
Communications in
Commun. Math. Phys. 86, 321-326 (1982) Mathematical

Physics
© Springer-Verlag 1982

On the Positivity of the Effective Action
in a Theory of Random Surfaces
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Abstract. It is shown that the functional S[rβ = i k ί d l ^ l 2 + 2η)dμθ9 defined
on C0 0 functions on the two-dimensional sphere, satisfies the inequality S\_η~] ^ 0
if η is subject to the constraint \(eη — ΐ)dμ0 = 0. The minimum S [*/]== 0 is at-
tained at the solutions of the Euler-Lagrange equations. The proof is based on
a sharper version of Moser-Trudinger's inequality (due to Aubin) which holds
under the additional constraint $eηxdμo = 0; this condition can always be
satisfied by exploiting the invariance of Slη'] under the conformal transfor-
mations of S2. The result is relevant for a recently proposed formulation of a
theory of random surfaces.

1. Introduction

Let ds2 =eηdsl denote a Riemannian metric on the two-dimensional sphere S2,
conformal to the standard metric dsl — dθ2 + sin2 θdφ2. The points of S2 will be
parametrized, as usual, by a unit vector x, by polar co-ordinates (0, φ) or by a
complex variable ξ, related to x by stereographic projection, i.e., ξ = cot f eιφ = (xί

+ ix2/ί ~ xs) The conformal factor eη is assumed to be C00. Let A = e~ηΔ0 be the
Laplace-Beltrami operator associated to ds2 and let 0 = λ0 <λ1 ̂  λ2 ̂  . . . ^
λn rg .. . ^ oo be the spectrum of — A (Ao and {λ®} will denote the corresponding
objects belonging to dsl).

It was shown in Ref. [1] that the limit

exists provided that eη is normalized, i.e.,

J 0, (2)
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where dμ0 = sin Θ dθ A dφ. A closed expression for S[η] was obtained, namely

^ (3)

lwhere Vo is the covariant gradient with respect to dsl, i.e.

(4)
dθ! v ; \dφ

The Euler-Lagrange equation for SQ7] under the constraint Eq. (2) has the
simple geometrical meaning that the metric eηdsl has constant curvature. It follows
that the general solution, giving all the stationary points of S\_η] is the following:

where g = (<x

y ^)eSL(2, C),n is a unit vector and τe(0, + 00). Here S[rj] vanishes at ηg

0)

and its expansion around any of these stationary points has a positive semi-definite
quadratic part, hence Eq. (5) gives indeed the local minima of S[_ή]. Since S[f/] is
interpreted as the classical action of the field η(ξ\ it is important to know whether
η{

g

0) are merely local minima (metastable states) or whether they are indeed the
absolute minima of S[f/]. The problem is less trivial than it might appear at first
sight, actually its solution requires some tools from non-linear analysis which are far
from trivial.

The answer turns out to be very simple, however, as given by the following

Theorem. S[rj^ is positive semi-definite under the constraint §(eη — i)dμo = 0 and
S[rβ = 0 implies η = ηg

0) for some #eSL(2, C).

2. Proof of the Main Theorem

The proof of the theorem makes essential use of an "exponential" Sobolev inequality
due to Aubin, combined with the invariance of S[η~] under conformal
transformations.

Let us dispose of the constraint [Eq. (2)] by introducing

η = φ-\nϊ^ (6)

(φ is defined up to an additive constant, which we may fix by requiring
j ψdμ0 = 0, but this will not be necessary). The unconstrained functional is now

iί{ilVo^|2 + ̂ - i l n K ^ ; (7)

which was introduced long ago in a purely geometrical context [2]. It was shown by
Moser [3] that S\_η~] is bounded from below by some absolute constant. A sharper
version of the inequality may hold, however, under additional constraints on ψ such
as a parity condition [4] \j/(x) = φ(— x). More generally, Aubin [5] proved that if φ
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satisfies

(8)

then

^ j ^ ^ J (9)
for any ε > 0 and some constant C(ε). Since the coefficient in the exponential is now
I + ε < ^, it follows that

Q ^ ^ (10)

Under these circumstances it is known that the ίnfimum ofS is actually attained at the
solutions of Euler-Lagrange equation (see Aubin [5] for details on this point and
Berger [6] for the general theory).

At this point, provided η satisfies the additional constraint (8), one has the sharp
inequality

ί = ° (11)

In fact the Euler-Lagrange equation under the constraints (2) and (8) is

= λeη + μ'xeη. (12)

By integrating over S2 one finds λ = 2. It is also known (Kazdan and Warner [7])
that the equation

Δoη = 2-(2 + μ'xW (13)

does not admit any solution except for μ = 0, in which case we are led back to the
general solution Eq. (5). Only η =0 satisfies the constraint (8).

Now we come to the crucial observation that allows us to apply Aubin's result in
general:

Lemma. The functional S\_η^\ is invariant under the transformations

η^(Tgη)(ξ) = η(g-1ξ) + χ(g-\ξ), (14)

where

ί fϋ(;ΣW

A direct proof is not difficult, but it is rather cumbersome and not particularly
enlightening. It is preferable to rely on the link between £[/?] and the Laplacian [Eq.
(1)] and realize that SL(2, C) is the largest connected group of conformal
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transformations of S2 onto itself, Eq. (14) giving the transformation rule for η. The
spectrum of the Laplacian is clearly the same for η and Tgη.

Now, without changing the value of S M , we can look for a geSL(2, C) such that
Eq. (8) is satisfied by Tgη. If such a g exists then, by Eq. (11),

]̂ 0, (17)

and S[η] = 0^>Tgη = 0 for some g, which is the assertion of the theorem. So
everything is reduced to the problem of finding a root of the equation

$eiτ'η)<ξ)x(ξ)dμ0=0. (18)

A simple topological argument will show that such a root actually exists, and the
proof of the theorem will be complete. By inserting the definition of Tgη and
changing the integration variable to g "* ξ, we get the equation

ξ)dμo = 0, (19)

where g is the unknown. The function

$*! (20)

defines a continuous map X: SL(2, C) —• U3 the image being contained in the unit ball
< 1. For any λ > 1 let 93λ denote a sphere in SL(2, C) defined by

(21)

If λ is taken sufficiently large the image of 93 λ under the map X is close to the sphere
|| 11| = 1 in fact,

S>:SU(2)->0(3) being the three-dimensional representation of SU(2); but

lim x ( i V Q ) = 0 (23)

except for a set of measure zero (i/ξ = 0) which does not contribute to the integral.
Hence

(24)

This shows that for sufficiently large λ the map JE:9?A -• U3 — {0} is homotopically
non-trivial. Since 93A is contractible (it shrinks to the identity as λ-> 1) this implies
the existence of a root. [A similar argument holds in a much more general setting
(Gluck [8]).]
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3. Concluding Remarks

We have shown that the action functional introduced in [1] in the context of
Polyakov's theory of random surfaces [9] is indeed bounded from below and attains
its absolute minimum at the "classical solutions" Eq. (5). Let us recall that the
symmetry of S[η^ under conformal transformations is a reflection of the fact that
Polyakov's "gauge choice" gab = pδab does not completely fix the gauge in the case of
simply connected surfaces. Our result shows that the residual gauge freedom can be
consistently eliminated by imposing the additional constraint §eηxdμ0 = 0, which
near η = 0 reduces to the condition that η be orthogonal to the zero modes. All these
problems are peculiar of the simply connected surfaces. For surfaces with Euler
characteristic χ ^ 0 there is no residual gauge freedom, no zero modes and the
effective action is manifestly positive definite.

From a mathematical point of view, we have obtained the best constant in the
Moser-Trudinger inequality, which now reads

(25)

If φ is independent of φ9 this reduces to the elementary inequality

]e™dt Z expί j ψ(t)dt + \\ ί(l - t)ψ'(t)2dt}9 (26)

the equality sign implying

w^h>o- c2>- 1). (27)

The inequality (26) is "complementary" to the arithmetic-geometric-mean in-
equality [10].

Finally, the result of the theorem implies the following bound on the spectrum of
A, which does not seem to have been noticed previously

lim f[ ^ = e~S[η]^l (28)
n -> oo k = 1 *-k

the bound being saturated only by the standard metric (up to isometries).
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