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of Nonlinear Evolution Equations Integrable
by the Two-Dimensional Matrix Spectral Problem

B. G. Konopelchenko
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Abstract. A generalization of the AKNS-technique to the two-dimensional
arbitrary order matrix spectral problem is given. The general form of the
integrable equations and their Backlund transformations in 1 + 2 dimensions
are found. The reduction problem is discussed.

I. Introduction

One of the main problems of the inverse scattering transform (1ST) method is a
problem of enumeration of the equations integrable by this method (see, e.g.
[1, 2]). The simple and convenient description of a class of partial differential
equations integrable by the one-dimensional second-order bundle

dΨ
~-+λAΨ = P(x,t)Ψ (1.0)
ox

has been given by Ablowitz, Kaup, Newell, and Segur (AKNS) [3]. Then this
approach (AKNS-approach) has been generalized to the problem (1.0) of arbitrary
order [4-9] and to some other one-dimensional spectral problems [9-11]. The
infinite-dimensional group of Backlund transformations for these classes of
integrable equations has also been found [12, 7-9]. But up to now all the results
obtained in the framework of the AKNS-approach [3-12] are concerned with
equations in one spatial dimension.

The generalization of the AKNS-method to the case of several spatial
dimensions is of indubitable interest. The applicability of the IST-method to the
multidimensional equations has been demonstrated in [13, 14]. Various concrete
two-dimensional and multidimensional evolution equations have been considered
[13-18].

Multidimensional spectral problems possess a number of specific features.
Nevertheless, as we shall see, the technique described in [7-9] permits a
generalization to the 1 -f 2 dimensions (one time and two spatial dimensions) case.
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In the present paper we consider a two-dimensional spectral problem of the
form

dΨ dΨ
— +A—=P(x,y9t)Ψ9 (1.1)
ox oy

where A is an arbitrary constant semisimple matrix (i.e. a diagonalizable matrix),

potential P(x,y9ί) is a matrix NxN such that . The order ΛΓ of
R= }/x2 + y2-^co

the matrix problem (1.1) is an arbitrary one. Spectral problem (1.1) is a natural
two-dimensional generalization of the one-dimensional bundle (1.0). Spectral
problems of the type (1.1) (with diagonal matrix A) and some concrete equations
connected with it, have been considered earlier in [13-15,17].

In the present paper we find the general form of nonlinear evolution equations
in 1+2 dimensions integrable by the problem (1.1). We also construct the
universal infinite-dimensional group of Backlund transformations and infinite-
dimensional symmetry group for these equations. The reduction problem for
general equations and some concrete reductions are considered, too. The results
obtained are the generalization to the two spatial dimensions of the corresponding
results for bundle (1.0) (see [7, 8]). We want to note that this 1+2 dimensional
generalization is a nontrivial one and possesses various interesting features.

The paper is organized as follows. In the second section we introduce some
special solutions of the linear problem (1.1), scattering matrix and obtain several
important relations. In the third section we calculate the recursion operators
A(n)A> A(n}A which play a fundamental role in our constructions. The general form
of Backlund transformations and integrable equations are found in Sect. 4. In the
fifth section the integrals of motion are calculated. The reduction problem is
discussed in Sect. 6.

II. Scattering Problem and Preliminary Relations

We will assume that the potential P(x,y,f)-»0 at R= ]/x2 + y2^ oo so that it
guarantees the existence of all integrals which will appear in our calculations and
that

+ 00 Q

J ^(...)=o.
— co uy

We will also assume that the potential satisfies the gauge condition P0^0,
where P0 is a projection of potential P onto g0-component of the Fitting
decomposition with respect to A. Let us recall shortly its properties (see, e.g.
[19]). Fitting decomposition of the general linear matrix algebra gl(Λf, C) with
respect to a semisimple matrix A is a decomposition into the tensor sum gl(Λf, C)
= 0o®#F> where gQ is a subalgebra of matrices commuting with A
(00 = {0egl(JV, C), [0,^4]=0}) and gF is a tensor sum of nonzero root subspaces.
Then [g0,00] C#0 and [g0,#F] CgF. For an arbitrary matrix B of the order N we
have a simple decomposition B = B0 + BF, where B0 is a projection of B onto g0

and Bp is a projection of B onto gF. We have the decomposition P(x,y,i)
= P0(x9y9t) + Pp(x9y,t)9 too. Using the invariance of the problem (1.1) under the
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transformations Ψ^Ψ' = G(x,y)Ψ, P-+P' = GPG~l + -- +A G"1, where
\dx dy]

G = G0, it is always possible to choose P0 = Q. A meaning of the gauge P0 = 0
consists in the excluding of pure gauge (nondynamical) degrees of freedom from
P(χ,y,t).

Let us now consider the linear problem (1.1). We will denote the solutions of
this problem by Ψ. Following [15], we introduce matrices-solutions F^(x9y) and
Fΐ(x,y) of the problem (1.1) given by their asymptotic behaviour

Fϊ(x,y) - » (2πίΓ1/2eλ(y~Ax}, F^(x9y) - > (2πiΓ1/2eλ(y~Ax\
x— > + oo x— * — oo

and the scattering matrix S(λ, λ, ί) :

*ΪFϊ (*> y> OS(X λ, t) .

Let us consider also the problem adjoint to (1.1):

dΨ dΨ
9 9 t ) . (2.1)

ox dy

We introduce the matrices-solutions F^(x,y) and F^(x,y) of the problem (2.1)

£ΐ(x>y) - >(2πίΓll2e~λ(y~Ax\ F7(x9y) - >(2πί)~ll2e~λ(y"Ax)

9x-» + 00 x-» - oo

and the corresponding scattering matrix S(λ9 λ, t) :

Fl (x, y9 1) = f dλSfa I t)Fl (x, y, t) .

Let us note that in contrast with the one-dimensional problem (1.0), the matrix
Ψ'1 is not a solution of the adjoint problem (2.1). It is easy to show that the
following relations hold :

f dyF} (x, y, t)F* (x, y, t) = δ(λ - λ) , (2.2)
- oo

dλFt (x, y, t)F* (x, y', t) = δ(y - y') , (2.3)

— oo

+ ΪOO

J dμS(λ,μ,t)S(μ,λ,t) = δ(λ-λ), (2.4)
— ΐoo

where δ(λ) is a Dirac delta-function.
By virtue of (2.2), the scattering matrices S(λ,λ,t) and S(λ,λ,t) can be

represented as follows

+ 00

S(λ,λ,t)= j dyFϊ(x,y,t)FΪ(x,y,t),
— 00

S(ί λ, t) = dyFl (x, y, t)F~λ (x, y, t) .
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Now let P and P' be two different potentials and Ψ 9 Ψ ' 9 Ψ 9 Ψ ' are the
corresponding solutions of the problems (1.1) and (2.1). Using (1.1), (2.1) and
taking into account (2.3), one can show that

+ ioo

Ψ'λ(x,y)- J dλΨ-λ(x,y)K(λ,λ)

+ ί~
iX oo +β <2-5)

= - f dλΨ-λ(x, y) ] dz f dyfΨ-λ(z, y'}(P'(z, y')- P(z, y'))Ψ'λ(z, y'),
— ioo x — oo

+ °°where K(λ9λ) = J dyΨ~λ(x,y)Ψ'λ(x9y)\x = + „. Putting Ψλ = F+

λ in (2.5) and proceed-
— oo

ing to the limit x-> — oo, one gets

S'(λ,λ)-S(λ,λ)

= - f dμS(λ, μ) f dxdyp; (x, y)(P'(x, y) - P(x, y))F+

λ '(x, y).
— ioo — oo

Formula (2.6) which connects a variation of the potential P to that of the
scattering matrix plays a fundamental role in further considerations. Putting P = 0
we obtain from (2.6) the following relation between the potential P(x, y, t) and the
scattering matrix S(λ, λ, t):

S(λ9 λ, t) = δ(λ-λ) - (2πi)~1/2 f dxdye~~λ(y-Ax}P(x, y, t}F+

λ(x, y, t).
— oo

In particular, for small (in a suitable sense) potential P(x, y, t) we have in the linear
approximation

,t} = δ(λ-λ)-(2πiΓ1 dxdye(λ-~λ}ye~λAxP(x,y,t)e-λAx

The mapping P(x, y, ί)->S(I, /I, t) given by the spectral problem (1.1) determines
a correspondence between the transformations P-»P' on the manifold of poten-
tials {P(Xy, t)} and the transformations S^S' on the manifold of scattering
matrices {S(λ, λ, t)}. This fact follows from the commutative diagram

P -LLJ4S

TP\ \TS

Let us now consider only the transformations T such that

S(l λ, t) -̂  S'(λ, λ, t) = B~1(λ, t)S(λ, λ, t)C(λ, t), (2.7)

where B(λ, t) and C(λ, t) are (in general, arbitrary) matrices commuting with A, i.e.
B = B0, C = C0. The "restricted" transformations of the type (2.7) are, as we shall
see, wide enough.
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Combining the relation (2.6) with (2.7) and taking into account (2.4), one finds

j°° dμS(l μ)(l - B(μ, t)}S'(μ, λ)-(l- C(λ, t))δ(λ- λ}
— ioo

= - 7 dxdyfϊ(x,y)(P(x,y)-P(x,y))F +

λ'(x,y). (2.8)
— oo

Then one can prove the following identity :

+ ΪOO

[ dμS(λ, μ)(ί - B(μ, t))S'(μ, λ) - δ(λ-λ)(ί - B(λ, ί))
— ioo

= - 7 dyFΪ(X, y) l - B

= ί dXdyFΪ(x,y)p(x,y)l-B2-,tFΪ'(x,y)

8 ]] ~+f \
.^ ' /y p /

Taking the projection of the equality (2.8) onto gF and using the identity (2.9), we
obtain

+ 00 ( I I d \\
j dxdy Iff (x, y) ί B ί—, ί j j Pf(χ9 y)F+

λ '(x9 y)

^,t\FΪ'(x,y)\ =0. (2.10)
dy J }F

id \
The matrix Bl — , t \ which is contained in formulae (2.10) can be represented in

the form # — ί = Σ #α I —, ί I Ha, where matrices Ha (α = 1,..., rA) form a basis

of the subalgebra g0 and Ba —, t are functions. Below we will consider only the

id \ I d \ " I d\n

entire functions £„ —, ί L i.e. B» { —, ί = ) fo^M(ί) hr- , where bnn(i) are arbit-
\dy I \vy I n=o \vy/

rary functions. For such functions BΛI —-, ί , the equality (2.10) can be rewritten as
follows \dy i

+ 00 Y A °0

ί <ωy Σ Σ ί
- oo α= 1 n = 0

= 0, (2.11)

where tr is a usual matrix trace and

(2.12)

(n = 0,l,2,...).
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III. The Recursion Operators

For further transformations of the equality (2.11) one must establish the relations
between the expressions Φ($F with different n.

Let us first consider the expression Φ(n}F. Let us differentiate n—1 times over
variable y the system (1.1) for (Fχ)'km and then multiply the obtained equation by
FU . Forming in the obtained equality the total derivatives over Λ; and y and taking
into account (2.1), one gets the equation

"Σ Q- 'ίVi-Ao, (3-1)
m = 0

where C" = - : — — and P(^
d= — τ~τ — Then if one projects the Eq. (3.1) onto

ml(n-m)l ( ) dyk

g0 and uses the relation (ΦΨF)Q = (ΦFΨF)Q, one gets

,

dx dy

V m = 0

The integration of (3.2) gives

, (3.3)
O

where for /0(x,j>)= Σ f*(*>y)H* and ̂ 1- ^ αα^α?
α = l

G/-/o)(*,3>)=f Σ H

α = l

α = l

So one can express the quantities Φ(π)0 through the quantities Φ(W)F

(m = 0, 1, . . .,π— 1). As a result taking the projection of the Eq. (3.1) onto subspace
gF, taking into account the equality (3.3) and the relations (Φ0 ΨF)F = Φ0 ΨF,
Φ(n)o(x= + co,j;) = 0, we obtain

(n-l)F

n-2

m = 0
"m~ l \(P(n- ! -m)<}Λ-

I

+ ,/-(?;„_ ! _M)^,Λ P- p;n_ !
m- 1

- Σ CΓP^-^-ίPU-AΛ ' (« = 1,2,3,...), (3.4)
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where operator Λ(1) acts as follows

dΦ dΦ
(1) dx dy

P. (3.5)

From the relations (3.4) it follows that there exist such operators Λ(n)A that

*®F = ΛMAΦ$P (n=l,2,3,...), (3.6)

where Λ(n}AΦ
 d= (Λ(n)Φ)A, UΦJ = Φ and (&$)u*= (F

 +)'km(F +)ί(. The operators

Λ(n)A are determined by the following recursion relations :

+ "if cr 1 - 1 -Ao

m- 1 ^

-ΛmMΦ ^o- Σ CΓ^-i-^ΊPU-ΛίA) (n = 2,3,...). (3.7)
1 = 0 )A

In a similar way one shows that

<V=4>A (1 = 1,2,3,...). (3.8)

Operators ΛMA are determined by the recursion relations

m = 0

ι = o l (1}A (m ° ° (" X '

where

(1) dx dy F

+ P'Jf-(P'Φ-ΦP)0-J?-(PfΦ-ΦP)0 P. (3.10)

The operators Λ(n}A and Λ(n)A are not independent. Throwing the derivative —

from F+ to F+ /, for example in the expression Φ(π), it is not difficult to show that

(3.H)
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In the further constructions we will use also the operators Λ^A, Λ*n}A adjoint to
the operators Λ(n)A9 Λ(n}A with respect to the bilinear form

<χ, ψy = 7° dxdytr(χF(x9 y] <FF(x, y}) .
— oo

The corresponding recursion relations, for example, for operators Λfn)A are of the
form

m = 0 1 = 0

where ^MΦ= -Λ^n}ΦA and

«— 2 m — 1

rΛ(V'+(<MVι-.->)o n.-«>> (3.12)

3'-PΦ)0-^+(ΦP'-PΦ)0 P', (3.13)

where

O/VXx )def ? H f rfzf(zα(z-x)+ )
α= 1 — oo

The operators Λ(*M can be determined from the recursion relations analogous
to (3.12) or from the relations

Analogously to (3.11) and (3.14) one can express the operators A(ri)A and Λ^
through respectively Λ(m}A and Λ+m}A.

IV. General Structure of the Integrable Equations
and Backhand-Transformations

The existence of the recursion operators of the type Λ(n]A and Λ^n}A is extremely
important in the generalized AKNS-method. In our case the relations (3.6) and
(3.8) allow us to rewrite the equality (2.11) in the form

Σbm(t)tr(HJ'(x.y)(-ί)"Λ(n)AΦ$F

=0

= Q, (4.1)

where Λ(0) = Λ(0) = ί.
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From (4.1) we have

lα=l 11 = 0

• (( - WA+^HJ* - Λ+»PH^ = 0 , (4.2)

where operators Λfn)A and Λ^)A are given by formulas (3.12)-(3.14).
The equality (4.2) is fulfilled if

Σ (Bβ(^,ί)HβP
/-Bβ(^,ί)PHβ) = 0, (4.3)

α= 1

where

v d e f £

n = 0

v d e f £ ,

If Φ(£jF(:x, y) form a complete set (similar to the one-dimensional case) then Eq.
(4.3) is also a necessary condition of the fulfillment of the equality (4.2).

The relation (4.3) just determines the transformation of the potential P->P',
which corresponds to the transformation of the scattering matrix S-*S' of the form
(2.7). It is important that the relation (4.3) contains only the potential P and the
transformed potential P. We restricted ourselves by the transformation law (2.7)
in order to convert the transformation law of the scattering matrix into the explicit
transformation law of the potential which contains only P and P'.

The transformations (2.7), (4.3) form, as it is easy to see from (2.7), an infinite-
dimensional group. If A is regular matrix (i.e. all eigenvalues of A are different),
then subalgebra g0 is abelian. In this case the group of transformations (2.7), (4.3) is
an infinite-dimensional abelian group.

The structure of this group of transformations (2.7), (4.3) (Group B) is
determined by the spectral problem (1.1). Group B which acts on the manifold of
the potentials {P(x, y, t)} by the formula (4.3) and on the manifold of the scattering
matrices [S(λ, λ, t)} by the formula (2.7), plays a fundamental role in the analysis of
nonlinear systems connected with the problem (1.1) and their properties.

Let us consider a one-parameter subgroup of this group given by

B = C = Σ exp ( - f dsΩΛ(λ, s)\ Ha, (4.4)

where ΩΛ(λ, t) are some functions entire on λ ΩΛ(λ, t) = Σ ^nW'

It is not difficult to see that the transformation (2.7) with matrices B and C of
the form (4.4) is a displacement in time t:

S(l λ, t) -> S'(λ, λ,t} = B~l S(λ, λ,t)B = S(λ, λ, t'). (4.5)
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The corresponding transformation of the potential is P(x,j;,t)->P'(x,j;, t)
= P(x, y, t') and is given by the formula 1

Σ Σ ^P - ί dsωm(S)Λ+u (- l)"HαP(x, t')
α= 1 n = 0 I \ t I

- exp f - J dsωm(S)Λ^\ P(x, t)H\ = 0, (4.6)

where in the operators Λfn)A and Λfn)A one must put P'(x, y, t) = P(x, y, s).
At fixed functions Ωα(i, t) the one-parameter group of transformations (4.6)

determines in an unexplicit form the flow YΩ : P(x, y, ί)-»P(x, y, t'\ in other words,
an evolution system. This evolution system can also be described by some
nonlinear evolution equation.

Indeed let us consider the infinitesimal displacement in time: ί-»f' = t + ε, ε->0.

In this case P(χ, y, t'} = P(x, y,t) + ε — *y' and BΛ(λ, t)=l- εΩΆ(λ, t). Substituting
όt

these expressions into (4.6) and keeping the terms of the first order on ε, we obtain
an evolution equation

where

and

- Σ (4.7)

ά
+ ά— Λ+
(n)A ~ /L(n))A\P' =

The operators
example

are calculated from the recursion relations (3.12) at P' = P. For

(4-

The operators L*n)A can be calculated by the formula

L+ =(-i)» y c"L+ d"'k
k=0

ιdr
1 Transformations of the form (4.6) were considered for the first time in [12] for a one-dimensional

/I 0\
bundle (1.0) at JV = 2, A={

\0 -I/
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For the scattering matrix from (2.7) we correspondingly obtain the following
linear evolution equation

= γ(l t)S(λ, λ, t) - S(l λ, t) Y(λ, t) , (4. 10)

Y(λ,t)= Σ Ω«(λ,ί)Hβ. (4.11)

at

where

The nonlinear evolution equation (4.7) determines the flow
YΩ : P(x, y, i)-»P(x, y, t') in the infinitesimal form. The relation (4.6) which does not

δP .
contain the derivative — is an "integrated" form of the evolution equation (4.7). A

class of Eq. (4.7) is characterized by an integer N9 operators L^n}AL^n]A and
arbitrary functions Ωl(λ,t\...,ΩrA(λ9t\ entire on λ. Let us point out that the
evolution law of the scattering matrix of the type (4.10) was first considered by
Zakharov [15].

The transformations (4.3) with matrices B(λ, t) commuting with matrix Y given
by (4.11) (i.e. for £Cg0(y)) form an infinite-dimensional group of Backlund-

transformations for Eq. (4.7). At —^ =0 the transformation (4.3), as it follows from
ot

(2.7), does not change the evolution law (4.10) of the scattering matrix and
therefore they are auto-Backlund-transformations for Eq. (4.7): they transform
solutions of an equation of the form (4.7) into solutions of the same equation.
Some concrete auto-Backlund-transformations which have been found by other
methods in [20, 21] are particular cases of the general transformations (4.3). If

—r-^ φO, then the transformations (4.3) are generalized Backlund-transformations.
ot

Group B of the transformation (4.3) also contains as a subgroup an infinite-
dimensional symmetry group of Eq. (4.7). In the infinitesimal form these symmetry
transformations for the regular matrix A are

δP(x9y9t)=
α= 1

where fa(λ) are arbitrary entire functions. Let us point out that the group of
Backlund-transformations (4.3) and the symmetry group are universal ones, i.e.
they are a group of Backlund-transformations and the symmetry group for all
equations of the form (4.7).

One can also obtain Eq. (4.7) without using the transformation (4.3). Indeed, let
the transformation T: P-+P', S^>S' be the infinitesimal displacement in time t:

S' = S + s — , ε->0. From the relation (2.6) we obtain
9ot at

+

X , y ) d-?^Fl(X,y). (4.12)
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Using (4.12) and the identity (2.8) one can show that

dS(λ, λ, t)

dt

. JdP(χ,y,t)
dt A V ' y ;

(4.13)

ί

where Y(A, ί) is a matrix commuting with the matrix A i.e. Y = Y 0 , Y(A,ί)
r* oo I ί

= Σ ^« Σ ωan(t)λn. Then taking into account the relations (3.6) and (3.8) (at
α = l n = 0

P' - P) from (4.13), we obtain

+ ioo f (dS(vi λ t)
J dμl§(λ,μ,t)l V^ ' -(Y(μ9t)S(μ9λ9t)-S(μ9λ9t)Y(λ9t)

+ co ί
= - f dxdytr<Φ$F(x,y;λ9λ)

— ~ Σ (βα(^ t)HΛP-Ωa(L+

A9 ί)PHβ))l (4.14)
\ ^ α = l / J

From the equality (4.14) a connection between Eqs. (4.7) and (4.10) follows. In
particular, if the scattering matrix S(λ9λ9t) satisfies Eq. (4.10), then potential
P(x,y, t) satisfies the evolution equation (4.7) (if Φ[Q]F form a complete set).

Let us also note that the transformation (4.3) and Eqs. (4.7) can be written in a
form containing only one of the operators Afn)A, A^n}A. For example, in the form

Σ Σ Uί)( Σ C"mΛ^AHaP(n,m)-Λ^APH\ =0, (4.15)
α = 1 n = 0 \m = 0 /

and

8P(x9y9t)

dt

Equations (4.7) (or (4.16)) are just the nonlinear evolution equations in 1 + 2
dimensions (one time and two spatial dimensions) integrable by the 1ST method
with the help of the linear problem (1.1). Using the two-dimensional version of the
1ST method (see e.g. [1, 13, 15]) one can find, in principle, a broad class of exact
solutions of Eqs. (4.7).

The class of Eqs. (4.7) contains some well-known nonlinear evolution equations
in 1 + 2 dimensions. For example, for a diagonal matrix A (Aik = ajdiki a^ak, i,
k = 1,..., N) and Yik(λ) = λω^^ z, k = 1,..., N, where ωf are some constants, Eq. (4.7)
is

^—L^ 1 l. ?£ 1JL _^ k__ι ι__k ιk

dt ai — ak ox a — ak dy
I K I K J

- Σ. Σ.βU')( Σ c^M//αp(n_m)-L;MpHα)=o. (4.16)
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The system of Eqs. (4.17) describing the two-dimensional resonantly interacting
waves has been studied (for JV = 3) in Refs. [13, 14, 17].

As the second example, we consider the case

e
o

where IN and IM are identical square matrices of the orders JV and M respectively
Q is a N x M rectangular matrix and ,R is an M x JV rectangular matrix. In this
case Eq. (4.7) is the following system of matrix equations

~ 1 1 - 9 1 , . '

tit \dx dy

5R_ίd2 , d2

-Γ2\dx2 dy2

(4.19)

V1(x,y)=

where /'(χ,j;)d=M^l, f»(xy)
ά«Wj?lA. For JV = M=1 the system of Eqs.

ox dy
(4.19) has been considered first in Refs. [14, 15].

For M = l, arbitrary N and 7? = Q+, system (4.19) reduces to a 1 + 2
dimensional generalization of the JV-component nonlinear Schroedinger equation

/«ι\

^i)J*»3')= dz(M*)'-(^*)")(z,z-x + y), (4.20)
— oo

v(2)(x,y)= ] dz Σ ((«««?)'- (Mfr)(z,*-z+y).
-oo 1=1

For N-l,see [14,15].
Let us note that in contrast to 1 + 1 dimensional differential equations

integrable by the problem (1.0), Eqs. (4.7) are integro-differential ones as a rule.
The integro-differential equations (4.19), (4.20) can be also rewritten in the form of
the systems of differential equations.

It is also interesting to consider the stationary equations (4.7), i.e. Eqs. (4.7)
SP

with — = 0. These equations

Σ (ΩJίL+

Λ,t)HaP-Ω.(L+

A,t)PHa) = 0
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are the two-dimensional equations which contain the independent variables x

and y, putting them on more equal footing than 1 + 1 dimensional equations

dP
Eqs. (4.7) at — =0

e.g.

which contain the variables ί and x. For example, for
dy

N = M=1, Q = R=U(x,y), the stationary equation (4.19) is equivalent to the
following two-dimensional system of equations for two scalar fields U(x, y) and

The system of nonstationary equations close to this system has been considered in

[1, 18].
In conclusion let us consider the one-dimensional limit when the potential P in

(1.1) is independent of the variable yhr- =0 . If one performs the Fourier
\8y I

transform of Ψ(x, y, t) over variable y, i.e.

Ψ(x9 y, t) = (2πίΓll2$dλ πp(λy)F(x, λ, t) ,

then the problem (1.1) is reduced to the one-dimensional bundle (1.0) for F(x,λ, t).
In this one-dimensional case

and from relations (2.2)-(2.4) it follows that F±=(F±)~1

9 and

s(l λ, t) = δ(λ- λ)s(λ, t) , s(l λ, t) =δ(λ-λ)s~ l(λ, t) ,

where S(λ, t) is the one-dimensional scattering matrix.
Then for the expressions Φ(n} and Φ(n), we have

Φ(π) = λ"Φ(x, λ, t) , Φ(π) = ( - λ)"Φ(x, A, ί) ,

where

Φ(x, A, ί) = F + (x, A, t)®(F+(x, λ, t)Γ 1 ,

and a symbol (x) denotes a tensor product of matrices. Furthermore, in the case

-T— =0, all the terms in (3.7), (3.9) and (3.12) contained in the figured brackets are

equal to zero and therefore relations (3.6)-(3.14) are reduced to the following one:

λΦF(x, λ, t) = Λ(ί}AΦF(x, λ, t) ,
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and

In the result for ^— = 0, the transformations (4.3) and Eqs. (4.7) are reduced to
y

the corresponding transformations and equations connected to the one-
dimensional bundle (1.0) (see Refs. [7-9]).

Let us also emphasize that in contrast to the one-dimensional case (1.0) [see
(4.21)], for the two-dimensional problem (1.1), the recursion operators Λ(n)A and
Λ*n)A are not the powers of the operators Λ^A and Λ*ί)A [see (3.7)-(3.14)].

V. Integrals of Motion

Here for simplicity we consider the case of a regular matrix A. In this case the
subalgebra g0 is abelian one.

Let us note that in view of (4.10) the quantity S0(λ,λ) is time-independent:

=0 (5.1)

for any functions ΩΛ(λ, t). Therefore S0(λ, λ) are integrals of motion for any λ.
Expanding (analogous to the 1 + 1 dimensional case [1, 2]) the quantity lnS0(λ, λ)

00

in the asymptotic series on λ~ 1 : lnS0(λ, λ)= Σ λ~nC(n\ we obtain a countable set
«= i

of integrals of motion C(n} (w=l,2, ...) for Eqs. (4.7). Analogous to the 1 + 1
dimensional case, the integrals of motion C(n) can be written as functional over the
potential P(x,y, t). Let us represent for this purpose the matrix-solution FK

+(x, y, t)
in the form

F+

λ (x, y, t) = Rλ(χ, y, t)E(x, y) exp(χA(x, y, t)) , (5.2)

where Eλ(x,y) = (2πί)~1/2 expλ(y-Ax\ (χλ)0 = χλ and (Rλ)0 = l. Passing in (5.2) to
the limit x-> — oo and taking the projection on the subspace gQ, we obtain

(5.3)

Thus the integrals of motion C(n} are the coefficients in the asymptotic
expansion on /Γ1 of the right-hand side of equality (5.3). These coefficients are
connected in an obvious way with the coefficients χ(n)(y) of the asymptotic
expansion on λ~1 of the quantity χλ(—oo, y)

00
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As a result

and so on.
The expressions for χ(n)(y) are found from the recursion relations which,

analogous to the 1 + 1 dimensional case, are obtained by substituting F^(x,y) in
the form (5.2) into the linear problem (1.1). They are of the form

0, (n=l,2,...), (5.4)

where .R(n) are calculated by the recursion relations

00

Rλ(x,y) = l+ £ λ-"R(n\x,
n=l

F = 0, (n=l,2,...). (5.5)
q=ι vy

Let us emphasize that the integrals of motion C(n} are universal. Indeed in their
calculation we use only the time-independence of 50(1, λ) and the spectral problem
(1.1) but not Eqs. (4.7). Therefore C(n) are integrals of motion for any equations of
the form (4.7).

In the particular case of a diagonal regular matrix A and JV = 3, the procedure
for calculation of the integrals of motion in 1 + 2 dimensions described in this
section is close to those given earlier in [17, 18, 22].

VI. Reduction Problem

Similar to the 1 +1 dimensions case, the reduction problem for general equations
(4.7). i.e. the problem of effective decreasing of the number of the independent fields
in these equations is an important one.

In the 1 + 1 dimensions case Mikhailov [23, 24] proposed a very interesting
approach to the reduction problem. This approach is based on the introduction of
the notion of the reduction group, in other words, the group of the form-
invariance of the potential. In the framework of the AKNS-approach, the
reduction problem also leads to the problem of the enumeration of those functions
ΩΛ(λ, t) for which the integrable equations admit certain reduction. In the 1 + 1
dimensional case and a bundle (1.0) this problem was solved in [25]. A related
approach for another spectral problem was proposed in [26, 27].
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Here we consider the reduction problem for Eqs. (4.7) integrable by the
problem (1.1). Let us consider for defϊniteness ZN reduction. (For the 1 + 1
dimensional case, see [23-25].) The ZN reduction is generated by the constraints

GA = qAG, GP(x,y9t) = P(x,y9t)G9 (6.1)

where Gik = δt k_ ί (z, k = 1, . . ., N)9 GN1 = 1 and q — exp — . Under ZN reduction the

potential P has only N— 1 independent variables and Aik = qί~1δik [23-25]. Let
Ψλ(x,y) be a solution to the problem (1.1). Let us consider the expression Ψ'(x,y)

dΨ' dΨ'
= GΨλ(x, y). As \x\ -> oo, it satisfies the equation — -- h qA — — = 0 and therefore in

ox oy
the limit |x|->oo it can be represented as follows

GΨλ(x, y) = T dμψμ(x, q~ V) T(μ> λ) , (6.2)
— IOO

where T(μ, λ) is a matrix. Using (2.2) and (6.2), we obtain

T(μ9λ)= +j°dyΨμ(xίy)GΨλ(xyqy)\lx^00 . (6.3)

Setting for example Ψλ = F+ and x-> + oo, one gets

T(μ,λ) = δ(μ-qλ)G. (6.4)

As a result, the relation (6.2) takes the form

^. (6.5)

Furthermore, since the relation (6.2) is valid at |x|-> oo both for F+ and F~, we
obtain the following equation for the scattering matrix

+ ioo + ϊoo

I dμS(λ,μ)Ί\μ,λ)= j dμT(λ,μ)S(μ,λ) . (6.6)
— ίoo —ioo

Taking into account (6.4), we have

GS(λ, λ, t) G~ 1 = S(ql qλ, t) . (6.7)

Furthermore, demanding the consistency of the constraint (6.7) with Eq. (4.10),
we obtain

. (6.8)

Since Y(λ9t)= f ΩΛ(λ,t)Ha9 we find from (6.8) that ΩΛ(λ9t) = Ωί((f-1λ9t)
a= 1

N-l

(α = 1, . . ., N\ i.e. Ωα(λ, ί) = Σ ^~ 1}"^^n(l
N, ί), where Ωn(λN

9 1) are arbitrary func-
n = l

tions entire on λN. As a result,

N " . (6.9)
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The expression (6.9) gives us the general form of Y(λ, ί) for which Eqs. (4.7)
admit a nontrivial ZN-reduction (6.1). Indeed, for such Y(λ,t) the relation (6.7) is
consistent with Eq. (4.10) and, as a result, as it follows from the equality (4.14), the
constraint (6.1) is consistent with Eq. (4.7).

In the general case dealing with the reduction problem one can act in the same
way as in the example considered above :

1) first, we find the reduction group, i.e. we find the constraints on a matrix A
and a potential P,

2) calculate matrix T(μ,λ) using (6.3),
3) obtain constraints for Y(λ, t) analogous to (6.8), and
4) solve this constraint and find the general form of the functions Ωα(/l, ί) for

which Eqs. (4.7) admit the given reduction.
Let us consider as an illustration some other reductions. The general equation

(4.7) admit the reduction Pτ(x, y, t) = - P(x, y, t) at AT = A and arbitrary odd
functions ΩΛ(λ, ί).

Similar to the 1 + 1 dimensional case [28], the so-called ZN reduction is
important. This is the reduction

A =
0

0

/o
1

0

0

\o

N-

QN-2

0

ί+q

0

0

i;

δw-3

QN-2

0

1+q + q2

δo
δ2

1+4+
QN-2

o

(6.10)

2πi
where g = exp— .One can show that Eqs. (4.7) admit ZN reduction (6.10) at Y(λ, t)

N- I

5 class of functions Ωα as for ZN reduction (6.1).

It is not difficult to prove that the linear proble
equivalent to the following two-dimensional proble

N ~^ ^Λ7

= £ λ"Ωn(λN,t)A",i.e. for the same L β _ _ v ,

It is not difficult to prove that the linear problem (1.1) under ZN reduction is
ivo-dimensional problem [Ψτ = (Ψ1,..., ΨNJ]

(6.11)

where VN=l, VN_ ί = 0. The coefficients V0(x9 y),..., VN_ 2(x, y) are simply expressed
through β0, >δN-2 For example, for N = 2(q=-l), V0(x,y) = -Q0(x,y). The
corresponding spectral problem is

dx2 dy:
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2πA
and it has been considered in Ref. [29]. For N = 3lq =

or

The spectral problem (6.11) is one of possible two-dimensional generalizations
of the well-known Gelfand-Dickey spectral problem

N 3k

fc=o uχ

Another two-dimensional generalization of the Gelfand-Dickey problem is

,* , * Λ

and it can be obtained as a special reduction of the problem (1.1) with a
degenerated matrix A. For example, the second order problem

dΨ_ 10 a\d_Ψ_ = /0 -U\

dx \0 0] dy \ί 0

is equivalent to the scalar problem

which is used for the integration of the Kadomtsev-Petviashvili equation [13, 30].
Let us consider the families of Eqs. (4.7) under Z2 and Z2 reductions (N = 2). It

follows from the obtained results that Eqs. (4.7) admit the reductions at

A = I and Y=λΩ(λ2)A, where Ω(λ2) is an arbitrary entire function on λ2.

For Z2 reduction P= for the Z2 reduction P= . For

Ω(λ2) = - 22n(λ2)\ (n = 1, 2, . . .), and the Z2 reduction a family of Eqs. (4.7) (N = 2) is
a generalization of the well-known KdV-family to 1 + 2 dimensions. The simplest
(n = 1) equation among these equations is a 1 + 2 dimensions generalization of the
KdV-equation considered in Ref. [29]. At Ω(λ2)= -22"(A2)"(n-l,2, ...) and the
Z2-reduction the family of equations (4.7) (N = 2) is a 1 4- 2 dimensional generaliza-
tion of the modified KdV-family. The simplest (n=l) of these equations is a
generalization of mKdV-equation on 1 + 2 dimensions.

In conclusion let us make the following important remark. All the formulas
which we have used above in the analysis of the reductions contain only
asymptotics of the solutions of the problem (1.1) as |x|->oo. We also do not
demand that the problem (1.1) be invariant under the transformation



124 B. G. Konopelchenko

Ψλ(x, y)~+ &'(*, y) = GΨλ(x, y\ i.e. we do not demand that GΨλ(x, y) be the solution
of the problem (1.1). Here there is an important difference between the case of the
two-dimensional problem (1.1) and the case of the one-dimensional bundle (1.0).
While for the one-dimensional bundle the reduction group, i.e. the group of the
form-invariance of the potential, is at the same time the symmetry group of the
bundle (1.0), for the two-dimensional problem the reduction group [group of
form-invariance of the potential P(x, y, f)] is not a symmetry group of the problem
(1.1).

Of course one may demand in the two-dimensional case that the reduction
group will be the symmetry group of the problem (1.1) too. It is not difficult to see
that in this case one must demand that the variable y be transformed in a
nontrivial way. For example, for the ZN reduction we must demand y-^y' = q~1y
and instead of (6.1) the potential P(x,y,t) should satisfy the constraint
GP(x,y, ί)G-1 =P(x, q~ly, t) for the whole range of the variables x and y. Any
reasonable interpretation of such constraints is not known.

VII. Conclusion

The results of the present paper, analogous to 1 + 1 dimensions [8,25], can be
generalized to the problem (1.1) with Z2-grading (the potential contains both
commuting and anticommuting fields), to the case when lim P(χ, y, t) Φθ,

R = \/χ2 + y2-*QO

and to other spectral problems. Hamiltonian and group-theoretical structure of
the evolution equations (4.7) will be considered elsewhere.
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