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The Existence of a Non-Minimal Solution
to the SU(2) Yang-Mills-Higgs Equations on IR3: Part II
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Abstract. This paper proves that there exists a finite action solution to the
SU(2) Yang-Mills-Higgs equations on R 3 in the BogomoΓnyi-Prasad-
Sommerfield limit which is not a solution to the first order BogonoΓnyi
equations. The existence is established using Ljusternik-Snirelman theory on
non-contractible loops in the configuration space.

I. Introduction

In the first paper in this series ([1], to be referred to as Part I), the author stated the
following theorem:

Theorem 1.1. There exists a smooth, finite action solution to the SU(2) Yang-Mills-
Higgs equations in the BogomoΓnyi-Prasad-Sommerfield limit which does not satisfy
the first order Bogomoΐnyi equations.

This sequel to Part I contains the proof of Theorem 1.1. The reader is referred
to Sects. 1.2,3 for an introduction to Yang-Mills-Higgs theory. These sections also
define the author's terminology and notation.

The proof of Theorem 1.1 is an application of Ljusternik-Snirelman theory on
the space of finite action field configurations with monopole number zero (denoted
# 0 ) . Part I established that a solution to the Yang-Mills-Higgs equations (1.2.2,3)
with non-zero action exists in ^ 0 if there exists k > 0, and a non-trivial generator
eeΠk(Msips((S2,n)'9(S2

9n)9e^) such that

inf ίsup^(c(jθ)l<8π. (1.1)
c(y)eΛ(e) [yeS* j

Such a solution cannot satisfy the BogomoPnyi equations (1.2.6). It is the purpose
of this paper to establish that the above criteria is satisfied and Sects. 2-5 prove
that (1.1) is satisfied for the generator of 771 (Maps((S2,n);(S2,ri)),e%). It is also
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proved in Sects. 4-5, Theorem 4.4, that the only solutions to Eqs. (1.2.2,3) in #
which are local minima of (cf. Def. 4.3) are the solutions to the BogomoΓnyi
equations (1.2.6). The full proof of Theorem 1.1 is exhibited in Sect. 6.

II. The Trial Loop

This section and Sects. 3-5 investigate in detail the behavior of the action
functional on loops in Λ(e), where e is the generator of 171 (Maps ((S2, n) (S2, n)\ e^).
The result is the following theorem:

Theorem 2.1. Let e be the generator of Π^M&psdS2 ;ή),(S2, ή)\e^). There exists a
loop c(y)eΛ(e) with sup^(c(y))<8π.

The loop c(y) in Theorem 2.1 represents the following physical procedure:
Create a monopole, anti-monopole pair from the vacuum (the configuration
(0, — ̂ σ3)). Separate them a distance d9 and then rotate the monopole with respect
to the anti-monopole by 2π about their common axis. Finally, bring them together
again. The action remains less than 8π due to the fact that monopoles and anti-
monopoles attract.

To begin, consider H^MapsftS2, n) (S2, n)\ e^). Let {σf}?= x be a basis for <^(2)
such that σ V ^ - ^ - ε ^ V , (σ\σJ) = 4δij. Let S be the interval [0, 2π] with
endpoints identified. Define e(ί;Jc)eC°((S,{0}); (Maps^ 2;^);^ 2,^)),^)) by

e(t,x) = — §(cos20 + s in 2 0cos ί )σ 3 +|s in0cos0( l- cos^^osc^σ 1+sin0σ 2)

+ \smθsmt(cosφσ2 — smφσx). (2.1)

Here (θ, φ) are spherical coordinates.

Lemma 2.2. The map e(t;x) is a generator c>//71(Maps((S'2,n);(S2,ή)),ej.

Proof of Lemma 2.2. The groups Π3(S2,n) and iT^Maps^2,^);^2,^)),^) are
2isomorphic. The Hopf map H: SU(2)->S2 generates Π3(S2,n). Represent a point

geSU(2) by the unitary matrix

g(χ, θ, φ) = cos χ + sin χ(cos θσ3 — sin θ(cos φσ1 + sin φσ2)),

for χe[0,π]. Then H(g) = -\ga3g-γeS2 and e(t;θ,φ) = H(g{t/2,θ9φ)).
As described in Sect. 1.4, the map e(t) defines a noncontractible loop

For convenience, the notation of Sect. 1.4 will be changed. Let S1 denote the
interval [ — π, 3π] with endpoints identified. With this change, the construction of
Sect. 1.4 yields

c(e)(t) =

ίe[-π,O];

(1 - β(x)) ( - [_e{t jc), άe(t x)], e(t9 x))9 te [0,2π] (2.2)

/, KJ ,, ίe[3π,2π].
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The loop c(e)(t)ΞΞco(t) = (Ao(t)9Φo(t)) is a generator of Π^^cJ.

Proof of Theorem 2.1. The multi-step procedure, below, establishes the theorem.
(1) A loop a(t) = {A(t\ Φ(ί))eC°([0,2π] ;^ 0 ) is constructed in this section,

which has α(0) = a(2π) ( φ cj and satisfies lim Φ(t x)-+e(t x), uniformly in ί. The
|x|->oo

loop a(f) and its properties are summarized in Definition 2.3 and Proposition 2.4.
(2) In Sect. 3, a loop fc(ί)eC°([0,2π] ; # 0 ) is constructed from a(ί) which

satisfies Statements (l)-(3) of Definition 1.4.1 for ίe[0,2π]. In addition, b(0) = b(2π)
and sup a(b(t))<8π. This is Proposition 3.1.

ίe[0, 2π]

(3) It is established in Sects. 4 and 5 that there exists a path d(t)e C°([0, π], # 0 )
such that: (a) d(O) = h(O). (b) d(π) = g(0, - | σ 3 ) , where # e ^ and | # - 1| has compact
support, (c) sup a(d(f))<iπ. (d) g~1d(-t\ ί e [ - π , 0 ] , and g~xd{t-2π\

ίe[0,π]

ίe [2π, 3π] satisfy Statements (l)-(3) of Definition 1.4.1 in their respective domains
of definition. This is Proposition 4.2.

(4) Then the loop

|VM-ί), ίe[-π,0],

-^ίί), ίe[0,2π], (2.3)

~ 1 (i(3π-ί), ίe[2π,3π],

c(ί)) < 8π.

Construction of the Loop a(t). To simplify the construction, some coordinate
systems are needed. Let (xvx2,x3) be the cartesian coordinates on IR3 centered at
0. Let (r,θ,φ) be the spherical coordinates centered at 0, so r = \x\ and
θ = Arc cos(x3/|x|). Define xd = (0,0, d) and let (5, ω, φ) be the spherical coordinates,
centered at xd so 5 = \x — xd\ and

ω = Arccos((x-x d ) 3 /|x-x d | ) .

Also needed are the cut-off functions βR(x) = β(x/R\ and βR(x) = β((x — xd)/R),
where β(x) is given in Eq. (1.3.4).

The loop a(t) is presented by giving the following data: (1) An open cover
IR3 = L/ί=17α, (2) Transition functions gaβeCco(Sx(VanVβ);S\J(2)l which satisfy
the appropriate cocycle conditions, (3) Configurations aaeCco(S;Γ(A)@Γ(g))vJ
which satisfy aa = gaβ aβ in S x (Van Vβ).

Definition23. The loop a{t) = (A(t\Φ(ή): For teS, R>2, and d^ZR, define
fl(ί) = α(ί R, d) as follows:

I) The open cover {Va=Va(R)}:

and (\x-xd\>R) and ίθ< | j and (ω>3π/4)J,

F4= IxelR^dx^K) and φ c - x j ^ ) and either (0>π/8) or f ω < ^ ) l (2.4a)
I \ I)
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The cover is drawn schematically in the plane x2 = 0 below:

SxV2: Φ2(t)= -h( —

A2(t) = - (1 — βγ) (1 — cosθ) [ — cosωσ3 + smωσ2~]dφ

(2.4b)

II) The transition functions: In

S x

( S
ί x(F 1 nF 3 ): g13(ί) = cos0/2

5 x ( F 2 n F 3 ) : g23(ί) = sinω/2-cosω/2σ2,

where

σ1 =cosφσ1 -\-sinφσ2 and σ2 = cos0σ 2 —sin^σ 1. (2.5)

III) The configurations: Define first

(2.6)

αβ(ί) = Uα(ί),Φα(ί)).Thenin

SxV±: μ 4 (t),Φ 4 (t))= ^ ( c o s ω - c o s θ ) σ 3 J χ ^ / ί σ 3 j . (2.7a)

Sx F3: (A3(t\Φ3{t))= (hi + cosω-cosθ)σ3dχ,-hσA. (2.7b)

1 [sin2ωσ3dφ — σ2 dω +sin ω cos ωσ1dφ'] . (2.7c)
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SxVt: Φί(t)= -h[cosθσ3 + sinθ(costσ1 +sintσ2)~],

A1{t)= - ( 1 - ̂ 1 )( l+cosω)[cosθσ 3 + sinθ(cosίσ1 + sintσ2)~]dφ

1 / r \
+ -U-βR^-r-1 [sin2θσ3dφ + (costσ 2- sintσ^dθ

- sin θ cos 0(cos tσ1 + sin tσ2)dφ~]. (2.7d)

Loosely speaking α(ί) represents the Prasad-Sommerfield [2] fc= —1 solution
centered at χd, and with a ί-dependent rotation, the k = 1 solution centered at x 0

[see Eq. (3.13)].

Proposition 2.4. Let {aoc(t\gaβ(t),Va}^β=1 be given by Definition 2.3. This data is
smooth in the domain of definition. There exist gauge transformations

{/α(ί)eC°°(SxFα;SU(2))}α

4

=1

such that: (1) fa(t)aa(ή is smooth in S x Va. (2) InSx (Van Vβ), faaa = fβaβ. (3) The loop
a{t\ defined to be fa(t)aa(t) onSxVa is in C°(S, «Ό). (4) With a(ή = {A(t\ Φ{t)) and e(t)
given by Eq. (9.1), lim Φ(ί x)—>e(ί;x) uniformly in t for ίe[0,2π].

\x\->co

Proof of Proposition 2.4. It is left to the reader to verify the cocycle conditions for
(αα, gaβ). As for the smoothness, consider first α4. The only possible trouble is on the
set ({ω = π}n{ω = 0})u{xd, 0}, and this set does not intersect F4. For the same
reason the transition functions g4V g 4 2, and g43 are smooth. Next examine α3. The
only question arises near the x3-axis, where cosω= — l+0( |ω — π|2) and cosθ
= 1 +0(|θ|2). Thus A3(t) = 0 on the x3-axis, and is smooth there. Also, in V3, sinθ/2
= 0 + 0(\θ\) and cosω/2 = 0 + 0(|π — ω|) so both gί3 and g23 are smooth as well.
Consider a2 in S x V2. The function h is 0(|x — xd\

2) as x^xd, so Φ2{t) is smooth. As
for A2{t\ the first bracket is smooth as (1 —cosθ) is 0(|θ|2) near the ray θ = 0 and
near χd, (1 — J S J Ξ O . The second term, aside from the factor βR which plays no role
here, is the smooth Prasad-Sommerfield solution ([3], IV.1.15 and Eq. (3.13)) in
spherical coordinates. The smoothness is guaranteed by the fact that (1 — s/sinhs)
is 0(s2) as s-»0. The analysis of α1(ί) in S x V1 is similar.

The data {S x Va;gaβ} defines a C00 principal SU(2) bundle over S x 1R3. Every
such bundle is C00 isomorphic to S x 1R3 x SU(2). This implies the existence of/α's
satisfying statements (1) and (2) of Proposition 2.4.

Note that \Φ(t)\ = his gauge invariant, and the lim h = l. Therefore, Eq. (1.2.3)
|x|->oo

is satisfied uniformly with teS. As for the action, a(a(t)) is finite for each teS. This
calculation is done in Proposition 3.2. As ^( ) is ^-invariant, one can conclude
from (2.7a) that the ί-dependence oϊa(a(t)) is due to the variations of the fields over
a bounded set. Therefore a(a(t)) is a continuous function of t.

The conclusion is that α(ί)eC°(S;^) given the topology of Definition 1.2.1, and
so Statement (3) of Proposition 2.4 is satisfied.

Proof of Statement 4 of Proposition 2.4. The straightforward proof of this statement
is to explicitly construct the {/α}^=1 of Statements (l)-(3) of Proposition 2.4.
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Let l(x), J(x) be smooth cut-off functions, 0 = IJ = 1 and (1) / = 1 (Γ= 1) if x3 < d/4

— ,x 3 > — , (2) / = 0 (Γ=0) if x3>d/2 (x3<d/2). Schematically

7 = 1 χd 1 = 0

(2.8)

Γ=o o ι=ι

In S x F3, define

q3 = [sin(π/2 + Γ(ω/2 - π/2)) - cos(π/2 + ί(ω/2 - π/2))σ2]

. (2.9a)

For α Φ 3, define on SxVa the matrix

qa=l. (2.9b)

The gauge transformation q3eCco(S x V3 SU(2)). Indeed, the only questionable set
is the x3-axis. As

cos (π/2 + T(ω/2 - π/2)) - Θ(\ω - π|)

near ω = π and sin(lθ/2)~Θ(\θ\) near 0 = 0, there are no singularities.
Gauge transforming αα by qa on each iS x Fα, α = 1, ...,4, one obtains

aa{t) = qa{t)aa{t), (2.10)

and άα(ί)eC°°(S;Γ(yl)ΘΓ(^VJ). By construction,

Due to (9.10,11) and the cocycle conditions,

51(ί) = 53(ί) on 5 x ( F 1 n F 3 ) and 52(ί) = 53(ί) on S x ^ n K j ) . (2.12)

Let V=V1nV2nV3 and define

ί
άjίί x) for xeVί9

a2(t;x) for x e F 2 , (2.13)

a3(t;x) for x e F 3 .
It follows from (2.12) that ά5(t;x)eC°(S;Γ(A)®Γ(#)\Vs).

, The base manifold IR3 = F 4 u F 5 . The configuration a(t) of Proposition 2.4 is
represented by the data: {(Sx V4,Sx V5),g45,(a4,ά5)}, where on Sx(V4nV5),

g45 = (cosφ + sinφσ3)q3

1, and a4 = g45a5. (2.14)

The fact that # 4 5eC°°(Sx(F 4nF 5);SU(2)) is apparent if one knows that

(1) (cos/ + sinχσ3)σί = σ ί, ^ = 1,2.

(2) cos(π/2 + Γ(ω/2-π/2)) is Θ(\ω-π\) near ω = π. (2.15)
(3) sin(/θ/2) is Θ(\θ\) near 0 = 0.
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Consider the following gauge transformation in C°°(Sx S2;SU(2)):

fA(t; x) = - (cos2 θ/2 + cos t sin2 θ/2)σ2 + sin2 θ/2 sin tσ1

+ l/2sinθ[(l — cosί)(cos0 — sinφσ3) — sinί(cosφσ3 + sinφ)] . (2.16)

A short calculation reveals that

i/XΛ"1^;*), (2.17)

where e(t; x) is given in (9.1). The significance of/4 is given by

Lemma 2.5. Statement (4) of Proposition 2.4 is true if there exists a smooth gauge
transformation f4e C^iS x F;SU(2)) which satisfies

(1) F o r x e F 4 n { x e R 3 : | ; c | < 4 d } ? Ut;x) = g^5\t;x)9 (2.18a)

(2) For xe{xeIR3 : |x |>16d}, /4(ί x) =/ 4(ί x). (2.18b)

Proof of Lemma 2.5. Given such an /4, set a4_ = f4a4 for xeF 4 , and a5 = a5 for
XE V5. Because of (9.18a), one can define the loop a{t) by

for

for

and α(ί)eC°(S;#0). Using (2.7a) and (2.18b), one obtains that the

lim Φ(t;x)= lim h(x)f4(^σ3)f^1 = e(t x).
|x|->oo |x|->oo

Because f4it;x) = f4{t;x) for |x|>16rf, this limit is uniform in t. Therefore,
Eq. (9.18) implies Statement (4) of Proposition 2.4, as claimed.

The construction of/4 satisfying (9.18) is straightforward. Let β(x) be the cut-
off function of (1.3.4). The polar angle ω(x) is uniquely defined, for |x| ^4d by

ω(x) = Arc cos —^ .
\x-xd\

Define for \x\^4d
V - Λ ' W β / / U

 (2.l9)

Then ώ is smooth in F4 and if |x|<4d, ώ = ω and if |x |^8d, ώ = θ.
Define smooth functions ψ, ψ on F4 by

ψ(x) = β{x/16d)lθ + [1 - β(χ/16dϊ]θ9

ψ(x) = β(x/16d) (π + Γ(ώ(x) - π)) + (1 - β(x/16d))θ. (2.20)

The following facts are useful: In F4,

(1) If |x|>16d, ψ(χ) = ψ(χ) = θ.

(2) If |x| < 8d, ψ(x) = l(x)θ9 and ψ(x) = π + T(ώ(x) - π).

(3) If θ = ω = 0, xp(x) = ψ(x) = 0 and both vanish as 0(|#|2) as Θ-+0.

(4) If θ = ω = π, ψ(x) = xp(x) = π and both approach π as 0(|π — θ\2) as θ->π.
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Consider the following map from S x F4 into SU(2):

/4(t x) = [sin^φ — cos^φσ2] [cos^tp — sin^ψ(cos tσ2 — sinίσ1)] [cosφ — sin φσ 3 ] .
(2.22a)

By doing the matrix multiplication in (2.22a), one has

/4(ί x) = sinfφ cosf ιp(cos φ — sin φσ3) — cos |φ cos^φσ2

— sin^i/;sin^φ(cosίσ2 — sinίσ1)

+ cosfi/j sin^t/;( — cos ί(cos0 — sinφσ3) — sinί(cosφσ3 -f sin</>)). (2.22b)

The only points where / 4 is not clearly C00 are those along the x3-axis in F4.
But it follows from (3) and (4) of (2.21) that near the x3-axis, / 4 behaves as

\ sin θ(cos φ — sin φσ3) + σ2 + \ sin 0( — cos ί(cos φ — sin φσ3)

— sin ί(cos 0σ 3 + sin φ)) + smooth terms

and f4(t;x)eCco(Sx F4;SU(2)). Because ψ9 ψ = θ for \x\>16d9 /4(ί;x) as given
in (2.22b) is equal to f4 of (2.17). Because ψ = lθ and t/J = π + /(ω — π) for |x|<4d,
/4(ί, x) as given in (2.22a) is equal to g45

λ of (2.14). Appealing to Lemma 2.5 es-
tablishes Proposition 2.3.

III. Action Estimates

The proof of Theorem 2.1 requires that the loop a(t) of Definition 2.3 be modified.
The changes make the behavior at large |x| on 1R3 better without affecting the
asymptotic limit of the Higgs field. The resulting loop, b(ί)eC°(S;#), has the
following properties:

Proposition 3.1. Let c(e)(t) = (A0(t),Φ0(t)) be the configuration in Eq. (2.2). There
exists a loop b(t) = {Λ0(ή + ω(ί), Φ0(t) + η(t))e C°(S # 0 ) which satisfies
(1) sup^(fo(ί))<8π, (2) (ω(t)9η(t))eΓ((p®T*)®p) satisfy Statements (l)-(3) o/

teS

Definition II.4.1 for te [0,2π].

The proof of Statement (1) of Proposition 3.1 requires that <a(a(t)) be bounded
by 8π also. The precise bound is given in the next proposition:

Proposition 3.2. Let a(t R, d) be the loop of Definition 2.3. One can choose R>2 and
d>4R so that

sup a(a(t R9 d)) < 8π(l - d~1 +d~3/2) < 8π.
tsS

Proof of Proposition 3.1, assuming Proposition 3.2. Choose R and d so that a(t R, d)
satisfies a(a(t))<&π — δ for some ^ > 0 and all teS. Write a(t) = (Λ(t\Φ(t)). Let
U = {xeIR3 :|x| > 16d}. By construction [cf. Lemma 2.5 and Eq. (2.6)], when xe U,

Φ(t;x)-e(t;x) = ±(h-l)e(t;x). (3.1)

Define

η(t;x) = Φ(t;x)-Φ0(t;x), (3.2)



Non-Self-Dual Gauge Fields. II 307

with Φo given by (2.2). Then in U

\η(t x)| ^ constant \x\~1, (3.3)

and η(t x) satisfies Statement (2) of Definition 1.4.2.
It follows from (3.1) that in U,

Φ(t;x)/\Φ(t;x)\ = e(t;x). (3.4)

With A0(t) given by (2.2),

(VAoit)e(t))(x) = 0mU. (3.5)

Thus, using (3.1), (3.2), and (3.5) one finds that

VΛoit)η(t) = dh Φo(t;x)m U. (3.6)

Computing \dh\, one obtains from (3.6) that

and therefore Statement (3) of Definition 1.4.1 is satisfied by (A(t), Φ(ή).
The difference, A(t) — A0(t), does not satisfy Statement (1) of Definition 1.4.1.

Fortunately, A(t) can be altered in such a way that the result satisfies both
Statement (1) of Definition 1.4.1, and the action estimate for a(t), with δ/2 replacing
δ. Using (2.7a) and Lemma 2.5, one finds that in SxU, VA(t)Φo(t) = 0. By
construction, VAoit)Φ0(ή = Q in SxU too, so

\_A(t\ Φ0(ί)] = [A0(ή, ΦoW] i n U. (3.7)

The conclusion is that AL(t) = A(t) — A0(t) commutes with Φ0(t).
The decay of A(t) and AL(t) is estimated by the following device: Observe first

that a4(t) = (A4(t\Φ4_(ή) as given by (2.7a) satisfies

|v44(ί)|^ constant Ί x Γ 1 ,

I VA^t)\^ constant |x | " 2 for teS and xeU. (3.8)

The gauge transformation /4(ί) of Lemma 2.5 is a function only of t and the
spherical angles (0, φ) in S x U. As a consequence of this and (3.8),

\A\ = \f4AJ~' +fjf~ *| ̂  const |xΓ1,

|Fyl|^const |xΓ2 for teS and xeU. (3.9)

By construction, A0(t) satisfies the uniform bounds of Eq. (3.9) too. Therefore AL(t)
also satisfies the bounds of Eq. (3.9).

Let ρ>32d. Define

= A{t)-(l-β{x/ρ))AL{t)9 (3.10)
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where β(x) is the cut-off function of (1.3.4). The connection B(t) satisfies

(1) ω(ή = B(t)-A0(t)eΓc({xelR3:\x\<ρ};?(g)T*),

(2) VmΦ(t)=VAit)Φ(t),

(3) ίoτ\x\<ρ/2,Fm = FΛit)9

(4) ϊoτ \x\>ρ/29\Fm-FΛit)\£z'\x
where z is independent of teS and ρ.

(5) Let b(t) = (B(t\Φ(ή). Then M ^ W ) - ^ ) ) ! ^ ' ^ 1 ,
where zx is independent of teS and ρ.

It follows from (3.11) that for ρ sufficiently large, Statements (l)-(3) of
Definition 1.4.1 hold for b(t) = (B{t\ Φ(t)) as does Proposition 3.1.

Proof of Proposition 3.2. The gauge in variance of -a(-) allows one to compute in
any convenient gauge. Consider the following cover of IR3 = Ul=1Ba, where

B2 = {\x-xd\^R}, and B3 =
 1R3\(B1uB2).

Lemma 3.3. Let a(t;R,d) = (A(t),Φ(ή) be as in Proposition 3.2. Then there exists
d0<co such that if d>d0 one can choose R to make

ϊ\W(t)\\2

2<4π + ¥~3/2 (3.12)

Proof. First recall that the Prasad-Sommerfield solution [2], c±e^±ίi is given in
spherical coordinates by

± = - jcothr )(±cos0σ 3 + sinθ(cosί(τ1 +sinίσ))5

1 / r \
A+ = -\l- ^-r--) [sin2 θdφσ3 +(costσ2-sin tσ^dθ

+ sin θ cos θ(cos tσ1 + sin tσ2)dφ] . (3.13)

Here ± refers to /c= ± 1. Any ίe[0 52π] is allowed as c± with two different values
of t are gauge equivalent. It is a fact that

±\\Vφ±A±\\2

2 = 2π. (3.14)

Let c+(t) now denote (3.13) with the + sign, centered at x = 0, and c_ denote
(3.13) with the minus sign, at ί = 0, centered at x = xd. So c_ is (3.13) with the
replacements s<-+r and ω<-»0. In what follows, assume d^> 1 and for convenience, all
constants independent of'd, R>1 are denoted by K.

By (2.7a, b), the fields are abelian in £ 3 , and

( ) ^^

+ 2(P(cothr- 1/r), p(coths-l/s))] . (3.15)

On the other hand, VA + Φ+ is given explicitly in [3, IV.1.16], whence

l / r ) ! 2 - ^ ^ " " ^ ^ . (3.16)
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Together, (3.15) and (3.16) yield the estimate

Φ+\2 + \VA_Φ__\2

ij.lo)

In Bv it is convenient to compute in the gauge specified in (2.7d). From (2.7d),

e-R), (3.19)

as \(l+cosω)dψ\Sκd~2 in Bx and (1- βR)—-(\rdθ\ + rsmθ\dφ\)^κe~R in Bv

smn r
Meanwhile in Bv

The second term in the brackets above is bounded by κd~2 as is its derivative.
Together (3.19,20) imply that in Bl9

2 2 \ V A + Φ+\2 + κid-2 + e~R). (3.21)

A similar estimate with c+ replaced by c_ holds in B2. Utilizing (3.21) and (3.18)
one obtains by integrating that

+ 2 J (F(cothr- 1/r), F(coths- 1/s))] . (3.22)

Note that in Bv cothr— 1/r is smooth, while |F(coths— l/s)\ ̂ κ-d~2. The recipro-
cal is true in B2. Therefore, at the expense of a new constant K in the second term in
the brackets in (3.22),

+ 2 j (F(cothr- 1 - 1/r), F(coth 5 - 1/s)). (3.23)

The extra (— 1) in the last term is to allow an integration by parts. Thus

J(F(cothr-1 - 1/r), F(coths- l/s))^f |(F(cothr-1 - 1/r), Fcoths)|

- J (F(cothr - 1 - 1/r), 7(1/s)), (3.24a)

Sκ d~2 + 4π(l-cothd+l/d). (3.24b)

The contribution of the first term above is the κd~2. The second term in (3.24a)

contributes 4π(l — cothd+l/d) as — s ~ 1 is the Green's function for the Laplacian
4π

on 1R3. Together (3.23,4) imply that

e~R + d~2). (3.25)

Here the last line uses the fact that ( 2 - c o t h d + l / d Γ 2 ^ l - 2 / d + /αΓ 2 for d>l.
By setting R = ̂ (l + κ)~ ίdΐ/6 and then taking d very large, one obtains Lemma 3.3.
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Lemma 3.4. Let a(t;R,d) = (A(t),Φ(ή) be as in Proposition 3.2. Then there exists
do<cc such that ifd>d0, one can choose R to make (3.12) true, and in addition so
that

Proof. As in the proof of Lemma 3.3, the sets Bi9 ΐ = l , 2 , 3 are considered
separately. Let c ± be as before. Keep in mind that FA+=*DA + Φ+ and
FA_ = ~*DA_Φ_.~

Using (2.7a, b) one computes in B3 to be

M J 2 = Ksinθdθ Λdφ — sinωdω A dφ)\2,

7 |
A(t)\

/1\
v -

\r

2 /1\

\s
(3.26)

Comparing (3.26) with (3.15) and (3.18) one observes that in B3,

(3.27)

In deriving (3.27), use has been made of the fact that in B3, |Fcothr| ^κ e~r. Notice
that in (3.26,7) there is a minus sign in the cross term between r and s, while in
(3.15,18) there is a plus sign.

In Bv it is again convenient to compute in the gauge specified in (2.7d). One
finds that \A — A + \ satisfies in addition to (3.19), the bound

\V(A-A + )\^κ(d-2 + e-R). (3.28)

The proof of (3.28) is straightforward. The following example indicates the
manipulations that are involved:

(1- β

as , l + c o s ω is 0

(3.28) one obtains in Bλ that

so

and Vω is 0(d 1) in Bλ. Using

A similar estimate holds in B2 with \FA + \2 replaced by
over their respective domains, one finds that

. (3.29)

J 2 . Integrating (3.27,9)

(3.30)
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The last term in (3.30) is crucial. Note that the integration can be extended to all of
1R3 at the expense of a new constant K in the second term. Using the fact that

(3.31)

one obtains the estimate

(3.32)

Now choose R = \(κ+ί)~1d116 and take d very large to obtain Lemma 10.4.
Together, Lemma 3.3 and 3.4 establish Proposition 3.2.

IV. The Subset of « with

The loop b(t) of Proposition 3.1 is homotopically non-trivial with respect to the
fixed basepoint b(0) = b(2π). In order to complete the proof of Theorem 2.1, it must
be established that b(0) and c^ are connected by a curve d(t). The curve d(t) must be
sufficiently well-behaved asymptotically so that up to a ί-independent gauge
transformation, (d~lob°d)(t)eΛ. In addition, d(t) must obey the bound a(d(t))<$π
for all t. The curve d(t) will be an element of the following set:

Definition 4.1. The set δ is defined to be δ = {c(ή = (A(t\ Φ(ί))eC°([0,π] ; # 0 ) :
(1) There exists a compact set XcIR 3 such that supip\A(t)\cK, for ίe[0,π].
(2) Φ(t)= -^σ3 + η(ή and lim \η(t)\(x)-*0, uniformly with ίe[0,π].

(3) dη(t)eC°(l09π]9L2(?®T*)l
(4) c(π) = g(0, — l/2σ3) where ge& and |# — 1| has compact support in IR3.}

The existence of the curve d(t), alluded to above follows from the first
proposition.

Proposition 4.2. Let c = (A,Φ)e(£0. Suppose that c satisfies (1) ̂
(2) AeΓc(#®T*), (3) Φ= - l/2σ3+/? and lim |f/|(x)->0, (4) dηeL2(#®T*). Then

\x\ -> oo

there exists a curve d(t)eS with (a) d(0) = c, (b) sup a(d(t)) = a(c).
ίe[0,π]

The immediate corollary of Theorem 4.2 and Proposition 3.2 is Theorem 2.1.
This is straightforward, as bit) from Proposition (3.2) is such that b(0) = b(2π)
satisfies the conditions of Proposition 4.2. From b(t) and the curve d(t) of
Proposition 4.2 and Definition 4.1, one constructs the loop

c(t) =

which satisfies all of the requirements of Theorem 2.1.
The proof of Proposition 4.2 requires knowledge of the fact that local minima

of ^( ) on ̂  satisfy the BogomoΓnyi equations. An analogous theorem for the

β

9'

g~

H(π + t),

'bit),

1di3π-t),

for

for

for

ίe[-π,0];

te [0,2π]

ίe[2π,3π],
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Yang-Mills equations on S 4 was proved by Bourguignon, Lawson, and Simons
[4]. For the purposes here, the term local minimum is defined as follows:

Definition 4.3. A solution ce^ to Eqs. (1.2.2, 3) is a local minimum of ^ if the
hessian jfc on Γ((^(χ)T*)©^) satisfies f̂c

The existence of local minima of a is summarized by

Theorem 4.4. Let ce^kbe a solution to Eqs. (1.2.2, 3). Then c is a local minimum of
a iff Eq. (1.2.6) is satisfied, whence ^(c) = 4π|fc|.

The proof of Theorem 4.4 is the subject of Sect. 5. Its validity will be assumed
in this section.

Proof of Proposition 4.2, assuming Theorem 4.4. The intuition behind the proof is
as follows: A minimizing sequence beginning with c can be translated as in
Theorem 1.7.1 so that it converges to a solution (Theorem 1.5.6). The solution must
be a local minima and since ^ < 8π, the solution must be trivial (Theorem 4.4).

The proof of Proposition 4.2 begins with

Definition 4.5. T h e s e t iccS is £>

c={d{t)e£>:d(0) = c a n d t h e r e e x i s t s ί x > 0 s u c h
that a(d(t))<a(c) for £6(0,^).} For d{i)eSc, define td to be the smallest ί > 0 such
that a{d{td)) = a(c). If no such t exists, set td= oo. Define the configuration 5=d(ί 0),
where a(d(t0)) < a(d(f)) for t < t0, a(d(t0)) ^ a(d(t)) for t0 S t < td. Finally, define

^= inf MJ)) . (4.1)
d{t)eSc

The next series of results establish the relevant properties of Sc.

Lemma 4.6. Let c be given by Proposition 4.2, and suppose that ^(c)>0. Then

Proof of Lemma 4.6. Note first that the curve d(t)= {A, η) + (0, - l/2σ3)
%

connects c to c^ by a continuous path in i. Now suppose that Sc were empty. Then
using Proposition 1.5.2, one concludes that for all

-a(c + tψ)\t = 0=0, and —a(c + tψ)\tssO^0. (4.2)

By Theorem 4.4, this last equation is true iff a(c) = 0 which is a contradiction.
Hence, the lemma is true.

Lemma 4.7. Let c be given by Proposition 4.2. Then either c = (Λ,Φ) satisfies

VJΦ = 0, (4.3)

or there exists d{t)eic and to<td such that d{to) = (A,Φo) satisfies (4.3).

Proof of Lemma 4.7. The lemma is a direct consequence of Propositions 1.4.8 and
1.4.14 and the fact that the Higgs part of the action is strictly convex.

Crucial to the proof of Proposition 4.2 is the following apriori knowledge of
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Proposition 4.8. Let c be given by Proposition 4.2. and a^ by Definition 4.5. Then

The proof of Proposition 4.8 is deferred until the end of this section.
Continuing with the proof of Proposition 4.2, it follows from Lemma 4.7 that there
is no loss of generality to assume that the configuration c satisfies (4.3) apriori. It is
henceforth also assumed that a(c) > 0.

It follows from Theorem 1.4.5 and Lemma 4.6 that under these conditions, the
following set is nonempty:

δc = {d(t)eδc:d(t) satisfies (4.3) for all te [0, π]}. (4.4)

It is also a consequence of Theorem 1.4.5 that

^= inl>(3). (4.5)
d(t)eSc

The curve d(t)eδc required by Proposition 4.2 is constructed in a two-step
procedure. Assuming that a,^ =0, it is established in Lemma 4.9 that given ε>0, c
is connected by a path d(t) (with <a(d(ή) S <a(c)) to a configuration d(t2) with
a(d(t2))<ε. It is then proved that d(t2) is connected to a gauge transform of c^ by a
path with action less than 7ε.

Lemma 4.9. Let c be given by Proposition 11.2. Assume that c satisfies (4.3), a(c) >0
and that a,^ = 0. Given ε > 0, there exists d(t) = (A(t), Φ(t))eδc and t2e(0, π) such that

(1)
(2)
(3)
(4)

(5) ll*WP(t2)||6<e.

Proof of Lemma 4.9. Choose a sequence {d, (ί)}e $c

 s u c ^
(1)

(2) l i m ^ H ^ . (4.6)
«-> oo

For i sufficiently large, d{(f) with t2 such that df = d{(t2) satisfies all but possibly
Statement (3) of Lemma 4.9. In fact, Statement (4) above follows from Lemmas
1.4.7 and 1.7.4. Statement (5) is from Lemma 1.4.7 also.

In order to exhibit a curve satisfying all of the requirements of Lemma 4.9,
choose d'(t)eδc to satisfy Statements (1), (2) and (4), (5) with ε/2 replacing ε. Let
^6(0,71) be such that d' = d\t^). Write d! = (A\ η' - l/2σ3). As VA,σ

3 has compact
support, it is a consequence of Propositions 1.4.8 and 1.4.14 that ηfeKA, and
VA,ηΈL6. The set

K = {φeKA,:VA,φeL6} (4.7)

is a Banach space with the norm

\\VA,φ\\l+\\VA,φ\\l. (4.8)

By construction, Γc(^) is dense in K. Using Lemma 1.4.10 and the fact that
^ 0 ^ [25], one infers that K->C°QR3;^).
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As Γc{^) is dense in K, one can choose ηeΓc(#) sufficiently close to η' in the
norm (4.8) so that the following curve satisfies all of the requirements of Lemma
4.9:

d{t) =

for ίe[0,ίJ.

for te (4.9)

2(π-t),

Kπ-ίJ
for ί e - + ί l 9 π | .

For fixed ε«l/2, let d(ί)e^c satisfy Statements^ (1)H[5)_ of Lemma 4.9. Let
ί2e(0, π) be fixed by Lemma 4.9 and denote d(t2) by d = (Ά, Φ). By assumption, \Φ\
never vanishes, and there exists R<oo such that

for (4.10)

As a function of se[0,1], f(s;x) = Φ(sRx)/\Φ\(sRx) defines a homotopy between
the map ̂ e M a p s ( S 2 ; S 2 ) and the constant map /(0, Jc):S2^Φ(0)/|Φ|(0)eS2. The
homotopy lifting property of the fibration [5, Ch. 2] 0—•S1—>SU(2)—•S2—>0
implies that there is a C00 lifting of f(s;x) to SU(2). As 772(S1) = (0), there is no loss
of generality to assume that there exists g(x)eC°°(IR3;SU(2)) satisfying

(1) g(x) = ί if \x\>R + l9

(2) g(x)Φ(x)g-\x)=-\σ3\Φ\.

Let d = g(Ά, Φ). As the next Lemma states, d is path connected to <
with small action. For convenience, write d = (A\ Φ1).

(4.11)

. by a curve

Lemma 4.10. Let d(t)eδc, ί2e(0,π) and d(t2) = (A,Φ) satisfy Lemma 4.9 with ε
sufficiently small. Let g be the gauge transformation of (4.11). There is a curve
d\t)e£ satisfying (1) d'(0) = c' = g{A9Φ), (2) d'(π) = (0, -l/2σ 3 ), (3) a(d'{t))<ls for
ίe[0,π].

Proof of Lemma 4.10. Let w = 1 - \Φ\, AL = \σ\σ\ Ά) ΆnάAτ = Af- AL. The proof
of the Lemma requires the fact that |Γ4,ΦΊ2 = |F7w|2 + 2|Φ| 2 |-4Γ | 2, from which one
concludes using Lemma 4.9 that

(1) \\Vu\\p<s,

(2) \\\Aτ\\\p<^ for pe[2,6] . (4.12)

The path d'(t) required by the lemma has three segments. For ίe[0, π/3], let

Then when te [0, π/3],

Λ(d'(t))<ε+\\Aτ\\2

2<4ε.

(4.13)

(4.14)

In addition, d'ij-) ={A', - l/2σ 3 ).
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Next for ίe[π/3,2π/3], let

Then when ίe — , —
[3 j

3ί

315

(4.15)

-3l\ -1\ATΛAT q Tul
• A\\2

3ί\2

(4.16)

where F^ = i σ 3 ( σ 3 , F J and FT

A = FA-FL

A. Using (4.12), one obtains from (4.16) that

for ίe —,—I and ε sufficiently small. In addition, d!
'2π

= \AL, - - σ 3 ) . Finally, define d'(ί) for ίe — , π by d'{t)= \\3-—)AL, - - σ 3 ) .
\ 2 / [3 J \\ πj 2 J

Since the field are now abelian, ^(d'(ί))<7ε, ίe — , π as well. This completes the

proof of Lemma 4.10.
Assuming that ^ = 0 , the requirements of Proposition 4.2 are satisfied by

d(t), ίe[0,ί2]

where d(t) is given by Lemma 4.9 and d\t) is given by Lemma 4.10.
The proof of Proposition 4.2 is completed by establishing that ^ =0. This is

the last topic in Sect. 4.

Proof of Proposition 4.8. The proof is by contradiction, so suppose that ^ >0.
Let {di{ή}eic be a sequence satisfying (4.6). Let V^i( )=V^ι( ) etc.

Lemma 4.11. Let c be as in Proposition 4.2 and satisfy (4.3). Under the assumption
that aO0>ΰ,a sequence {di{t)}e$c which satisfies (4.6) also satisfies lim || F^H^-^O,
where || ||^ is the norm on H^. ^^

Proof of Lemma 4.11. The proof of the lemma is by contradiction. Assume that
Lemma 4.11 is false. Then there exist a sequence {df(ί)} satisfying (4.6) and
lim | |F^ . | | >(5>0. One can conclude that for each /, there exists

> oo

with F ^ M ) < -<5 and l l φ j l ^ l .
Hence, for ί < l , one observe, using Proposition 1.5.2, that

^^(d^-tδ/2 for t<s = δκ'1. (4.17)

The constant K is independent of/ by Proposition 1.5.2. For j sufficiently large,
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(- S \
Eq. (4.17) implies that aldj+ -ψΛ <&<„• Let t0 be such that dj = dj(t0), and
consider ^ '

dp), for ίe [0, ί o ] ,

d.+ ^rsψi9 for

l(π-ί0)
for ί e β ( π + ί o),π]. (4.18)

The curve d(t)e$c and ^(J) < a^. This is a contradiction hence the lemma is true.
A consequence of Lemma 4.11 is that the sequence {d } converges to a solution

to Eq. (1.2.2, 3):

Lemma 4.12. Let c be given by Proposition 4.2 and satisfy (4.3). Under the
assumption that a^ >0, there exists a sequence {di(t)}eSc such that the sequence {dt}
converges strongly in l}2 l o c to de^0. The configuration d is a solution to Eqs.
(1.2.2, 3) anda(d)>0.

Proof of Lemma 4.12. Let {di{t)}eSc be a sequence which satisfies (4.6). It follows
from Lemma 4.11, and Theorems 1.5.6,1.7.1, and 1.8.1 that there exists a sequence
of points {xJeIR3 such that the translated sequence {7 .̂rfJ converges strongly in
^2,ioc t0 de^0. In addition, d is a solution to Eqs. (1.2.2/3) with a(d)>0. As IR3 is
path connected, there is no loss in generality to assume that each x. = 0.

It is a consequence of Theorem 4.4 that the hessian, Jί^( ) cannot be non-
negative definite on ΓC((^®T*)©^). The implications of this fact will yield a
contradiction to the assumption that ^ + 0. In order to establish the con-
tradiction, the following proposition is required.

Proposition 4.13. Let { C J G ^ be a sequence which converges strongly in
c = (A, Φ) E <β. Let xp e Γ % ® T*) ®g) and suppose that

(1) llvic=i-

(2) ^c(ψ) = E. (4.19)

Then given ε>0, there exists i(ε) such that for each />/(ε), there exists
satisfying

(1) \\Ψi\\Ci=ί,

(2) \jrct(ψ,)-E\<ε. (4.20)

The proof of Proposition 4.13 is deferred momentarily in order to complete the
proof of Proposition 4.8.

Proof of Proposition 4.8 assuming Proposition 4.13: Completion. One is required
to demonstrate a contradiction resulting from the assumption that ^ + 0. Let
{dt(t)} and {dt} be the sequences of Lemma 4.12. According to Proposition 4.13
and Theorem 4.4, there exists £ < 0 and ψ eΓc((#®T*)@p) such that for all /
sufficiently large, {d^ψ^ and E satisfy (4.20) with ε = |£|/2. A consequence of
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Proposition 1.5.2 is that for ί < l ,

t2

(4.21)

Using (^.(ί),φ ) for i sufficiently large, a curve d/{t)eS'c can be constructed,
which, as a consequence of Lemma 4.11 and (4.21), satisfies

*(5') <<*«,. (4.22)

The curve d'(t) is analogous to the curve d(t) of (4.18), and the details are left to the
reader. Equation (4.22) exhibits the required contradiction. Therefore ^ = 0 .

Proof of Proposition 4.13. The notation of Sect. 1.5 will be used here. Let {Va}%= x

be the part of the open cover of 1R3 (given by Definition 1.5.5) that covers
U = supp\ψ\. Let {jδα}^=1 be a partition of unity, subordinate to {VΛ}%=V Let
{ga(i\ /ια:Fα-»SU(2)} be the gauge transformation of Definition 1.5.5. In Va, define
W* = KlxPK S O i n

1> ( 4 2 3 )

where gaβ is given in Definition 1.5.5. For, each /, define

ψ'i= Σ0«~1( i)^Ψβί«(OεZ.2

2(t7;(^®T*)φ^) (4.24)

(compare with Lemma 1.5.9).
Using the gauge invariance, one can estimate the contribution to ^(ipj ) from

Va. Let gaβ{ϊ) = gj<ί)g-β\ΐ). In VanVβ define (ββψβ)a{ΐ) = 9aβ®ββwβg-β\ΐ), (βaΨaUi)

— βaΨoo a n d in Va define:

^ ( 0 = (ωβ(ί), 17.(0)Ξ Σ 09^) . (0 (4.25)
β

Then the contribution to J ^ (φJ) from J^ is

I ί l^o^ίOI 2 +1[*.(0,ωα(0]|2

+ 2(ωα(0 Λ ωα(/), ^

(0,Φα(i)]5F4α(^α(i))} (4.26)

The point of this exercise is that by assumption, (Aa(i), Φa(i)) converges strongly in
L\(V^j to (Aa,Φa\ while Ψa(ί) converges strongly in L2

2(Va) to ψa. This implies
convergence of (4.26) over each Va, and since there are a finite number of them,

l im|^ . (φ ' ; )-^(φ) | ->0. (4.27)
ί->00

The contribution to the norm ||τ/;J ||f over each 1/ can be shown to converge by a
similar argument, so

limMltpίllj-lHO. (4.28)

Therefore, given ε>0, for all ί sufficiently large, Wi — W'\IW^i satisfies (4.20),
proving Proposition 4.13.
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V. Local Minima

The proof of Theorem 4.4 is presented in this section. The proof is adapted from
the proof by Bourguignon, Lawson, and Simons that all solutions to the SU(2)
Yang-Mills equations on a bundle P-+S4 which are local minima are self or anti-
self dual.

The fact that solutions to Eq. (1.2.6) in ̂ k are local minima, and satisfy ̂ (c)
= 4π|/c| is proved in [3, Chap. IV see also 6.] This is the "if' part of Theorem 4.4. The
"only if" part of the Theorem follows Bourguignon, Lawson, and Simons. The
noncompactness of 1R3 is a problem when trying to adapt their proof. This problem
is circumvented with the aid of the following apriori estimates.

Proposition 5.1. (Taubes [3, Chap. IV]). Let (A, Φ)e^ be a smooth, finite action
solution to (1.2.2,3). Then VAFA and VADAΦ are square integrable and
(1) (l + \x\2)(\FA\(x) + \VAΦ\(x))Sconstant, (2) (1 + |x|)(l-\Φ\{x))ύ constant.

Assume that ceΉk is a local minimum. Given a vector ζ = (ζo,ζ.)f=ί of unit
length in 1R4, set ζ=ζidxίeΓ(T*\ define

ζ )), and ψζ = (ωζ,ηζ). (5.1)

It follows from Proposition 5.1 that Jfc(ψζ) is well defined. One finds after an
explicit calculation that

^c(Vζ) = 2<ω ζΛω ζ,F i l-*l) i lΦ> 2 + 2<[fyζ,ωζ],*F i l-l) i lΦ>2. (5.2)

By varying ζ, 34?c{ψζ) defines a quadratic functional on the unit sphere in 1R4. Let FA

+ *DAΦ = uίdxi and FA-*DAΦ = υidxi. Then

J δ ( \ ζ \ 2 - l ) d 4 ζ ^ c ( ψ ζ ) = ± J d ' x j
R4 R3 ,

+ E ' ¥ V > B , uml vk) - 2εi'*([uI, uj ] vk)} = 0. (5.3)

Now ψζ is not in Γc((^(x) T*)©^), however, let βR be a smooth cut-off function with
βR = l when \x\<R, βR = 0 if |x|>2i^ and |P7^|(x)^2 K" 1 then
βRψζeΓc((^(g)T*)®^) for all R<co. In addition, the asymptotic decay given by
Proposition 5.1 implies that there exists Ro such that

\^c{βRΨζ)-^c{ψζ)\<R~112, for R>R0 and all C^S3. (5.4)

Therefore, since ^fc(βRψζ)^0 for all R < oo, Eq. (5.4) implies that Jfc(ψζ) ^ 0 as well.
But this fact and (5.3) require Jfc(φζ)Ξθ for all ζeS3.

Recall that Jfc( ) is, by assumption, a real, positive semi-definite quadratic
form. Hence, the polarization identity implies that

Kζ 0^) . (5.5)

When written out in long hand, Eq. (5.5) means that for all ζeS3, and xelR3, both

sίjkί(sjmnζmun + ζoUj)9 vk-] + lζιUl9 vj = 0,

ίεk%un + ζouk,vk-]=0. (5.6)
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Thus, since ( £ 0 , Q e S 3 is arbitrary, Eq. (5.6) implies that

lui9vJ=0, U = l,2,3. (5.7)

Let ^* ( ~ } denote the subalgebra's of d&(2) generated by tu^x^v^x)) for

/ = t J-JE TJR3. By Lemma (7.22) of [7], either ^ or #~ is abelian. Without loss of

generality, suppose that^f" is non-abelian at x = lR3. This is an open condition, so
there is an open neighborhood U of x such that [ ^ , ^ * ] φ θ for all xeU and
hence [j?~,^~] = 0 in U. The solution (Λ, Φ) is necessarily real analytic on IR3 ([3],
Theorem IV.1.3) so [^~,^~]=0 for all xeIR3. Now v satisfies a second order
partial differential equation, derivable from (1.2.2) ([3], Proposition IV.9.2), which
in this case is:

- P 4 V + [ Φ , [ i ; ί , Φ ] ] = 0 , (5.8)

2

where — V\ = — Σ ^A^A^ *S t n e t race Laplacian. Upon contracting (5.8) with vι in
i = 1

the L2 inner-product and integrating by parts one obtains

= 0. (5.9)

The integration by parts is justified as veL2. Using Lemma 1.4.10, one sees that
||i;||6 = 0, so v = 0. Therefore c satisfies Eq. (1.2.6). The fact that a(c) = 4π\k\ follows
from Theorem IV. 1.5 of [3].

VI. Conclusion

The proof of Theorem 1.1 can now be completed. Indeed, the results of Sects. 1-5
are summarized by the following theorem of which Theorem 1.1 is a corollary.

Theorem 6.1. There exists a sequence of loops {c^t)} e C 0 ^ 1 , ή) (^0, c^j) which are
homotopically non-trivial and such that: (1) The induced sequence {cj, defined so
that ^(ci) = sup4z(ci(t)), converges strongly in L\ l o c to ce^0. (2) The configuration c

ίeS1

satisfies the Yang-Mills-Higgs equations, (1.2.2,3), and ^(c)>0. (3) The
configuration c does not satisfy the BogomoΓnyi equations, (1.2.6), and c is not a local
minimum of -a on %?0.

Proof of Theorem 6.1. By Proposition 1.5.3, one can choose a good sequence of
loops, {bi(t)}eΛ(e\ where e is given in Eq. (2.1). Such loops are not null-homotopic
in C°{(S\n); ( ^ c * ) ) (Lemma 2.1 and Theorems 1.3.4 and 1.3.5). Theorem 1.4.4
states that ^ o o > 0 . A consequence of Theorem 1.7.1 is that there is a sequence
{xJeIR3 such that the translated sequence, {TXιfeJe^0, converges strongly in
^2,ioC

 t 0 ce^' I n addition, ^(c)>0 and c is a solution to Eqs. (1.2.2,3). As
translation by a vector xelR3, Tx'.^-^^ is continuous, the translated sequence of
loops

S\ n) (tf0, cj)
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as well. By Theorem 2.1, ^ <8π and Theorem 1.8.1 is applicable. The conclusion
is that ce^Q. Therefore Statements (1, 2) of Theorem 6.1 have been established.

By Theorem 4.4, a solution in ^ 0 to the BogomoΓnyi equations must have zero
action, and since a{c) > 0, c cannot satisfy the BogomoΓnyi equations. It is also a
consequence of Theorem 4.4 that c can not be a local minimum of ^( ) on ^ 0

(Definition 4.3).
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