa>°Su^-\p°>~a in ΩΛ. (4.3)

Using (4.3) and Lemma 2.4 and the properties of the two-merons ψa'b (which are
conformally equivalent to ψ) (4.2) follows.

We will now apply the same "continuity method" to show that any solution
that can be continuously connected to + 1 (—1) lies above (below) any other
solution.

Definition 4.4. Let u be a solution (supersolution) of (1.1), (1.2). We say that u can
be continuously connected to + 1 if there is a family ub of solutions (supersolutions)
of (1.1) b = (bo,bv...,b2n,b2n+1). (bo= — oo,b2n+1 = + oo) continuous in the pa-
rameter b satisfying

(i) aj<bj<bj+ί<aj+1,j=l93,5,...,2n-l,
(ii) ub(09x2) = (-lYbj<x2<bj+l9j = 0to2n,

(iii) ub = u if fe = α = ( α o , α 1 , . . . , α 2 l I , α 2 w + 1 ) .

In a similar way, we say that a solution (subsolution) u of (1.1) can be
continuously connected to — 1 if the continuous family of solutions (subsolutions)
ub satisfies (ii), (iii) and (i)' b^<ai<a +1 <bj+1, j= 1,3,5, ...,2n— 1.
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Remark 4.5. By the construction of Φ, Ψ [see (1.6)] it is easily seen that Φ, Ψ can be
continuously connected to + 1 , — 1 respectively. Thus, for n= 1, u+ =ψa2'aι can be
continuously connected to both + 1 and — 1.

Theorem 4.6. For any solution u of (1.1), (1.2), Φ^u^Ψ.

The proof of Theorem 4.6 is essentially the same as the first argument of the
proof of Theorem 4.1. For example, to show w^Ψ, we "shrink the - intervals"
until Ψb > u. This is possible by the explicit form of the two merons. We then "open
up the - intervals" decreasing Ψb. By our previous argument, we must reach Ψ.
The case Φ ̂  u is analogous.

Corollary 4.7. For any solution u of (1.1), (1.2), u~ rgw^tί+.

Theorem 4.8. Let u° be a solution of (1.1), (1.2) which can be continuously connected
to both +1 and — 1. Then u° = u+ =u~, so there is uniqueness.

The proof is very similar and will not be given.
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