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Abstract. Let Sί and S2 be independent simple random walks of length n in Z 4

starting at 0 and x0 respectively. If \xo\
2κn, it is shown that the probability

that the paths intersect is of order (logπ)"1. If xo=0, it is shown that the
probability of no intersection of the paths decays no faster than (logn)"1 and
no slower than (logn)~1/2. It is conjectured that (logn)~1/2 is the actual decay
rate.

1. Introduction

Let S^n, ω) and S2(n,ω) be independent simple random walks in Z 4 starting at 0
and x 0 respectively; that is, Sί and S2 are independent processes indexed by the
nonnegative integers satisfying:

(i) Sί(0,ω) = 0 a.s. (almost surely),
(ii) S2(0,ω) = x0 a.s.,

(iii) for each x e Z 4 , e e Z 4 , \e\ = U

P{Si(n+l,ω)-Si(n,ω) = e\Si(n,ω) = x} = lβ.

Let Π^m, n, ω) denote the random set

i7 (m, n, ω) = {Sf(fc, ω): m < k ̂  n}.

In understanding the interaction of random particles, it is useful to understand
the behavior oϊ Π1(0,ri)nΠ2(0,m). In [4], it was shown that with probability one,

77^0, oo)n772(0, oo)φ0

(this is not true for simple random walk in Zd, d^5). It is well known [1], however
that if W^s) and W2(t) are independent Wiener processes taking values in Rd and

= {W#r):0<r^s}, then almost surely,

, oo)nΓ2(0, oo) = 0,
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if and only if d^4. In this way, d = 4 is a critical dimension for intersections of
random paths.

Let

p(n) = P{Π1(O9n)nΠ2(O,n) = 0}.

Although the result of [4] states that

limp(n) = 0, (1.1)

no estimate of the rate of decay is given. Erdόs and Taylor [2, 3] studied p(n) and
asserted theorems of the following type:

(i) if \xo\
2&n, then

(ii) if x0 = 0, then

Note that assertion (i) agrees with our knowledge of Wiener paths as a lattice
spacing gets finer, the likelihood of intersections in a discrete approximation
should go to 0. Note also that one could conclude (1.1) from (ii). The proofs of
these assertions were incorrect, however. The basic idea of their arguments was to
use a renewal argument based on the "first" intersection of two random paths.
Since there are two time scales involved, however, this "first" intersection cannot
be defined so that it has the properties of a usual stopping time.

In this paper, assertion (i) is proved and an analogue to assertion (ii) is given.
We also give an argument, based on a plausible but unproven conjecture, that
assertion (ii) is actually false.

In Sect. 2, we give an inequality in one direction for assertion (i). Here we make
use of some of the ideas in [2, 3]. A key step is considering the random variable

where G is the standard Green's function for simple random walk, and showing
that In approaches a constant random variable. This then allows a modified form
of stopping time argument to work.

Let S3 be another simple random walk independent oϊ Sί and S2, and let J73 be
defined accordingly. Assume all three walks start at the origin. Let

f(n) = P{Π1(0, n)n(I72(0, n)uJI3(0, n)) = 0} .

In Sect. 3 we show that /OΌ^logn)" 1 . From this we conclude that p(n) (for two
walks starting at the origin) decays no faster than (logn)"1 and no slower than
(lognΓ 1 ' 2 .

A more precise result for assertion (i) is given in Sect. 4. From this we give an
argument in Sect. 5 as to why we believe p(n) decays slower than (logw)"1" for any



Intersection of Random Walks 541

2. Estimate for Walks Starting at Different Points

In this section we prove the following two theorems:

Theorem 2.1. Let S1 and S2 be independent simple random walks starting at the
origin in Z 4 . Then there exists a constant c1>0 such that for every n>0 and
O<ot<β,

(a) P{Πί{oίnJn)nΠ2{O,oo) + 0}^c1\og{β/ot){\ogny1

(b) P{Π1{09n)nΠ2(<m9 0 0 ) 4 = 0 } ^ log(l + l/αJ

Theorem 2.2. Let Sί and S2 be independent simple random walks starting at 0 and x0

respectively in Z 4 . Then there exists a constant c 2 > 0 such that for every n>0, if
ot = \x0\

2/n,

Lemma 7 of [3] gives an estimate in the other direction for Theorem 2.2 more
specifically, for fixed α, there is a constant c > 0 such that

Similar arguments can be used to give estimates in this direction for the
probabilities in Theorem 2.1.

The main idea of the proofs will be to use a modified stopping time argument.
However, we will be unable to choose an intersection of the two paths such that
the walks after this intersection act like two independent simple random walks. We
will show, instead, that the amount of conditioning imposed by our choice is not
too large.

We omit the proof of the next lemma which was alluded to in the proof of
Theorem 10 in [2]. The proof requires a combination of a tedious calculation and
an approximation of simple random walk by a normal random variable. For the
remainder of this paper, we will use c3, c 4 , . . . to denote arbitrary positive
constants.

n

Lemma 2.3. Let Zn(ω) = (\ogn)~1 £ (l-b|S(/,ω)!2)"1, where S is a simple random
walk in Z 4 . Then j = 1

(a) lim E(Zn) = c, exists;

(b)
Now let Sί and S2 be independent simple random walks starting at the origin

in Z 4 , and for xeZA let G(x) be the Green's function

G(x)= Σ
j=o

and

J»= t

Lemma 2.4.
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Proof. It is known [5] that there exists a constant c 4 >0 such that for xeZ4,

The result then follows from Lemma 2.3 (b).

Proof of Theorem 2.ί. We will prove (b); (a) is similar.

Let Jn{ω) be the number of intersections of the paths, i.e.,

jn(pή = # {(/, k): SiO', ω) = S2(fc, ω), 0 ̂ j ^ n, an ^fc},

where #(•) denotes cardinality, and let En = E{Jn). If Pk = P{Sί(k)

En= Σ Σ
7=0 k>απ

π oo

= Σ Σ
j = 0 f c = 0

j=0k=0

n oo

;"=0 fc=0

~c slog(l + l/α). (2.1)

Here we have used the well-known asymptotic estimate pk~2c5k~2 for k even. A
similar calculation will show that

Consider p(«/2) = P{771(0,«/2)n/72(αn, oo)Φ0}. For each;, let

11 measures how many intersections one should expect of a random walk starting
at S^) with the first n/2 points of S1 after S^). By Lemma 2.4 and Chebyshev's
inequality, as n goes to oo, E(logn/2)~11{ approaches c5 and

r M / 0 \ " ! Γ J ' / . l \ l ^ \<^ Π ^ r r τ / 1 / O \ ~ l

Now fix n. Assume we have an intersection for an ω. For such an ω, consider the
first intersection on the path S2 more precisely, let

τn{ω) = mϊ{k:k^cm, Sί(j,ω) = S2{k,ω) for some j with Ogj^π/

σn(ω) = inf (/' :S1{j,ω) = S2(τn(ω\ω)}

Note that {S2{k)-S2{τn):k^τn} is independent of {S2{k):kSτn}u{
although {S^-S^σJ j^σJ is not.

Call ω good if



Intersection of Random Walks 543

and bad otherwise. On {ω:ω good} we have

P{ω good} £{Jn\ω good) ^ EJn = En,

where $ denotes conditional expectation. But since S2 proceeds independently
after τM, and Sx has at least n/2 steps after σn,

Therefore by (2.1),

P{ωgood} ^21og(l + l/αχiogn/2)-1.

Also,

j=ί k>an

^ Σ Σ
j = 1 fe > an

Therefore,

p(n/2) = P{ω good} + P{ω bad}

where cx =

of Theorem 2.2. The proof proceeds as in Theorem 2.1 (b) once we have an
estimate for En = E(Jn\ where

If we let P(x,t) = P{S1(t) = x} for x e Z 4 , note that

From (2.3) and (2.5) of [3] we get that there is a positive constant c8 such that

Therefore,

n oc

*•= Σ Σ

βχp{-\x0\
2/2(j + k)}+ Σ Σ

g c 9 + c1 0(l+log(l + l/α))
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3. Estimate for Walks Starting at the Same Point

Let An be the set of (one-sided) simple random walk paths of length n, i.e. the set of
all ξ = [ξ(O),...,ξ(w)] with ξ(0) = 0 and \ξ{ΐ)-ξ{i- 1)| = 1. Let ^ be the set of all
ξeΛn with £(i)Φ0for ί>0.

Let Φπ be the set of two-sided simple random walks of length 2n, i.e. the set of
all ξ = [ξ(-n),...,^(0),...,ξ(n)] with ξ(0) = 0and |£(i)-ξ(ϊ-1)1 = 1. Again, let Φ*
be the set of all ξeΦn with ς(i) + 0 for z>0 (note there is no restriction for z<0). If
ξeΦn, we let ξ+ (respectively ξ~) be the element of An given by [£(0), ...,ξ(n)]

Let P denote the standard probability measure on Λn (ΦJ, i.e.
) = 8~n(P(ξ) = $~2n). Let #n be the probability that a simple random walk in

four dimensions does not return to the origin in n steps, and g = lim gn. Note that
tί~~> CO

Let »S1(n, ω), neZ, be a two-sided simple random walk in Z 4 , i.e. a process
indexed by all the integers which gives the measure P on Φn. Let S2(n,ω), neZ+,
denote a (one-sided) simple random walk independent oϊSv We will assume that
S1(0) = 0 with probability one. Our first goal of this section is to give bounds for

/(n) = P{S1(ί,ω) + S 2 O' 5 ω):-n = i ^ π , 0 < 7 ^ n } .

For S1 and S2 we define the last intersection of the two paths up through time
n, where "last" is taken on the S2 time scale. More precisely, we define (σn(ω\ τn(ω))
by

:/cgn, S2(k,ω)e{S1(i,ω): -n^i^

σn(ω) = sup {/ :j g n, S^', ω) = S2(τn(ω), ω)}.

Then,

(a) S1(σB(ω),ω) = S2(τπ(ω),ω),

(b) {S2(j,ω):τ,,(ω)<jSn}n{

(c) S1(i,ω)^S1(σn(oj),ω) for σn{ω)<i^n.

By Theorem 2.1, we have

P{\σn\^n(lognΓι or T ^

n Γ 1 . (3.1)

Define new random walks T" and T 2 by

T"(ί,ω) = S!(σn(ω) + ί,ω)— S^σ^ω)), - oo < i < co,

T"2(/ , ω) = S2(τn(ω) +j, ω) - S2(τn(ω)), 0 Sj < co.
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Note that T[(i, ω)φθ for 0^i^n — σn(ω). Using (3.1) and a simple estimate on the
return of random walk, one gets (with perhaps a slight change of the constant),

Also, by definition,

{T2

By Theorem 2.1,

Therefore, again by (3.1),

p{T\(ί) = Tn

2(j) for some -n^i^n,

We will define two random variables on Φn. Let S(k, ω) be another (one-sided)
simple random walk starting at the origin and independent of Sλ and S2- Let

(ί) for 0<k^n and -n^i^

Gn(ξ)= Σ G(ξ(ϊ))
i— — n

n oo

i=-nk=0

Gn is the analogue of /„ from Sect. 2. Lemma 2.4 holds for Gn more specifically,

1 £ G / ί - 2 c 5 , (3.2)

Var((logn) 1 G J = O[(logn) * ] . (3.3)

Here, of course, the expectations are taken with respect to P.
If ζeΦn and k<n, we will also use ξ to denote the element of Φk,

\_ξ{ — k), ...,ξ(k)~]\ we will do similarly for ζeΛn. Let mn = [« + w(logw)~1]. For any
l

and for fixed (io,jo) with max{|io|, J o ϊ ^

Pn(ξ,ioJo) = P{T"ι(ΐ) = ξ(ί), -n^iSn, σn = i0, tn=j0}.

Then, by definition,

•P{S2(j0) = ξ(i0)}

(j +j0)~S2(j0) + ξ(ί),
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Summing over all io,jo with max {|;'0|, j0} 5Ξn(lognΓ \

^P{ξ)Gn{ξ)P{S2(j)*ξ{ϊ):0<j^n-n{\ogn)-\ -n^i^n), (3.4)

where

Gn(ξ)= Σ Σ p{s(j)=ξ(θ}.

\i\<n(\o$n)'1 j<n(logn)-ί

Obviously Gn rg Gn and a straightforward calculation shows

E(G n-Gπ)gc 1 5(loglogn). (3.5)

Let Es{kvk2,ξ) = P{S2(j)φξ(ϊ), 0<j^/c2 ? -k^i^k^. Then summing (3.4) over
all ξeΦ^n and using (3.1) and (3.5) produces

Mm" ElGn(ξ) Es(rnn9 n, ξ) lϊ(ξ)-] ̂  1 g lim E[Gn{ξ) Es(n,n-n(\ognΓ\ ξ) l^(ξ)] ,

where 1^ is the indicator function of the set Φ^.
Using Theorem 2.1 we may conclude

By (3.2) and (3.3) and Chebyshev's inequality, there is a c 1 6 >0 such that for every

8>0, ifXB(β = {ω:|(lognΓ 1G I I(ω)-2c5 |>e},

P ί ^ J g c ^ ί ε M o g n ) " 1 . (3.6)

Therefore,

i)= \ Fn\
A

n+ j F B l ί

^c 1 6 (6 2 logB)- 1 +£(F 1 1 G I 1 l B

1 )min{G I 1 :ωeU B > , ) c }

Similarly we may show an inequality in the other direction. We therefore have
established

1 1 ( l o g « ) - 1 . (3.7)

Theorem 3.1. Let f(n) = P{Sι(i,ω) + S2(j,ω),-n<ίiSn,0<jSn}. Then

Proof. Clearly f(n)^E(Fn\% which gives the first inequality. To prove the second
inequality it suffices to show

Intuitively, this states that a random walk which returns to the origin is more
likely to be hit than one which does not. We omit the details the key idea is to
note that if η = [rj( — n\...,η(0\...,η(ή)i...~] is any half-infinite random walk
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path and

( ) for l ^ i ^

then E(Fn) = E(Fn(η)l but £(Fn\ξeΦ^E(Fn(nι)\ where

Using an argument similar to the one referred to above, we can show that if
l = {ξeΦ*\ξ~eΛ*}, and 1° is the indicator function of Φ"n,

gc20{\ogn)~ι SE(Fn 1 « ) S c 2 x ( l o g π ) " ι . (3.8)

We use the notation (nvn2)^(mvm2) if n 1 ^ m 1 and n2^m2\ also, we use
nvn2)<(mι,m2) if (nvn2)^(mvm2) and (nvn2)φ(mvm2). For ξv ξ2, ξ3eΛn and

>n, let

1 if ξι{i)*ξ2{j) for (O,O)<(z,τ)^(«Jw)

0 otherwise,

0 = S(b2(ξ2,ξ1)\ξ1) •

Note that

Theorem 3.2. // p(n) = P{S1(ϊ)φS2(j), (0,0)<(tj)^(«,«)}, t/ieπ

p(π)^0- 2 c 2 1

1 / 2 ( log«) 1 / 2 .

Proof. Again, it can be shown that p(n) 5Ξ <gr(n) where

0, S2(/)φ0,

But by (3.8),

( Φ ) ) 2 ( ; 2 E ( ) ) 2

Remark. It is clear that Theorem 3.1 implies that

Erdόs and Taylor [3] contains a rigorous derivation of this bound.
Note that for ξeΦa

n,

and hence for α>0,
2 (3.9)
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Lemma 3.3. Let c>0. Then

(i) l i J X

(ii) Jim sup j FnI* logn = 0,

(iii) lim sup j Fn log n = 0,

where in each case the supremum is taken over all sets D with P(D)^c(\ogn)~1.

Proof. We only prove (i); the other two follow from "avoiding the origin"
arguments as used in the proof of Theorem 3.1. Assume there exists a β > 0 , and a
sequence nt going to infinity, and Dt with P(Di)^c{logni)~1 such that

Then a simple argument gives

By (3.9), if Bi = {ξ3:eni(^

But this implies

Jr (ξ ,ξ 3 )=j (β^ 3 ) ) 2

Uβ/2c)2βll2(2logny112,

and this contradicts (3.8).
We can now improve on (3.7):

Theorem 3.4.

n->oo "

Proof. Let ε>0. Using the notation in the derivation of (3.7),

E(Fnl^logή) = j Fnl^logn + j Fwljflogn.
An,ε (An>ε)

c

By Lemma 3.3 (i), the first term on the right hand side goes to zero as n goes to
infinity. Hence, by (3.6),

(2c5 + fi)~1 S lim E(Fn!„ logn)

In the next section we will need to use the fact that conditioning a path so that
it has no intersections does not affect the asymptotic behavior of the path. Let
C[— 1, 1] denote the set of continuous functions from [— 1, 1] to R4. Consider the
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following measures Θ>\,..., &\ on C[ - 1, 1] :
8P\ : the measure generated by

t n e measure generated by

the measure generated by X\(t,ω\ but with the measure

the measure generated by X"(ί, ω), but with the measure
FX)Yι?oκω.

Theorem 3.5. Let Ψ* be the standard Wiener measure on C[—1, 1]. Then for
i = l , . . . , 4 ,

w/zβre t/ie convergence is weak convergence of probability measures.

We omit the proof of this theorem since the methods are standard. The case
z = 1 is the standard invariance principle for simple random walk. The case i = 2
follows from this because, by (3.1), for "almost all" ω, T\ is an infinitesimal shift of
SvT

n

ί gives measure approximately equal to {FnGnl*)(E(FnGnl*))~xPto paths of
5'1 and this in turn is approximately equal to the measure (Fnl£)(E(Fnl*))~ίP;
therefore, we get the cases z = 3, 4.

We can also include S2 in this analysis. Let Y": [0, 1] x Ω-^R4, z = 1, 2, 3, be
defined by

Y%{U ω) = In- 1 / 2(S2([nί]) + (nt- [nί])(S2([nί] + 1 ) - S2([nί]»)

Let

An = {ω:S2(j,ω)φ{S1(ί,ω):-n^i^n}, 0<j^n and

Then we can prove:

Theorem 3.6. Let Z\t) = S{{Y\{t\ Yn

2{t\ Yn

3(t)\An). Then Zn approaches the standard
twelve dimensional Wiener process (i.e., three independent four dimensional Wiener
processes) in distribution.

We have done all our work with three walks (one two-sided and one one-sided)
of length n. It is clear that we could have worked with walks of length βγn, β2n,
β3n, for fixed positive βv β2, β3, and the theorems would still hold.

In the next section we will be interested in random walks S1 and S2

conditioned so that
(i) {S1(Uω):-

(ii) S1(i,ω) + 0 for
(in) S1(ίβ^ή]9ω) = S2
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where β 2 < β 4 and β3<β5. We wish to calculate the probability of such walks. By
Theorem 3.4, the probability of walks satisfying (i) and (ii) is approximately (2c5

\ogny1. We also know that the probability of (iii) is about 2c5((β4 +β5)n)~2,
assuming [/}\ή\ + \_β5ή] is even. If the two events were independent we would
know the probability; in fact, they are almost independent. We only sketch the
argument here. Let Λn denote the set of ω which satisfy (i) and (ii).

By Theorem 3.6, applied to walks of lengths [/^n], ίβ2ή], ίβ3n], the
distribution of

(3.10)

approaches the normal distribution with covariance (β2 + β3)L
Assume \_β\ή\ + [_β5ή] is even. Then

i>{S1([j84n])-S2([)85π]) = 0}

= Σ
xeZ4

If we substitute a random variable with distribution as in (3.10) for the first
probability in the above sum, we do not change the result very much. Then
standard asymptotic estimates for simple random walk can be used to show that
the two sums are asymptotically equal.

Through careful handling of constants in Theorem 3.6 and the above argu-
ment, we can also get uniformity in the covergence. Hence, we can prove the
following:

Theorem 3.7. Let 0 < α 1 1 < α 1 2 , 0 < α 2 1 < α 2 2 < α 4 1 < α 4 2 , 0 < α 3 1 < α 3 2 < α 5 1 < α 5 2 .
Let

A{βί9β29β39ή) = {ω:{i) and (ii) hold]

B(β4,β5,n) ={ω:(iii) holds}.

Then

lim sup
P(A{βl9β29β39n)nB{β49β59n))

P(A(βl9β29β39n))P{B{β49β59n))
- 1 = 0,

where the supremum is taken over all βv . . . , /? 5 satisfying

(a) *nίβjί*J2

(b) [ β ^ l + Lβsft] even.

4. Exact Result for Walks Starting at Different Points

We now use the results of Sect. 3 to improve on Theorems 2.1 and 2.2. We return
to the notation of Sect. 2.
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Theorem 4.1. Let S1 and S2 be independent simple random walks starting at the
origin in Z 4 . Then

(a) for 0 < a < β < oo

lim (}ogn)P{Π1((xn9βή)nΠ2(0, oo) Φ0} = 4 log (β/α)

n—»• o o

(b) /or 0 < α < oo

lim {lognjPiΠ^O, n)nΠ2(an, oo)φ 0} =-|log(l + 1/α).
H-> OO

Theorem 4.2. Let Sx and Sn

2 be independent simple random walks in Z 4 starting at 0

and xn respectively. Suppose α = lim|xJ2/ft exists. Then
n—* oo

lim

We will only prove Theorem 4.1 (a) the other proofs are similar. We will also
assume /?== 1. Before proceeding with the proof, we will give an intuitive argument.
Fix α, 0 < α < l , and let

0, oo,ω)φ0}.

On Bn, let (σπ(ω), τn(ω)) be the first intersection of the paths defined by

τn(ω) = inf {/: S2(j, ω) = S^i, ω) for some ί, an ̂  i ̂  π}

σn(ω) = inf{i:i^<xn and S^ί,ω) = S2(τπ(ω),ω)}.

As in the proof of Theorem 2.1 (b), let Jn(co) denote the number of intersections of
the two paths,

By an estimate similar to the one done before we can show

lim£(JB) = c5log(l/α).

M-> 00

It is clear that

E(Jn) = P(Bn)£(Jn\Bn).

Therefore, if we could compute $(Jn\Bn) we would have the result. Consider the
two paths at (σn, τn) as shown in this figure:

Fig. 1
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In the figure, Pι and Fι denote the parts of Πί before and after σn respectively. The
same is true for P 2 and F2. By the definition of (σn, τn\

P2nP1=0, P2nF1=0.

Also, F2 is independent of Pv P 2 , and Fv Therefore, the intersections of the two
paths can be broken down into two sets: those of F2 with P x and those of F2 with
Fv Ignoring the conditioning on P1 and Fι imposed by the selection of (σn, τn), we
see that the expected number of intersections of the paths looks like twice the
number of intersections of two paths starting at the origin, i.e. 2E(Jn\ where

Λ M = # {(Uj): SX(U ω) = S2(j9 ω\ 0 g i £ n , 0£j< oo}.

But an easy estimate gives

lim(logn)-1E(Jπ) = c 5 .

Therefore, assuming this argument could be made rigorous,

£{Jn\Bn)x2c5(\ogn),

and hence

Proof of Theorem 4.1 (a).Let Bn, σn, τn, be as above and again fix α, 0 < α < 1. For
ωeJ3n, define random walks R^ and Rn

2 by

R\{i9ω) = S1 (σn{ω)-i,ω)-S1 (σn(ω),ω), σn(ω)-n^i^σn(ω),

Rn

2{j, ω) = S2(τn(ω) -j, ω)- S2(τn(ω), ω), 0 £j £ τn(ω).

For any i0, j 0 , let

Then on Bn(i0,j0), R" and Rn

2 are independent simple random walks starting at the
origin (R" is two-sided, R2 is one-sided) satisfying

(i) Rn

2(j,ω)φ{R\(Uω):io

(ii) #" (i, ω) =t= 0, 0 < i ̂  i0 - an
(iii) Rn

1{i09ω) = Rn

2[j0,ω).

For each ε>0, let

Clearly

where

Q = {ωeJB l l:(Π1(αw,αn(H-ε))ui71(n(l-ε),n))niI2(O5cx))Φ0}.

By Theorem 2.1 (a) we can conclude,

lim lim (\ogn)P(Cε

n) = 0.
ε->0 n->oo
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Therefore, if P — lim P{Bί)(\ogn) exists, we will have
n->oo

lίm (\ogn)P(Bn) = lim Pε.
n->oo ε-+0

Likewise if we set

then
lim (log n) P{Bn) = lim lim (log n) P(Dε

n),

assuming the right hand limit exists.
Consider Dε

n for a fixed ε > 0
n ( l - ε ) ε - 1 n

lim αogn)P(DJ) = lim (log*) £ £
n~*°° " " ^ i = αn(l+ε) j = επ

By Theorem 3.7,

where the asymptotic convergence is uniform for an( 1 + ε) ̂  i rg n( 1 — ε),

Therefore,

lim (logn)^] ^]JB(I,J)= lim J] ^](i+j)~2(21ogn)~1

n~+ cQ n-~> oo

-j (1 ~ ε) ε " 1

~~ ί ί (̂  + };)~2^^J;

2 « ( l + e) ε
By (4.1) then,

1 ( l - f c ) ε - i

= l im- J j (x + y)~2(ixίiy
ε~> 0 2 α ( i + ε ) ε

5. Conjecture for Walks Starting at the Same Point

Let Si and S2 be independent random walks starting at the origin in Z 4 , and again
let

( ) = P{iJ1(O9w)nΠ2(O,n) = 0}.

For ease we will consider instead

Clearly q(n)^p{n).
We will assume a plausible conjecture which we have been unable to prove,

and from it conclude that for every r > ^ ,

lim(logw)^(n)=oo, (5.1)
n~*oo

and hence also for p(n).
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Let

Tn = {ω: 77^0, n, ω)n!72(0, oo, ω) = 0}

Vn = {ω: Π^n, 2n, ω)ni72(0, oo,ω) = 0}.

Note that q(n) = P(Tn).

Conjecture 5.1.

P(T2n)^P(Tn)P(Vn).

This conjecture states that the probability that the second path intersects the
first path at some time between n and 2n is not increased if we know that the
second path has avoided all points of the first path up through time n. We actually
believe that Tn and Vn are asymptotically independent events, and a similar
argument as below will show it is sufficient for concluding (5.1) to assume
asymptotic independence with a sufficiently small error term.

By Theorem 4.1 (a)

P(βπ) = l-ρπ(log2)(21ogn)- 1,

where ρπ-»l. Therefore, using Conjecture 5.1,

q{2n)^q{n){\-Qn{\og2){2\ogn)~1). (5.2)

If we let f(k) = q{2k\ yk = ρ2*, (5.2) becomes

f(k+l)^f{k){\-yk{2k)~ι). (5.3)

Tt is then an easy exercise to conclude that (5.3) implies

lim krf(k)= oo, r>\,

and hence we get (5.1).
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