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of the Perturbations in Classical Mechanics and
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Giovanni Gallavotti*
Mathematics Department, Princeton University, Fine Hall, Box 37, Princeton, NJ 08544, USA

Abstract. Weintroduce an analogue to the renormalization theory (of quantum
fields) into classical mechanics. We also find an integrability criterion guarantee-
ing the convergence of Birkhoff’s series and an algorithm for modifying the
hamiltonian to fix the frequency spectrum of the quasi-periodic motions. We
point out its possible relevance to the transition to chaos.

1. Introduction, Notations and Results

In a famous paper [1] Poincar€ proved the generic nonexistence of analytic prime
integrals for systems which are obtained by perturbing an integrable system. This
system is described in its action-angle variables (A, ¢) by an analytic hamiltonian
ho(A) such that

2h0

AJA

rank (A)=2, (1.1)

where A =(A4,,..., 4,) denote the / action variables, ¢ = (¢, ..., »,) denote the /
conjugate angles, and we suppose that the system’s phase space is

Vx T, (1.2)

where V is a closed sphere in R of radius r, fixed once and for all, and T is the /-
dimensional torus. The number ¢/ is the number of degrees of freedom.
The theorem of Poincare deals with perturbations of the form

fO(A’ ?, 5) = Z fO 7(A’ E)eiy-w’ (13)
yeZ?
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where f, is an analytic function of (A, @, e)e V x T? x [ — q, a], for some a > 0, and is
supposed divisible by ¢: the right hand side of (1.3) is used to introduce our notation
for the Fourier transform f, of f, with respect to the g-variables:y = (y,, ..., 7,)e Z*
are / integers.

The usual way of phrasing Poincaré’s theorem is by saying that “the
perturbation series for the solutions of the Hamilton—Jacobi equation for

H (A, @) =ho(A) + fo(A, @,¢) (1.4)

diverges, in general.”
Apparently the cases (“rank 1” or “rank 0” respectively)

i) ho(A) =h(wo-A), h'#0, i #0,
(1.5)
i) ho(A) =y A,

with m,eR’ fixed, were not considered interesting enough by Poincar€ to be worth
studying.

Nevertheless his method can be adapted to show that in this case too the
perturbation (1.3) will, in general, produce a new hamiltonian system which does not
admit any nontrivial prime integrals which are analytic (in various senses) [3].

To be more precise, and even a bit more general, consider the hamiltonian on
V x T

HS(A’ (P) = hO(A9 8) + fO(A’ (pa 8) (16)

with h, analytic on V x [ —a,a] and f, analyticin V x T’ x [ — a,a].

The “integrability problem” is the following: does it exist a map ,:V x T x
[—a,a]— R’ x T/ analytic in (A,¢,¢)eV x T x [ —a',a’],0 <a' = a, canonical
for every ¢, and h,:V x [ —a’,a’]— R such that

i) H(G(A',@))=h(A) Y(A,¢@,e)eV xT x[—a,a], (.7
ii) (%, — identity) and (h,(A’) — hy(A',0)) are e-divisible? (1.8)

Writing € (A’, ¢') = (A, @) in terms ofits generating function &@,, the relation between
(A, @) and (A, ¢') must be such that:

0P,

A=A"+—(4,09), (1.9)
op
aq}E(A )

=+ L),

@ 4 PYX (4

with @, analytic on V x T/ x [ — a@’,a’], and (without loss of generality):
j ¢8(A,’ (P)d(p = 0
T¢

1 Note that , maps V x T into R? x T’ in general: nevertheless (1.7) makes sense for ¢ small, provided
(1.8) holds, because of the analyticity assumption (and the fact that V is closed), which allows to extend
ho, fo outside V x T¢
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Then (1.8) says that:

(A, ) = DDA, @) + 20D (A", @) + ..., (1.10)
h(A") = ho(A’,0) + ehDA) + ...,

and then (1.7) becomes in terms of @,, by the first relation in (1.9):
09, 09,
hol A"+ ——(A",0),¢ |+ fol A"+ —(A", 9),6-| = h(A'), (L.11)
op Oop

which after a universal development in powers of ¢ implies an infinite hierarchy of
equations for the unknown functions @@, .. AV ..
It is immediately seen that the n'™ equation has the form:

(n)
wO(A’)'E(A’,(p) FFO(FO O o o) pern o) G- )

=h"(A"), (1.12)

where the upper indices denote derivatives with respect to ¢ evaluated at ¢ = 0, times
n!, and we have set
h$
wy(4) = A'), 1.13
olA’) oA Gy (1.13)
and, finally, F™ is a differential polynomial with coefficients involving powers of the
derivatives d/de and 0/0A".
For instance for n= 1 the F is FO(f{) = £V and (1.12) becomes:

0w
@A) g

A%9) +/5 (A @) + hP(A) = DA, (1.14)

which should determine &) and AV,
To discuss (1.12) introduce the notation

_ do
(n), A n
F"(A") = sz Ft )(...)(—Zn—)l, (1.15)
or, more generally:
F(n) A/) _ —i ')"lPF(n) d(p
( —T{ e (...)an—)?. (1.16)
Then we see that (1.12) implies
h"(A") = F"(A") (1.17)
(by integrating both sides with respect to ¢) and
) F(”)(A f)eiv‘w
PIA Q)= Y (118)

y£0 — in(A')~y.
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A necessary condition for the existence of €, is, of course, that F"(A’) can be
written as

E"(A) = (0y(A)DE"(A), Y0#yeZ’, (1.19)

ie. FI(A’) vanishes everytime wy(A')y does, ie. everytime “a resonance takes
place’

We shall call (1.19) the “condition for the existence of perturbation theory” of f,
with respect to A,,.

Definition. We say that the Hamilton—Jacobi equation (1.1 I)A“admits a finite
perturbation theory,” if (1.19) is verified and if there are constants F,, £ > 0 such that

|E("’(A')| éf?ne “¢vl oy > 1,VyeZf VA€V (1.20)

It is now clear that if (1.1) holds, the perturbation theory will, generically, not
exist: eg. if f§)(A)#0, VyeZ’, YA€V, the condition (1.19) will not be satisfied
already for n = 1 (the right hand side vanishes, in fact, for somey on a dense set in V).
This remark is, essentially, the above-mentioned famous theorem of Poincare?.

A well-known theorem of Birkhoff provides an example of a hamiltonian
which always admits a finite perturbation series, for all perturbations: it is the case
(L.5) with @, “nonresonant,” i.e. such that

logy|"' < Cly* VyeZ’y #0, (1.21)

for some C >0, « > 0. It is well known that almost all points in R’ verify (1.21)
with C < + o0, a =/, [2].

This theorem is easily proved by induction using (1.12), (1.18) and noting that
(1.20) follows from the analyticity of /! in ¢ and from (1.21), in the starting case
n=1,[2].

In his book on Mecanique Celeste, Poincare raises the question of the
integrability of systems admitting a perturbation series: in fact he examines in this
light a few well-known integrable systems depending on a parameter. However he
leaves the question open, contenting himself to say that “whenever (1.19) holds,
nothing is against the integrability,” see [1], p. 258.

No examples seem to be known of perturbations admitting a finite perturbation
theory with respect to an h, verifying (1.1) with the rank equal to ¢ (“non-
isochronous systems”) but being, nevertheless, nonintegrable. In any case a simple
example of a system with finite perturbation theory but not integrable, in the sense
that (1.11) does not admit an analytic solution, can be easily constructed from a
Birkhoff hamiltonian, like (1.5).

Infact,let/ = 2,A = (4, B), = (¢,¥) and @, = (w, 1) such that (1.21) holds, let f
be a function on T! with nonzero Fourier coefficients, e.g.:

o0

fle)y= > e “cosngp, (1.22)

n=1

2 in [1] a stronger statement is proven concerning the nonexistence, in general, of an analytic prime
integral, but in essence the main argument is the same as here
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and consider hy(A) =(wA4 + B) and

H(A,B,¢,) =(@A + B) +&B+ f(9) f(¥)). (1.23)
It is easy to check that if |y| = |y,| + |y,

e “¢hleive -7, k~1
A B o)=Y - ( ) ) (1.24)
0pgez? —HOYL +7,) N0y, + 74

fork=1,2,...

o0

However the series Y, ¢*@® cannot converge, because (1.23) can be elementarily

studied and it does no: hlave, for all ¢ small, motions which are all quasi-periodic.

From the above example one can easily build [11] examples of systems with
divergent, though finite, perturbation series: in fact one just forms the system on
V x V' x T? x T’ with hamiltonian defined by

HoA, B, ¢, ¥) +3(CT + ..+ C}),

if (4,B,C,p,y,0)eV x V' xT?x T, whose hessian matrix will have rank
' < ¢ ={¢"+2. An easy modification yields an example with rank / — 1.

Therefore in general we cannot expect that the perturbation series converges,
even when it is finite in the sense of the above definition. In fact “in general” the series
diverges: see introductory discussion in [3].

In this work we study the question of which could be the extra conditions
necessary for the convergence of the perturbation series. We are able to exhibit a
sufficient condition for the convergence of the perturbation series in the Birkhoff
case:

ho(A, &) = h(wy- A) + eh§HA) + ..., (1.25)
with i’ # 0 and o, verifying (1.21). We recall that (1.25) is the only known case in
which a condition for the existence of a finite perturbation theory is simple (namely
there is no condition at all).

We prove

1. Proposition. Let h, be given by (1.25) and let o, verify (1.21): “the unperturbed
system is a nonresonant isochronous oscillator.” A sufficient condition for the
convergence of the series (1.10) for ¢ small is that f, is such that (see (1.10)):

h9(A’) = 6® @y A", (1.26)
where ¢ are functions of one variable. The condition is not necessary, obviously.
The method of proof almost yields a solution to the following problem:

2. Problem. In the general case, suppose that hy(A, ¢), and f(A, @, ¢) are such that
the perturbation theory of f,, with respect to h is finite and suppose that there are
functions ¢® of one variable such that:

h¥(A) = cP(hO(A)). (1.27)

Is this sufficient for the convergence of the perturbation series?
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The connection of Proposition 1 and of Problem 2 with the work of [10] is clear.
Another question which we study in this paper is the following,
Given a hamiltonian of the form

HE(A’ (P) = h(wO A) + fO(A! P, 8)’ (128)
with ' # 0, @, verifying (1.21), is it possible to “renormalize” it by adding to it a
function N (A, ¢) analyticin V x [ —a’,a’], 0 <a’' < q, so that

H ™A, 0) = H(A, ) — N, (A, ¢ (1.29)
is integrable and canonically conjugate to the unperturbed hamiltonian? The

analogy of this problem with the renormalization problem of quantum fields is so
striking that I take the liberty of setting:

for=fo— Ny (1.30)
whenever N exists, calling the operator : : “the Wick ordering of with respect to
hwqy-A).”

It is possible to prove

3. Proposition. Given the hamiltonian hy(A) = h(w,- A) with @ verifying (1.21) and h
analytic on & = {E|EER, E =0y A for some AeV}, and given an analytic per-
turbation f, defined on V x T? x [ — a,a], there is at most one function N 1o Such that
N, (A,¢) is analytic on Vx [ —a’,a’],0 <a’ < a, and

hwy A) + : fo(A, @, 8): (1.31)

is integrable for small & and analytically canonically conjugate with the unperturbed
system h(w,A) with a transformation €, verifying (1.8). T here is an algorithm which
allows us to construct for every f, a sequence of analytic functions on V xT*,
{N©} =12, such that N, exists if and only if the series
N, (A8 =) NPA) (L.32)
k=1
converges for small ¢.

Therefore we introduce the following definition:

Definition. Let o, verify (1.21) and let hy(A) = h(w,-A) as in Proposition 3.
Given f,, as in Proposition 3, we say that f, is “h,-renormalizable,” if the series
(1.32) converges.
We say that f, is “hy-super-renormalizable,” if N¥(A) = 0 for k large enough.
We think that, for aesthetic reasons, it should be true that

4. Conjecture. Let hy(A) = 0y A and o, verify (1.21). Then every perturbation f,
which is a polynomial in ¢ is hy,-renormalizable and (1.32) is an entire function in &.

However we have only been able to prove that:

5. Proposition. In the conditions of Proposition 3, given a perturbation f analytic in
V x T x [ — a,a] there exist for all N >0, a positive constant ay and an analytic
function Sy fo(A, @, ¢) divisible by e"** such that, for |¢| < ay, the

N

ho(@oA) + fo(A, p,6) = 3. &NF(A) — 0x [o(A, 9,2) (1.33)

k=1
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is integrable by a canonical map €, verifying (1.8) and conjugating (1.33) with h(w,- A).

So any perturbation (renormalizable or not) “behaves as if it were renormaliz-
able” to arbitrary accuracy in ¢, with the drawback that a, may tend to zero as
N— o0.

We can also interpret Proposition 5 as saying that close to any perturbation
there is another perturbation which is super-renormalizable.

Our construction of the :: operator can be relevant in the theory of the
development of chaotic motions within a system with constant discrete spectrum, as
well as in the design of the related numerical experiments. Such a problem has been
recently introduced and discussed in the context of the theory of dissipative motions
[4].

It is clear that the Wick ordering of the perturbations destroys the resonances
and, therefore, the mechanism for the development of chaos must be, for Wick
ordered systems, different from the usual one. We recall that the “usual mechanism”
is based on the existence of resonances on an open dense set in phase space and on
their invasion of large regions of phase space as ¢ increases.

In renormalized systems chaos occurs only because of the divergence of the
perturbation series as ¢ grows: i.e., it probably occurs suddenly in the whole phase
space as ¢ passes through a singularity of the perturbative series. At leastif N (A, ¢),
(1.32), has a larger radius of convergence than that of the perturbation series, (see
also Conjecture 4).

The reason why we say that the above Propositions 3, 5 may be relevant even for
the design of numerical experiments is that the coefficients of N can be explicitly
constructed by a recursive algorithm which is provided by the proof itself. For
instance, to first order

Ny (A e)=¢fP(A) +O(3), (1.34)

i.e. to first order the “Wick ordering” coincides with the subtraction of the average of
the perturbation’s first order.

In this paper we give a detailed proof of Propositions 1, 3 and Proposition 5 is
only sketched, since its proof is essentially a repetition, in most of the technical
details, of the proof of Proposition 1.

The techniques used in this work are borrowed mainly from the classical theory
of Kolmogorov—Arnold—Moser [5], see also [2] for an elementary exposition of it,
and from [6], [7], [8], [9].

2. Proof of Proposition 1

For simplicity we shall only consider the case h(w,-A) = w,* A. The general case can
be treated in a similar fashion or it can be reduced to the above case by suitable
transformations.?

We must make some quantitative statements about the analyticity of f,.

3 To reduce hy(A,¢) to the case when A, is e-independent, just put the e-dependent part of h, into f,,. To
reduce the case h(w,"A) to @, A, consider A~ '(h(w,y-A) + f. oA, @,8) =wy- A + fo(A, @,¢) and notice that
the condition (1.26) is verified for the perturbation theory of this hamiltonian if and only if it is verified for
the original hamiltonian
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Therefore we choose to identify the torus T¢ with a subset of C’ via the ma
p

O=(Q,,0,) 2= (e, ...,e%). 2.1

This allows us to identify V' x T as a subset of C?, and we regard an analytic
function on V x T? as a function which is holomorphic in the variables (A, z)e C** as
(A, z) varies in a neighborhood of V x T? thought of as a subset of C?, via (2.1).

If f is analyticon V' x T’ we shall denote by f(A, z) the value of its holomorphic
extension in the point (A, z) in the holomorphy domain.

We introduce the following complex domains, given p,, &,, 0,€(0, 1):

po) = {AIAEC?, TAE ViA, — Agil < po. Vil

)= {z|zeC’ e % < |z;| < e, Vi},
D(so) {eleeC, g < 0,},

(po) ={E|E€C,E = w, A for some AeB(p,)},

W(po) = Blpo) W(po. So) = Blpo) x C(Co), W(pg, Eor00) = Blpg) x C(&o) x D(0).

We denote for yeZ?, weC™,zeC’.

Il

Iyl il Iwl= Z lwil,

zl, zeV =(z.e", .., z,e™) if {=m, (2.3)

0 < 0 0 ) 0 .0
— =, —=—iz;m—.
dp \do, dp,) 0p, 0z,

Let K, be holomorphic on &(p,) x D(0,) and suppose:

K, (E,e)=E + f & K®(E). (2.4)

k=1

Let f, be holomorphic on W(p,, &, 0,), and let

foAze)= 3 fo,(A (2.5)

yel't

be the Laurent expansion of f, with respect to the z.

We suppose K, f, real for E, A, ¢, ¢ real: eventually we are interested only in the
case K (E,e)=E

We shall study the following Hamilton—Jacobi equation:

0P o
7 0 ’ ’ e ’ — K 'A/,
KO<wOs<A + a(P (A > q’))s 8) + fO(A + a(p (A )‘P)’ (P,8> oo(wO 8)(26)
where @, K are unknown functions.
We ask whether (2.6) admits a solution @ analyticin W(p, £,0) and K, analytic
in &(p) x D(0) for some p,&,0 > 0.
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We apply a recursive algorithm: we imagine to label the steps of the algorithm
(“renormalization group”) by an index n = 1, 2,... so that at the n-step we shall have
built a canonical transformation ¥,_, whose generating function @ will be the n™®
approximation to the solution of (2.6). The canonical transformation ¢ ! =
6,-1 €, , (e the “variation” of %,_, with respect to %,_,) will change a
hamiltonian of the form

H, (A @) =K, i(0yA e+ f,_1(A 0,¢), 27
defined on W(p,_,,¢,_,0,_,) into
H(A@)=H, (4" VA", ¢)) =K|w,A) + f(A¢2), (2.8)
defined on W(p,,¢,,0,) such that
GO OW(p,, 0, = Wpyo 1,8y 1.0, 1), 2.9)

with p,, &,, 0, being a suitable decreasing sequence of positive numbers.
Furthermore, denoting [ ]!=?! the truncation to order p of a (convergent)
power series in &:

K,(E,&) — K,_(E, ) = {polynomial in & of degree 2" — 1, divisible by ¢*" '},

(2.10)
f.(A, @, &) = {function divisible by 2"}, (2.11)

%"~ Y _ identity = {function divisible by &2" '}, (2.12)
[F(A,eT=2""" =1 = {function of wy'A’ and ¢}, (2.13)

where the bar denotes the average over ¢, see (1.15).

Since the algorithm is recursive and the (K, fo,04,&0,0,) are given at the
beginning, we have only to explain how K, , f,1+1,0n+1,8n+1,0,+1 are con-
structed from K, f,, P> Eus 0,

The construction of the nth step depends on a small parameter which is rather
arbitrary; we shall choose it once and for all as

0, = &0/25(1 + n)*. (2.14)
The reader will realize that the only conditions dictating the choice of §, are that

6 > 0,<¢, and that §, does not go to zero too fast with n.
n=0
The construction of the n'™ step proceeds as follows. Let K'=0K/JE, and
consider the equation:

0P
K (w4 A e) wo-g(;(A’, 0,.8)+ (A, @, &) =F (w5 A',e), (2.15)

(“linearized Hamilton—Jacobi equation”) which we vyilsh to solve exactly to
O(e*"" ' ~!) with F, being a polynomial in & of order ¢2" ~* divisible by ¢2". This
means that we want to define @, F, as solutions of
: f{AL 0.0 Fog ALy =70
wo"_(A > ‘P) = ’ NG - ’ VA
O K (@4 A'se) K, (wyA'se)
with F, as above.

(2.16)
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Using (2.13), we see that if

[AA @.8) = F,(A o) =27
ALpe)=—| = < , 2.17
fA0.0) [ Ko A 217)
then we can take:
! Y
DA, z,6)= ), f"y(A i ,
y+#0 lw() v
F (o ALe) =[f,(A\e)1=>" "1 (2.18)
The algorithm continues by using @ to define implicitly via
o 0P
A=A"+—(A",p,¢ A=A"+—(A', 0,
0<p( ?,¢) aq;( 0, ¢)
or (2.19)
. 0<I>( 0P A
A T A, ¢.¢) z —zexpla—g( z,¢)

a canonical map €™ on a set of the form W(p, . ;,&,,,0,+,) such that

%(H)W(pn+l’én+139n+ 1)(: W(pn’énagn)' (220)

The actual construction of the map ¥™ involves the inversion of the first
equation of (2.19) with respect to A’ and the substitution of the solution into the
second, to define €™ ~! or, to define ¥, we have to find the solution of the second
equation of (2.19) with respect to z and substitute it into the first.

Since @ is holomorphic and small with ¢ it is clear that by taking
Put15En+150,+1 much smaller than p,,&,,6,, the above inversions become totally
trivial and €™ can be defined (see Appendix A for a precise statement of the implicit
function theorems that we have in mind here).

Then setting (A,z) = €"(A’,z'), we shall define

Kn+ I(E’ 8) = Kn(E7 8) + Fn(E’ 8)9

fn+ l(A,’ Z,a 8) = fn((g(n)(A,) Z/), 8) + Kn(wo' A) 8) - K,,((I)o' Al, 8) - F,,(a)o' A/> 8]
(2.21)

At this point the algorithm will be continued provided K,.y, fy+1 %™,
[F,+.J' 52" ~ 1 verify the properties (2.10) < (2.13) with n + 1 replacing n.

From the above construction, see (2.18), it is clear that the only property which
we must check is (2.13) with n + 1 replacing n.

We claim that (2.13) holds too, as a consequence of our main hypothesis (1.26).

This can be proved inductively. Consider the composition €, =%?..¢",
which is defined on W(p,,,,¢,,,0,,,), and let

(A,2)=%,(A, 7). (2.22)
By the construction, we know that if Hy= K, + f,:
Ho(€,(A',2),6) =K, (@' A'8) + f,1 (A, 2,8) + (™), (2.23)

with K, , being a polynomial in & of order """~ 1,
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Furthermore the canonical transformation #“** generated by the first
equation of (2.18) with nreplaced by n + 1 is such that if (A’,z') = ¢ * 1Y(A”,z"), then

n+2

Ho(6,6" A", 2'),8) = K,y (06 A" &)+ [ [s ((A%,0) 15771 4062 )

(2.24)
on W(p,E,0) with g, &, @ small enough. But by the uniqueness of perturbation theory
it must be, on W(p, ,0):

B nea 2n+2_1
[fui(Ae)]=2 7= % ™ - A), (2.25)
k=ont!

which by the analyticity of £, , , in (A’,z’, &) implies (2.13), with n + 1 replacing n, on
the whole domain W(p,, {,&,41,0,41)

The above discussion shows that there is no obstacle to the iteration of the
algorithm.

So the whole problem reduces to explicit estimates of p,, &, 8, as well as of the
coefficients determining the actual sizes of the various O(...) found in the above
discussion.

We will measure the size of the functions K,,, f, by

_ aj; -1 aj;
&= 5A +pn Ia(P 5
" " (2.26)
N
"\ 0 ’

where || g ||, denotes the supremum of g in W(p,, &,,0,) orin &(p,) x D(0,), to shorten
our notations, or more generally | g [, will denote the supremum of g on the set on
which it is regarded as defined, if the set depends on o.

To simplify the discussion we choose right away the sequences p,, ¢,,0, as

Pn= pn*—le_é&n_l’én = én-—l - 66n~139n = gn—le_&;"—l’ (227)

so that (p,,¢,,0,,)= lim (p,,&,,0,) exists and p_, ¢, ,0,, > 0 (see 2.14)).

n—oo

To estimate analytic functions and their derivatives we use “dimensional
estimatgs” (i.e. essentially Cauchy’s theorem).

The first equation of (2.18) allows us to estimate

”¢Hpn,t§n‘6n,9ne”6n éBllérra—[C ”fn“p,‘,{n,é?,,e“‘sn

S B16,*CO HIfu— T)IKllp,, 200, (2.28)
<B//5-—ac~l-1c -1 afﬂ —1—-f-a
=1V (1 _En) % éBlén anpn’

Pn;s&n,0n

provided
E,<1)2, (2.29)
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and simple dimensional estimates have been used to estimate the truncation in f,,.
The constants, B, B}, B] depend only on 7, .

So the map (A’,z')—(A,z') given by (2.19) is well defined on W(p,,¢,,—9,,
6,e~°"), where we control @ by (2.28).

By applying two simple implicit function theorems (see Appendix A), choosing
p=pue nE=¢,—268,,0=0e°,6=45,, we see that if
< p,e b,
0,80

”6¢
(2.30)

b
<d;,
p,&.0

gbs

where B, b > 2 are defined in Appendix B and depend only on 7, then we can define
on W(p,e ¢, — 38,,0,e°) the canonical maps

- A=A +.?(A,z,g), Zn. A:A-’r.t.'(A,z)’ (2.31)
z= z’exp iA(A',7',¢) z' =zexpid'(A,z)
such that on W(p,e~ —46,,0,e%):
0P
EA,z) = 30 —(A,7)= - E&'(A,2),
(2.32)
0P
AA7) = — A= —4A4.2),
and (by (2.30), (2.32) and B, b > 2):
MM W(p,e 3, &, —45,,0,e7 ) — W(p,e 22, &, —36,,0,e°")
(2.33)

EWE™M = G W™ = identity, on W(p,e 3", &, —49,,0,e%).

The condition (2.30) can be implied, using (2.28), some dimensional estimates
and (2.29), by
B,Ce, 6,2 <1, E, <3, (2.34)
with B,,b, > 2 and suitably chosen (depending only on (/,)), b, >b; +¢ + 1.
Then (2.32) and (2.30) imply on W(p,e” 3% &, — 45,0, ).

|E|’ Is/l < B3C8n5;b3pn < %5npn5
(2.35)
|4],14’| < B;C¢,é, > <36,,
with Bj,b; > 1 depending only on («, /).
There is an important relation which is verified by 4, A’ because @ verifies (2.16):

fA 2 e)— f(A%e) =277 0
K o,Ae) '

K (0 A’ e)wg A(A',2',¢) + K;(wo'A’,8)|:
(2.36)
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Next we define on W(p,e >, ¢, —46,,0,e%):

Jur1(A 2 8) = fi(A,2,8) + K (00" A,¢) — K, (04 A',6) — F (0o A'se), (2.37)
and on &(p,e” 3% x D(0,e”3%):
K,. (E,&)= K(E,¢) + F,(E,¢). (2.38)

In order to be able to set up the last two definitions we must check that as (A’, z')
varies in W(p,e 3%, &, —49,,0,e~ ") the (A, z) varies in W(p,, £,): this is insured by
the right hand side of (2.35).

Finally we must estimate the sizes of K"*!, f, ., Such estimates have a purely
dimensional nature and are straightforward: we describe them in detail in Appendix
B. There we prove the existence of constants B,, B, b,, bs depending only on «, C,
¢ and Q =|w,| such that:

En+ 1 é En + B48n5;b4 )
b1 S Bo(Cel + 6,65, ", (2.39)
||fn+1“p,,ﬂ,¢,.ﬂ,9n+, = 35(83Cpn + fn”p,,,g,,,e,,e_é"z )5,,—')5,

where E,, ,,¢,,, are defined by the (2.26) with n+ 1 replacing n, if p,,,&,4 4,
0,. are given by (2.27).

It is easy to show (from the first two equations of (2.39)) that if ¢, is small enough,
ie. if for a suitable g:

eo<gll,0,C, Q2 L), (2.40)

then ¢, tends to zero faster than exp — (3)" asn— o, i.e. very fast, and (2.34) hold Vn.
It is then clear that the limits

€, = lim ¢ ..,

n—r oo

K, ,=1lmK,,

n-—r oo

exist on W(p,&,,0,) or on &(p,) x D(0,) respectively, and
K (o A',e)=H(€ (A", 2),¢) (242)

for all (A", z",e)eW(p,,,Eo,0,)-
The analyticity of ¥, and K, comes from Vitali’s theorem.

(2.41)

3. Proposition 3 and a Sketch of the Proof for Proposition 4
For simplicity we only consider the case
ho(4) = wy- A, (3.1)

with @, verifying (1.21).

If N, (A, &) does exist, then there is a %, transforming Hi*" = h,, + : f; :into h, via
(1.7), (1.8): this means that the Hamilton—Jacobi equation (1.11) for Hi" has a
solution like (1.10) with AV, A'®_  identically zero. Then a simple substitution of
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(1.10) into (1.11) and a generalized power series expansion aimed at identifying the
coefficients of &* in both sides yields:

@@('l) aaf(s) 02 N(S) 1
0y —(AL Q)+ 2 0 (A’ Lo
0 a‘P (P) s;a;r'h, . kE 8A”‘ (A ’(P) A(a (A )j
(sl+lrl<+1x“’1:n
(3.2
¢ a a(p(K“’)
. A (A" @) — ND(A) =
{n a,-!<,-Ul 5y ,(p))} FEAA )~ NA) =0,
which for n =1 has to be interpreted as
ey
09 (A 9) + FPA 9) = NUA) =0, (33)
Then (3.2) determines uniquely N‘V(A’) as
NGIA") = A (3.4

and also 09'V/0¢ is uniquely determined by (3.3).

Then we proceed inductively, remarking that the sum in (3.2) only involves
oD /0@, NY) with 1 <j <n—1: hence (3.2) uniquely determines NY) as well as
oD /o .

The above discussion is just a repetition of the proof of Birkhoff’s theorem, of
course, and it shows that the “counterterms” N ‘}‘g are uniquely determined (by the
above algorithm) provided N ;, exists. On the other hand the above algorithm (3.2),
(3.3) permits us to define a sequence N y‘g such that, if the series (1.32) converges for ¢
small enough, the hamiltonian (1.31) fulfills the criterion of convergence of
Proposition 1. This completes the proof of Proposition 3.

Also the proof of Proposition 5 relies on the ideas appearing in the proof of
Proposition 2.

Write the original hamiltonian in the form

Hy(A, ¢,8) =0y A+ fo(A, @,¢), (3.5)

considering, for simplicity, the case h(E) = E.

Fix N >0 and define for n< N the functions ®®,.., 0™, NV NM by
recursively solving (3.2).

Then we define

N
PA,9,8)= Y FIMAp), (3.6)
K=1

and consider the map

oo
A=A"+_—(A",9),
i
(3.7)

, od
Q= aA,( ,P).
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For ¢ small enough (3.7) can be used to define (by the analytic implicit function
theorems used in Sect. 2) two analytic canonical change of coordinates ¥ and %
defined on a domain containing V x T and inverse of each other on V x T?. We
shall write (A, @) =%(A’,¢’), and then we note that the hamiltonian

N
Hy(A, ) =Hy(A, )~ ) ¢NFIA) (3.8)

k=1

will appear, in the variables (A’, ¢'), as
Hi(A¢)=wg A"+ f1(A', ¢,¢), (3.9)

with f, analyticin (A’,@")eV x T, and in ¢ if ¢ is small enough (so that %, € can be
defined), say if

le| < ay. (3.10)

Furthermore f, is divisible by ¢¥* !, We may and shall suppose N = 2™ — 1 for some
m > 0.

So the proof of Proposition 5is reduced to show thatin (3.9) we can alter f; by a
function § f; of order ¢" * ! in ¢, making H, — d f, integrable and conjugate to ,, * A.

The function J f is constructed through a recursive algorithm very similar to the
one used in Sect. 2.

We shall define p,, &,,60,€(0,1) so that H, can be regarded as holomorphic in
Wip,,&,,0,). Then we modify (3.9) on W(p,, ¢,,6,) into:

Hi=ogA'+ [(A,¢,0) - [[,(A,e=>""" "1 (.11)

using the notations of Sect. 2.

Then we define a canonical map ‘! by the m™ step of the algorithm of Sect. 2:
this allows us to change variables from (A’,¢’) to (A”,¢") and to define on
W(p,,¢,,0,) a hamiltonian:

H, (A", ¢",¢)=H (€ (A", 9", ¢).e) =0y A"+ [,(A',@',¢), (3.12)

with f, divisible by &2”"".

Then we make a new subtraction and change H, into H, defined on
W(ps, &5, 65), etc.

We claim that the relations between (p,, ;,¢,+,0,+ 1) and (p,,¢,,0,) can be
taken to be exactly the same as those in Sect. 2 and that the measure of f,, which we
call ¢,, and that of £, , will be related by the second equation of (2.39), possibly with
new constants B, b . The proof of this statement is essentially identical to the one in
Sect. 2.

Therefore if |¢| is small enough we can iterate the above algorithm indefinitely
and the composition

%, = lim €6 .. ¢" (3.13)

will exist and define a canonical holomorphic map on W(p ¢ ,0,), close to the
identity within ¢*”.
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Also
lim H (A, @,e)=H (A, ¢,e) =0y A (3.14)

n— oo

will exist and, if (A, ), = A:
HA ¢.0)=H_ (€A 9).0) =0 (€ (A 9); =05 A +0E"),  (3.19)

because %, is close to the identity within &2
This completes the discussion.

Appendix A. Implicit Function Theorems

Let p,&,0 <1,0 <¢. Use the notations of Sect. 2.

Lemma 1. Let F be holomorphic in W(p, £,0), and consider the map

A=A"+F(A' z¢). (A.1)
There are constants B,b > 2 depending only on ¢ such that if
B F, 40 <00, (A.2)
then there is a holomorphic function ' on W(pe™°,¢,0) such that if A’ is defined by:
A'=A+E5'(Az5¢) on W(pe™°,¢,0), (A.3)
then
E'(A,z,6)= — F(A',z,¢). A4

Furthermore, if F is real on V x T? x [ — 0,0], then E' is also real there.
In other words (A.1) can be inverted with respect to A’ if (A.2) holds: the inverse

form (A.3) as expressed by (A.4). Inequality (A.2) also provides a bound for £ on
W(pe™?,¢&,0).

Lemma 2. Let G be holomorphic in W(p, &,0), and consider the map

7' =zexpiG(A,z¢). (A.5)
There are constants B,b > 2 such that B, b depend only on ¢ and if:
Bl Gll,eq <9, (A.6)
there exists a function A holomorphic in W(p, & — 6,0) such that if we define z as
z=1'expid(A’,z,¢) on W(p,&— d,¢), (A7)
then A(A',z',e) = — G(A',z,¢). (A.8)

Furthermore if G is real on V x T/ x [ —0,0], then such is A.

In other words (A.5) is inverted in the form (A.7), as expressed by (A.8), provided
(A.6) holds. The constants B, b in 1) or 2) can be taken equal.
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The above two theorems are very easy (because of the strength of the hypotheses)
and are left to the reader; alternatively see, for instance, appendices to [8].

Appendix B. Estimates of E,, ¢,
Clearly, by dimensional estimates, if Q = |w,|:

JF
En+1§En+ .
0E Prn+1s8n+1,0n+1
SE"+ [f (A,e)]=2" 0 SE, +B,Q "e,0, !
HI OIZ 0A Prn+1,En+1,0n+1

(B.1)

The estimate for ¢ is more delicate. In fact:

n+1
frer(A2.8) = K (00 (A’ + 4),6) — K (0 A',2)
+f(A+ B,z 0) — [, (A, g) ] =2 1
= {K,(@y (A" + 4)) — K (@5 A", 8) — K (g A’ &) 0 4]}
+ (K0 A oo 4 + [ [, 2'¢,6) - (A5 -1
+{[fA + 5,2, 6) - [,(A 2 9] =2 1)
+{[fA +E 26,22 1)
= fl + fll + flll fIV’ (Bz)
where the * means that in the truncation operation one disregards the e-dependence of
the arguments other than the last (i.e. one considers 4 and =’ as ¢-independent). The
f1,..., f'V are respectively defined by the last identity. We notice that the functions in

(B.2) are well defined on W(p,e™ 3%, ¢, — 46,,0,e %), see (2.37).
The basic relation (2.36) says that

WA 7 = 4 LAY f”(A’,Z’ei ,8) f(Al 8) 2" -1zttt -y
! (A’Z’g)_[K”(w‘) A’S)[ K (0, A'2) ] (B.3)

with the same meaning for [ ]* as above.
By dimensional estimates and using E, <3:

affl

|/ <BPS, e 5 <BYS, 2,06 (B.4)
ag
Pnsén.On
on W(p,e % &, —46,,0,e” "), so that
a i 1 w1
” L UL <p@oy,e . ®.5)
A" ||, 41 pn+1 0P |+ 1

Similarly on W(p,e 3, ¢, —46,,0,e %), using (2.35):
I/M < B, Psup|f (A + B, z'e ) — f(A,2'¢", ¢)]
< BWS e, sup |E| < BECe25, % P (B.6)
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where the sup is considered in W(p,e™ 3, &, — 46,,0,¢°"); so that

(%H,l N p:ﬂ %’: fl < BOCe25,% (B.7)
Similarly on W(p,e 3", ¢, — 45,,0,e°"), using En <%
1S BY o @ supldP SBYQCip, . (B.5)
so that
o LoS) < poacezs . (BY)
Ay Purt| 00|01y

It remains to estimate f'V: since its ¢p-average is nonzero, we estimate directly its
derivatives.

[>2"*1-1) 1 p ntt 0 d),
AE = 4% 'L E el
[aA,f,.( e a)] = <A) S A 52 ))

i —¢
(B.10)

the integral being on the contour |A| =0,e % and |¢| < 0,¢~ ?*": the E and A are left
depending on ¢ and not on A to enforce the truncation that we consider.
It follows from (B.10): on W(p,e 3", &, — 46,,0,e 2°):
o4
0o’

) 0
— i< aA,>+pn

oA’
< B{Vemon2ttig 570 (B.11)

S BUOe o2t ti5 1 n[sup(l +

having used (2.35), (2.34) and dimensional bounds.

Analogously one bounds 0f"/d¢’. Collecting all the above estimates, (2.39)
follows.

The above inequalities also show that

s tllars S BSP(Ceupy + 1 full e~

where the second term arises because (B.11) was not obtained by first estimating
| V| and then its derivative, but by directly estimating the derivative. A dimensional
bound for f' is clearly, see (B.2):

YIS B S0, e 0. (B.13)
All the BY, b above depend on / only.

J 7

ot b(é)

Vo (B.12)

Acknowledgements. 1 am greatly indebted to P. Collet and H. Epstein who stimulated and encouraged
my interest in the renormalization theory in classical mechanics. I also wish to thank J. Lebowitz for
giving me the opportunity to develop the above ideas through his invitation to the Rutgers’ meeting of
May 13-14, 1982 and R. de la Llave for comments and for the suggestion [11].



Renormalization Theory in Classical Mechanics 383

References

1.

10.

11

Poincaré, H.: Methodes nouvelles de la mecanique celeste, Vol. 1. Paris: Gauthier-Villars 1897,
Chap. V

. See for instance, Gallavotti, G.: “Meccanica elementare,” Torino, Boringhieri, 1980, Chap. V, Sect.

5.10

. Moser, J.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc. 81, (1973)
. Shenker, S., Kadanoff, L.: Critical behaviour of a KAM surface: I. Empirical Results. J. Stat. Phys.

27, 631 (1982); Shenker, S.: Scaling behaviour in a map of a circle onto itself. Empirical results.
Physica D (to appear); Feigenbaum, M., Kadanoff, L., Shenker, S.: Quasi periodicity in dissipative
systems. A renormalization group analysis. Preprint, Los Alamos, 1982, Physica D (to appear);
Rand, D., Ostlund, S., Sethna, E, Siggia, E. D.: Universal transition from quasiperiodicity to
chaos in dissipative systems. Phys. Rev. Lett. 49, 132 (1982)

. Kolmogorov, N.: On conservation of conditionally periodic motions for a small change in

Hamilton’s Function. Dokl. Akad. Nauk. 98, 27 (1954); Arnold, V.I.: Proof of a theorem of A. N.
Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the
Hamiltonian. Russ. Math. Surv. 18, No. 5, 9 (1963); Moser, J.: On invariant curves of area
preserving mappings of an annulus. Nach. Akad. Wiss. Gottingen Ila, 1 (1962)

. Poschel, J.: Uber differenzierbare Faserung invarianter Tori. ETH, Ziirich, Preprint (1981); and

“Integrability of Hamiltonian systems on Cantor Sets”’, Comm. Pure Appl. Math, 35, 653-696, 1982

. Chierchia, L., Gallavotti, G.: Smooth prime integrals for quasi-integrable Hamiltonian systems.

Nuovo Cimento 67B, 277 (1982)

. Gallavotti, G.: Perturbation theory of classical Hamiltonian systems, to appear In: Progress in

Physics, Frohlich, J. (ed.) Birkhauser, Boston, (to appear)

. Collet, P., Epstein, H., Gallavotti, G.: Perturbations of geodesic flows on surfaces of constant

negative curvature and their mixing properties. Preprint, Princeton, 1982

McKean, H., Trubowitz, E.: The spectral class of the quantum-mechanical harmonic oscillator.
Commun. Math. Phys. 82, 471 (1982)

De la Llave, R.: private communication

Communicated by A. Jaffe

Received July 2, 1982








