On the Positivity of the Effective Action in a Theory of Random Surfaces

E. Onofri ${ }^{*}$
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Abstract

It is shown that the functional $S[\eta]=\frac{1}{24 \pi} \int\left(\frac{1}{2}|\nabla \eta|^{2}+2 \eta\right) d \mu_{0}$, defined on C^{∞} functions on the two-dimensional sphere, satisfies the inequality $S[\eta] \geqq 0$ if η is subject to the constraint $\int\left(e^{\eta}-1\right) d \mu_{0}=0$. The minimum $S[\eta]=0$ is attained at the solutions of the Euler-Lagrange equations. The proof is based on a sharper version of Moser-Trudinger's inequality (due to Aubin) which holds under the additional constraint $\int e^{\eta} \mathbf{x} d \mu_{0}=0$; this condition can always be satisfied by exploiting the invariance of $S[\eta]$ under the conformal transformations of S^{2}. The result is relevant for a recently proposed formulation of a theory of random surfaces.

1. Introduction

Let $d s^{2}=e^{\eta} d s_{0}^{2}$ denote a Riemannian metric on the two-dimensional sphere S^{2}, conformal to the standard metric $d s_{0}^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. The points of S^{2} will be parametrized, as usual, by a unit vector \mathbf{x}, by polar co-ordinates (θ, ϕ) or by a complex variable ξ, related to \mathbf{x} by stereographic projection, i.e., $\xi=\cot \frac{\theta}{2} e^{i \phi}=\left(x_{1}\right.$ $+i x_{2} / 1-x_{3}$). The conformal factor e^{η} is assumed to be C^{∞}. Let $\Delta=e^{-\eta} \Delta_{0}$ be the Laplace-Beltrami operator associated to $d s^{2}$ and let $0=\lambda_{0}<\lambda_{1} \leqq \lambda_{2} \leqq \ldots \leqq$ $\lambda_{n} \leqq \ldots \rightarrow \infty$ be the spectrum of $-\Delta\left(\Delta_{0}\right.$ and $\left\{\lambda_{n}^{0}\right\}$ will denote the corresponding objects belonging to $d s_{0}^{2}$).

It was shown in Ref. [1] that the limit

$$
\begin{equation*}
\frac{\operatorname{det} \Delta}{\operatorname{det} \Delta_{0}} \equiv \lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{\lambda_{k}}{\lambda_{k}^{0}}=e^{-S[\eta]} \tag{1}
\end{equation*}
$$

exists provided that e^{η} is normalized, i.e.,

$$
\begin{equation*}
\int\left(e^{\eta}-1\right) d \mu_{0}=0 \tag{2}
\end{equation*}
$$

[^0]where $d \mu_{0}=\sin \theta d \theta \wedge d \phi$. A closed expression for $S[\eta]$ was obtained, namely
\[

$$
\begin{equation*}
S[\eta]=\frac{1}{24 \pi} \int_{S^{2}}\left\{\frac{1}{2}\left|\nabla_{0} \eta\right|^{2}+2 \eta\right\} d \mu_{0} \tag{3}
\end{equation*}
$$

\]

where ∇_{0} is the covariant gradient with respect to $d s_{0}^{2}$, i.e.

$$
\begin{equation*}
\left|\nabla_{0} \eta\right|^{2}=\left(\frac{\partial \eta}{\partial \theta}\right)^{2}+(\sin \theta)^{-2}\left(\frac{\partial \eta}{\partial \phi}\right)^{2} \tag{4}
\end{equation*}
$$

The Euler-Lagrange equation for $S[\eta]$ under the constraint Eq. (2) has the simple geometrical meaning that the metric $e^{\eta} d s_{0}^{2}$ has constant curvature. It follows that the general solution, giving all the stationary points of $S[\eta]$ is the following:

$$
\begin{equation*}
\eta=\eta_{g}^{(0)}(\xi)=2 \ln \frac{1+|\xi|^{2}}{|\alpha \xi+\beta|^{2}+|\gamma \xi+\delta|^{2}}=-2 \ln (\cosh \tau+\operatorname{sh} \tau \mathbf{n} \cdot \mathbf{x}) \tag{5}
\end{equation*}
$$

where $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}(2, \mathbb{C}), \mathbf{n}$ is a unit vector and $\tau \in(0,+\infty)$. Here $S[\eta]$ vanishes at $\eta_{g}^{(0)}$ and its expansion around any of these stationary points has a positive semi-definite quadratic part, hence Eq. (5) gives indeed the local minima of $S[\eta]$. Since $S[\eta]$ is interpreted as the classical action of the field $\eta(\xi)$, it is important to know whether $\eta_{g}^{(0)}$ are merely local minima (metastable states) or whether they are indeed the absolute minima of $S[\eta]$. The problem is less trivial than it might appear at first sight, actually its solution requires some tools from non-linear analysis which are far from trivial.

The answer turns out to be very simple, however, as given by the following
Theorem. $S[\eta]$ is positive semi-definite under the constraint $\int\left(e^{\eta}-1\right) d \mu_{0}=0$ and $S[\eta]=0$ implies $\eta=\eta_{g}^{(0)}$ for some $g \in \operatorname{SL}(2, \mathbb{C})$.

2. Proof of the Main Theorem

The proof of the theorem makes essential use of an "exponential" Sobolev inequality due to Aubin, combined with the invariance of $S[\eta]$ under conformal transformations.

Let us dispose of the constraint [Eq. (2)] by introducing

$$
\begin{equation*}
\eta=\psi-\ln \int e^{\psi} \frac{d \mu_{0}}{4 \pi} \tag{6}
\end{equation*}
$$

(ψ is defined up to an additive constant, which we may fix by requiring $\int \psi d \mu_{0}=0$, but this will not be necessary). The unconstrained functional is now

$$
\begin{equation*}
S[\eta]=\frac{1}{3} \int\left\{\frac{1}{4}\left|\nabla_{0} \psi\right|^{2}+\psi\right\} \frac{d \mu_{0}}{4 \pi}-\frac{1}{3} \ln \int e^{\psi} \frac{d \mu_{0}}{4 \pi} \tag{7}
\end{equation*}
$$

which was introduced long ago in a purely geometrical context [2]. It was shown by Moser [3] that $S[\eta]$ is bounded from below by some absolute constant. A sharper version of the inequality may hold, however, under additional constraints on ψ such as a parity condition [4] $\psi(x)=\psi(-x)$. More generally, Aubin [5] proved that if ψ
satisfies

$$
\begin{equation*}
\int e^{\psi} \mathbf{x} d \mu_{0}=0, \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\int e^{\psi} \frac{d \mu_{0}}{4 \pi} \leqq C(\varepsilon) \exp \left\{\left(\frac{1}{8}+\varepsilon\right) \int\left|\nabla_{0} \psi\right|^{2} \frac{d \mu_{0}}{4 \pi}+\int \psi \frac{d \mu_{0}}{4 \pi}\right\} \tag{9}
\end{equation*}
$$

for any $\varepsilon>0$ and some constant $C(\varepsilon)$. Since the coefficient in the exponential is now $\frac{1}{8}+\varepsilon<\frac{1}{4}$, it follows that

$$
\begin{equation*}
3 S[\eta] \geqq\left(\frac{1}{8}-\varepsilon\right) \int\left|\nabla_{0} \eta\right|^{2} \frac{d \mu_{0}}{4 \pi}-\ln C(\varepsilon) . \tag{10}
\end{equation*}
$$

Under these circumstances it is known that the infimum of S is actually attained at the solutions of Euler-Lagrange equation (see Aubin [5] for details on this point and Berger [6] for the general theory).

At this point, provided η satisfies the additional constraint (8), one has the sharp inequality

$$
\left\{\begin{array}{l}
S[\eta] \geqq 0 \tag{11}\\
S[\eta]=0 \Rightarrow \eta=0 .
\end{array}\right.
$$

In fact the Euler-Lagrange equation under the constraints (2) and (8) is

$$
\begin{equation*}
-\Delta_{0} \eta+2=\lambda e^{\eta}+\boldsymbol{\mu} \cdot \mathbf{x} e^{\eta} \tag{12}
\end{equation*}
$$

By integrating over S^{2} one finds $\lambda=2$. It is also known (Kazdan and Warner [7]) that the equation

$$
\begin{equation*}
\Delta_{0} \eta=2-(2+\boldsymbol{\mu} \cdot \mathbf{x}) e^{\eta} \tag{13}
\end{equation*}
$$

does not admit any solution except for $\boldsymbol{\mu} \equiv 0$, in which case we are led back to the general solution Eq. (5). Only $\eta=0$ satisfies the constraint (8).

Now we come to the crucial observation that allows us to apply Aubin's result in general:

Lemma. The functional $S[\eta]$ is invariant under the transformations

$$
\begin{equation*}
\eta \rightarrow\left(T_{g} \eta\right)(\xi)=\eta\left(g^{-1} \xi\right)+\chi\left(g^{-1}, \xi\right), \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
g \xi=\frac{\alpha \xi+\beta}{\gamma \xi+\delta}, \quad g=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C}) \tag{15}\\
\chi(g, \xi)=2 \ln \frac{1+|\xi|^{2}}{|\alpha \xi+\beta|^{2}+|\gamma \xi+\delta|^{2}} \tag{16}
\end{gather*}
$$

A direct proof is not difficult, but it is rather cumbersome and not particularly enlightening. It is preferable to rely on the link between $S[\eta]$ and the Laplacian [Eq. (1)] and realize that $\operatorname{SL}(2, \mathbb{C})$ is the largest connected group of conformal
transformations of S^{2} onto itself, Eq. (14) giving the transformation rule for η. The spectrum of the Laplacian is clearly the same for η and $T_{g} \eta$.

Now, without changing the value of $S[\eta]$, we can look for a $g \in \operatorname{SL}(2, \mathbb{C})$ such that Eq. (8) is satisfied by $T_{g} \eta$. If such a g exists then, by Eq. (11),

$$
\begin{equation*}
S[\eta]=S\left[T_{g} \eta\right] \geqq 0 \tag{17}
\end{equation*}
$$

and $S[\eta]=0 \Rightarrow T_{g} \eta=0$ for some g, which is the assertion of the theorem. So everything is reduced to the problem of finding a root of the equation

$$
\begin{equation*}
\int e^{\left(T_{g} \eta\right)(\xi)} \mathbf{x}(\xi) d \mu_{0}=0 \tag{18}
\end{equation*}
$$

A simple topological argument will show that such a root actually exists, and the proof of the theorem will be complete. By inserting the definition of $T_{g} \eta$ and changing the integration variable to $g^{-1} \xi$, we get the equation

$$
\begin{equation*}
\int e^{\eta(\xi)} \mathbf{x}(g \xi) d \mu_{0}=0, \tag{19}
\end{equation*}
$$

where g is the unknown. The function

$$
\begin{equation*}
\mathfrak{X}(g)=\int e^{\eta(\xi)} \mathbf{x}(g \xi) d \mu_{0} \tag{20}
\end{equation*}
$$

defines a continuous map $\mathfrak{X}: \operatorname{SL}(2, \mathbb{C}) \rightarrow \mathbb{R}^{3}$ the image being contained in the unit ball $\|\mathfrak{X}\|<1$. For any $\lambda>1$ let \mathfrak{B}_{λ} denote a sphere in $\operatorname{SL}(2, \mathbb{C})$ defined by

$$
\mathfrak{B}_{\lambda}=\left\{g \in \operatorname{SL}(2, \mathbb{C}) \left\lvert\, g=u\left(\begin{array}{cc}
\lambda & 0 \tag{21}\\
0 & \lambda^{-1}
\end{array}\right) u^{\dagger}\right., u \in \operatorname{SU}(2)\right\} .
$$

If λ is taken sufficiently large the image of \mathfrak{B}_{λ} under the map \mathfrak{X} is close to the sphere $\|\mathfrak{X}\|=1$; in fact,

$$
\mathbf{x}\left(u\left(\begin{array}{lc}
\lambda & 0 \tag{22}\\
0 & \lambda^{-1}
\end{array}\right) u^{\dagger} \xi\right)=\mathscr{D}(u) \mathbf{x}\left(\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) u^{\dagger} \xi\right),
$$

$\mathscr{D}: \mathrm{SU}(2) \rightarrow 0(3)$ being the three-dimensional representation of $\mathrm{SU}(2)$; but

$$
\lim _{\lambda \rightarrow+\infty} \mathbf{x}\left(\lambda^{2}\left(u^{\dagger} \xi\right)\right)=\left(\begin{array}{l}
0 \tag{23}\\
0 \\
1
\end{array}\right)
$$

except for a set of measure zero $\left(u^{\dagger} \xi=0\right)$ which does not contribute to the integral. Hence

$$
\lim _{\lambda \rightarrow+\infty} \mathfrak{X}\left(u\left(\begin{array}{cc}
\lambda & 0 \tag{24}\\
0 & \lambda^{-1}
\end{array}\right) u^{\dagger}\right)=\mathscr{D}(u)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

This shows that for sufficiently large λ the map $\mathfrak{X}: \mathfrak{B}_{\lambda} \rightarrow \mathbb{R}^{3}-\{0\}$ is homotopically non-trivial. Since \mathfrak{B}_{λ} is contractible (it shrinks to the identity as $\lambda \rightarrow 1$) this implies the existence of a root. [A similar argument holds in a much more general setting (Gluck [8]).]

3. Concluding Remarks

We have shown that the action functional introduced in [1] in the context of Polyakov's theory of random surfaces [9] is indeed bounded from below and attains its absolute minimum at the "classical solutions" Eq. (5). Let us recall that the symmetry of $S[\eta]$ under conformal transformations is a reflection of the fact that Polyakov's "gauge choice" $g_{a b}=\rho \delta_{a b}$ does not completely fix the gauge in the case of simply connected surfaces. Our result shows that the residual gauge freedom can be consistently eliminated by imposing the additional constraint $\int e^{\eta} \mathbf{x} d \mu_{0}=0$, which near $\eta=0$ reduces to the condition that η be orthogonal to the zero modes. All these problems are peculiar of the simply connected surfaces. For surfaces with Euler characteristic $\chi \leqq 0$ there is no residual gauge freedom, no zero modes and the effective action is manifestly positive definite.

From a mathematical point of view, we have obtained the best constant in the Moser-Trudinger inequality, which now reads

$$
\begin{equation*}
\int_{S^{2}} e^{\psi} \frac{d \mu_{0}}{4 \pi} \leqq \exp \left\{\frac{1}{4 \pi} \int_{S^{2}}\left[\psi+\frac{1}{4}\left|\nabla_{0} \psi\right|^{2}\right] d \mu_{0}\right\} \tag{25}
\end{equation*}
$$

If ψ is independent of ϕ, this reduces to the elementary inequality

$$
\begin{equation*}
\int_{0}^{1} e^{\psi(t)} d t \leqq \exp \left\{\int_{0}^{1} \psi(t) d t+\frac{1}{4} \int_{0}^{1} t(1-t) \psi^{\prime}(t)^{2} d t\right\} \tag{26}
\end{equation*}
$$

the equality sign implying

$$
\begin{equation*}
\psi(t)=\ln \left[\frac{c_{1}}{\left(1+c_{2} t\right)^{2}}\right],\left(c_{1}>0, c_{2}>-1\right) \tag{27}
\end{equation*}
$$

The inequality (26) is "complementary" to the arithmetic-geometric-mean inequality [10].

Finally, the result of the theorem implies the following bound on the spectrum of Δ, which does not seem to have been noticed previously

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{\lambda_{k}}{\lambda_{k}^{0}}=e^{-S[\eta]} \leqq 1 \tag{28}
\end{equation*}
$$

the bound being saturated only by the standard metric (up to isometries).

Acknowledgements. The content of the paper is a corollary to a joint paper with M. Virasoro, whose constant encouragement is gratefully acknowledged. I warmly thank T. Aubin and J. Moser for useful correspondence and the CERN Theory Division for the kind hospitality in the years 1981-82.

References

1. Onofri, E., Virasoro, M. : Nucl. Phys. B201, 159-175 (1982)
2. Berger, M. S. : J. Diff. Geom. 5, 325-332 (1971)
3. Moser, J. : Indiana Univ. Math. J. 20 (11), 1077-1092 (1971)
4. Moser, J.: On a non-linear problem in differential geometry. In: Dynamical Systems, Peixoto, M. M. (ed.) New York: Academic Press Inc., 1973 pp. 273-280
5. Aubin, T.: J. Funct. Anal. 32, 148-174 (1979)
6. Berger, M. S.: Non-linearity and functional analysis. New York: Academic Press Inc., 1977, Chap. 6 and references therein
7. Kazdan, J. L., Warner, F. W.: Ann. Math. 99, 14-47 (1974)
8. Gluck, H.: Bull. Am. Math. Soc. 81, 313-329 (1975)
9. Polyakov, A. M.: Phys. Lett. 103B, 207-210 (1981)
10. Hardy, H. G., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge: Cambridge University Press, 2nd edn. 1952

Communicated by R. Stora
Received April 7, 1982

[^0]: * On leave from: Istituto di Fisica dell'Università di Parma, Sezione di Fisica Teorica, Parma, Italy

