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Abstract. Given a continuous representation of the Euclidean group in n + 1
dimensions, together with a covariant system of subspaces, which satisfies
Osterwalder-Schrader positivity, we construct a continuous unitary repre-
sentation of the orthochronous Poincare group in n -f 1 dimensions satisfying
the spectral condition. A similar result holds for the covering groups of the
Euclidean and Poincare group.

Osterwalder-Schrader positivity allows the analytic continuation of a theory in
imaginary time to a quantum theory in real time (Osterwalder and Schrader [6],
Klein and Landau [3], Glimm and Jaffe [1]).

When this analytic continuation transforms a field theory covariant with respect
to the Euclidean group into one covariant with respect to the Poincare group, the
procedure has been to analytically continue the Schwinger functions of the
Euclidean theory, which are distributions invariant under the action of the
Euclidean group, into other distributions called Wightman functions, which are
then shown to be invariant under the action of the Poincare group by analytic
continuation of the partial differential equations that express the Euclidean
invariance of the Schwinger functions (Nelson [5], Osterwalder and Schrader [6]).

In this article we show how Osterwalder-Schrader positivity allows the
construction of a unitary representation of the Poincare group directly from a
representation of the Euclidean group with a covariant system of subspaces. The
new tool that makes that possible is our theory of symmetric local semigroups (Klein
and Landau [4]; see also Frohlich [10]).

We start by considering the analytic continuation of unitary representations of
the Euclidean group. Next we prove similar results for the covering groups of the
Euclidean and Poincare groups. Finally, we describe the extension to repre-
sentations of the Euclidean group (or its covering group) on topological vector
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spaces; this extension is needed in the application of these results to the
Osterwalder-Schrader axioms.

Similar results have been independently obtained by Frόhlich, Osterwalder and
Seiler [11].

I. Analytic Continuation of Unitary Representations of the Euclidean Group

Definition. An Osterwalder-Schrader positive unitary representation of the n + 1
dimensional Euclidean group IO(n + 1) with a covariant system of orthogonal
projections consists of:

(i) a Hubert space j f
(ii) a map E from open sets in Un+1 to orthogonal projections in Jf, such that

A c B implies E(A) ̂  E(B) and AJA implies E(An)->E{A) strongly;
(iii) a continuous unitary representation U of IO(n + l) such that

U(g)E(A)U(g)~ί = E(gA) for all open sets A c Un+ί and gelθ(n+ϊ);
(iv) Osterwalder-Schrader positivity: let θelθ(n+l) be time reversal, i.e.,

θ(s,x) = (-s,x), let R = 1/(0) and E + = £((0, oo) x Mn\ then E + RE + ^ 0 . •
Given such a OS-positive representation of IO(n + 1), we will construct a unitary

representation V of the orthochronous Poincare group 70^(1, n) on a Hubert space
Jf. This will be done in four steps:

1. The Hubert space Jf will be constructed from JΓ by OS-positivity.
2. A unitary representation of the group of translations of (relativistic) Un + * will

be constructed on J f from the unitary representation of the group of translations of
(Euclidean) Un+i by analytic continuation from imaginary time to real time.

3. A unitary representation of the orthochronous Lorentz group Oτ(l, n) will be
constructed on j f from the unitary representation of the rotation group O(n + 1) on
Jf by analytic continuation from the trigonometric angle of a rotation towards the
imaginary time axis to the hyperbolic angle of a Lorentz boost in real time.

4. The representations constructed in steps 2 and 3 will be combined to give a
unitary representation of the orthochronous Poincare group 7Oτ(l,n) satisfying
the spectral condition.

Steps 1 and 2 are standard (Osterwalder and Schrader [6], Klein [2], Glimm and
Jaffe [1]). Step 3 is new; we use symmetric local semigroups to construct the
infinitesimal generators of Lorentz boosts. Steps 2 and 3 are totally independent.

Remark 1. We start with a representation of the full rotation group O(n + 1) because
we need time reversal to define OS-positivity, and O(n + 1) has only two connected
components. Thus space reflections are necessarily included and we obtain a
representation of the orthrochronous Lorentz group.

Remark 2. If the Hubert space Jf is the complexification of a real Hubert space
which is left invariant by the representation U and by the covariant projections E(A),
we will obtain a representation of the full Poincare group 10(1, n) in which time
reversal is represented by an anti-unitary operator.
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We now proceed with the construction.

1. Construction of the Hubert Space df

Let ir = E + RE+ and Jf p = f O f - TT j f + , where Jf + = E + JtΓ. On 34?0 we define a
sesquilinear form < | > by

Osterwalder-Schrader positivity makes < | ) a positive definite inner product. We let
#? be the Hubert space completion of J f 0 with the inner product <|>.

By construction if :Jf + -• Jf is a contraction with dense range.

2. Construction of the Representation of the Group of Translations on jf.

Let τ (s, x) denote translation by (s, x) in (Euclidean) [Rπ+ \ then τ (s, x)elθ(n 4-1) so
we let ί/(s, x) = l/(τ(s, x)) be the corresponding unitary operator on Jf.

Notice that U(s, x)Jf + c j r + i f s ^ 0 and 1/(0, x) commutes with both R and £ + .
Define F(0,x) on Jf0 by

F(0, x)-T=-r U(0, x) onjf + .

It follows that F(0, x) is a well defined isometry of J f 0 onto itself and thus extends to
a unitary operator on Jf, the group property in x being obvious. Here F(0, x) is
clearly strongly continuous on J>f 0 and hence on Jf. We denote by P the self-adjoint
generators of space translation:

Consider now V(s, 0). For s ^ O w e define P(s) on J4?o by

It is easy to see that P(s) is well defined on Jfo and that (P(s\ @s = J^ o , 00) form a
symmetric local semigroup (Klein and Landau [4]). Hence there exists a unique self-
adjoint operator H on Jf such that P(s) is the restriction of e~sH to Jf 0 . Since

for all 5 ̂  0 and Fe Jf\, it follows that # ^ 0.
Notice that V(0, x) and P(s) commute, since

= TT U(S, 0) C/(0, x) = P(s) K(0, x)τT.

Thus # and P commute, in particular

gixPgitH _ gitHgix P _ gitH+ix P

for all ίeIR, xe(R".

Let τ(ί,x) denote translation by (ί,x) in (relativistic) Un + 1. Then
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gives a continuous unitary representation of the group of translations of Un +1 on Jf.

3. Construction of the Representation of the Orthochronous Lorentz Group on Jf3

A. The Analytic Continuation from O(n 4-1) to Oτ(l,rc)

Let s = (l ,0)eR n + 1 , we identify the subgroup of O(n + 1), leaving s invariant with
O(ή) in the usual way.

Given a unit vector ύeUn ^ {0} x ίR" and θeU, we denote by r(κ, 0) the rotation
by the angle 0 from ύ to s, i.e.,

r(u,0)s= cos 0 s - s i n θύ,

r(ύ9 θ)ύ = cos θύ 4- sin 0s,

r(w, θ)x = x if x is perpendicular to s and ύ.

The (n + 1) x (n + 1) matrix corresponding to r(ώ, 0) is

r(ιί, θ ) w = δ ^ + (δuoδOJ + uiUj)(cos θ - 1) +

(1)

where ί j = 0,1,..., n, the index 0 corresponding to the s axis, and ώ = £ w^i, xf

i = l

denoting the unit vector in the xt direction.
Notice that if geθ{n + 1), then

gs = cosθs — sinθύ = r(ύ,θ) s

for some θ and w, which implies

^ = r(ώ,θ)G (2)

for some 0elR, w unit vector in Un, GeO(n).

If k(ύ)eθ(n) is a rotation taking ύ into x l 5

. (3)

If tί ^ — χ x, we may take k(ύ) as the rotation that takes ύ into jq and leaves

invariant vectors perpendicular to tί and jq. In this case /c(ίί) has the matrix

i,7 = 0,... ,n. Notice that (/c(w)~% = fc(ώ)Λi.
The group property is expressed by

r(U1,ΘMύ2,θ2) = r(U,θ)G(Θ1,θ2l (5)

where

cos 0 = cos 0 t cos 02 — sin 0X sin 02 cos φ, (6)

and

w = (sin0)~1[(cos02sin01 — sin02(l — cos 0X) cos φ)ύ1 +s in0 2 i ί 2 ]

(7)
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if sin θ φ 0. We have set cos φ=ύx -ύ2. Thus G(0l5 θ2) is in O(ή) and is given by

G(01? θ2) = r(u, - θ)r{ύl9 ΘMύ2, θ2). (8)

A similar discussion applies to the orthochronous Lorentz group Oτ(l,w). If
t = (1,0), we again identify the subgroup of 0 τ(l, n) leaving ί invariant with 0{n) in
the usual way.

Given a unit vector ύeUn ^ {0} x Un and αe(R, we let b(ύ, α) denote the Lorentz
boost with hyperbolic angle α in the ύ, t plane, i.e.,

b(u, cήΐ = cosh αf + sinh OLU,

b(ύ, cc)ύ — cosh ιχύ + sinh α ί,

b(ίί, α)x = x if x is perpendicular to ύ and f.

The corresponding (n + 1) x (n + 1) matrix is

b(ύ, GC\J = δUj + (δitOδOJ + W w/cosh α - 1) +

(9)

Notice that given the matrix b(ύ, α), cosh α and sinh α u are uniquely determined,
so that if α ψ 0, α and tί are determined up to a sign: b(ύ,a) = b( — ύ, — α).

Every /ieθ τ(l,π) may be written

h = b(ύ,(x)H (10)

for some unit vector ύeUn, oceU, and HeO(n).
Again,

as in (3).

The group property is now expressed by

b{ύuoc1)b(ύ2, α2) = b(v, α)H(αl5 α2), (11)

where

cosh α = cosh oc1 cosh α2 4- sinh αx sinh α2 cos φ, (12)

and

ί = (sinh α ) " 1 [(cosh α2 sinh αx H- sinh α2(cosh αj — ̂ cosφ)^! +s inhα 2 t ί 2 ] ,

(13)

if α ̂  0, where cos φ=ύ^ύ2 as before.
Notice that the matrix r(w, z), given by (1) with the complex variable z replacing 0,

is an entire function of z, and if we take z = —ioc purely imaginary,

Ίx{ύ,-m)T-1=b{ύ,a\ (14)

where
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I being the n x n identity matrix.
The analytic continuation from the rotation group O(n + 1) to the orthoch-

ronous Lorentz group O\\,n) is based on Eq. (14). We will show that Eq. (5)
analytically continues to Eq. (11) as the complex variable z goes from z = θ to z =

— ίoc (inserting the matrix T as in Eq. (14) the insertion of the matrix T accounts for
taking imaginary time to real time, i.e., s goes to — it).

Let φ be a fixed angle (as in (6) or (12)) and define the entire function W(zί, z2) of
two complex variables by

W(z1, z2) = cos z t cos z2 — sin zx sin z2 cos φ

= a cos{z1 + z2) + bcos(z1 — z2), (16)

where a = cos2 φ/2, b = sin2 φ/2.
Let α l 5 a 2 eR be given such that not both are zero, and let 0 < θ0 < π/4. We now

choose θί9θ2eUso that 0 < |# x |, \θ2\ < θ0 and θί — θ2 is non-zero with the same sign
as otί — oί2 and θx + θ2 is non-zero with the same sign as a1 + α2.

Define the path y:[0,l]->C x C by y(τ) = (z1(τ), z2(τ)), where z/τ) = (l - τ ) ^
— iτoyj = 1,2. It is easily checked that along y W{zγ, z2)Φ ±\ and Re W(z1, z2) > 0.

We may then analytically continue the function

θ = arc cos W(θ1 ,θ2), -π/2<θ< π/2,

along y as

z = θ - ioc = arccos W(zl9 z2), - π/2 < Rez < π/2, (17)

to

— ioL = arc cos W( — ioL^,— iot2). (18)

But (18) says that

α = arc cosh(α cosh (oc1+a2) + b cosh (OL1 — α2)),

Where α is real since — π/2 < Re( — iα) < π/2.

We have thus analytically continued from Eq. (6) to Eq. (12).

Remark. More generally, it follows from (16) and the convexity of the image under
the cosine of the region |Re z\ < ε, that iϊ\θί±θ2\<ε, then |Re z\ < ε along the path γ,
z given by (17). This holds for any ε < π/2.

We now show that Eq. (7) also analytically continues to Eq. (13) along the path y.
Let

u{z^z2) = (sinz)~1[(cosz2sinz1 — sinz2(l — cosz^cosφ)^ + sin z 2tί 2],
(19)

where z is given by (17). Since sin z ψ 0 along the path y{W(z1, z2) φ ± 1 along y), (19)
gives an analytic continuation from ύ = u(θl9θ2) (Eq. (7)) to v = u( — ίa1, — iα2) (Eq.
(13)) along y.

We can now analytically continue Eq. (5) along the path γ as r(ύι,zί)r(u2,z2) =
r(u,z)G(z1,z2)9 where z is given by (17), u by (19), and G(z1,z2) by analytic
continuation of (8).
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It this way we have analytically continued Eq. (5) to Eq. (11) (inserting the matrix
T as in Eq. (14)). Since the matrix b(v,a) is uniquely determined by b{uu0Lx) and
b(tϊ2,α2), it follows that the resulting α and v are unique up to sign.

B. The Analytic Continuation of the Unitary Representation of 0(n + 1) on Jf to a
Unitary Representation of 0 T (1, ή) on J f

If geθ(n\ then U(g) commutes with both JR and E+. Thus if we define V(g) on Jf0 by

it follows that V{g) is a well defined isometry of J f 0 onto itself and V(g) extends to a
continuous unitary representation of 0{ή) on ffl.

We now construct the unitary operators corresponding to Lorentz boosts b(ύ, α).
For 0 ̂  θ < π/2, let Cθ denote the open cone in Un+1 having its axis in the s direction
and with half-angle π/2 — 0:

Cθ-={xeUn+1; x-s>\x\sinθ}.

Note that Cθ c (0, oo) x Un and r(ύ, Θ')CΘ c Cθ_ {θ,{ if |0 ' | ^ 0 for all ύ.
Define Jfθ = E(Cθ)Jf = E(Cθ)Jf+ c Jf+ and let ^ θ = i^XB c jf0. Now define

the linear operator P(ύ, θ) on Jf 0 having domain ^ 0 by

P(ώ, 0)τr = r U(r(ύ, Θ)) on JΓ^.

Here P(ύ, θ) is well defined by the same argument as in the proof of Lemma 8.2 in
Klein and Landau [3]. Furthermore, P(ύ,θ) is symmetric on Θθ: let i7, GeJfθ, then

= (F, RU(r{ύ9 Θ))G) = (F,

= (U(r(u, Θ))F,

Since l/(r(ιi,θ')) is strongly continuous in θ' for fixed ύ, it follows that P(w,0;) is
strongly continuous in <3Θ for O^θ' ^θ. Notice also that

u @^ u
0<θ<π/2 \0<θ<π/2

and hence is dense in Jf.

We can thus conclude that, for fixed ύ, (P(ύ, θ\ @θ9 π/2) form a symmetric local
semigroup, so there is a unique self-adjoint operator L(ύ) on Jf such that @θ is
contained in the domain of e'ΘL{ύ) and P(ύ, θ) is the restriction of e~mύ) to ̂ θ (Klein
and Landau [4]).

In addition, on Jfθ we have that

P( - ύ, θ/2)P(ύ, θ/2)τT = ^C/(r( - w, θ/2)r(ώ, 0/2)) = 'T,

since r( - ύ, 0/2) = r(ώ, - 0/2). It follows that

L(-ύ)=-L(ύ). (20)

Now let fteθτ(l,n), then we can write h = b(ύ,oc)H (see (10)). Recall that the
matrices of the Lorentz boost b(ύ, a) and oϊHeO{n) are uniquely determined, ύ and α
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being determined up to sign: b( — lί, α) = b(ύ, — a). Thus

V(h) = e i α L β

gives a well defined map from Oτ(l,n) to unitary operators on #? by (20).
It follows from the construction of liu) and Eq. (3) that

y 1)exp(/αL(ic1))F(/c(u)). (21)

We must still show that V gives a representation of O τ(l, n); to do so it suffices to
prove that (compare with Eq. 11))

exp(iα1L(z21))exp(/α2L(ίί2)) = e^ΰ)V(H)9 (22)

where α, ύ,H are given by Eq. (12), (13), and (11), respectively.
So let 0 < ε < π / 2 , and choose θx and 02 so that |0

\Θ2\ < ε. From Eq. (5) and the construction of L(ύ\ we have that the equality

exp( - θ1L(w1))exp( - Θ2L(U2)) = e-ΘL^V(G) (23)

holds in ^ ε , where θ, ύ, and G are given by Eqs. (6), (7) and (8), respectively, and
0 l 9 0 2

 a r e chosen so that |0| <ε.
We now rewrite (23) using (21):

exp( - 01L(w1))exp( - θ2L(ύ2)) = F ^ T ^ e x p t - 0L(x1))F(/c(ιί))F(G), (24)

again holding in 3)v

So let us analytically continue in the complex variables ẑ  = Q — iapj = 1,2, from
zj = θj to Zj = — ioLpj = 1,2, as in subsection A, and obtain (22) from (24). To do so,
having fixed α1 ? α2, we choose 0 1 ? 0 2 satisfying the above conditions and the
conditions after Eq. (15), and do the analytic continuation along the path γ defined
below Eq. (15).

To do this notice that the closed subspace yΓε is invariant under U(g) for geθ(n).
Since 0{n) is a compact group, jΓ ε can be decomposed into finite-dimensional
representations of 0{n). Let F'pj — 1,..., N\ and F"e, £ = 1,..., JV", be basis vectors of
two such finite-dimensional sub-representations, and let/j = i^¥'pf"£ = Y'F'^ Then
Eq. (24) implies that

<exp( - θ^iu^f^xpi - θ2L(U2))ff;y =

Σ Σ rχk(uy%jr
f\k(ύ)G)^(rf\Qχp(-θL(x1))r;),

N' N'

Σ Σ
f = l «r = l (25)

where Γ'(g)rj, Γ"{g)u. are polynomials in the matrix element of geθ{n).
We may now analytically continue Eq. (25) along the path y. This analytic

continuation is based on three facts:
(i) sin z φ 0 along γ.
(ii) |Re zγ \ + |Re z21 < ε and |Re z\ < ε along γ by the construction of the path y

and the remark following Eq. (18).
(iii) Using (21) it suffices to prove (22) with ύ1=x1. In this case, if ύ2 =£ ± xx (in
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which case (22) is obvious), it follows that xx u φ — l(u is given by (19)) along the
path y and so k(u) is analytic along y.

Since the above construction can be done for every 0 < ε < π/2, we conclude that
(22) holds on J f 0 and hence on Jf.

Thus

V(h) = eiaL{«Ψ(H) = V{k{ύ)~ι)exv{ioίL{x,))V{k(ύ)H) (26)

for h = b(ύ,oc)H defines a unitary representation of OT(l,rc) on Jf.
The continuity of the representation follows. For let h = b(ύ, α)ifeθ τ(l,n) with

ocφQ^ύφ — jcx. Then we can find a neighborhood of h in O r(l, n) such that these
conditions hold and α, u, H are continuous functions of h. The strong continuity of V
in this neighborhood then follows from (26). The continuity of V around an arbitrary
/zeθτ(l,n) now follows from the group property.

4. Combining the Lorentz Group with Translations

A. The Spectral Condition

Since U is a representation of the inhomogeneous IO(n + 1),

U(r(ύ, Θ))U(τ(x))U(r(u, - θ)) = U(τ{ύ9 θ)x))9 (27)

where as before τ(x) denotes translation by xeUn+1.
Taking x = (s/cos θ, 0) in (27) gives

I7(r(ώ, θ))C7(φ/cos 0,0))U(r(u, - Θ)) =

= l/(φ,-s(tanθ)iί)). (28)
Let 0 < ε < π/2, / e ^ ε and |0| ^ ε. Then (28) leads to

/ e - ΘLf I e - (s/cos θ)HpΘLry _ ^ - (s/2)Hy|β- ίs(tanθ)P^- (s/2)Hj y^ ^ 9 )

where L=L(ύ\P = P ύ.
Since fe@εcz@(e~εL)n@(eεL\e{θ~ia)L is an analytic vector-valued function of

0 — zα for |0 | < ε. Moreover, e~ z ί ί is operator-norm analytic for Rez > 0, because
H^O. Since Re [cos (θ - /«)] " x > 0 for |0 |<π/2, it follows that e-^s(θ-iu))-iH

is operator-norm analytic for |0| < π/2. Therefore the left-hand side of (29) has an
analytic continuation G(0 — zα) for |0| < ε,

In particular,

G(-iot) = (e~ί(xLf\e-sicosh«rlHe-i«Lfy. (30)

Since tan(0 — zα) is a one-to-one conformal mapping of the strip |0| < ε onto an
open neighborhood of {z = iy, - 1 < y < 1}, it follows from (29) and the lemma in the
Appendix that e-W)Hfe@(e-wm™(θ-i«))P) for |0| <ε, and



478 A. Klein and L. J. Landau

In particular,

G( - ί<x) = < e -(*/2)Hy| e - S (tanhα)P e -( S /2)Hy^ (31)

and e-(s/2)Hfe@(e-(s/2)(tanha)P\

Combining (30) and (31) we conclude that

for all/e® ε, 0 < ε < π/2, and OCEU.

n

+ (tanhα)P u ^ 0 (32)

Since (J ^ ε is dense in Jf, it follows that (recall L=L(ύ), P = P ύ)
0 <ε<π/2

for all αe(R.
Since (32) holds for all unit vectors ύe Un, we can conclude the spectral condition:

B. The Orthochronous Poincare Group.

Using the spectral condition (32), we may now analytically continue (30) and (31) in s
to — it(cosh α), getting

sinhα)P]/ \

for all / G J T . It follows that

eiaLeitHe-iaL __ eit[(cosh<x)H + (sinhα)P]

for all ί,αeR.
Replacing t with r(sinhα)"1 in (33), and rearranging (33), we get

Combining (33) and (34) we conclude that

V{b(u, α))7(τ(ί,ru))V(b(ύ, - a)) = V(τ(b(ύ9 - α)(ί,rώ))). (35)

Equation (35) together with the immediate equation

' = V(τ(s,gx))

for geθ(n) shows that the representation of the orthochronous Lorentz group
O\l,ri) combines with the representation of the group of translations on IRn+1 to
give a representation of the orthochronous Poincare-group /OT(l,w).

This finishes the construction of the continuous unitary representation V of
JO τ (l,n)on Jf.

Remark. If Jf is the complexification of a real Hubert space Jf', and both the
representation U of IO(n + 1) and the covariant orthogonal projections E(A) leave
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Jf' invariant, we may define an anti-unitary operator T on Jf7 corresponding to time
reversal. For if we let Jf' be the closure of frJt'+9 then Jtf" is a real Hubert space of
which Jf7 is the complexification. By construction e~tH, F(τ(0, x)), e~ΘLCu) and V(g) for
geθ(n) leave Jf' invariant. Thus if T is conjugation with respect to the decom-
position Jf = Jtf" + ijtf", it follows that T is time reversal.

II. The Covering Groups

A similar construction can be carried out in the case of the spinorial two-fold
covering groups of the Euclidean and Poincare groups. This case is appropriate
when dealing with fermions.

We begin with a discussion of the covering groups and their relation via analytic
continuation. These groups are most easily considered as subgroups of a complex
Clifford algebra (e.g., Atiyah, Bott and Shapiro [8]).

Definition. For n = 1,2,3, the complex Clifford algebra Cn+1 is generated (over C)
by e o ,e l 5 . . . , en which satisfy the relations

epj + efy = - 2δij9 ij = 0,1,2,..., n.

Thus an independent basis for Cn+ί is

{eiι'-eir\0Sh<i2<'~<ir^ni r = l , 2 , . . . , n } u { l } .

D
For any element z = (z°,x) = (zo,z1,...,z l l)eC l l + 1, we write

φ)= fz^,
j = o

We now define two n + 1 dimensional real-linear subsets of Cn + 1 which will
correspond to Euclidean or relativistic space-time:

En+1 = {e(s,x); (s,x)eMn+1},

E1'n = {e(-it,x); (t,x)eRn+1}.

We also define subsets Sn + 1 c En+\ SUn c E1'" by

Note that the elements oϊSn+1(S1>w) are invertible in Sn + 1(S1 > π):

φ j x ) " 1 = e( — s, — x),e(— it.x)'1 =e(— it, — x).

Definition. Pin(n -f 1) is the group consisting of finite products of elements from
Sn + 1 and Spin(τt + 1) is the subgroup consisting of products of an even number of
elements from Sn + 1. Similarly Pin(l, n) is the group generated by S1 •" and Spin(l, ή) is
the subgroup with an even number of elements from SUn. •
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Now each element e{z)eSn + 1 defines a linear mapping of En+1 by

e(z)e(w)e(z) = e(φE(z)W).

Then φE extends to a homomorphism of Pin(n + 1) into linear mappings oϊEn+1.
Indeed φE is a 2 — 1 homomoφhism of Pin(rc + 1) onto O(n + 1). This follows from
the fact that only ± 1 are mapped to the identity, and that φE(z) is reflection through
the hyperplane peφendicular to z, while O(n + 1) is generated by reflections. Thus
φE is also a 2 — 1 homomoφhism of Spin(ft + 1) onto SO(ft + 1). It also follows that
Pin(n + 1) and Spin(ft + 1) are compact groups since they are 2 — 1 coverings of
compact groups.

Similarly, each element e(z)eS1>n defines a linear mapping of Eίn by

e(z)e(w)e(z) = e(φR(z)w),

and φR extends to a 2 — 1 homomorphism of Pin(l,n) onto 0T(l,/t) and of
Spin(l, n) onto SO(1, n). This follows from the fact that every element of 0τ (1, n) can
be written as a product (10) and the Lorentz boosts will be obtained explicitly in the
following, and that each element of Sι'n preserves the sign of the t component of a
time-like w.

We now construct explicit elements of Spin(ft + 1) and Spin(l?ft) which cover
r(u,θ) and b(ύ,a) defined in Sect. 3.

( θ θ\ ( θ tA

Definition. R(u,θ)= — e\ sin-,cos-u )e\ — sm-,cos-u

= ίcos-j + ίsin-Wώ)β0,

B(ύ, α) = — el —i sinh -, cosh -ύ J e ( i sinh -, cosh -ύ

= ί cosh- j + ί sinh- )e(ύ)[_ - ie 0 ]. •

Then for fixed ύ, R{ύ, θ) and B(ύ, α) are one-parameter groups and

= -R(ύ,θ)9

Since every element of O(n -f 1) has the form (2), it follows that every element of
Pin (n + 1) has the form

R(u,Φβ (36)

for some θeU, ύ a unit vector in Un, ^GPin(ft). We also have (as in (3))

R(ΰ, θ) = K(ύ) ~x R(x,, θ)K{ύ\ (37)
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where K(ύ)eSpin(ή) covers k(ύ)eSO(ή). We may take

K{UY1 = [2(1 +wx1)Γ1/2[l ~ ^ i Φ U (38)

In a similar way every element of Pin(l,n) has the form

B(ύ, φ f (39)

for some αelR, ύ a unit vector in IRΠ, JfePin(n), and

B(ώ, α) = K(u) ~1 B(x±, oc)K(u). (40)

With these results, the analytic continuation from Pin(rc-f 1) to Pin(l,n) is
carried out along the path y in the parameter space (zx, z2) from ẑ  = Θ} to ẑ  = — iccj
as in Sect. 3A in Part I.

We now consider the analytic continuation of a unitary representation of
Pin(n + 1) on Jf to a unitary representation of Pin(l, ή) on Jf.

Let U be the unitary representation of Pin(n + 1) on Jf. The covariance of the
orthogonal system of propections in expresed by

U(g)E(A)U(g)-χ=E(φE(g)Λ)

for all gePin(n + 1) and open sets A c Un+ί.
We note that U( — 1) belongs to the center of the representation and commutes

with £(,4) for all Ac: Un + 1.
Osterwalder-Schrader positivity holds with respect to the reflection operator

R:E+RE+ ^ 0 .
The operator R cannot be U(e0), since if

E+U{eo)E+^0,

it must be self-adjoint and hence taking adjoints yields

From this it follows that V( — 1) = / on Jf. In other words the two-fold covering
of 0{n + 1) is extraneous and is lost in the construction of the representation of
Pin(l, n) on Jtf, which is then actually a representation of 0 r(l, n). To avoid this we
suppose R = CU(e0), where C is a unitary operator commuting with U(g) for all
geFin(n + 1) and with E(A) for all A c Un+1, so R will act by conjugation as time-
reversal. Also, C2 = U(— 1), which implies that R is a unitary involution: .R2 = /.

C can be interpreted as charge conjugation (Osterwalder and Schrader [7]).

We now proceed as in Sect. 3B, defining P(ύ,Θ) by P(ύ9θγT = V (U(R(ύ,θ)))
on Jfθ. Then there is a unique self-adjoint operator Uμ) on J>f such that P(w, θ) is the
restriction of e~ΘLCu) to ®β. As in (20), L(~ύ)= -L(zί). The remainder of the
argument follows as before.

The inhomogeneous spinorial covering group IPin(n + 1) of the Euclidean
group is the semidirect product of Pin(n + 1) with the translation group, satisfying

U(R(ύ, θ))U(τ(x))U(R(ύ, - θ)) = U(τ(r(ιt, θ)x))
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(compare (27)). As a result, the representation of IPin(l, n) and the spectral condition
follow as in Sect. 4.

As a final remark, we note that the above construction goes through unchanged
if we assume only a unitary representation of ISpin(n + 1) together with E(A) for
Λ^Un + 1 and the reflection R with the appropriate properties. We obtain a
representation of ISpin(l,rc) satisfying the spectral condition.

III. Analytic Continuation of Representations on Topological Vector Spaces

Let δ denote either YO(n + 1), ISO(rc + 1), IPin(rc + 1) or ISpύφ + 1), and 0> denote
i,rc), ISO(l,n), IPin(l,n) or ISpin(l,rc), respectively. By φ we denote either the

covering map of ϊPin(n + 1) onto lθ(n + 1) or the identity map on lθ(n + 1) or their
restrictions to ISpin(n + 1) or ISO(« + 1) according to the case. We let (9 be either in
Pin(w + 1) or 0{n + 1) so that φ(θ) = θ (time reversal). Notice thatΘ δ®~1 = δ for
any of the above choices of δ and the corresponding choice of θ.

Definition. An Osterwalder-Schrader positive representation oiδ with a covariant
system of subspaces consists of:

(i) a topological vector space C/f\
(ii) a map A -> $C(A) from open sets in Un+1 to subspaces of jf, such that i c β

implies jΓ(A)czjf(B) and An\A implies that (J Jf(An) is dense in Jf(A);
n

(iii) a strongly continuous representation U of δ on Jf such that U(g)Jf(A) =
Jf{φ(g)A) for all geS and open AczUn + 1;

(iv) Osterwalder-Schrader positivity: there is a continuous positive semi-
definite inner product<|> on Jί + = JΓ((0, oo) x Un) such that

(a) if geS and F,G, E/fer)F and U{Θg~1Θ~1)G are in JΓ + , then

(b) for each F e j Γ + and c>0β" c s<F|(7(τ(s,0))F> is bounded for s^O. •

Given such an Osterwalder-Schrader positive representation of δ we construct
as before a unitary representation of the corresponding 0> satisfying the spectral
condition. The Hubert space ffl is constructed as in Osterwalder and Schrader [6].
If jf = {FeJf+ <F |F> =0}, then Jί is a closed subspace of Jf+ and ^f 0 =
J f \ l ^ ί is a pre-Hilbert space with inner product <|>. We denote by V the
canonical map j f + -^ J Γ + / y Γ and take ^ to be the Hubert space completion of J f 0

(when jf* is a Hubert space this construction is equivalent to the one given in Sect. 1
of Part I). The rest of the construction goes as before with minor modifications.
Condition (iv) (b) together with the spectral theorem insures that H^O. Also in Sect.
3B Part I we used the fact that a continuous unitary representation of a compact
group on a Hubert space is a direct sum of finite-dimensional representations. Since
j f ε is now only a topological vector space, we must modify our argument (notice
that the decomposition of a strongly continuous representation of a compact group
as a direct sum of finite dimensional representations still holds for representations
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on quasi-complete barrelled topological vector spaces, see Dieudonne [9] if we
assumed j f to be a barrelled topological vector space we could still use the
decomposition of the completion of Jfε and carry the argument through). Instead of
decomposing Jf ε we will decompose an enlargement Θ ε oϊΘε. To do this, recall that
S)ε is a linear sub-space of the Hubert space Jf' that is left invariant by the unitary
representation V of the compact group G = O(ή) (or SO(n), or Pin(n), or Spin(n)). Let
V(φ) = $dgφ(g)V(g) for φeC(G). Then V(φ) does not necessarily leave Q)ε invariant,
so let Q)ε be the linear span of Θε\j {V(φ)f; φeC(G\fe2ε}. Then Q)z is left invariant
by both V(g), geG, and V(φ), φeC(G), and Θε is dense in 3> ε. It follows by the usual
proof for unitary representations of compact groups that the unitary representation
V of G on the pre-Hubert space §ε can be decomposed as a direct sum of finite-
dimensional representations. Now recall that ΘE <= Θ(e~ΘL{"y) for \θ\ < ε and any unit
vector ύeU", and that

e-θmV{gyTF = *rU(r(ύ9 θ))U{g)F

is a continuous function of geG for FeJΓ ε , since the representation U is strongly
continuous. Thus, i f/e^ ε , φeC{G\ V(φ)f= \dg φ(g)V(g)f and [dg φ(g)e~ΘL^V(g)f
can be constructed as Riemann integrals. Since e~ΘL(ύ) is a closed operator, it follows
that V(φ)fe@(e-ΘL(ύ)) and e~ΘL(ύ)V(φ)f=$dgφ(g)e-°L{ύ)V(g)f. Hence
Θε a @(e-ΘL{ΐι)). Thus if we now take/ j j = 1,..., N', and/ϊ , / = 1,..., JV", to be basis
vectors for two finite-dimensional sub-representations of V on Q)ε, Eq. (25) still holds
and the rest of the argument goes through as before. Thus the analytic continuation
argument of Sect. 3B is still valid.

Remark. The Osterwalder-Schrader axioms give an Osterwalder-Schrader posi-
tive representation of the Euclidean group with a covariant system of subspaces
(see Osterwalder and Schrader [6]). The above construction can then be applied to
give directly the unitary representation of the Poincare group on the physical
Hubert space.

Appendix. A Technical Lemma

Lemma. Let G(x) = (f\eιxPf)for xeM, where P is a self-adjoint operator on a Hubert
space Jf and fe34?, fΦ® Suppose there exists a function G(z\ analytic in a
neighborhood of I — {z = iy, — yx < j ; < y2 }, where y1, y2 > 0, such that g(x) = G(x)for
\x\ < ε,someε> 0. Thenfe@(eί{zl2)P)forzeΓ = {z; - y1<Imz<y2}and<J\eizPf} is
an analytic continuation of G(z) to Γ. •

Proof l)/e®(P):

\\-ix~HeίxP-l)f\\2=χ-2<f\(2-eixP-e~ixP)fy

= x~2(2G(0) - G(x) - G{ - x))-* - G"(0)

as x -* 0.
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In particular, || - ίx~\eixP - I)f\\ is bounded as x->0. It follows that/e^(P)
and

g'(x) = i(f\eixPPf\g"(x) - - (Pf\eixPPf).

2) The hypothesis of the lemma now apply to g"(x) and G"{z). If follows from 1)
that/e^(P 2) and g(3\x) = - i(Pf\eixPP2f> and #(4)(x) = {P2f\eίxPP2f}.

Repeating the argument we get feC^P) and g(n)(x) = in(f\eixPPnf}.
3) Since G(z) is analytic in a neighborhood of /, there is a disk of radius r about

the origin which is contained in the region of analyticity. It follows that | G"(0) | ^
Cnl/rn for some constant C and hence

| | p γ | | = | G ( 2 M ) ( 0 ) | 1 / 2 S (C(2n)\/r2n)112 S Cll22nn!/rn.

It follows that fe@(ei(z/2)p) for \z\ < r and thus fe@(ei{zl2)P) for | Imz| < r.
4) We now repeat the considerations of 1) to 3) with g(x) replaced by

gy(x) = <e-<yWf\eixPe-<yWf>, \y\ < r.

The disk centered at the origin is replaced by a disk centered at iy.
5) Given any / , — y1 < y' < y2, say y' > 0, we can find r' > 0 such that G(z) is

analytic in
{z = x + iy; — rf<y<y' + r\ \x\ < r'}

by compactness. In particular G(z) is analytic in the disk with radius r' centered at iy
for 0 ^ y S y'- Thus repeating 4) a finite number of times we get tha,tfe@(ei{z/2)P) for
- r ' < I m z < / + r'.

Since y\- y1<y' <y2 was arbitrary, we conclude that fe@(ei(z/2)P) for
— y1<\mz<y2 and the lemma follows. •
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