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Abstract. We discuss doubly infinite matrices of the form M;;=0; ;,,+6, ;_,
+V;9;; as operators on /2. We present for each ¢>0, examples of potentials V,
with [V |=0(n"*2*¢) and where M has only point spectrum. Our discussion
should be viewed as a remark on the recent work of Delyon, Kunz, and

Souillard.

1. Introduction

During the past few years, numerous results have appeared showing that most of
the spectrum of Schrodinger operators — A4+ V is purely absolutely continuous
(a.c.). This includes not only the “short range case”, V(x)=0(x"'"°) at infinity (see
e.g. [1]), but also the long range case where V(x)=0(x"°) so long as derivatives
decay (see e.g. [5]) and the highly oscillatory case where V(x)=0(x~*sinx*) for
suitable o, f (see e.g. [8]). While there are examples of Pearson [ 7] with decaying V
where the spectrum is not a.c., the rate is so slow that one might be led to suspect
that reasonable (say power) decay always leads to a.c. spectrum. (The other
recently constructed examples with non-a.c. behavior, namely random [4] and
special almost periodic potentials [2], of course, have no decay at infinity.) Our
goal here is to indicate that there are power decaying potentials which lead to non-
a.c. spectrum.

In the end our examples will be for — 4 replaced by a finite difference operator;
explicitly, on £2%(Z) let

(Mou)(@)=u(i+ 1)+ u(i—1),

and

(Vu) () = V(i)u().

We will consider M, + V on £*(Z). The potential V will obey V(n)~O(n~/>"%), but
differences V(n+ 1)— V(n) will also be O(n~*/**¢). The non-random analog will be
potentials of the form x ~*sinx with a<3. It is an interesting fact that the known
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spectral properties of such Schrddinger operators is not pure point; rather it is
mainly a.c. with some isolated eigenvalues [8].

Our main theorem is stated for almost all potentials in a random class of
potentials. Our proofs will use the recent formalism of Delyon et al. [3], and this
paper is essentially a remark on theirs.

Theorem 1.1. Let {W,},°. __ be identically distributed independent random variables
whose distribution is r(x)dx with re L' nL* with bounded support. Let a, be a fixed
sequence with0=<a,<1 and a,=Cln|™* for some a<%. Let V(n)= a,w,. Then for a.c.

w, Mo+ V has only point spectrum.

Remark. 1. 0, (M,+V)=[—2,2], so the point spectrum is dense in that interval.
The eigenfunctions there will be shown to decay at least as fast as O(exp(— c|n|?)),
where ff=1—2u, and this is probably the exact behavior if a,n*—const.

2. The identity of the distribution of w, is not really important, but for the
proof, independence is used heavily. In the end, the proof will go through as long
as the distribution of V(n) [note V(n) not w,; in our case, V(n) has distr,(x)dx,
where r(x)=a, 'r(a; 'x)] is of the form r(x)dx, where (i) j; x)dx—l

(i) |7, o =O(@™) for some m, (iii) sup 7 (k)| <1—n"2* for some D>0, o <3. Here
k=

K, is the constant of Theorem A. 3 (say K,=0.3) and 7(k)= fe"‘"r(x)dx In
particular, one can add a fixed potential to the above 7, and stlll have only point
spectrum.

3. If Y la,| <1, then the trace class theory assures us that M, + V has lots of a.c.
spectrum, so if a,~n~* with «>1, then our result definitely does not hold. The
behavior in the region 3<o<1 is open. Pearson’s intuition [7] suggests that
perhaps the key is Y (a,)* = oo which suggests our o <73 is the right condition.

Theorem 1.1 is proven in Sect. 2 by following the approach of [3] with minor
changes. The necessary estimates are in [ 3], but we repeat them in an appendix, in
part for the reader’s convenience, and in part because the dependence of the
estimates on r, is in one place only implicit in [3] and we need the explicit
behavior.

2. Proof of the Main Theorem

In [6], Kunz and Souillard prove a criterion for a class of random operators on £*
to have only point spectrum. The following is proven by their methods:

Theorem 2.1. Let V,(n) be a family of random potentials and let M ,=M,+V,,.
Define
a(i,j)=E (Sup [ ,)l) ,
t

where 8, is the vector in I* which is 1 at i and O elsewhere. If Zla (i,j)I*< oo for
i=0,1, then for a.e. w, M, only has point spectrum.

Proof. As explained in [6], the RAGE theorem implies that E(||P_, d j{|2)=0 if
Zla(i, jI? < oo0. Since polynomials in M, on §,, d, are dense in /2, we know that

=0if | P 0 for j=0,1. O

cont cont™ j H
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For national convenience, we study a(i, 0) with i >0. The discussion of i<0 and
a(i, 1) is essentially identical. In [3], Delyon et al. introduce the integral operators
for o=0,1:

[Tp) f](x)—jp(x+ ), = f0)dy.

For the case at hand, we will take p(x) =r,(e + x)=r, [(x), where r (x)=a, Y¥(a, *x).
We call these operators T, In [3,6], the following result is proven using the

ash,e”

. 1 /1
operator (Uf)(y)= mf(—);)
Theorem 2.2. Define for N=2j:
AGyes NY=(UTy0. . To. -y oo Too w17 mies TiitieThsjot.eTosjier o Tosn—1,n)
where (...,...) is the L*(dx) inner product. Then
a(j,0) = Z&im [ A(n,e; N)de,
where the integral is over any set big enough to include the spectrum of all M,,.

In particular, if supprC[ — B, B], we have
a(j,0)=C sup A(; e; N)= CA()),

e, Nzj+

with C=44-2B [since spec(M,) C[—B—2,B+2]]. If |||, , is the norm of - as a
map from L* to L, then since r; has L} norm 1, since U is an isometry on I* and
since T, is a contraction on [? [Theorem A. l(a)]

A < supl]| To;o,e” 1,2” T1;1,e~~~T1;j— 1,e”2,2” To;j,e” 1,2] .

Define bk 15 1 2 12
( ): 1—6 1_6|k|>mm(§ip1 a2)Ko lr( )‘

Using Theorems A.1(b) and A.3(a) and (c), we see that
A() = Ca; V2b(1)...b(0),

if j=241 or 24 2. Since |F(k)| <1 if |k|=0, and [F(0){=1 w1th lr(k)l <0 [since

it is essentially — | x*r(x)dx + ([ xr(x))*], we have for A small sup |r(k)]2 <e " for
some y>0, and thus Ikl 2 2

IbOI= exp(— 5™,
and

Ib(1)...b(A)| < exp(—y'£1 ™ 2%).

This decay always wins out over the growth of a; '/? and yields enough decay to
have ) A(j)* < oo. Thus Theorems 2.1 and 2.2 yleld Theoreml L. O
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Appendix: The Basic Estimates

We define operator T(r) on nice functions by:

[T (H1 = (x+ )f(y)dy,
and

[T (160 = fr (x+1)|1|f( )y,

In this appendix we want to prove certain estimates which we emphasize are
mainly in the paper of Delyon et al. [3]. We put them here in part for the reader’s
convenience, and in part because our proof of Theorem A.2 is an alternate to theirs
which we prefer. Our main reason is to make the » dependence of certain estimates
explicit (since we need that) and to emphasize that the symmetry of KUK which
they use is not needed (and is not present in our case). We owe the argument in
Theorem A.1(b) to A.Klein and C.Prakash.

Theorem A.1 [3].

(@) If rel’, then | To()f [, = Irl 11l (A1)
(b) if re L' L®, then | Ty f I, = Il 21711211 (A2)
Proof. (a) is trivial if we first integrate dx and then dy; indeed for r, =0, we have
equality. 4 1
o) 10135 v+ 5 (x| o @dydzas
<irtof (vt 1) L0 Ny dza
=l el 13 O
To analyze T;, we follow Delyon et al. [3] (modulo a sign) and write
T,(r)=K()U, (A.3)
h 1
e U= f=1/%).
and
(KM ) (x)= [rix—y)f(y)dy
Let

F(k)= [r(x)e”*dx,

and let # be the conventional Fourier transform. Define K()=ZFKr)F
U=FUZ "' Since  is unitary on 2, to study I? properties of T,, we need only
study KU. Obviously

(K(r)g) (k) =7(k)g(k). (A4)

To study U we note

Lemma A.2. U has an integral kernel (say in distributional sense) a(k, p), where
(@) a=ay +a, with sup [|a,(k,p)?dp<oo and sup [|a,(k, p)*dk < oo.
k P

(b) For any R, | la(k, p)|*dpdk < co.

[kl <R,|p| =R
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Proof. (b) follows from (a). For proving (a), we note that

. nd
all p)=(2m) " et

(in distributional sense). Let g, be in Cy with g, =1 near 0, and let g,=1—g,.
Define

afk, p)=(2m) "1 [ * TP g (x) x| dx .

For fixed p, a,(k, p) is the Fourier transform of (2r) ™ */2¢™*"'g,(x)|x| !, which is in
12, s0

flas(k, p)l2dp=(2m)~* {g,(x)|*x " 'dx < 0

independently of p. By changing variables from x to x~ !, we see that

a(k,p)=(2m)~* [ ®7 g, (y= )y~ dy,

SO
[lay(k, p)2dk=(2m) 1 [lg,(y~ )y~ 2dy< o

independently of p. [J

Theorem A.3 [3].
@ ISl if =1
(b) If r,qe L' nI?, then T,(r)T,(q) is compact.
(¢) For some fixed K, and r,q with |||, =llqll; =1, |Ir]|,<co, |p], <o

IT(NT(Df [, = Al f 2, (A.5)
where
A= ax[[H 5 sup [FRP)™ (1-+45 sup 4(9) (A6)
|k] Z2Ko |k| 2Ko

Proof. (a) is trivial since U is unitary and K is a contraction if ||r|, =1.

(b) Since U is unitary, we need only show that K(r)UK(q) is compact. Since
Fel? and geL”, Fk)a,(k,p)g(p)e [X(R*) and similarly, since FeL*®, GeL?,
#(k)a,(k, p)i(p)e L2(R2) so K(r)UK(q) is Hilbert-Schmidt.

(c) Since U is unitary, we need only show that if |||, =|w|,=1, then

@, KMUK(QW) < A. (A7)
Pick K, so that
[ latk, g)2dkdg)"* <%, (A.8)
|k| =Ko
lal £Ko

which is possible since the left side goes to zero as K, |0 (indeed, if one takes g, to
be the characteristic function of [—1,1], one sees that one can choose

Ko=497/512~0.3). If | |y(k)|*dk =%, then

|kl =Ko

IIK(g)wllzé(—é ﬁ‘ sup |q(k)|2> <42,
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so (A.7) certainly holds since U and K(r) have norm 1. Similarly, (A.7) holds if
[ lotoPdk=1s.

|kl zKo

Thus, we only need to check (A.7)if [|@ . [| =%, [y, | =3, where @, = @ > koy
Let ¢ _ =@ — ¢, and note that by (A.8) and the fact that K(-) preserves supports
and pointwise decreases values (if |- ||, =1),

(¢_, K(\UKy_)<7/16,

where we have used the fact that the norm of an operator is dominated by its
Hilbert-Schmidt norm. Thus

(@, KUK < ¢, [l +l(@_, KUKy)|
Slol+llw, | +(o_, KUKy _)|

141, .7 _15 2
Sitrtie=12<4<A,
as required. [

Remarks. 1. (b) is not used to estimate (c). We include it since it can be used to
provide a computationless proof that | T,(r)T,(q)) <1 (see [3]).

2. If r, q are fixed positive with L' norm 1, and r,(x)=r(27'x)A7"! so 7,(k)
=7(1k), then (A.5) says that || T,(r,)T,(¢,)|| £ 1—0(4?) as 1|0. We claim that also
[ T,(r)Ty(g )l =1—0(4%) so that O(A%) is precisely the correct behavior. For
translating, we can suppose without loss that {xr(x)dx= [xg(x)dx=0. Then

K(r)g=g+0(2?),

if ge C3. Choosing g in CJ with | Jg=g, we find that T,(r,)T}(q,)9 =g+ O(1>), so
IT,(r)Ty(q,) ] Z1—0(A%).
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