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Abstract. We consider one-dimensional spin systems with Hamiltonian:

H{σA)=- Σ J Γ ^ Σ
t,t'eΛ \l~ l \ teΛ

where εtt, are independent random variables and, using decimation and the
cluster expansion, we show that, when a > 3/2 and E(είt,) = 0, for any magnetic
field h and inverse temperature β, the correlation functions and the free energy
are C00 both in h and β.

Moreover we discuss an example, obtained by a particular choice of the
probability distribution of the ε^'s, where the quenched magnetization is C00

but fails to be analytic in h for suitable h and β.

1. Introduction and Results

We consider a one-dimensional system with random interaction enclosed in a box
A whose energy, for a given spin configuration σΛ in A, is:

H{σΛ)=- Σ TrzT^^^-ΛΣ^. d l)
tι,t2eΛ \L1 L2\ teΛ

ί l Φ ? 2

where σte{l, — 1}, 3/2<α<2 xand ε ί l ί 2 are independent random variables defined
in the probability space (Ω, Σ, IP).

In the sequel we will consider the following conditions on the εt t :
Cl) E(eflf2) = 0,

C2) 3ε : | ε ί i ί 2 |<ε \ftvt2eΈ9

C3) E(ε 2

i ί 2)^β for some a>0,
C4) the probability distribution of ε ί i ί 2 depends only on \t1 — t2\ (translation

invariance).

1 For α > 2 the stochastic character of the interaction is irrelevant (see [1] and Remark 3 of Sect. 4)
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Calling ωeΩa realization of a random field {εti ί2, (tv t2)eΈ} we shall study the
properties, as A goes to infinity, of sequences of random variables as:

where / is a cylindrical function or

FΛ(ω, β,h) = ~ log Σ exp [ - jSHίσJ] . (1.2')
\Λ\ σΛ

We shall also consider the properties of their expectations:

To state our results let us recall the definition of the space (ί(IR2): the space of C00-
functions on 1R2 with the topology given by the convergence of all derivatives
uniformly on compact sets.

Theorem 1. Suppose conditions Cl, C2, C3 are satisfied and consider an inclusive
sequence of intervals invading TL, then for any cylindrical function f the quantity
(f}t,β,h converges Ψ almost everywhere in <ί(IR2).

Under the same hypotheses the quantity Έ((fyΛ

β h) also converges in <f (IR2).

Theorem 2. Suppose conditions Cl), C2), C3), C4) are satisfied and consider an
inclusive sequence of intervals A invading Έ, then:

i) The quantity Έ{FΛ(co, /?, h)) converges in ^(IR2) to a function F(β, h).
ii) The quantity FΛ(ω, β, h) converges Ψ-almost everywhere to F(β, h) in (f(IR2).

Part of the results listed above was already known (cf. [2, 3]), but the C00

properties are new.
In [2] Khanin and Sinai prove that for a v-dimensional lattice system

described by a Hamiltonian of the form (1.1), the thermodynamic limit for the free
energy exists with probability one and it is equal to its average value, provided
α > v/2.

In [3] Khanin considers the very same model we discuss in this paper and
shows that, under the same conditions we assume for Theorem 1, the Gibbs states
are unique at any temperature with probability one.

The new results on the C00 properties are obtained by using the techniques
introduced in [1] for interaction with finite first moment (α>2). This approach
relies on the fact that when the interaction among two half lines at a distance / is
infinitesimal with I, then, for arbitrary β and h, by grouping the spins in suitable
blocks, it is possible to average over alternating blocks (decimation procedure) and
obtain a weak effective interaction; then any quantity of relevance can be
expressed in terms of a convergent series (cluster expansion). Our method consists
in showing that with high probability a random system with 3/2 < α < 2 behaves
very similarly to a regular system with α > 2. In fact by grouping the sites of Έ in
blocks whose size is increasing with the distance, say, from the origin, we are able
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to show that the typical interaction among noncontiguous blocks can be made
sufficiently small to satisfy the requirements of [1]. We introduce for any given ω
the set C(ω), which is the minimal interval, centered at the origin, containing all the
"bad blocks" (i.e. all the blocks whose interaction with some nonadjacent block is
not sufficiently small), and we show that C(ω) is finite with probability one.

If we consider now, say, Dp(σ0}^ β h standard manipulations of the cluster
expansion allow us to prove a bound, uniform in Λ, which behaves like |diamC|p.
To extend these results to extensive quantities, some extra work is needed, because
our partition of TL into blocks is not translationally invariant.

To study the free energy, for instance, we express its first derivatives as a sum of

local quantities — p = — Σ (σt}
Λ , and then we control this sum and its

\ ah \Λ\ teΛ ]

derivatives with the law of large numbers.
To conclude this section, we want to briefly discuss the analyticity properties of

random systems. The structure of the series expansion we consider is such that
each term is an analytic function both in β and h in^a suitable neighborhood of the
real axis, the position of the nearest singularity being related to the maximal size of
the blocks involved. For the class of potentials studied in [1], due to the
boundedness of the blocks, it was possible to prove, via Vitali's theorem, the
analyticity in β and h of the limiting free energy in a finite neighborhood of the real
axis.

For the class of potentials considered in this paper, infinite differentiability
comes out to be a general property, but the increasing size of the blocks does not
allow us to make any statement about analyticity.

The presence and the nature of the singularities in β and h have already been
discussed for a class of random models by Griffiths and Lebowitz [4] and Griffiths
[5]. They consider a dilute Ising model with nearest neighbour interaction, where
p is the probability for a site to be occupied. In [4] it is shown that, when p and β
are sufficiently high, spontaneous magnetization is present. In [5] it is shown that
the average magnetization is nonanalytic for T<TC, where Tc is the critical
temperature of the corresponding ferromagnetic system. Furthermore, since for
p<p0 (where p0 is the percolation threshold for the independent system of sites)
the spontaneous magnetization is zero and the Gibbs state is unique (see Georgii
[6]), it is natural to inquire to what extent nonanalyticity affects the differentia-
bility properties of random systems.

In the last section of this paper we will exhibit a model described by a
Hamiltonian of the form (1.1), where, by suitably choosing the probability
distribution of the ε's, the limiting free energy is C00 both in β and h, but it fails to
be analytic in /ι at ft = 0, when 3/2<α<2 for any T<Tc{a).

2. The Blocks and the Polymer Expansion

Let us define a partition of TL into blocks whose size is logarithmically increasing
with the distance from the origin. In the sequel we shall label the sites of the lattice
with t and the blocks with the index n. The positive values of n correspond to the
blocks on the right of the origin, the negative ones to the blocks on the left.
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Given an odd integer q0 we call Q(0) the interval centered at the origin with size
q0. β(l) is defined as

and for n ̂  2

L^zλ n ^zλ £ \ (2.1)

For n<0, n = — |n|, we define Q(— |n|)= — β(M)» i.e. the symmetric set with respect
to the origin. For n>0, q(n) = q0[(\og+n)Q^\; [•] means integer part and log+x
= max(l?logx). The increasing size of the blocks is necessary to control the
fluctuations of the interaction energy all over TL but the actual form proportional
to (log+n)ρ is due to the following considerations:

2 . . .
i) ρ > 2 H —- is sufficient to get "good" probability estimates [cf. Eq.

(2.15)],
ii) a power law will give rise to problems in estimating derivatives of arbitrary

order. Now for any given ω we will define the "bad blocks" in such a way that,
once they are collected in a set C, it will be possible to perform the cluster
expansion outside C.

The probability estimate for having "strong" interactions among noncon-
secutive blocks is based on Bernstein's inequality [7] : let ηt, z=l,2, ...,π be
independent random variables satisfying the following conditions:

(2.2)

where b is a given positive number.
n

If £>„= X JEηf, O^tS ]/Wj2b, then
ί= 1

IP Σ (2.3)

Now if we denote by W(σVί, σV2) the interaction energy

W(σVl9σV2) =

t2eV2

following [2, 3] we have:

Lemma 2.1. Let conditions Cl, C2, C3 be satisfied, then for any δ:0<δ<\/2 and
q0 sufficiently large:

const

g const exp {- ^ + *(log + \Λ2\)β}, (2.5)

wliere ε = α—3/2, A = e — <
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Proof. It follows from Bernstein's inequality by setting:

1tj = *ij^lfcWni>n2)T (2-6)

[d(nvn2) is the distance between the blocks Q(n1\Q(n2)~], and choosing t = qy2 + δ

(log+ |n 2 |)β / 2. •
Following [1] we introduce a partition of the lattice TL into alternating A and B

blocks:

+ 00

Z= U (B
n = — oo

where 4̂(n) = g(2n), B(ή) — Q(2n — 1). We use the following notations for the spin
configurations in the blocks

yn = σQ{n)> an = σA(n)^ βn = σB(n)> ( 2 7 )

and ifX is a set of Q-blocks we write yx instead of (γπ)Q ( r i ) e X (analogously for β and
α variables). From now on we will consider random spin systems enclosed in a
box A, containing the origin, which is exactly partitioned into A and B blocks but
not necessarily symmetric with respect to the origin. The box A contains, say, the
Q-blocks with index between — 2m and 2m' so that A starts and end with ^-blocks.

Call

Γ(ω) = \ Q{n): 3 ri φ n ± 1: for some σQ(π), σQ(nΊ \ W(σQ(n), σQ{nΊ\

const
(2.8)

Consider now a block B(n) and the spin configurations ocn_van in the adjacent
blocks A(n), A(n— 1), and let ZB

n

(^
1>α" be the following partition function:

> εf t -—Λ—^—\-h ) σf>.
teB(n)

LJ ί l ί 2 If _ f

t t2eA(n- ί)uA(n) )

Set 0 = (— 1, — 1,..., — 1) a reference spin configuration, and let xp(an_ van) be

(2.10)

Call Γ{ω) the set of all triples A(n- 1), B{n), A{ή) such that

1
ηj for some oίn_van. (2.11)

Meanwhile the "bad" nature of the Q-blocks belonging to Γ(ω) is obvious, the
introduction of the set Γ(ω) is to control the effective interaction among the
^-blocks after the decimation of the β-blocks (cf. [1]).
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In Appendix A we shall prove the following:

Lemma 2.2. Let conditions Cl, C2, C3 be satisfied and ε = α — 3/2>0, then for all
sufficiently large q0 we have:

ίq0(log+n){

1

^ 0(logn) 1 + ε

Now for any given ω we are able to characterize the full set of the "bad" blocks:

f(ω) = Γ(ω)uf(ω), (2.13)

and for q0 sufficiently large, the following probability estimate holds (cf. Lemmas
2.1 and 2.2)

W{Q(n)eΓ{ω)} ^expj -(logn) ι + ε j . (2.14)

ε/2
Therefore if we take ρ > 1 , then from Borel-Cantelli's lemma we conclude

1+ε
that f(ω) is bounded with probability one and we can define the set C(ω) as the
minimal interval centered at the origin ending and starting with 5-blocks
containing f(ώ).

It follows from the previous probability estimates that:

(2.15)

so that calling Ωo the set of all realizations ω that give rise to finite C's, we have
also

P(Ω O )=1. (2.16)

In order to give the proof of Theorem 1 we will suppose for the sake of simplicity
that the support of the cylindrical function is contained in ,4(0), and we will start
by considering the following expression:

where σc

βHΛ(JtσAv)+W(σC9σAv)}9 (2.18)

and

if C(ω) =

if C(ω) = 0,

so that

n* = n*(ω)= sup |n| if C φ 0 , n* = l if C = 0. (2.19')
B(n)CC
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Then we express Z%\C using the notations introduced in Eq. (2.7)

= Σ eχp{ Σ ΦJ+ Σ
<XΛ\C [A(n)eΛ\C A(n),A(m)eΛ\C

•expί Σ w{**yJ\Σ\ Π ™p{J(βn,«n-v«M Π ™P{wL}},
}A(n)eΛ\C { βΛ\c[B{n)eA\c \[Le^Λίc
I Q(m)eC J

(2.20)

where α(αM) is the self-interaction of the block A{n\ J(βn,θίn_van) is defined as

J(βn, «„-1, «J = «(/?„) + W(βn, αn_ J + W(A,, «„), (2.21)

and we have introduced the inverse temperature in all the interactions.
For every set U : U C TL, UD C, # ^ c is the set of all pairs L of blocks such that

one of the elements of the pair is a jB-block contained in U and the other can be
either a B-block in U\C or a nonadjacent ^4-block contained in U\C or, finally, a
g-block belonging to C. W^ is the interaction energy among the two elements of L
(for the sake of simplicity we drop the explicit dependence of W on the spin
configurations).

Now we shall perform the sum over the β variables in the right hand side of Eq.
(2.20) (decimation procedure), and in complete analogy with [1], we shall obtain
by means of a cluster expansion an explicit expression for the effective interaction
among the α's.

In this way we transform the original system into a physically equivalent
system that, as we will see later, can be considered as in the small coupling (high
temperature) region.

We define a polymer to be a collection R = L1...Ln of bonds LegFΈ c: for any
pair Lί? L jei^3L I i...L ίkEJR with Lh=L{ and Lik = Lj and such that Lh and Lin+ι

have a jB-block in common.
Given R, we call R the set of all 5-blocks contained in .R and we call 01 v c the

set of all polymers made only of bonds e SFυ c. We define the activity of the
polymer as a function Jf \MΈjC->lR given by:

=ΣΠ ^ P W ^ - I ^ ) } π ( { }

By standard manipulations we get

Z%c= Σ expj Σ Φ J + Σ m«»,«J+ Σ W(an,ym)
*Λ\C }A(n)eA\C A(n),A(m)cA\C A(n)cA

{ Q(m)c C

Π Z^^ΞAJ^oγc)9 (2.23)
B(ή)CA\C

where

ΞΛ,c(^o Ic) = 1 + Σ Σ Π - * W (2-24)
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The following lemma holds for Ξ:

Lemma 2.3. If q0 is large enough,

n

Σ V m(Ώ Ώ \ ΓT Ί/P( Ώ \ ίΊ Ί^λ

7 yjyj\-ι . . . j\.n) I I &t \Λ^{) , yA.ΔJ)

n ^ l Rι...Rn i=l

with

ψ{R1...Rn)=)- X (_ 1)# (edges in ff)j
n- ge<Sn(Rι...Rn)

where <£jn(R1...Rn) is the set of connected graphs with n vertices and edges ij
corresponding to pairs RtRj such that RinRj = θ. We set the sum equal to zero if <Gn

is empty and to 1 if n = l.
Proof If q0 is large enough, for any r : 0 < r < 1 we have

(2.26)
LCR

where we denote by | |/ | | the sup norm of the function /
Using Lemma 2.1, we have

P Σ in^2£?*4 (2.27)
B(n)el\C LsB(n) r r % r

If

r2 ί 1 \

(2.28)

Eq. (2.25) is obtained as a consequence of Lemma 2.1 of [1].
The result of the summation over the variables can then be written in the

following way:

<f>iβ,h=

where

-H(aΛχc,γc)= Σ a(an)+ Σ W(an,aJ+ Σ % ? J
A(n)cΛ\C A(n),A(m)cΛ\C A(n)cΛ\C

Q(m)c C

(2.29)
+ Σ φ(Rf.Rn)Π^(Ri)-

Rl...Rn ί=l
RreMΛ^c

Now to evaluate the sum over the α variables and get the final expression we
shall perform a second polymer expansion. In order to define the polymers of the
second kind, we extract suitable potentials from the renormalized hamiltonian.
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This particular way to collect the effective interactions among α's will turn out to
be convenient for further developments, even though at the moment it does not
appear to be the most natural one.

For any given cluster of polymers R = Rί...Rn we define the set

ER= \ U ( U 41 u [ U U (An- l)υX(n))
1.1=1X1x2?! /J Lί = 1 B(n)cR

(2.30)

We call i v c the set of all possible ER with R1...RnC@tUtC.
For any given EeSΈ c we can decompose it as E = EAuEBuEc, where EA, EB,

Ec are respectively the set of v4-blocks in Z\C, jB-blocks in Z\C, g-blocks in C
contained in E. Notice that VEe<?ZfC, EA + ϋ, EB+0.

We use the notation otE = otEA, yE = yEc We define

Σ f\ (231)
Rί...Rn i = l

where ΣE is over all R:ER = E, and write

Σ φ(R1...Rn)f\^(Ri)= Σ U*E9yE). (2.32)
Rι.,,RnC0tΛ,c i = l EeSΛίC

Now we are able to express the renormalized Hamiltonian H appearing in the
expression (2.29) as

- B(*A\o yc) = Σ W+w{u n . ,τ 2 n ,_ o
A(n)cΛ\C

+ W(a_n,,γ_2llt+ι)+ Σ VD{aD,yD), (2.33)
DCΛ

where

a(an) = a(an) + l o g | | | + l o g f | ^ - , (2.34)

and for any given set D of Q-blocks the potentials VD are defined as follows:

for D = A(ή), Q(m): A(n)el\C, Q(m)eC,π,mΦ + n* ±(2n* -1)VD= W{ccn,yj,

for D - A(n), A(m)eΈ\C, n φ m + 1, VD = W(an, αm),
(2 .35)

f o r D = ^ ( ) A ( l ) Z \ C 7 ^ ( ) ( ) [ E ( 2 1 0 ) ]

f o r D = z χ 9 E E ( E , γ E )

Any other £ is said to be nonadmissible and we put 1^ = 0. It is easy to realize that
each term VD in Eq. (2.33) is "small."

Notice that:
a) We have included the two body term coming from the normalization of the

first polymer expansion that is small for Λ(n) C A\C.
b) We have not included in VD the interactions of the two blocks A(n*), A( — n*)

[see Eq. (2.19')] with C because they can be large and then must be considered
separately.
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The Second Polymer Expansion. A p o l y m e r S is a c o l l e c t i o n of s e t s Dί...Dn of
β-blocks connected in the sense that VDt,DseS 3Dir..Dir, Dh = Dv Dir = Ds such
that Dih and Dih+ί have an ^4-block in common. Given a polymer S = D1...Dn we
will call S the set of all the ̂ 4-blocks belonging to S and define its activity Θ(S) as :

D> (2-36)

where

a(an) = 2(aIf), if N Φ | n * | , (237)

Notice that if S contains a nonadmissible D, then 0(5) = 0.
Using the above definitions we easily get

} Σ

(2.38)
where

n

n^ί Si...SnCA i = 1

Lemma 2.4. If q0 is sufficiently large:

Ξ/1,c(rc,α±n») = exp Σ Σ φ{S1...Sn)f\Θ(Si). (2.39)
n ^ l Si. .SnCA ί= 1

Proof For any z : 0 < z < l we can write, for q0 sufficiently large:

(2.40)
DCS

where \D\Q means the number of Q-blocks in D. We have for A{n)EZ\C,

? II V II ?

Σ ^ N Σ -T
D3i4(n) z Q(m): z «n

2 m ± l Φ «

+ -y sup

+ Σ " i Σ£ IφίRi. .Λjήw^Nfc- (2.41)
EBA(Π) Z Ri...RncΛ ί=l
EeSz,c

Now we can use the definition of C(ω) to treat the first two terms in the right hand
side of Eq. (2.41) and standard methods of the theory of polymer expansion (see
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[8] and Eqs. (2.26) and (2.8) in [1] to treat the third one; so that we finally get for
q0 sufficiently large

1 1 1 / 1 \
k ^ ^ , and if — ^ - l o g + — — , (2.42)

using again Lemma 2.1 of [1], Eq. (2.39) is proven. Π

Now we are able to rewrite Eq. (2.38) in the following way:

,cJr. .J

\J /ω,β,h ^

yc,an*,v-n*

where
n

H(yoa + n*)=:H(yaa + n*)+ Σ φ(^i «̂) Π
Si...SnCΛ ί=ί

( S i . . . S n ) n C Φ 0

and

c, α ± „,) = - βH(γ c) + % „ * , γc) + 2(a _ „„ γc). (2.44)

Notice that we have dropped the sum over the collection of polymers that do
not intersect C because they cancel out. This is the most important feature of Eq.
(2.43) that we will use in the next section to prove Theorem 1.

3. Proof of the Theorems

We shall make use of the following lemmas proven in Appendix B.

Lemma 3.1. Consider the system of polymers described in the previous section, with
activity given by Eqs. (2.35) and (2.36), then for any given integer k there exists a
constant Ck such that for any finite set T of Q-blocks we have:

Dk

S i . . . S n C Z i=ί
( S i . . . S n ) n T Φ 0

(3.1)

where Dk is a derivative of order k with respect to the variables β and h and nτ

= sup |4
Q(n)eT

Lemma 3.2. Under the same hypotheses of Lemma 3.1, consider two intervals A, A',
A' jAjC. Then for any k there exists a constant Ck such that V set T of Q-blocks
contained in A, we have:

Dk( Σ φ(Sι...Sn)f\Θ(Si)~ Σ φ(Sι...Sn)f\Θ(Si)
Sί...SncΛ' i=ί Sι...SnCΛ ί=l

5 i . . . S n ) π Γ Φ 0 (Sι...Sn)nT=ύ

\T\

(3.2)
d(T,dA)1/4'

where d(T,dA) is the distance between T and the boundary dA of A.
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Now we are able to give an uniform bound to the /c-derivative of any local
quantity.

Proposition 3.1. Suppose conditions Cl, C2, C3 be satisfied and §<oc<2, then V
integer k, 3 a constant ck\ VωCΏ0 (cf. (2.15)J and V cylindrical functions f with
support in the set of Q-blocks T::

\DXf>iβJύck\C(ω)\k+ί(\ognτ)
26k\\f\\, VΛDQT. (3.3)

Proof Let us consider Eq. (2.43) and its generalization valid when the support of /
is not strictly contained in C:

\J /ω ,β,h

exp[H(yoαn,,«_„.)+ Σ φ(Sι...Sn)f\
* Si...SnCΛ ί = l

(Si,..5w)n{CuΓ}Φ0 ( .

(Si...Sn)o{CuΓ}Φ0

The activity 6)(/)(S) is defined as in Eqs. (2.35) and (2.36), but starting from the
modified Hamiltonian:

where we have assumed, without any loss of generality, / > 0 (if it is not so, we can
add to / a suitable constant). Then we write

Σ exp ί&(y c, α ± „*)] Gf{y c, a ± n*)

\J /ω,β,h ^ p Vj/ ^j ' VJ ~7

yc.αn*,α-n*

where H is defined in Eq. (2.44) and Gf{yoa±n*) is given by:

Si...SnCΛ
(Si...Sn)n{ΓuQΦ0

f\ . (3.6)

If we consider a derivative of order k we get a certain number of terms of the form:

s / / h

with

and

Σ exp[H(yc,α±/ί,)]
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We easily obtain

sup \DkH(γc,a±n,)\^Ck\C\k (3.8)
7C,α±n*

for some constant Ck. Note that Lemma 3.1 generalizes to the case of Θ replaced
by Θif\ Applying this concludes the proof.

Proof of Theorem i. We shall show that Vfc, given a cylindrical function / :

k

β , h ) \ ^ ^ 0 , VωeΩ0, (3.9)

uniformly for β and h varying in finite intervals and uniformly in A' D A. Starting
from Eq. (3.4), we can write

\J/ω,β,h~~\f/ω,β,h

where

τ= Σ φ(S1...Sn)f[Θ(Si), (3.10)
S^. SnCΛ'XΛ ί=ί

(Si ...Sn)n(CuT)Φ0

f Σ f[ (3.11)
Sί...-SnCΛ'\Λ i = ί

(Si...Sπ)π(CuΓ)Φ0

and T is the support of/. Then from Lemma 3.2 and from Proposition 3.1, we have

\k+ι

ι . (3.12)

This proves (3.9) and concludes the proof of the first part of Theorem 1.
To prove the second part, it is sufficient to remark that the uniform bound (3.3)

is ^(Ψidω)) as a consequence of the probability estimate given by Eq. (2.15); then
the result follows from the dominated convergence theorem. Π

Proof of Theorem 2. With the hypotheses of Theorem 2 the following results
proved by Khanin and Sinai in [2] hold in our case:

1) 3 lim Έ(FA{ω, β, h)) = F(β, h), (3.13)

2) lim FA(ω, β, h) = F{β, h). IP-a.e.
Λ/Έ.

Now for every finite interval A, we can write
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Then to prove the theorem it is sufficient to show that V/c>0, VωeΩo and
uniformly for β and h varying in finite intervals:

Σ <σt> ,̂ft l i m φ ^ Σ <°X,βλ
ΛSZ \Λ\ t e Λ ΛSTL \ \A\ t e Λ )

— V ε (σuσt2>jβ,h - j j m E / p * _ L V ε <σh^2>ω,/?,Λ

^ ^ Z I 7 1 ! ί i , ί 2 e Λ μi~ί2l ^ / z I I 7 1 ! ί i , ί 2 e Z I Γ 1 Γ2f I
ί l * ί 2 \ ί l * ί 2 /

To get this strong law of large numbers we introduce a family of overlapping
volumes Vt centered at each site ί, whose size is increasing as a suitable power law
of the distance of the site t from the origin.

Let, \fteZ

( n t + / ] B(n)uA(n)\9 (3.16)
+i /

where nt is the index of the B or A block to which the lattice site belongs. It is easy
to see that \Vt\~constqot

 1 / 4(log+ t)ρ. We can write (dropping for simplicity the
dependence on ω, β, h):

\/L\ teΛ lyil teΔΛ ^ . „,

+ Λ" Σ J)k<ff

t>
Ft+^7 Σ ^«σ (/-<σ t/'),

l7 il ίeyl\Jyl I 7 1 ! teΛ\ΔΛ

where

(3.18)

For each teΛ\ΔΛ, we have that Vt is strictly contained in A if A is large enough.
The first sum in Eq. (3.17) can be estimated using Proposition 3.1 as:

(3.19)
l y il teΔΛ l y il

The terms of the third sum are estimated using Eq. (3.12)

\T)H(π \Λ— (π \VΛ\ <C (Ίoffw )2ρk\C(ω)\k+1 Π ?0)
\ \ \ t/ \ t/ )\ =̂  fe\ o ί/ l̂ \̂̂ /̂l 1/16" y~) Zs\Jj

The problem of the existence of the limit of —- Σ Dk(σi}
Λis then reduced to the

|Λ-I ieΛ

existence of the limit of —— Σ ^ f c < σ ί ) Γ t

Set:
(3.21)
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The following proposition is true:

Proposition 3.2.

Km~Σξt = °> P-a.e. ( 3 2 2 )
ΛSΈ \Λ\ t e Λ

Proof. Since ξt and ξt2 are independent if t1 and t2 are sufficiently far apart, we
have for A sufficiently large

so that using Chebichev's inequality we get

00 / 1 \ 1 °° 1

Σ W r d Σ q H ^ Σ ΓM?3<» • (3-24)
\Λ\ = 1 \\Λ\ \teΛ I / ε \Λ\ = 1 \Λ\

Now using Theorem 1 and condition C4, it is easy to show that

ΛSΊL \Λ\ t e Λ

i σ o y). (3.25)

It is easily seen that the same kind of arguments apply to the case:

A" Σ ^fγD\σta,2y. (3.26)
ti*t2

In fact the denominator \t1 — t2\
a controls the behaviour at large distances and for

small \tί — t2\ we are back to the previous situation. This ends the proof of
Theorem 2. •

4. Remarks

Remark ί. In the sequel we will discuss a one-dimensional model where it is
possible to rigorously prove the existence of a Griffiths singularity [4, 5]. We will
actually show that for our model 3βc:\/β>βc, the average magnetization is
nonanalytic in h at h = 0, meanwhile it is still C00 at every β and h.

Let us consider a system described by the Hamiltonian (1.1) where the εtt, are
allowed to take the values 0 and 1 with the following probability distribution

IP(εtt,=O) = l - / ( | ί - f ' | ) . (4.1)

We call if the set of all the pairs (bonds) b = {t,t'), t, tΈZ; the space of the
realizations of our random field is: Ώ = (0, Vf. We can represent Ω as the set ̂  of
all subsets S of J§? : S being the set of bonds b with εb= 1.
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Given an S C ̂  we can decompose it into its maximal connected components
called clusters. A cluster Γ is a (generally infinite) set of bonds e <£ connected in
the sense that for any pair of bonds b^b eT, 3bh...bireΓ, with bir = bp biι = bi,
biknbίk+ A φ 0, fc = 1,..., r — 1 and maximal with respect to this connection. We want
to show that, for p in Eq. (4.1) sufficiently small, the probability of percolation (i.e.
the probability that the origin belongs to an infinite cluster) is zero.

For any finite interval A centered at the origin, consider the following event
E0Λ: the origin belongs to a cluster intersecting X\A = AC. The following
inequality holds:

nEoJS Σ Π iri£|ϊτa, (4-2)
γ .yaO {t,ί')ey \ ι ι I

where y is any finite set of connected bonds in 7L. We have:

( 4 ' 3 )

with

ζ(y) = T~[ . (4.4)
(t,t')eγ k~~ £ I

To estimate the sum on the right hand side of Eq. (4.3) one can use arguments
typical of the high temperature expansions. For instance, using the method
developed in Appendix A of [1], one can easily see that the "activity ξ(y)" of the
"polymer" y is so small that

yaO

Than from Eq. (4.3), since Ψ(E0 AJ^JY^O, we conclude the proof of the absence of
percolation.

Now, following Griffiths, we are able to write the average (quenched)
magnetization in the thermodynamic limit as

1

A/π ω > ' ΓaO I-Π tet

= m{β,h), (4.6)

where the sum is over all finite clusters Γ passing through the origin [the P(Γ)'s are
the probabilities of their occurrence], Γ is the set of all sites t belonging to bonds in
Γ, and <σ t)Γ is the magnetization in the site t evaluated in the finite volume Γ with
zero boundary conditions when only the set of bonds belonging to Γ is present. We
further notice that for every finite interval A the cluster ΓΛ obtained by putting εtt,
= 1 for any ί, t'eA and εί// = 0 Vίe/L, t'eTί\A has nonzero probability. In fact we
have:

Ml

\A1+i) IΛίΓ lίlΠ U wl+S >0. (4.7)
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We see that we are exactly in the situation discussed by Griffiths in [5] for a
dilute 2-dimensional Ising model, so that we can conclude that for Vα<2, Vj8
> βc{oc\ where βc(cή is the inverse critical temperature of the fully ferromagnetic
system (cf. [9]), the quenched magnetization is nonanalytic in h at h = 0.

As far as the C°° properties are concerned, let us consider, as an example,
dk

— τ m(β, h). It is easy to convince ourselves that:
oh

Σ nπψιΣ^,>r.β.ack Σ nn\π

for

S Ck Σ AΫPΓ* • Σ 1(7)< + °° . (4 8)
« = 1 ysO

lί Wt-t'i1

(t,t')ey\\l l \

and p sufficiently small (the constant Ck depends only on k) so that the series that

formally expresses — k m(β, h) is uniformly convergent in h.

Remark 2. In the previous sections we have used "zero boundary conditions" [cf.
Eqs. (1.1) and (1.2)], but it is easy to verify that, with minor changes, it is possible
to prove exactly the same results in the general case: i.e. all the limits quoted in
Theorems 1 and 2 exist and are independent of the boundary conditions.

Remark S. In [1] the problem of the analyticity for a one dimensional system with
translationally invariant finite first moment interactions was considered. The
hypothesis of translation invariance was introduced to be able to apply Ruelle's
theory [10] to the term ψ(αt , α + 1 ) of the effective Hamiltonian [cf. Eq. (2.10)]. In
the present paper, to prove our theorems we have to consider nontranslationally
invariant potentials in particular to treat the term φ(α , ai+t) we use an approach
originally due to Dobrushin [11] that applies also to nontranslationally invariant
systems. The following theorem that generalizes the main result given in [1] easily
follows as an adaptation of the method used in the present paper.

Theorem 3. Consider the Banach space $' of the complex-valued functions on the
finite subsets of TL such that :

XBO KM tεΈ

For Φ0,Ψ1...Ψde£f, III^IH = 1, consider the free energy

FΛ[Φ+
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where λ = {λx, ...,λd)

XCΛ teX

ί/ie expectation of any cylindrical function f:

ify~Λ- LJ

XΛ

X

3 α sphere ω in<Cd such that:

and defines a holomorphic function of λ in ω.
2) If the limit

limF^Φo)

exists, then

F(Φ0 + Σλt ΨJ = lim FΛ(Φ0 + Σλt Ψ})

exists and is holomorphic in λ on ω.

Appendix A

Proof of Lemma 2.2. We start by proving an auxiliary lemma:

Lemma A.I. Let V be a volume partitioned in [nu~\ volumes V{ each of length n (i.e.
\V \ = n and \V\ = n1 + u), and let σ + (σ_) be the configuration of the spins in a finite
volume on the right (on the left) of the volume V. If nis large enough, u rg 1 and ε = a
— f. Then the following probability estimate holds:

Zσ-,σ+ 7-0,0
T/ *-' T/ .

Z σ-,0 1
W\m

Proof If we call W(σv, σ+)(W(σv,σ _)) the interaction energy of the volume V with
the right (left) boundary and < ) 0 the expectation with the probability measure

exp{-βHv(σv)}

we have

- z ~ ^ (A.2)
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N

Recalling that V=-\Ji Vt with N = nu and setting:
o

f2 = f2KN) = exp{W(σVN,σ+)}.

By Lemma 3 of [3] we have with probability larger than ί — exp{ —n1/2(1+<5/2)}

</iΛ>o n γ n [ const_| < (Qxp{W{σv,σ_)} exp{W(σv,σ+)}>0

(A.3)

for any n sufficiently large and δ:0<δ<jr. But

(flfl>0 = YuQv(°v) fί(σV0) Λ(σFN)

v~ϊ / \ /. / \ Y , \ -f ( \ ( h. Λ\

where qVo v( ) is the relativization of qv{ ) to σF o, and qγN9v\v0 σv (') ^s ̂ n e

relativization to σF ] v of the conditional probability on the values σV\Vo evaluated
by means of qv( ) with conditions σVo. Then

/ f \ l < V ( \{( λ

S2 max \fJ2\ SUp βί9vWly|Vo,σV,o( ),«Kw,V|Ko.ακo( )), (A.5)

1 Σ

where ρ( , ) is the distance in variation and we have used the following inequality:
Let X be a finite space, p(χ), pt(x) z = l,2y.,n, probability measures on X, λt>0

n

(i = 1,2,...,«): Xμ ; = l, then:

- Σ V/*) ^ Σ Σ λj\p(x)-Pj(x)Σ

In [3] it is shown that, with probability larger than:

sup Q(qvNtVlVo,σVo(')9qVN,v\Vo,σ'vo('))
v 0 , σ VQ

I _ ίy -yfu

(A.6)
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where

const \

and

max f£σv)lmm f£σv) ^ Qxp(2p(n)2 α),
σVι /

with the same probability. With this choice of the functions y{n\ y{n\ p(ή) for n
sufficiently large, we obtain the result of the lemma. •

Consider now a block B(ή) and let αM, άn __ x be the spin configurations of the two
adjacent ^.-blocks and define:

JV/2

% ) ^ n = Σ YlilZV?r-°v>'" exp{a(σU2i + χmexp{-a(άn)}, (A.7)

where

1

Since Z | ^ 1 > 5 n is obtained by Z ^ 1 ' 5 " switching off the interactions between
nonadjacent t/f's it follows from Lemma 2.1 that

( const(log+ nΓ } ^ Z%;^ \ const(log+ ή)°
p I ^(iog^ ( 1- ) εί = z|V'^ = p 1 ^dog^ ( 1 -

with probability ^l-exp{-const^fj + 2^(log+n)ρ(1~μ)}(log+n)ρμ. Notice that
μ<{l-μ)ε implies that Z ^ y ' ^ - Z ^ 1 ' ^ 1 for n sufficiently large.

Let us consider the following event 3kΆ<k<N,

^ h _ ι 9 σ Ό h + ί)}9 (A.8)

with

If this event is verified we have:

exp {-4η} gί Z ^
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If we notice that when such a k does not exist, then for every block Ui

(Ϊ = 1,2, ...,N) the following inequality should be verified for some σU2i_ί9 <?u2l + ι :

n — 1

so that by Lemma A.I it easily follws that:

1

ε/2
then by choosing μ= we conclude the proof. •

1-fε

(A. 10)

Appendix B. Proof of Lemma 3.1

We start from the equality

Dk φ(S1...Sn)Y\Θ(Sι)

(Si...Sn)nΓΦ0

= y
S l . . . S n C Z

fc!
(B.I)

Recalling definition (2.36), we have for S = D1...Dm, \S\=p:

\—^ v"Λ Γv -|—•- j i

(B.2)

Now calling nD= sup |n|5 suppose we are able to prove the following estimate:
Q(n)eD

l l^exp[KD] | | SCl(\og+nDykVD (B.3)

for some constant C\ depending only on k and for suitable VD, then, since the
following inequality

I exp[5(αj]
Σexp[2(αJ]

SC2

k(\og+m) Qk

is easily seen to be true for some constant C£, we can write:

\DkΘ(S)\S VD

(B.4)

(B.5)
DCS

where

ns= DCS
= [(supC}\ (supC?\l.
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Now since each S is connected and the set St... Sn forms a cluster [i.e. it cannot be
separated into two nonoverlapping parts, otherwise φ(Sί... Sn) = 0], and more-
over it is supposed to touch the set T, we have:

dD,
ι = l

where nτ= sup \n\ and dD = m a x / C 2 , sup |n—n' |\ , then
Q(n)eT \ Q(n),Q(n')eD

log(supnSi)glogU r+ Σ Σ dD ^ l o S K Π ( Π do
L ί = l D C S ,

ί = l DCS1

so that if for any k a positive constant σ is chosen such that:

σp+m+1{p + rn)k<l Vp,m.

Then if we define

with

DCS

(B.6)

(B.7)

we can write

Dk Σ φ(S1...Sn)f\Θ(Si)
Si...SnCZ ί=l

(Si...Sn)nT=β

SCk(log+nτ)
2βk Σ nkσn

Σ \φ(S1...Sn)\nkσ
Sί...SnCZ i=ί

( S i . . . S n ) n Γ Φ 0

k(\og+nτ) Σ \φ(S1...Sn)\f\Θ(Si).
S i . . . S n ϊ = l

SCk(\og+nτ)
2βk (B.8)

Now we have only to prove that the modified potentials ΦE are well behaved:
in other words we want, for q0 sufficiently large, the modified activities Θ(S) to be
small enough [cf. Eq. (2.28)] to allow the convergence of the series on the right
hand side of Eq. (B.8).

This last requirement is obviously achieved if we can prove that the estimate
(B.3) that we have assumed, holds with a VD such that:

sup Σ
n DDA(n)

(B.9)
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If condition (B.9) is satisfied we get, by standard methods of the theory of cluster
expansion [8]

Σ I φ ^ . .SJ ΠβίS^ITIconstfefeo). (B.10)
S i . . . S n C Z i = l

(5i . . . S π ) n T Φ 0

Now for D = >l(n1), v4(n2), D^^O^), β(n2) it is easy to see that the previous
requirements on DΛ(exp[P^]) can be fulfilled [cf. Eq.(2.35)]. In all the other cases:

Ri...Rn i = l

to study DkVD, we can start by the analogue of Eq. (B.I) and since MLeϊFπ c, for all
sufficiently large q0:

\\Dk exp[_WL~]\\ ^constHW L \\ , (B.ll)

then using exactly the same arguments leading to Eq. (B.8), we see that the
inequality (B.3) is satisfied with

Rί...Rn

and

(B.I 2)

The positive constant τ has to be chosen small enough. Also in this case for q0

sufficiently large, condition (B.9) is satisfied so that by Eqs. (B.8), (B.10), and
Lemma 3.1 is proven. Π

Proof of Lemma 3.2. To obtain the proof of Lemma 3.2, which can be considered
a corollary of Lemma 3.1, it is sufficient to use the trivial identity:

Σ φ(Si...Sn) Π<9(S.)
Sl...SnCΛ' ί = l

(Sί...Sn)nΛ'\ΛΦ0
(Si...Sn)nTΦ0

Σ (ΠrrWWi SΛΠ^). (B.13)
Sί...SnCΛ' \i=ί KaSi) I i = l

(Si ...Sn)nΛ'\Λ + &
( S i . . . S n ) π Γ Φ 0

where Θ(S) = Θ(S)dl/4; ds= sup \n-ri\ and remark that for every cluster of

polymers Sί...Sn:

dl; ds
Q(n),Q{ri)eS

one has
n

Π
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Then it is quite simple to generalize Lemma 3.1 to the system of polymers with
activity Θ for q0 sufficiently large. Π
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