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Abstract. This paper (Part I) and the sequel (Part II) prove the existence of a
smooth, non-trivial, finite action solution to the SU(2) Yang-Mills-Higgs
equations on IR? in the Bogomol’nyi-Prasad-Sommerfield limit. The proof uses
a simple form of Morse theory known as Ljusternik-Snirelman theory. Part I
establishes that a form of Lusternik-Snirelman theory is applicable to the SU (2)
Yang-Mills-Higgs equations. Here, a sufficient condition for the existence of the
aforementioned solution is derived. Part Il contains the completed existence
proof. There it is demonstrated that the sufficient condition of Part I is satisfied
by the SU (2) Yang-Mills-Higgs equations.

I. Introduction

The SU (2) Yang-Mills-Higgs equations on R? are the variational equations for a
connection (the Yang-Mills potential) and a minimally coupled, associated scalar
field which transforms according to the adjoint representation of SU (2) (the Higgs
field). These are the variational equations of an action functional [see Eq.(2.1)].
The equations become interesting when one requires the action to be finite, and the
boundary condition that the Higgs field have unit norm, asymptotically on R, see
Egs. (2.2) and (2.3). This is the Bogomol’nyi-Prasad-Sommerfield limit. In addition
there is a first-order system of equations which characterize minima of the
functional (2.1); these are called the Bogomol’nyi equations (2.6). As minima, every
solution to (2.6) also satisfies the second-order equations (2.2) and (2.3). This
general set-up has an analogy with Yang-Mills theory on S* [1] and also with
Ginzburg-Landau theory [2] (A=1) on RZ? Both these have second-order
variational equations and associated first-order equations for minima. The
following conjecture has been made for the Yang-Mills-Higgs equations (2.2) and
(2.3), the A = 1 Ginzburg-Landau equations on R? and the Yang-Mills equations
on S*: Every finite action solution to the variational equations is a minima; hence
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satisfies the associated first-order equations. The conjecture is true for the
Ginzburg-Landau theory [3], and unsettled for the Yang-Mills theory on S* [1].

The following theorem shows that the conjecture is false for the Yang-Mills-
Higgs equations.

Theorem 1.1. There is a smooth, finite action solution to the SU (2) Yang-Mills-
Higgs equations in the Bogomol’nyi-Prasad-Sommerfield limit (2.2), (2.3) which does
not satisfy the first-order Bogomol’nyi equations (2.6).

Asin the case of the Yang-Mills equations on 4-manifolds [4, 5] and 2-manifolds
[6], topological aspects play a role in the structure of the solutions. This role is
explicit in Theorem 1.1; indeed, the solution is obtained via a mini-max procedure
using loops in the function space which are not contractible. These homotopically
non-trivial loops arise because the space, €, of finite action pairs of Yang-Mills
connections and Higgs fields (Definition 2.1) is homotopically similar to the space
Maps (S%; S?) of smooth maps from the two sphere to itself. There is a
monomorphism of the homotopy groups of Maps (S?%;S?) into the homotopy
groups of ¥, and the respective path components are in 1 —1 correspondence
(Theorem 3.4).

The zero’th homotopy group of € is the set of path connected components, of
which there are a countable number, € = | | %,. It was proved in [2] that the action

functional achieves its infimum on each ¢ : .E%hese are the solutions to the first-order
Bogomol’nyi equations.

The first homotopy group of €, contains a subgroup which is isomorphic to Z.
The solution of Theorem 1.1 is intimately related to this subgroup, as the proof
details.

It should be remarked that spherically symmetric solutions to the monopole
equations which are not solutions to the first-order equations are known to exist
when the structure group has rank larger than 2 [7]. For the SU (2) case it is known
that there are no spherically symmetric solutions other than the solutions to the
Bogomol'nyi equations in %, . ; [8]. The techniques that are developed here should
shed light on these other solutions with rank =2 groups.

The proof of Theorem 1.1 uses a mini-max (saddle point) technique known as
Ljusternik-Snirelman theory [9]. For a C? function, f, on a compact #-manifold,
this technique is easy to describe. Suppose that p € M is an isolated minima of 1. Let
ey:(S*, n) - (M,p) be a generator of the pointed homotopy group, I1, (M, p).
Consider the set A of maps from (S*, n) to (M, p) which are homotopic to e,. For
each e e A, choose ¢, € S* such that

fre(t)=supf-e(r). (1.1)
teS*
Since elements in A are not null-homotopic,
{Inf} Sre(t)=1a>1(p). (1.2)
eeA

As M is compact, a sequence {e;} € A with
lim /- ¢,(2,) = [ (1.3)
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can be found with the property that

lime;(z,) > q(A) =qeM; g +p (1.4)
and o
q is a critical point of f, df|,=0. (1.5)

This procedure has a generalization to infinite dimensional Banach manifolds
(cf. [10]). The gauge invariance of the Yang-Mills-Higgs equations, and the non-
compactness of R® complicate the application of Ljusternik-Snirelman theory to
the action functional of (2.1). Because of the gauge invariance, the variational
problem is not strictly an elliptic one. This is circumvented using K. Uhlenbeck’s
weak compactness theorem [11]. Her theorem states that over a small, bounded
domain in R, there is a gauge which makes the equations uniformly elliptic.

The non-compactness of IR® means that Palais-Smale condition C (cf. [10])
does not hold. The papers of Sachs and Uhlenbeck [12] and Schoen and Uhlenbeck
[13] on harmonic maps teach that it is often productive to investigate in detail the
ways that condition C fails. For the Yang-Mills-Higgs action, a good sequence of
configurations (Definition 5.2) fails to converge only by approaching, asymptoti-
cally, two exact solutions to the equations which are separated on IR® by an infinite
distance. (This is the analog to the “bubbling off”” of harmonic spheres in [12].) This
is a manifestation of the physical intuition that the solutions to the equations
describe real magnetic monopoles [14], which are localized objects.

The Ljusternik-Snirelman procedure is applied to non-contractible loops in &,,.
In this case, condition C can fail only if the sequence of maxima [corresponding to
the sequence in (1.3) and (1.4)] resembles asymptotically a monopole and an anti-
monopole [2] which are separated on IR*® by an infinite distance. Such a
configuration has action 87 or greater. An explicit, non-contractible loop, in €, is
exhibited whose maximum action is /ess than 8x. These two facts are used to prove
that the mini-max procedure over non-contractible loops in %, yields, as in (1.4), a
convergent sequence. And, the limit of this sequence is a solution to the second-
order Yang-Mills-Higgs equations, but not the first-order Bogomol’nyi equations.

The outline of the proof of Theorem 1.1 is given below. The proof divides into
two parts. This paper is Part I. Here the basic technical tools, and apriori estimates
of Ljusternik-Snirelman theory on % are established. Part I consists of Sects. 2-8,
where it is proved that the mini-max procedure yields sequences which converge to
non-trivial solutions to the second-order Yang-Mills-Higgs equations (2.2) and
(2.3).

The second half of the proofis contained in the sequel, Part II [Commun. Math.
Phys. 86, 299-320 (1982)]. In PartII, the mini-max procedure is applied to a
specific class of non-contractible loops in %,. It is shown that the limiting
configuration is not a solution to the first-order Bogomol’nyi equations. Below is
an outline for both Parts I and II. The symbol «(-) denotes the Yang-Mills-Higgs
action functional (2.1).

I. Ljusternik-Snirelman Theory on €

(a) Section 2 contains a short review of Yang-Mills-Higgs theory. Here, the space
& of finite action field configurations, and the space of gauge transformations ¥
are defined.
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(b) Section 3 describes the topology of €, ¢ and ¥/% and the relationship with
Maps (S?;S?). In particular, it is shown in Sect. 3 that there is a monomorphism of
the homotopy groups of Maps (S%;S?) into those of &.

(c) The class A of non-contractible maps of spheres into ¥ on which the
Ljusternik-Snirelman procedure is applied is defined in Sect. 4. Here, some useful
properties of A, in the form of apriori estimates, are given.
~ (d) Itis established in Sects. 5 and 6 that for each k > 0, there is a sequence of
k-spheres {c;(*)} € A such that the sequence of configurations, {¢;} defined for each
i to maximize «(c;(+)) over S¥, converges on R3. The limit configuration is a
smooth, finite action solution to the Yang-Mills-Higgs equations. This is
Theorem 5.6.

(e) Theorem 7.1 of Sect. 7 establishes necessary and sufficient conditions on the
sequence {c;(*)} for the limit, ¢ to have «(c) > 0.

(f) Theorem 8.1 of Sect. 8 establishes sufficient conditions for the limit ¢ not to
satisfy the first order Bogomol’nyi equations.

(g) The first appendix contains the proof that the path components of € and
those of Maps (S2;S5?) are in 1 —1 correspondence.

(h) The second appendix is a calculation of 7, (Maps (S?;S%)/SO (3)).

11. Minimizing Over Loops

(a) Theorem I1.2.1 and Sects. I1.2-I1.4 contain the proof that there exists a
sequence of loops, {¢;(-)} € A which satisfy the conditions set forth in Theorem 5.6,
and Theorems 7.1 and 8.1. Thus, the limit ¢ of the sequence {¢;} must satisfy the
second-order equations but not the first-order equations.

(b) Section I1.5 contains the proof, based on ideas of Bourguignon et al. [1],
that the configuration ¢ can not be a local minimum of «. Here it is proved that
every local minimum of « on & satisfies the first-order Bogomol’nyi equations
(Theorem I1.3.4).

(c) Section I1.6 is a summary where the full proof of Theorem 1.1 is exhibited
(Theorem I1.6.1).

II. Yang-Mills-Higgs Theory

The variables for the static, SU (2) Yang-Mills-Higgs theory are a pair consisting of
1) a connection on the principal bundle IR* x SU (2) and 2) a section of the vector
bundle g = R? x g« (2), called the Higgs field. Let I'(4) denote the space of
smooth connections on IR® x SU (2). The fixed product structure of R* x SU(2)
identifies I'(4) with I (¢ ® T*) where T* is the cotangent bundle of R*. Thus, for
Ael(A), A= A,dx', where A,;(x) is a 2 x2, traceless, anti-hermitian matrix. A
Higgs field, @ e I' (g), isateach x € R*a 2 x 2, traceless, anti-hermitian matrix, also.

The Euclidean metric on 7%* induces, via the Hodge =*: 2\ T* - 3/_\p T*, a

positive inner product on A T*. The Lie algebra, g« (2), as the vector space of
p
2x2 anti-hermitian matrices, has the positive definite inner product (¢?,s?)

= —2trace (o' 6?). Together, these metrics induce an inner product on g @ A T*.
g g2
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Thus, for w,, w, eI (¢ ® A T*), the pointwise inner product is (w,, w,) (x) and the
p

pointwise norm is |w, | (x) = (@, w,)*? (x). By abusing notation, the bilinear map
IF'(@@Ir'(g® AT*) > F(A T*) is denoted (&, w)(x) = — 2trace (P (x) w(x)),
p p

for el (g) and wel (g ® A T*).
p

In the usual way, the L,-inner product on I'(g ® AT*) is defined as

oy, w0, = §d3x(w1,a)2) (%), and ||, ||, = {wy, v, é/z- ?

The Yang-Mills-Higgs action functional is defined on I' (4) @ I' (¢) to be
@(4,0) =3 | Fll3 + 7 I1D2]3. 2.1)

Here F,el' (g ® A T%) is the curvature of 4, so F,= dA + A A A, where d is the
p

usual exterior derivative, and A is the usual exterior product between p-forms (so
ANA=7%[4;,4;]dx' ndx’). The 1-form D,Pel (g ® T*) is the covariant
derivative of @: D, @ = d® + [A, P].

It should be remarked that the covariant derivative extends to I' (¢ ® A T*) in
p
two ways. The first, V,: I'(g @ AT*) > I'((g ® A T*) ® T*) is defined by
b p

=, \0x'

w->Vo=)3 <6_w+ [Ai,cu]>®dxi.

The symbol F will always be used for F,. The second extension,
Dy T(g@AT*)>T(g® Q\lT *) is the covariant exterior derivative D ,w
14 p

=do+Aro+ (-1 wAA
The formal variational equations of «(-) are the Yang-Mills-Higgs equations:

*D #F, 4+ [@,D,&] =0, (2.2a)
*D +D & = 0, (2.2b)
D,F,=0, (2.2¢)
D,D,® + [, F,]=0. (2.2d)

Equations (2.2¢,d) are the Bianchi identities and they are satisfied by every
configuration (4, ®). These equations are supplemented by the requirement that

lim [@|(x)—>1. 2.3)

|x}|—> 00

The action (2.1) is not finite for every (4, ®) eI’ (4) ® I (¢). For this reason,
restrict attention to the subset

€ ={c=(A,0)eT (A)DTI'(g): a(c)<oo, and lim [@(x)|—1}. (2.4

[x]=0

This set will now be given, except for two changes, the standard C® topology.
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Definition 2.1. The topological space €: Let € as a set be defined by (2.4). The open
neighborhoods of ¢ = (4, @) € ¢ are generated by the sets A(c; K, {¢;};2 ), where
K< R*is a compact set, and ¢;>0, =0, 1, .... These sets are defined to be

N, K {ej}) = {c'=(4",d")e%¥:

M la(c) — a(c)| < &,
(@) Sunglld?I(X) —[2'[(x) | <&,
3 foreach j=0,1,...,
sup [| V9 (A(x) = A’ ()] + [VO(@(x) — &' (x) ] <&} (2.5)

Here VY=V, ... V,, j-times.

That the sets #(c, K, {g;}) define a topological space is best seen in the following
way: The space I' (¢ ® T*) ® &) has the standard C*-topology (or C,’-topology
in the terminology of [15, Chap. 2]). The set of continuous functions on R? is the
topological space C°(R®) when given the topology that is induced by the
supremum-norm [16, Chap.1]. Now consider I'((g ® T*)® 2)® C°(R> )@ R
with the product topology. The topology on € of Definition 2.1 is induced by the
inclusion ¢: €>T'(gQ@T*D® )@ CO(R)@ R given by (4, P) = (4, d,
|®|, @(A4, ®)). The functional « (-), Egs. (2.2) and (2.3) and the space & are invariant
under the action of the gauge group, 4.

Definition 2.2. The gauge group %is theset ¥ = {ge C*(R?*;SU(2)): g(x=0)=1},
with the induced topology.

The topological space ¥ is a continuous group. The group ¢ acts continuously
on ¥ with action given by

(8.0)=(g,(4,P) > gc=(gdg ' +gdg™ ", gPg™").
The group % acts on I' (¢ ® A T*) by pointwise conjugation
p

&V - @@ =g@)yxg ().

The topology of €, ¥ and €/¥ will be considered in greater detail in Sect. 3. There ¢
is shown to be the union of path components

%=1]%..
keZ
Formally, «(-) on %, is bounded below by 4n | k| [17]. It is known that every finite
action solution to Egs. (2.2) and (2.3) lies in some %, and every such solution does
have action greater than or equal to 4z |k| [2, Chap. IV]. As for the existence of
solutions to Egs.(2.2) and (2.3) on %,, it was known prior to this date that the
functional «(-) attains its infimum on %, for all k € Z [2]. These solutions to (2.2)
and (2.3) on %, with « (') = 47 | k| necessarily satisfy the Bogomol'nyi equations

*F,=+D,b (+ifk20, —ifk<0). (2.6)

There has been a great deal of literature concerning solutions to (2.6) [2, 18-22].
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Concerning non-minimal finite action solutions of (2.2) and (2.3) on %, the only
published result up to now is there are no O(3) symmetric solutions which do not
satisfy (2.6) for k=0, + 1 [8]. However, given a solution to (2.2), much about its
behavior is known apriori [2, Chaps. IV and V].

Formally, the calculus of variations identifies solutions of (2.2) and (2.3) in ¥
with finite action critical points of @ ( ) on €. This is accomplished in practice once
a C'-manifold structure for & is specified. Here, the non-compactness of RR?
presents a problem. Specifically, a manifold structure which is compatible with the
topologies in Definitions 2.2 and 2.3 is not convenient to work with. At the same
time, manifold structures based on Sobolev spaces [23] induce topologies which are
not compatible with the preceding definitions. [For example C* (IR®) with the L,-
topology has an uncountable number of path components.] In practice, a Sobolev
manifold structure will be employed. Essentially, this works because finite action
means that the fields F,, D,® are in an L, neighborhood of the origin; and using
this fact, one can obtain apriori estimates which allow one to work with gauge
invariant Sobolev norms, as one does over compact manifolds [11, 24].

For the present, in order to be unambiguous, the following definitions are
necessary. For E— R® a vector bundle, I'*(E) denotes the space of smooth,
compactly supported sections.

Definition 2.3. The gradient of @: For ¢ € %, the gradient of « at c is the following
linear functional on I'‘((¢ ® T%) @ #):

d
Vay) = 2 @(c+59)]imo,
where y eI'“((g ® T*) @ »).

Definition 2.4. A configuration c € % will be said to be a critical point of @ when
Va,()=0onT ‘(g ® T*) D »).
For future use, the hessian of « at ¢ needs to be defined too.

Definition 2.5. The hessian of «: This is the bilinear functional on
I'*((g ® T*) @ g), defined for ce € by

d2
H W) = Gz alctsv)] im0
Thus, for ¢ = (4, ®) and vy = (w, 1),
Va,(y) = <D0, Fp, + o, ®],D P>, +<{Dn,D,P>,, 2.7
while
H.(y) =D ,0,D,40), +<{Dm,Dm, +[w, D], [0, P>, + 2{w A @, F,),
+2<[w9’1]7DA¢>2 +2<[a),¢]’DA’7>2 (28)

III. The Topology of €/%

The Yang-Mills-Higgs functional can be considered as a ¥-invariant functional on
%, or as a functional on ¢ = ¢/9. Having endowed € and ¢ with topologies, the
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map
0:6—>%%=% 3.1)

gives % the quotient topology. This allows one to consider continuous maps from a
topological space X into % or 4. Of particular interest are the spaces of continuous
maps from k-dimensional spheres. Let n € S* denote the north pole, and let g € € be
some fixed orbit under %. Two maps, e,, e, € C°((S, n); (¢, q)) are said to be
homotopic, written e, ~ e,, If there exists a map Fe C°(([0,1] x S¥, [0,1] x n);
(%,9)) such that 1) F(0,")=e,, 2) F(1,-) =e,. This notion is standard [25].
For k = 1, the homotopy classes of maps in C°((S¥, n); (%, q)) form a group,
denoted IT, (%, q). For k =0, I1,(%, q) = I1,(%) is the set of path components of Z.

It is the purpose of this section to provide a description of II.(%;q)

= @ I1,(%; q). The space % is defined by the map Q of (3.1); and endowing € with
k=0

the quotient topology insures that Q is continuous. The properties of this quotient
are summarized in the following theorems:

Theorem 3.1. The map Q % — € is a fibration. In fact, there is a continuous map 9:
€ — € such that Q - ¢ = id 4. (The section g is the polar gauge, Eq.(3.13).)

The map Q induces a homomorphism
Q. I1,(6,0) > 11,(%,0(0) (3.2)

of the respective k™ homotopy groups. In fact, 0, does more, as the next theorem
states.

Theorem 3.2. The space % is contractible so Q. : I1,(%,c) ~I1,(€, Q(c)), is an
isomorphism and ¢, is the inverse.

As suggested by previous authors, [17, 26, 27], there is a relationship between €
and the space Maps (S?; S?). The relationship, on the level of homotopy groups is
deeper than what is discussed in the literature. There is a map I
Maps (S?;S?) - ¢ (%) = %, given by the following definition:

Definition 3.3. The map I: Consider an element e € Maps (S?;S?) as a map from
the unit sphere in R? to the unit sphere in g#(2). Then

I(e) = (— (1 = B(x)) [e(X), de(X)], (1 — B(x)) e(X)) e ¥, (3.3)
where X = x/|x| and 0 < f(x) e CQ (IR?) is a cut-off function such that
1) 12 B(x),
2) px)=1 if |x|<3,
3) Bx)=0 if |x|>1. (3.4)

The significance of the map I is summarized in Theorem 3.4.

Theorem 3.4. Endow Maps (S?;S?) with the C* topology [15, Chap. 2]. The map I
of Definition 3.3 is continuous and I induces an exact sequence

0 I, (Maps (S2; 52), ) 55 T, (%, I(¢)) . 3.5)
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In addition, I, is a 1—1 correspondence between I1,(Maps (S?; S?)) and I1,(%).
The conjecture is that I, is an isomorphism. In fact, define

% =1{(4,P)e¥: IV,P| 4 < 0}, (3.6)
with the induced topology. Then 7 maps into ¢, and [ induces an isomorphism
I.: I, (Maps (S?;S2),e) ~ 11, (%, 1(e)) . 3.7

For the purposes fo this paper, one could just as well consider the space ¢, . For the
sake of generality € will be used, and (3.7) will not be proved here.

The set of groups IT, (Maps (S?;.S%), ) is readily described. Maps (S?; S?) has
countably many path components; these are labeled by the topological degree.

Thus
Maps (S?;82) = || Maps (S?; S?),. (3.8)
kez

The space Maps(S?;S?) has a distinguished subspace, Maps ((S?, n); (S?, n)),
which is the subspace of maps taking n to n. For each k € Z, there exists the fibration

0~ Maps ((S%, n); (S?,n));, > Maps (S, 5%), = §* -0, (3.9
where 7 is evaluation at the north pole, n. The set of homotopy groups
I, (Maps ((S?,n); (S%,n)),) is independent of k and II,(Maps((S?, n);

(S%,m)o) ~II,,,(S* [25, Chap.1]. Thus, in principle one can compute
1, (Maps (S?;S?),) from the fibration (3.9). For k=0, this is relatively easy:

Theorem 3.5. The inclusion of Maps ((S2, n); (S?, n)), into Maps (S%; S?), induces a
canonical splitting

I1,(Maps (S?; 5%)) = IT,(Maps ((S?, n); (5%, n))o) @ I1,(S?),
~ 1, ,(S)® I1,(S?). (3.10)

Consider «(+) as a functional on . The group SU (2) acts by conjugation on ¢
by imbedding SU (2) in C* (IR*; SU(2)) as the subgroup of constant matrices. This
action factors through SO(3), and «(‘) is invariant. The SO(3) action is
continuous, and for k = 0, the action is free on %,. So, for k = 0 %, is fibred over the
quotient, €, = %,/SO(3). (%, is given the quotient topology.) For k =+ 0, one may
consider « () as a nonlinear functional on %, , and for this reason the topology of %,
is interesting.

The group SO(3) acts freely on Maps (S?;S?), for k+ 0 by rotations of the
image S?. With this action, the map I: Maps (S?; $?), — €, is SO(3) equivariant, so
I induces the continuous map I: Maps (S2;52),/SO(3) - %,.

Theorem 3.6. For k + 0, the map I induces an exact sequence of homotopy groups,
0= I1,, (Maps (S*;5%),/SO(3)) = I, (%))
In addition,
11, (Maps(S?;8?),/SO3) ~Z ,, and
17,(Maps (S%.5%),/SOQ) = II,.,(S?) for 122.

The remainder of this section contains the proofs of the preceding theorems.
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Proof of Theorem 3.1. The theorem is proved by exhibiting ¥ as a product,
C=%¢x9, (3.11)

where ¢ becomes the inclusion € — % x 1.

First, it should be remarked that as in the pure Yang-Mills case, ¢ acts
effectively on € [4]. Next, the projection p: € — ¢ will be defined. Let (r = | x|, 0, ¢)
be spherical coordinates on R®. For ¢ = (4, @) € €, p(c) e C*(R?*; SU(2)) is defined
to be the unique solution to the following ordinary differential equation:

0
5 P 0,9) = p(0) (r,0,¢) 4,(,0,¢) =0, and p(x=0)=1. (3.12)

.0
Here 4, = x’ aj.l A. This is the polar gauge [28]. The element p(c) is C*, and the

map p: ¥ — % is readily seen to be continuous with respect to the given topologies.
Now define the map ¢: € — % by the following device: Let Q(c) € € denote the class

of ce®%. Then
e(@=ploec. (3.13)

It must be established that ¢ (¢) depends only on the class of ¢. By construction, for

=(4
0(c) =(4,9), A(x=0)=0, and A4,=0. (3.14)

Let ¢, ¢'e € with Q (¢) = Q(c¢’). Necessarily, one has ¢ (¢) = ug (¢’) for some ue %.
But Eq. (3.14) implies that 6i u = 0 and so u = 1. Therefore, ¢ (¢) depends only on
r

Q(c)€%. Because p(-) is continuous, and ¥ acts continuously on %, the map g:
% — % is also continuous. The map g is, by inspection, 1 — 1 onto its image. Identify
€ with the image ¢(%)=%. The product structure of % is exhibited by the
homeomorphism ¥: ¥—% x %, defined by Z (c) = (p(c) ¢, p(c)). This proves
Theorem 3.1.

Proof of Theorem 3.2. The contractibility of ¢ is proved by exhibiting a continuous
map, %:[0,1] x - ¥, with

1) 20, -) = Idg,
2) R, )=1. (3.15)
Consider the map £ given for ge %, t€[0,1] and x e R? by
A (1,8)(x)=g((1—0x). (3.16)

The map £ is continuous with respect to the C® topology on %. It satisfies (3.15) by
construction, so % is contractible, and necessarily, 11, (%) = (0).

The long exact homotopy sequence of a fibration implies that Q, is an
isomorphism [25, Chap. 7].

Proof of Theorem 3.4. The map I is clearly continuous in the given topologies,
hence by functorality, I, is a homomorphism of the respective homotopy groups.
To establish that 7, is a monomorphism, consider, for /= 0 and k € Z, two elements

Wo, W1 €Maps ((S',n); (Maps (S%;5%),, €)), with  I(wo) ~ I(y,). (3.17)
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Let F(s, -)eMaps(([0,1] x S, [0,1] x n); (%, I(e,))) be a homotopy between
I(y,) and I(y,), and write F(s,y) = (A4(s,y), ®(s,y) for (s,y)€[0,1] x S". A
consequence of the topology given to ¥ by Definition 2.1 is that the continuous
function | @ (s, ¥) | (x) e C°([0, 1] x S' x R?) is continuous in (s, y), uniformly with
respect to x € R®. In particular, this means that there exists R < oo such that

|®(s, )| (x)>% forall (s,»)e[0,1]xS" if |x|>R. (3.18)
On the two-sphere {x e R*: |x| = R + 1}, the map

b (5,9)()=2(5,) ()| (5, | () e Maps ([0, 1] x S, [0,1] x ), (Maps (S%; %), ?3))1,9)

and is a homotopy between v, and v, . Hence I, is a monomorphism. The proof
that I: IT, (Maps (S?;S?)) - I1,(%) requires a result from Sect. 4, so this will be
proved in Appendix A.

Proof of Theorem 3.5. The projection 7: Maps(S?;S?) — S? in (3.9) is given by
n(e) =e(n). For k=0, (3.9) admits a global section,
g: S* - Maps (S%;5%),, (3.20)

which sends p € S to the constant map g (p): S? — p. Clearly no ¢ = id.. Thus the
long exact homotopy sequence that is associated to (3.9) for k=0 splits and

IT; (Maps (SZS 5%)0) ~ II, (Maps ((S2,n); (S%, 1)) ® I, ($?,
as claimed.

Proof of Theorem 3.6. The homomorphism 7* is a monomorphism for the same
reason that I: IT, (Maps (S?;S?)) — I1,, (%) is a monomorphism.

To calculate IT, (Maps(S?;52),/SO(3)), observe that SO(3) acts naturally
on the fibration (3.9). Indeed, the base S? is homeomorphic to SO(3)/SO(2) and
this implies that Maps(S?;S2),/SO(3) is homeomorphic to Maps((S?, n);
(S2,1)),/SO(2). Here SO(2) rotates the image sphere around the axis defined by
the north and south poles. From the long exact homotopy sequence, one obtains
immediately that

11, (Maps ((S2, n); (S2, 1)),/SO(2)) ~ IT, Maps ((S2, n); (S, n)),), for 1=3.
For /<2, one has the exact sequence
0 - I1,(Q) > I,(2,/SO(2)) - I1,(SOQ2) 5 11, ()
Hml (2,/SO0(2)) » 0. (3.21)

Here Q, is shorthand for Maps((S%, n);(S% n)),. Recall that
I,(Q) ~11,(5*) ~2Z% and I1,(Q)~II,(S)~Z [25 Chap.9], while
I1,(SO(2)) ~ Z. Because y of (3.21) is an isomorphism if f# 0, Theorem 3.6 is
implied by the following lemma:

Lemma 3.7. The map B in Eq.(3.21) is multiplication by k.
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Proof. Fix a configuration e, € Q,. The orbit of ¢, under the SO(2) action is a 1
parameter loop, e,(?), t€S! and hence an element of Maps ((S*, n); (€, ¢,)). The
loop e,(¢) is homotopic in Maps((S*, n); (€, e,)) to some multiple, m, of the
generator of ©, (Q,, ¢,). By definition, the map f§ of (3.21) is multiplication by the
integer m. The lemma follows by demonstrating that m=k. This task is
straightforward, but lengthy and is completed in Appendix B.

IV. Ljusternik-Snirelman Theory on %

By design, the action functional «(-) is a continuous map from € to R, and its
derivatives are defined as distributions on I'‘((g ® T*)® g). The Ljusternik-
Snirelman procedure begins with the definition of the space of maps over which to
apply the mini-max procedure on «(-), as outlined in Sect. 1. The procedure uses
non-contractible maps from S* into &. Here, only homotopy classes induced by the
map I: Maps((S?,n);(S? n)) —» € will be considered, and in particular, only
homotopy classes in €. The analysis for @ (-) on %, is similar. The only difference is
that the minima of « () on %, is a 2-sphere, while the minima of «(-) on €, k +0
have more complicated topologies [21, 29, 30].

The homotopy groups of %, (and of %,; by identifying €, with ¢ (%,) =%, as in
Sect. 3) are defined with respect to the distinguished point

3.

¢, =(0,—%0%, where ¢’cou(2), and ¢ o’=—1. 4.1)

Note that «(c,) = 0. The configuration c, is not in the image of the map I of
Definition 3.3. Because change of base point in %, induces an isomorphism
between I1, (%, 1(ey)), and I, (%, c,), this is not a serious problem. An explicit
isomorphism is given below. The distinguished point in Maps (S?;S?), is the
constant map: e,: S*— —3 ¢>. Let y = (1, §) be coordinates on S¥, k> 1 where
te[0,n] is the polar angle and j are coordinates on the equatorial S*7'.
The distinguished point is n= {t=0}. Define for k=1, 4 C°((S* n),
(€. 1(e,)) ~ C°((S%,n), (%, ,)) by

0,1 =2/n tp(x) (—%0c%), for te[0, n/2],

ct—m,7%), for te[n/2,n], (42)

F(0) (1,)) = {
for ¢(-)e C°((S*, n), (¥, I(e,)). It is a standard argument that .# induces an
isomorphism between I1,, (%, I(e,)) and I1, (%, c,) [27, Chap. 7]. Thus, a generator
eell, (Maps((S?,n); (S?,n)),, e,) induces

c(e)(t,¥)
_ {(1 —=2/ntB(x))(0, — 3%, for 1€[0, /2],
A= BN (—[e2t = 7, D) (), de(2t — 7, $)(X)], e(2t — ), P)(X)), for te[n/2,n],

. _ (4.3)
where X = x/|x| and c(e) is a generator of I1,(%,,c,) (and IT; (%, c,).)
The sphere ¢ (e) () € C°((S¥, n), (%,, c,)) is the paradigm for the set of functions
A on which the mini-max procedure takes place.

Definition 4.1. The function set A: For k=1, let e(-)eC°(S,n);
(Maps ((S%, n); (S?,n)), e,)) be a fixed generator of I, (Maps ((S?, n); (S%, n)), e,,).
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Define A4 = /A (e) to be the set A = {c(-) = c(€) () + (@ ("), n(")) € C°((S*, n); (%, c,)):
(1) There exists a compact set KcR? such that w(y)el*(K; ¢ ® T*) for
all yeS*.
(2) lim |5 (y;x)|— 0, uniformly with respect to y € S*.

x—»oo

(3) Let ¢(€) () = (4o(»), o (»). Then V.1 (3) € CO(S*; Ly (g ® T¥)).}
It follows from (1) and (3) that «(c(*)) e C°(S*; R) for c(-) € A.

Definition 4.2. The configuration induced by ¢(+) e A: To each c(*) € 4, associate
one configuration ¢ = c¢(y,) where «(c(y,)) = sup «(c(»)).
yeSk

As a(c(*)) is a continuous function on S¥, it achieves its supremum at some
Vo € S*. If there is more than one supremum, the choice is immaterial. One is to
think of ¢(+) e A as having associated to it, the induced configuration ¢.

Before considering the detailed properties of A, some remarks are in order. One
may be concerned that for c(*) = (4("), ®(-))eA, the Higgs field, ®(-) is
constrained to satisfy

lim & (y;|x|X)=e(y)(X) forall yeSk. (4.4

|x]— o0

This constraint amounts to a choice of gauge, asymptotically in IR®. To put
it another way, Eq.(4.4) implies that the gauge group % has been reduced to
%°={ge% lim g(x)— 1?. As ¥ carries no topology, there is no harm in

|x| =00
doing this. Indeed, one could reduce % to 1 and work directly on € — &, but this
complicates the analysis.
The constraint on w(y) = A4(y) — Ay(») has to do with the following
observations: Consider the subspace ¥’ < % which is defined for § > 0 by

€' ={c=(4,P)e¥: u.(x)

={IxP|F g (x) + |x|>P T2V @ (x) +|x|*° | F,, @] (x)) € L, (R7)}.
(4.5)

Give €' the topology induced by considering it as a subset of & x C°(R?) as
follows: €' ec — (c,u.(x)) e x C°(R®). Every critical point of «(-) on € lies in
%'[2, Ch.1V]. In addition, 7 maps Maps(S?;S?) into €' — %', but here I, an
isomorphism I,: IT, (Maps (S?;5%), e,) = IT,(4; I(ey))- Therefore the Ljustermk-
Snirelman theory apphed to homotopy classes induced by I, takes place in ', and
hence €.

For (4,®)e%’, A, =0, and A(r)?)=1§ ( JFA)(tx) $0
o

1
|A| < const - I;IITI , cf. [28]. (4.6)
In addition, one can show that the
lim @ (x| %)= & (X)eC(S%;S?). 4.7)

|x] = o0
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It is a fact, following from (4.5-7), that given ¢ >0, and a sphere c'(*)
=(A'("), D'(")) e C°((S*, n); (€', ¢,)) which is homotopic to ¢, (e,), there is a sphere
c()=(4(), ?(-)) e A with
sup (IIF) = EeWI+ IV, 2(0) =V, @' D)) <e. (4.8)
yes*
As Eqgs. (4.6)—(4.8) are explanatory remarks, they will not be proved here.
For the proof of Theorem 1.1, the crucial properties of the space A are given by
Lemmas 4.3 and 4.6 and Theorems 4.4. and 4.5.

Lemma 4.3. The set A, as a topological subspace of C°((S%;n);(%,c,)) is
contractible onto c¢(e)(*).

Proof. The space A is readily seen to be convex. Thus, every c(-) € A is homotopic
to c(e) ().
Theorem 4.4: Define the number a,, = inf a(¢). Then a,, > 0.
c()es

Theorem 4.4 is crucial in proving that the Ljusternik-Snirelman procedure
doesn’t produce the trivial critical point c,,.

The following theorem provides the most useful tool for obtaining apriori
estimates. It will be invoked again and again in the proof of Theorem 1.1.

Theorem 4.5. Let c(-) = (A("), ®("))eA. There exists a unique ¢(-) = (A(),
&(")eA with the property that for all yeS*, (1) a(é()) < a(c(p)), and (2)
Vin®(y) = *D 40 *D 4y @(y) = 0.

The proof of Theorem 4.4 requires the next lemma. This lemma, in some sense,
is the heart of the connection between the topology of € and the critical points of
().

Lemma 4.6. Let e be a generator of IT,(Maps((S?,n); (S%, n),e,)), and let c(-)
= (A("), ®(")) e C°((S*, n); (%, c,)) be homotopic to c(e). There exists (y,x)eS*
x R3 such that & (y;x) = 0.

Proof of Lemma 4.6. Suppose no such (y, x) existed. The homotopy between c(-)
and c(e)(-) must be continuous with respect to the topology of Definition 2.1.
Therefore, R > 0 exists such that, restircted to the sphere | x| = R,

e'(y;X) = @ (y; RX)/|@(y; RX) | ~ e(y; X) (4.9)

in C°((S*,n); (Maps (S%;S?), e,)). Let F(s,y) (£)eC°(([0,1] x S*, [0,1] x n);
(Maps (S%;S?), e,)) be the homotopy of (4.9).

Since @ never vanishes, @ (y;(1—s)RX+sRn)/|®(y;(1—s)RxX+sRn)|,
s€[0,1] defines a homotopy between e'(y; £) and g (e'(y;n))(X) in C°((S¥ n);
(Maps (S2;S?),e,)). The map g: S*— Maps(S?;S?) is defined in Eq.(3.20).
Meanwhile, ¢ (F(1—s,y)(n)) (X) defines a homotopy between g (e’(y; 1)) (X) and
g(e(y;n) (X) = e, in C°((S* n); (Maps(S?;S?),e,)). Thus, the chain of homo-
topies e(y; X) ~ e'(y; X) ~ q(€'(y;m) (X) ~ q(e(y;n) (X) = e, shows that e(y; X)
is homotopic to e, in C°((S*, n); (Maps (S?;S?),e,)). But by Theorem 3.5, this
contradicts the assumption that e is a generator of IT, (Maps ((S?; n), (S?; n)), e,).
Therefore @ vanishes on S? x R3.
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The remainder of this section contains the proofs of Theorems 4.4 and 4.5. The
essence of the proof of Theorem 4.4 is that due to Lemma 4.6, there exists y € S*
such that d|®|(y; x) and hence ||V ,® (p) ||, is not identically zero. Theorem 4.5 is
used to obtain a uniform lower bound with the aid of the following apriori estimates
from [2].

Lemma 4.7. Let ¢ = (A, ®) €%, and suppose that V; & = 0. There exists a constant
0 < & < oo, which is independent of (A, ®), such that

O VI3 + 17,2135 < Ea(e) (1 +2%(0).

(2) If |®]*(x) = 0, then |®|*(p) < L whenever |x — y| < E(a(c)(1+4%(c) L.

(3) Let V={xeR* |®|*(x) <3}. Then v = [ d*x < £a’(c).

14

Proof of Lemma 4.7. Statement (1) is Proposition V.8.1 of [2]. Statement (2)
is LemmalIV.16.6 of [2]; while Statement (3) follows from the identity
A|®|?>=2|V,®|% The argument is proved in Sect. IV.16 of [2], see Eq.IV.16.17.

Proof of Theorem 4.4, assuming Theorem 4.5. Let c(-) € A be given, and let £(-) € A
be the k-sphere resulting from Theorem 4.5. By Lemma 4.6, there exists
(o Xo) €S* x R3 such that & (y,;x,) =0

Using Statements (2) and (3) of Lemma 4.7 on & (y,; x), one obtains upper and
lower bounds for «:

£’ (6(po)) Z v 2 3183 [@(é(yo)) (1 + 2> (E(yo))] . (4.10)
These bounds imply, by rearranging terms, the upper bound
(1 +2°(E(ro)))* @lé(y))° 2 &' > 0. (4.11)

Equation (4.11) gives a lower bound for «(é(y,)) independent of ¢(y,), and since
(8) 2 a(¢) = a(é(y,)), Theorem 4.4 follows. The crucial fact in the proof was
Lemma 4.6.

The proof of Theorem 4.5 is an application of the calculus of variations. One
first proves that for each yeS*, & (y;x) exists. Then, with ellipitic regularity
theorems, one shows that & (y; x) € C°(S*; C°(R3; #) N I'(g)). The proofis begun
with a proposition that establishes that for each ¢ = (4, ®)e ¥, there exists
& eI (¢) which satisfies V3 & = 0, and is such that (4, &) € % also.

Proposition 4.8. Let (A, @) € €. There exists a unique, smooth € Lq(g) such that:
(1) Vi(@+m=0. (2) [IV,(P+n) ”2— lnf IIVA(<P+¢)H2 3) 12+nl=1 and
lim |@+n|=1.

|x]— 00
To facilitate the proof of Proposition 4.8, the following Banach space will be
used.

Definition 4.9. Define for A € I' (4), the Banach space K ,(g ® A T%),p=0,1,2,3,
to be the closure of I'“(g ® A T*) in the norm

lolz=11V4013. (4.12)
This space is modeled after the Banach space K (R?) (K(A T%), p=1,2,3) which is
14

the closure of CF (R?) (I'“( A T%)) in the norm ||V (") ||,.
p
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Some useful properties of K, are given in the next lemma:

Lemma 4.10. There exists a constant & < oo which is independent of A, such that for
all peK (g @ AT*),
p

lolle = Clldlix,s (4.13)
IA+IxD™ ol = Cldllk,. (4.14)

Similar estimates hold on K(A T*).
p

and

Proof of Lemma 4.10. Equation (4.13) is Corollary V1.6.2 of [2]. Equation (4.14)
follows from Kato’s inequality [2, Chap. VI.6] and Lemma 5.4 of [31].

To prove Proposition 4.8, it is useful to be more general, so consider the
function Q (¢) on K,(g ® ;\ T*) or on K(? T*) (p=0, ...3) which is defined as

follows. For GeL,((g ® AT*) ®T*) and ¢ e K,(g ® AT¥)
p p

Q) =7 IVadll3 + <V, G, (4.15)
For GELZ(;\ T*®T%*), and ¢ e K(A T*), Q(¢) is defined to be

Q) =31Vl +<V$,G),. (4.16)
In order to simplify notation, K, will denote K ,(g ® A T*)or K(A T*)and V ,will
p p

denote I on I' (A T*). The relevant properties of Q (+) are summarized by
p

Lemma 4.11. The functional Q (-) on K , defined by either (4.15) or (4.16) attains its
infimum at a unique n € K,. The section n satisfies

Vo, Vin+Gy,=0 forall ¢pekK,. (4.17)
If G is a C* section, then n is C* also.
Proof of Lemma 4.11. Since G € L,, the functional Q is C* on K. It is weakly
lower semi-continuous, and strictly convex. Further, Q satisfies the coercive
estimate, 0 (¢) 2 ;| ¢11%, — IIGII3, ¢ € K,. Since K ,is a reflexive Banach space, the
calculus of variations [32; 2, Chap. IV.7,8] implies that Q(-) achieves a unique

minimum, € K, and # satisfies (4.12). The apriori estimates in [33, Chap. 5] imply
that # is smooth if G is.

Proof of Statements 1) and 2) of Proposition 4.8. Use Lemma 4.11 with G =V ,®.

To prove Statement (3) of Proposition 4.8, it is necessary to establish the
following apriori estimate:

Lemma 4.12. Let welL} . (R® and suppose that |Vw|eL, (R’ and
lim w(x)— 0. Then w is in K(RR®) and hence in Ls(RR®).

|x|— 00
Proof of Lemma 4.12. Consider the functional Q(-) on K(RR?) defined by
Q) =z lIVoll3 + <o, Vw),. (4.18)
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Applying Lemma 4.11 to Q, above, one concludes that there exists a unique v € K
such that for all ve K, Vv,V (i + w)) = 0. By elliptic regularity, o + we C* (R?)

and A@G+w)=0. (4.19)

The maximum principle implies that V (v + w) = 0,s0 0+ w =0andw = —ve Kas
claimed. Lemma 4.10 states that w e L (R?) also.
Lemma 4.12 has the following apriori estimate as a corollary:

Corollary 4.13. There exists { < oo, such that for all (A,®)e%, |(1—|P|)||2
< {a(4, D).

Proof of Corollary 4.13. Use Lemma 4.12 and the fact that |V |®|| < [D,®|
[2, Chap. VL.6].

Proof of Statement (3) of Proposition 4.8. Let ® = ® +n. Then ||d|—1]| L ||D|
— 1|+ |nl,so(1 —|®|) e Ly(R?),as |#|and (1 — |@|)arein Ly. Because @ satisfies
V24 =0, the function (1—|d|)eK(R? satisfies the integral inequality
o,V (1 — 1)) =0, for all 0 < veCP(R?). By the weak maximum principle,
(1 —|®]) = 0 on R? (cf. [2, Proposition VI.3.5], or any standard PDE text).

The apriori estimate, Theorem V.8.1 of [2] is now available. The result is this:
There exists a constant £ < co, independent of A such that

7, B1NZ S EUENS + V4B + 1ES 174D 113)- (4.20)

(Compare with Lemma 4.7.) Using Lemma 4.10 and Eq. (4.20) one obtains that
|V,®|eLs(R% and hence V |#| e Lg(IR?). Therefore, (1 — |®|) e LL (R®) and one
can appeal to Proposition II1.7.5 of [2] to complete the proof of Proposition 4.8.
[Functions in L} (IR?) decay to zero as |x|— 0.]

Before turning to the proof of Theorem 4.5, it is necessary to know that the
section n e I' (¢) of Proposition 4.8 decays to zero as |x|— co.

Proposition 4.14. Let (A, ®)e% and suppose that v=V3i®eL,(g). Let
n €I (g) N Ls(g) be given by Proposition 4.8. Then (1) lim |n|(x)—0,(2)V nekK,

|x|—> o0

and its norm is bounded by a number which depends only on a(A, ®) and ||v||,.

Proof of Proposition 4.14. The section n e I' (g) satisfies VZn = —v. Since |® + 1|
<1 and |®| is bounded, then || is bounded. The result now follows from the
apriori estimate given by Theorem V.8.1 of [2], and Proposition II1.7.5 of [2]. The
argument is similar to that used to prove Statement (3) of Proposition 4.8.

Proofof Theorem 4.5. The results of Propositions 4.8 and 4.14 will now be applied.
Let c() =(A(), @())eA, and let ¢'()=(A4(), Po(")). As A(y) — Ao(y) is
compactly supported in a fixed, bounded domain in R?, independent of y € S¥, so is
D 4,y @ (). Therefore, ¢'(-) e A.

Both Propositions 4.8 and 4.14 are applicable to ¢’ (y) for each y € S*. Define
& (y) = Po(¥) + 1 (p), with 5 () given by these aforementioned propositions. For
each yeS* é(») = (4(»), #(y)) €%, and by uniquencess, é(n) = c, = (0, 1a).
Due to the convexity of the L,-norm, «(¢()) < a(c(y)) for all y e S*.

For the proof of Theorem 4.5, it remains to show that ¢ (y) € C°(S*; ¢) and that
Statements (2) and (3) of Definition 4.2 are satisfied by & (y). This is done using
Statement (1) of Proposition 4.8.
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To begin, the equivalence of the norms on K, y€S* must be established.
This is so that 4 (y) and # (") for y # y’ can be compared. It is for this purpose that
A(y) — Ay(y) is defined to have compact support which is uniform in y € S*. The
topology on & also plays a crucial role here.

Lemma 4.15. Let (A(y), ®(»)) € A. The Banach spaces K 4,y and K, are equivalent
forally € S*. Indeed, there exists a constant 0 < z < oo, which is independent of y € S*
such that for all ¢ € Ky(g ® ATH).

p

2l S dllk,, < 21k, (4.21)
and for all y e S* and y’ e S*,
m |V 4000 — Vi@ 1220 (4.22)
=y

Proof of Lemma 4.15. 1t is sufficient for the proof of this lemma to establish
(4.20) and (4.22) for ¢ eI'“(g ® A T*). Write A(y;x) = Aq(y;x) + 0 (y; x). By
p

assumption, R < oo and a ball By< R? exist such that for all yeS*, w(y;x) =0
if x¢By. Fix ¢ eI'“(g ® A T*), and consider the difference in the norms:
14

HIV aon@ Il = IV 2 | < ITAG), D112,
= 140(), @112 + Heo (), 411125
Sz (A + 1D ol + g lls lo()]l)-
The last line follows using Holder’s inequality, and the fact that |A4,(»)|

<z(1+|x[)~%. By assumption, w(y)eC°(S*;T'“(Br;2®@T*)), so lw(y)|l5 is
uniformly bounded on S*. Thus

IV agnbllz = Vol | S z2(NA+1xDT ¢l + b lle),

= 22,00Vo¢ll2, (4.232)
or

=2z, VA(y)(b Il - (4.23b)
Here, the last two steps follow using Lemma 4.10. Equation (4.21) follows directly
from (4.23).

The assumptions in Definition 2.1 on A4(y) = 4,(y) + w(y) imply that a
continuous function, z(y, ") on S* x S* exists such that

(1) lim z(p,y’) = 0.

@) 140(») — 40 =z(ry)A+1xD7
B) IV (4o(») = AN S z(ry)A+]xD 2 (4.24)

To prove Eq.(4.22), fix ¢ e'“(¢ @ A T*). Then for all y, )’ eS¥,
p

1V an® = Van® 12 = 1140 (») = 400 ¢1112 + Il (y) — @ (), ¢]ll (4.25)
S+ IA+IxD o) — o)) 1A +IxD™ ;.
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Equations (4.24) and (4.25), the fact that w(y)e C°(S*I'“(Bg; # ® T*)) and
Lemma 4.10 now establish Eq. (4.22). One may conclude from Proposition 4.14
and Lemma 4.15 that #(y) and Vn(y) €K, for all y, y'eS*.

In order to compare # () with #(y’) one uses Statement (1) of Proposition 4.8.
Thus, for y, y'eS*, n(y) —n(y’) satisfies

Vinm() —n(")
= —VipPo(») + Vi Po(¥) = 2[4:(») = 4,0, Vin(¥)] = 7 (4:(»)

—A4;(y)),n(»"]

— [4:i(y) = 40, [4:(Y), n ()N + [4:(0), [4:(0) — 4 (), n(¥)]], (4.26)
where A; = 5‘; JAand Vi= é% ld. Let v(y,y) denote the right hand side of
(4.26). Continuity properties of v(y,y") as y' — y imply continuity properties of
n(y) —n(y') as y'— y. Elliptic regularity techniques, the “bootstrap” arguments,
are used to exhibit this. These begin with

Lemma 4.16. Ler v(y,y’) denote the right hand side of (4.26), then lim | (1
Yoy
+1xDv(,y) I, 0.

Proofof Lemma 4.16. The proofis simplified by splitting v(y, ") (x) into two parts.
The part exterior to the ball of radius R [where w (y; x) = 0] is denoted v**(y, »").
The part interior to this ball is denoted v™(y, y").

For |x| > R, A(y) = Ao(y) and V', ®,(p) = 0. It follows from (4.24) that

[A+IxD o, y) ) Sz 2 Y) {IPnO)I+ A+ XD O} (4.27)
Using (4.27), Proposition 4.8, Lemmas 4.15 and 4.10, one obtains the inequality

A+ IxDo(ry) @) 2= 227 2(3, ) (4.28)
Meanwhile, v'*(y, y') satisfies
1A+ IxD o™, ») ) 2 = 20(R) - 2(0, ) In() 1, (4.29)
471: s 1/2 5
+ <§‘R ) sup |V 3, Po () = Vi @0 (1)1,
xeBp

The right hand sides of both (4.28,9) vanish as y’ — y, which proves Lemma 4.16.

Completion of the Proof of Theorem 4.5. Take the L,-inner product of both sides of
(4.26) with (n(y) —n(y"). As both n(y), n(y") € K,,,(#), one can integrate the left
hand side of the resulting expresson by parts to obtain
IV an@) =GNl = —<n(») =00, v(1, )3,
S IA+IxD ™ 0O) =1 I 1A+ 1xD o, y) |2,
= LnD e, + IO M) 1A+ IxD o, )l (4.30)

Using Eq. (4.30) and Lemmas 4.16 and 4.15, one concludes that
n(-)eC%(S* Ky). (4.31)
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By using (4.26) in conjunction with (4.31), Lemmas 4.15, 4.16, and Theorem V.8.1
of [2], one obtains as well that

Vn(y)e C° (S Ko). (4.32)

Since K, — L continuously, Egs.(4.32,1) imply that n(y)e C°(S*; Li(#)), and
since L - C°(RR?) continuously, n(y) e C°(S*; C°(R?; £)). Thus () is uniformly
continuous with respect to the supremum norm on IR>. The continuity of ¥, , 1 (»)
in L,(g®T*) follows from Egs.(4.26) and (4.31). The proof that
n(y) e C°(S*; I' (¢)) requires only local estimates. This is standard, and the reader is
referred to [33, Chap. 5,6]. Thus () satisfies all the requirements of Definition 4.1
and ¢(y) = (A(y), Po(») + 1(»)) € A. This completes the proof of Theorem 4.5.

V. The Minimizing Sequence

Presently, a sequence in A will be used to construct a solution to Egs. (2.2) and (2.3).
This entails choosing a “‘good” sequence of spheres {¢;(*)} € A and proving that the
resulting sequence of configurations {¢;} converges to a solution. This section deals
only with the question of convergence over bounded domains, where the
convergence follows from K. Uhlenbeck’s weak compactness theorems. A good
sequence has the property that V.z; — 0 as well. As in the finite dimensional case, the
existence of ““good” sequences is a consequence of the fact the spheres in /4 are not
null-homotopic. The following simplified notation will be used: If {¢;(¥)} = 4, then
() =(4,(»), 2:(»), &;=(4;,P), Va.,(y)=Va,,, Vas=Va and H;= K,

Crucial to the proofs in this section is the fact that there exist configurations
¢ = (4, ®) € € which satisfy

D,*D,®=0, (5.1)

and spheres c(y) € A which satisfy (5.1) for all y e S* (Theorem 4.5).

Definition 5.1. Let ¢ = (4, @) € €. Define the Banach space H, to be the closure of
Ir''(g®7*) ®g)in the norm ||y |2 = ||V w3 + |I[®, w]]|3. The symbol || - || will
also denote the above norm on I'‘(¢ ® A T%), p=0,1,2,3. For c(y)eA, the

following shorthand will often be used: H,(,,= H,, || * lle,,= Il - ll,. For {¢;} e % a
sequence: H,=H; and | - [l,=1 " |I;.

Proposition 5.2. Letce €. Then o (") = a(c+ ) extends to a C* functional on H.. If
ce® and a(c) < B, then the following estimates hold with » = x(B): (1) |a.(¥)
—a(c) = Va W) < xllylZ (A +1yl2), Q) la@) = alc) = Va(y) — 5 # )]
S k2 +llyel). Ife(y) e A, andy eI (g @ T*) @ 2), then (3) @, (), Ve, (¥),
H,(w) and ||y ||, are all continuous functions of .

Next, consider sequences {c;(*)} € A which satisfy (5.1) for all y e S*.
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Proposition 5.3. 1t is possible to choose a sequence {c;(y)} € A which satisfy (5.1) for
all y eS*, and satisfy in addition

€))] lim 2 (¢;) — a,, .
) () Z a(Civy). (5.2)
3) lim ||V || g — 0.

The proofs of Propositions 5.2 and 5.3 are deferred to Sect. 6. For the remainder
of this section, assume their validity.

Definition 5.4. A good sequence {c;(*)} = {(4;("), §;(*)} € 4 is one which satisfies
(5.1) and (5.2).

The next theorem states that the sequence {¢;} that is induced by a good
sequence of loops converges. More generally, Theorem 5.6 below states that a form
of Condition C of Palais-Smale, (cf. [10, Chap. 6]) is valid locally. The main part of
the proof is due to Uhlenbeck [11] (see also [34]). The next definition defines the
relevant form of convergence.

Definition 5.5. Let {¢;=(4;, )}, €%¥. The sequence {¢;} is said to converge
strongly in L} | to ¢ = (4, @) € ¥ if the following is true: (1) There exists a uniform,
open cover of R? by balls {V,} of radius r > 0. (2) There exist, for each i, o, gauge
transformations g,(i) € L3 (V,; SU(2)). (3) For each «, the sequence {g,(i)c¢;}
converges strongly in L} (V,; (¢ ® T*) @ g) to some (4,, D,). (4) For each o, f, the
sequence {g,;(i) =g,(i) g5 ' (i)} converges strongly in L3 (V,nV;; SU(2)). (5) In
each V,NVy; (A P,) = 845 (A4, p). (6) For each a, there exists 4, € L2(V,;SU(Q2)
such that h,c=(4,, P,) in V,.

Armed with this definition, the convergence result can be stated.

Theorem 5.6. Let {¢;} =(A;, ;)€€ be a sequence that satisfies (1) a(c;) < B,
(2) lim Vel ys— 0, (3) Eq. (5.1). Then there is a subsequence of {¢;} which

converges strongly in L}, to (A,d)€¥, and (A, ®P) is a solution to Egs.(2.2)
and (2.3).

Proof of Theorem 5.6 assuming Propositions 5.2 and 5.3. The proof is a direct
application of K. Uhlenbeck’s weak compactness results for gauge fields [11]. For
convenience, her relevant results are stated in the following proposition.

Proposition 5.7 (Uhlenbeck [11]). Let {4,}2, be a sequence of C* connections on
R> with || F,||3 £ B. There is an infinite subsequence, also denoted {4}, a constant
u>0, an r(B) >0, a countable, uniform cover of R? by balls {U,) - , of radius r(B),
and a sequence of gauge transformations {g,(i) e I' (U,nUy; SU(2))}{°, -, such that
the following is true:

@) In U, A,() = g,() 4,8,() "' + g,() dg,()™" satisfies (1) d* A, () =0,
(2) i (xA4,()) =0, 3) 14Dl 3w, = uB.

(b) A,(i) converges weakly in L (U) to A,.

(¢) F,, converges weakly in L,(U,) to F,.
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(d) g,() g5 ' (i) converges weakly in L3(U,n Uy;;SUQ) to g, and
8.5 € C°(U,NnU;SU(Q2)).

(€) Ay=8upAs&es' + 8updgyy' in U,NUj.

) d«A4,=0in U,.

(8) % (x4,) =0.
Here ¢,: 0U,— U, is the inclusion.

The sequence of connections in mind is that defined by the sequence
{¢;=(4;, ®,)}. With no loss of generality, assume that the {4,} satisfy (a)~(g) of
Proposition 5.7.

Next consider the Higgs field. It will be shown that in each U,, the sequence
{g.() ®,g, (i)} has a weakly convergent subsequence in L3(U,;¢). This is
established by proving that the L} (U,; £) — norms of the sequence are uniformly
bounded in i. Set &,(i) = g,(i) D, g, (i) in U,. Notice that because (4;, D;) satisfies
(5.1), |@,(i)| = 1. Now compute the L} (U,; #) norm of @,(i):

1B,() 1310, = | d>x {1d®,())|* + | () |?}
S2§dx{V,,2,(0)*+ 2(14,()|* + 1)}

< 4(a(G) + uB) < B'. (5.3)

The last line follows because by construction, the sequence 4, (i) converges weakly
in L1(U), and, do to the Rellich Lemma, strongly in L, (U,).

Lemma 5.8. Let {¢;=(A;, ®;)} as before. There exists an infinite subsequence, also
denoted {¢;} such that { A;} satisfies (a)—~(g) of Proposition 5.7, and (a) ®,,(i) converges
weakly to @, in L(U,), (b) D 4.6 P (i) converges weakly to D, @, in L,(U,), (¢) @,
=84 P8y in U,NUj.

Proof. The proof uses a process of choosing subsequences called diagonalization
[34]. Begin in U, . The unit ball in L3 (U,) is weakly compact; thus (5.3) implies that
an infinite subsequence {i'} € Z , exists such that @, (") converges weakly to @, in
L3(U,). The map (4,®) > D ,® from LY (U;;(g @ T*)® g) > L,(U;; g@T*) is
weakly continuous (use the Rellich lemma [16]), which implies statement (b) above,
in U;. Now relabel i/"—> i =1,2... (this is diagonalization) and repeat the
procedure in U, . Since the open cover {U,} is countable, this procedure proceeds by
induction, establishing (a), (b) of the lemma. To establish (c) of the Lemma, it is
enough to remark that multiplication from L3(U,) x L} (U,) - L (U,) is weakly
continuous in three dimensions [16].

It will now be established that the configuration (4,, ?,) € L} (U,; (¢ ® T*) @ &)
is a weak solution to (2.2) in U,. It is a straightforward exercise to verify that the
Bianchi identities (2.2c, d) are automatically satisfied by any (4, ®) e L}.

Let L} .(U,; ) denote the Banach space of L] sections over U, which vanish on
ou,.

Lemma 5.9. The imbedding, S, ;: L} (U;(g®T*)®g)— H; given by S, ,(¥)
=g, ()" tyg,(i) satisfies lim ||S; V() |, — O, uniformly in o. Here |||, is

¢ 0

shorthand for the norm on L} .(U,; (g @ T*)® g)*.



Non-Self-Dual Gauge Fields. I 279

Proof of Lemma 5.9. In order to prove the assertion concerning V; it suffices to
show that the norms ony € L} .and g, * (/) ¥ g,(i) € H; are equivalent, uniformly in
the index «. Using the inherent gauge invariance,

1Se, 17 = V.0, w3 + @D, w1113
S 20w lls + 41w IZ 14,0112 + 41w i3
40+ BYUPylz + lvld).

All integrations above are implicitly restricted to U,. Line 2 follows from line 1
using Holder’s inequality and Lemma 5.9. Line 3 uses the imbedding L; — L, and
(a) of Proposition 5.7. On the other hand,

I3+ w3 < 2370, W13 + 1 4u 12 1w 1+ vl
S2(I7 4w I3 + £(r) (B"+ D) w117
S ' B) IS, (W13,

Here, line 1 uses Holder’s inequality. Line 2 follows from Proposition 5.7 (a) and
the fact that the volume of U, is r34n/3. Line 3 uses Lemma 4.9.
Notice that SF, Ve () is just Ve, ) o,m)(") restricted to L} .(U,; (g @ T*) @ g).
If (4,9)el}(U,; 2®@T*)® g)) then it is a straightforward exercise in the
Sobolev inequalities to show that Ve, 4 € L ¥ (U,;(g @ T*)® £).

Lemma 5.10. Let {¢,= (A4;, D,)} satisfy the assumption of Theorem 5.6 and denote by
(A,, @) e Ly (U,; (g @T*)® ), the limiting configuration of Proposition 5.7 and
Lemma 5.8. Then Vay,_ 4)() =0 on L} (U, (g ®@T*)® &).

Proof of Lemma 5.10. Using Lemma35.9, one shows that the map
(4, ®) > Vay, 4() from L (U,) to L] *(U,) is weakly continuous. For example, for
nel; (Us#),

| Ve, 45,)((0, m) —Veau,q, %(0)((0’ m) |
é |<[Aa_ Aa(i)5 ’1]3 DAam¢oc(i)>2 | + |<DAJ]> DAGK@a - DA,(,,(pa(i)>2 l’
= 2a(Co) InllallAy—Ax() s + [<De, D 4 @, — D 4y Po (D) .

The first term vanishes as £ — oo as the imbedding L (U,) - L,(U,) is compact. The
second term vanishes as ¢— oo because the map (4,(i), ?,(i) = D, ;,P,(i) of
L} (U) — L,(U,) is weakly continuous. The remainder of the proof is similar and it
is omitted.

In order to discuss the strong convergence of {(4,(i), #,(i))} in L}, choose a
subcover {V,=U,} of balls of radius > r/2.

Lemma 5.11. For each «o, the sequence {(A4,(i),®,(i)} converges strongly in
Ly (Vi (g ®@T*)® g) to (A,, D,). Thus the sequences {F, D, ,P,(i)} converge
strongly to (F,,D, ®,) in L,(V,), and the sequence {g,;(i)} converges strongly t0 g,
in L2(V,"\V,).

Proof. By the Rellich lemma, {(4,(:), ®,(i))} converges strongly to (4, ®,) in
L,(U,), p<6. Let f be a cut off function which is 1 on ¥, and 0 on R*\U,. For
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convenience, the index « will be suppressed. Let a;= 4 — A(i). Then fa;e L} (U,).
Using Lemma 5.10 and both (a) and (f) of Proposition 5.7,

0=<Va,VAy, + {B(A Aa;+a; A A) A*Fy+ [a;, @] A*D DD, ,
0=LpVa,Vay,+<{Ba;n(AA*F—*F;AA—[D,*D D] — A4; A *F,,
+ *FA,/\ A+ (D, *DAi¢i])> +<a;VB,Vay,+ Va’(A,,d),)((:Bai: 0)). (GX)

To derive line 2, add and subtract Ve 4)((fa;0)) from line 1 above. Now,
VBeL,, A;convergesstrongly to Ain L,(U)and VA4,V A4;, F,and F, are uniformly
bounded in L,(U). Hence, from (5.4), one obtains with Holder’s inequality that
IV (A— A3, < constant (||4—A4;llsu+ [IVell,). Hence A,— A strongly in
L3(V; (¢ ®T*)). The proof that @,— @ strongly in L} (V; &) is similar. To see that
the transition functions converge, note that by the Rellich lemma, g,,(i) converges
strongly to g,; in L3 (V,nV;) and C°(V,nV}). Strong convergence in L3 (V,NV})
follows by differentiating
A,(0) = 8up(1) Ay(1) 825" (1) + 815 (D) dg15" (D).

By construction, (4,, @,) = g,5(4y, P) in V,nV}. Using Theorem V.2.4 of [2],
and Proposition 5.7, one obtains that (4,, ®,)is C*inV,,and g,;is C* in V,NV}.
Hence, by Theorem V.6.1 of [2], there exist sections /e L3 (V,; SU(2)) such that
h(A4,,®,) is C* and h,g,,h; ' =1, for all o, B. In addition, (4, ®) defined by
(4, D) ’I/ = h,(A4, ®,) is a solution to (2.2).

It remains to establish that (4, @) € €, that is, to establish that.@ (4, ®) < co0, and
thatthe lim |®|—1.Let F,= F,. Thesequence {| F;|} € L,(IR*) converges strongly

|x]— 00
to | F|in L, (U) for any open, bounded set U= R3. Since CE (IR3) is dense in L, (IR?),
the sequence converges weakly to |F| in L,(R®). By the weak-lower semi-

dontinuity of the L, norm, || F||3 < lim || F; |2 < 00. A similar argument holds for
ID,®|)5. Thus (c) £ lim 2(¢;) < .

To establish Eq. (2.3) for @, it is important that Eq. (5.1) hold for each ¢;. Using
(4.20), Lemma 4.10 and Kato’s inequality one obtains a uniform upper bound for
W1 —19;)lls- Meanwhile, Corollary 4.13 and Lemma 4.10 give a uniform upper
bound for ||(1—|®;|)|l¢. Therefore, {(1—|®;|)} has weakly convergent sub-
sequences in L}. On any bounded domain U< R?, {1 — |®;|} converges strongly
to (1 — |@])in L§ (U). Hence, the weak limits of {1 — | ®;|} are the same and they are
equalto (1 — |®|)a.e. on IR?. Therefore (1 — |®|) € L{ too. By Proposition I11.7.5 of
(2],

lim (1 —|@]|(x))—0.

|x|— o0

VI. The Gradient of «

The existence in A of good sequences has the following intuitive basis. Imagine
c(y) € A with @ (¢) very close to «,, . By definition, ¢ () is a continuous map from S*
into €. It is here that the topology of € plays a crucial role. In the C® topology,
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Va, (W) is continuous in y when v is a fixed element of I'‘((g®T*)® &)
(Proposition 5.2). Because of this continuity, the k-sphere ¢(y) can be deformed in
the direction of the gradient flow to lower the action along the loop. There must
exist an seS* with both «(c(s)) > a,, and Ve, small or else this deformation
would produce a new ¢'(y)eA with «(¢') <a,, an impossibility. In fact, the
gradient flow yields ¢'(y) e A with ¢’ = c(s). This new k-sphere is a good one.

The above procedure outlines the proof of Proposition 5.3. There are four steps.
The first step is to prove Proposition 5.2, and this step is done last. The remaining
steps are done in order. Step 2 is to prove that ||V, || 4 is a continuous function
of y € S* when ¢(y) € A. The third step is the construction of the deformation along
the gradient flow. The fourth step is the verification that this deformation has the
required effect.

Proposition 5.3 will be shown to be a consequence of

Proposition 6.1. Let c(y)eA, with a(c(y))<B. Given ¢>0, there exists
b(y)eA which satisfies (1) a(b(y)) £ a(c(y)) and (2) Eq.(5.1) for all yeS*
(3) IVasl2 (1 + IVall,) ' < max [e,v(B) (@(b) — @.,)]. Here, |- ||, denotes the
norm on Hj, and v is a constant which depends only on B.

Proof of Proposition 5.3, assuming Proposition 6.1. Choose a sequence {c;(y)} € A
such that lim «(¢;) »@,. Now apply Proposition 6.1 to obtain the sequence

{b;(»)} eA. A strictly decreasing subsequence will satisfy the requirements of
Proposition 5.3.

Proof of Proposition 6.1 assuming Proposition 5.2. The following shorthand will be
used throughout: @, = «,(,), Va,=Va,,... etc.
To begin, it is necessary to consider the continuity of the gradient of «.

Lemma 6.2. Let c(y) € A. The function ||Va, ||, is a lower semi-continuous function
of yeS*. Here |- ||, is the norm on H}

Proof. Let seS*. As I'*=T“((g@T*)® g) is dense in H,, given £ =¢, >0 there
exists ¥ € I'“ such that

M lwls=1, and () Va,y)> Vel — & (6.1)

The section y has compact support. As a consequence of Proposition 5.2, there
exists 6 >0 such that if |y —s| <0, then |||y |,— 1| <&, and Va,(y) > [[Vall,
— 2¢,. Therefore, when |y — 5| <9,

Vel z Wi Va,W) 2 (1 —e) [IVall, — 4e . (6.2)

Lete, =(4+ |[Vall,)~'¢,. From (6.2), one concludes that given ¢, > 0, there exists
0(s,&;) > 0 such that ||V, — Ve, <e,, whenever y e S* satisfies |y — 5| <.
Thus y - [[Va,|l, is lower semi-continuous.

Lemma 6.3. Let c(y) € A. Then the function ||V a,||, on S* is upper semi-continuous.

Proof. Suppose that the lemma is false. Then there exists s €S* and a sequence
{y;};21€S* converging to s with, |Vall, 2 Vel + 9, with 6>0. Here,
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Va;=Va,. Keep in mind that the || - ||, norm depends on y €S k. There is, in this
situation, for each y;, a section y;eI"*((z®T*)® g)),
ly;ll; =1, and Vay(y;) 2 IVall, +0/2. (6.3)

The Banach space K; = K,(,,((# ® T*)® #)) is given by Definition 4.9. There is the
obvious imbedding H;= K;. By Lemma 4.15, the {K}} are all equivalent to K. In
fact, using (4.22), there exists 4 < oo, independent of y; and j such that

Wawil = Vil (+ ) =1+ 4). (6.4)

The sequence {y;} is, therefore, uniformly bounded in K|, so it has a weakly
convergent subsequence which converges to ¥ € K,. Denote this weakly convergent
subsequence by {y;} also.

It will now be shown that ¥ € H; and ||/ ||,=< 1. Indeed, consider the sequence

{9,=0.y,[2,y,D}eL, (BT B T*D (O T*)D 2)).

The sequence {#,} is uniformly bounded in L, (R*) with norm 1, so it has a weakly
convergent subsequence which converges to % € L, (R?). The norm is weakly-lower

semi-continuous, so
401, =1. (6.5)

On the other hand, (A(y),®(»)eC°(S*; C*(U;(g®@T*)@g)) for any
bounded, open UeR®, and as a consequence, {(4;, ®;)} converges strongly to
(4,, @) in C*(U). The sequence {y,} converges weakly to i in K. Now consider a
fixed Ee€L,(U). Then, the inequality
|<VA,‘/7 =Vavis E)y vyl = |<VAS(‘E“ Vi) E>o vyl + KlAs— 45, 9;), EDos v,

S KV LW =¥ Edoswol + 2014, — 451155 wo ly;lle IE L,

allows one to conclude that ¥, y; converges weakly to V', in L,(U). Here, one
must use Lemmas 4.10 and 4.15 to obtain a uniform bound on ||y;||. By a similar
argument, [®@;, ;] converges weakly in L,(U) to [®,, ¥].
Therefore 9= (V ., [®,, ¥]) a.e. in R, and using (6.5) one concludes that
Y € Hy and
ls<1. (6.6)

Now consider Ve, (). Write y; = («;,1;) and ¥ = (&, 7). Note first that
KV anjs VAJ¢j>2 =V VaPr + <V Va®i— Vi@,
= <VA]7,‘a VAS¢S>2 + <VA/711? VA,‘D,'_ VAS(DS>2
+ <[Aj__ As’ ’7]’]9 VA,(D.S)Z . (67)
Write 4 (y;x) = Ay (p; x) + o (y; x) as in Sect. 4. Then Eq. (6.7) implies that
|<VAJ’71’ VA,¢,‘>2 - <VA,’7,', VA,(D5>2[ = 21(”‘7,«1,‘15,_ VAxd’st
+ 1[40 (y) = Ao (), milll; + 0 (¥)) — @ () I3 [In;ll6)- (6.8)

By  assumption, (V,®)(»)eC%S%L,(¢®T*), while w(y;x)eC’
(S*; Ly(R?; g®@T*)). (Recall that there exists R<oo such that w(y;x)=0 if
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|x| > R, for all y € S*.) Therefore, one can conclude from Egs. (4.26) and (6.8), and
Lemma 4.10 that

JI‘IE KV, 155 V., @02 = <V 1, Vi, @5 = 0.

Because {#,} converges weakly to 7,

Jlirg KVAﬂjs |7As¢s>2 - <VA,77_a VAS¢S>2 [—0,

as well. Hence
<V um, l7,4;(1:’s>2 = Jlirg <VA,’7J, VA,(D1>2 . (6.9)

Similarly, one shows that
Dy, Fy)=1lm<{Do, Fy)s. (6.10)
jo o

In addition, one has

,llrg |<[‘Dj, (xj]s DAJ ¢j>2 - <[¢j: O‘j], DA,(ps>2| = Jlirg ”DAJ ¢j _DAS¢S||2 =0.

And by weak continuity,
hm <[¢j) O‘j‘:|3DAA(135>2 = <[d)s’ O_(], DAA©S>2 .
Jjo
So
<[¢s9 oz]»-l)A;qjs>2 = jhrg <[ Jj° j] D @ >2 (611)

To summarize, Egs. (6.9)—(6.11), (6.6), and (6.3) imply that

Wall, 2 Va, <“ _” ) Z lim Ve,(y)) 2 Vel + 6/2.

This is a contradiction unless ¢ = 0. Hence y — ||V, ||, is upper semicontinuous, as
claimed.

The proof of Proposition 6.1 requires the construction of a deformation along
the gradient flow. The deformation will be a y-dependent, compactly supported
section of I'“((g @ T*) D g).

As a preliminary, define for é <0 the sets

Q@) = {yes*: IPa,ll2( + IVa,ll,) "' >3},

and Q, = Q(0). Since ||V, ||, is a continuous function of y, the sets Q(J) are open
sets and Q(8)c= Q, if 6 > 0.

Lemma 6.4. Let c(y)eA. There exists y,€ C°(Qo; I (g ® T*)® g)) such that: (1)
I, ll,=1. Q) Va,W,) = =5 IVa,lfor yeQ,. (3) If 6 > 0, there exists R (0) < oo,
such that for yeQ((S), W, €l (Brey; (@ T*)D g).

Proof For each yeQ,, there exists l//yEF ¢ which satisfies ||x//y|| =1 and
Va, (l//y) < —3/4||Va,ll,. However, y -y, may not be continuous. Since (//y is
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compactly supported, Proposition 5.2 implies that there exists §, = d, () such that
whenever s e S* satisfies |s — y| < J,, then

Va,W,) < —11/16 Ve, |, and |l¥,l,—1|=1/8. (6.12)

As y—|[Va,ll, is continuous, there exists d,(y) = J,(y) such that whenever s € Q,
and |s—y|<d,, then

Va,W,) = —5/8Val.,. (6.13)

There exists a locally finite cover of Q, by open balls {D, (;)} = Qo with centers

y,. It follows from Egs.(6.12,3) that the cover can be chosen so that whenever
yeD,(y),

Va,() = —5/8Va,l, and [Ill,—1]<1/8, (6.14)

where ;= Let {f;} be a partition of unity subordinate to the open cover
{B,(y))}. Set

'py:Zﬂj(y)Q}j’ yEQO' (615)

As Va(-) is a linear functional, one finds using (6.14,5) that for y € Q,,
J

The norm of y, is bounded by
10,0, = X B0, 11 < 9/8. (6.16b)
J

Now let y, = /I, l,. Then [y, ||, = 1, and from (6.16), Va,(¥,) £ — 5 Ve,
By construction, y,€ C%(Qy; I'(g @T*)® g)) and if K=Q is a closed set, there
exists R(K) such that y, eI'"“(Bgk); (g ®T*)@Dg)) for all y e K. Therefore, v,
satisfies all the requirements of Lemma 6.4.

The map v, will be used to construct a deformation of ¢ (y) which will satisfy the
requirements of Proposition 6.1. It is no loss of generality, however, to assume that
the c(y) satisfies (5.1) to begin with (cf. Theorem 4.5). Let ¢ >0 be given. The
deformation is constructed with the help of a function 0<f,eC °(S*) which
satisfies f, <1 and f, =0 on S$*\ Q(¢/4). The function f, will be specified further.
Let ¥, be given by Lemma 6.4 and define the loop

b'(y) = cN+ 1Y, (6.17)

Since Q(g/4) is compact, and contained in Q,, Lemma 6.4 insures that b'(y) e A.
From Proposition 5.2 and Lemma 6.4,

a(b'(y) £ a(c() =5/ 1Vall + 247 (6.18)

The function f, will be identically zero outside of the following set:

2
le{yeSl‘ 1V, Il

: m > max [e, 4 (1 +8%) (@, — aw)]}. (6.19)
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It is no loss of generality to assume that ceQ,, as otherwise f,=0 and
b'(y) = c(y) satisfies the requirements of Proposition 6.1.

The function f) is defined as follows: Let {U;} be the connected components of
Q,, and let 0U;= U\ U; denote the boundary of U,. Denote «; = sup «(c(»)).

€U,
Let d(y, 9U;) denote the geodesic distance between y € S* and 0U,. Lei 6 (x) be the
usual step function, so

L (1f x| 20,
9(")"{0 if x| <0.

The function f, is:
) For yeU,
fy=1Vayll, [(1+8%)(1+IVa,ll )] tor,, where
r,=min {1, [d(y, 0U)) + (@, — «;) 0 (@, — ;)]
4 (148%) - Ve |l 2 (L + 1V, ll,)} -
) For yeS*\Q,, f,=0. (6.20)

The relevant properties off, are summarized in the following:
Lemma 6.5. Let f be defined by (6.20). Then (1) 0 < f, <r, = 1.(2) f, is continuous.

Proof. Statement 1 follows by inspection. Consider the continuity statement. The
function is clearly continuous in the open sets Int (S*\ Q) and Q,. It remains to
establish that f, is continuous at points p €09, . It is sufficient to prove that if
{p,} €Q, and |p;—p|—0 then f(p;)—0. But this follows because «(c(y)) and
V.|l are continuous functions on the sphere.

With f, given by (6.20), let b'(y) be given by (6.17). Using (6.18), one obtains
that

a' M) salcM—1(1+807 A +1IVa,l) " IVaylir,.  (6.21)

For y¢Q,, b'(y)=c(y). But for yeQ,, Eqgs.(6.18,20,21) imply that «(b'(»))
<.a(c(y)), and in particular, that there exists s€.S*\ Q, such that

a(b'(s))>a('(y) foral yeQ,. (6.22)

Therefore, the new sphere, b'(y) satisfies Statements (1) and (3) of Proposition 6.1.
Now apply Theorem 4.5 to b'(y). Call the result b(y). As b'(y)=c(y) for
y €S\ Q,, and c(y) satisfies (5.1), Theorem 4.5 insures that 5(y) = b’ (y) = ¢(y) for
yeS*\Q,. Therefore b=0', and b(y) satisfies all the requirements of
Proposition 6.1.

Proof of Proposition 5.2. Suppose that the space H, were imbedded in L,,
uniformly with ¢. Then the proof of Proposition 5.2 would be no different than the
proof of the proposition with R? replaced by a compact 3-manifold, where the
proposition follows using standard Sobolev inequalities, cf. [11, 35]. However H,
does not imbed in L,. Nonetheless, Proposition 5.2 is true, essentially for the
following reason: Let ¢ = (A4, ®) € ¥. The || [P, -]||, component of | - ||. provides a
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bound for the L,-norm of those y € H, which satisfy (@, ) (x)=0. This bound
depends only on «(c). Indeed, the volume of the set in R* where | ® | < £ is uniformly
bounded (cf. Corollary 4.13). Where &(x)# 0, the stabilizer of ¢(x)eg is 1-
dimensional. Since the non-linearities in the action are all commutators this is
sufficient to establish Proposition 5.2.

The proof begins with the following observation:
Lemma 6.6. Let c=(A4,P)e%. Let V={xeR* |®|(x)<}} and let v=[d’x.
There exists a constant oa(v) such that for any two ¥, ,€H,, and yu, 6 =0, 1,V2, 3
1wl wslll S o Nyl vl (6.23)

Here y, = (1//?, 33 w?dx").

a=1
Proof of Lemma6.6. Let 0<be CP(R?) be a cut-off function which is 1 if
xeV and 0 if distance (x,7)>3. Given nel‘(g), there exists the following
linear decomposition: n =#"+yL+ 47, where n”=by, nt=(1-"b)|®| 2 (P, 1),
n"=>1-=b)(n—n".
As H,— L, uniformly, (Lemma 4.10), one has the following inequalities:

Il + il = S+ Iyl
lwtlle = Cllwlle,
Iyl + Nl Tlle = Q+ O llvl.- (6.24)
Using the fact that [y if, w4l]=0 for all 4,6 =0, 1, 2, 3, one obtains

Iy i wsll < 20w HAw I+ wEDI+ X lvallwilll,  (6.29)

S=T,V

where the subscripts u, é have been suppressed. Next, notice that if ve L and
uel,NnLg, then
loull, < ol Nullg™ llull2. (6.26)

After applying (6.26) to (6.25), and using (6.24) one obtains (6.23).

Armed with Lemma 6.6, the proof that () extends to a C® functional on H, is
an exercise in Holder’s inequality that is left to the reader. The uniform estimates
given by Statements (1) and (2) of Proposition 5.2 follow from Lemma 6.6 and
Corollary 4.13. Corollary 4.13 gives a uniform estimate for v, depending only on
a(c).

Statement (3) of Proposition 5.2 is a consequence of the choice of topology on
%. In particular, A< C°(S'; T (¢ ® T*)® #)) and since y is compactly supported
in some ball By= R?, Statement (3) follows readily.

VII. A Nontrivial Limit

Let {¢;(y)} € A be a good sequence. It follows from Theorem 5.6 that the sequence
of configurations, {¢; = (4;, ®;)} has a subsequence which converges, modulo gauge
transformations. It is possible that the limit configuration has zero action. By
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Theorem 5.6, this will occur only if (F,, D, ®;) converges to zero in every fixed,
bounded domain. There are only two ways that this can happen. The first
possibility is that there is a fixed R < o0, such that for each 7, a ball Bg(x;)<R?
exists, with R; < R, and on which (F,, D, ®;) have uniformly large L, norms. But,
the sequence of centers, {x;}, diverges on R>. This situation is rectifiable by
translating each ¢; so that x; becomes the origin. The second possibility is that
lim R; — co. This situation will be shown to be incompatible with the condition

i- 0
e > 0.
Let aeR? and c € 4. Denote the translated configuration

c(x+a)=T,0)(x). (7.1)

Theorem 7.1. Let {¢;} € € be a sequence which satisfies (5.2) with @, > 0. Then there
exists a sequence of points {x;} € R with the following properties: (1) The sequence
{T, c;} has a subsequence which converges strongly in L},  t0 (4, ®) € ¥. (2) (4, P)
satisfies Egs.(2.2,3). (3) a(4, ®) > 0.

The proof of Theorem 7.1 is based on the physical intuition that monopoles are
localized objects. This intuition is affirmed by the next proposition:

Proposition 7.2. Let {¢;=(4;, ®;)} € € satisfy (5.2) with a,, > 0. Define for each i,

%=Sup[ § d3X’(|FA,.|2+|VA,<1’i|2):|- (7.2)
xeR | |x—x|<1
Then

limy;>7>0. (7.3)

The remainder of this section contains the proof of Theorem 7.1 and
Proposition 7.2.

Proof of Theorem 7.1 assuming Proposition 7.2. Let ae R® and c € 4. Then «(T,c¢)
=a(0), Warl,=Va.ll,...etc. If ¢ satisfies (5.1), then T, c does also. For any
choice of {x;}, the sequence (7 ¢;} satisfies (5.2), and appealing to Theorem 5.6
establishes Statements (1) and (2) of Theorem 7.1.

By Proposition 7.2, there exists i,, and for all i > i,, there exist x; e R* such
that

| @x(F )+ 1V, &) >y>0. (7.4)
Ix—x,|<1

For i < iy, set x; =0 and for i > i, choose x; so that (7.4) holds. Denote the new
sequence {7, ¢;} by {(4;, ®,)} as well. Then for all 7 > i,

[ @y F >+ 1V, @17 >7y>0. (7.5)
Ix]<1
By Theorem 5.6, (F,, D, ®;) converges strongly in L, of the unit ball. Hence if
(4, @) denotes the limit in Theorem 5.6, (4, ®) >y > 0.

Proof of Proposition 7.2. The proof is by contradiction. Suppose there exists a
subsequence, {c¢;=(4;, P;)} which satisfies the assumptions of Theorem 7.1 and
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such that limy,—0. The strategy is to show that the three conditions, «, >0,
1=

IV, — 0 and y; — 0 are incompatible. The last two conditions will imply that (1)
I[P,V @110, (2) 11— [Pl 0, (3) 1(2:, V4, P20, (4) [[Ps, Fy]ll, 0,
and finally that (5) ||(®;, F,)|l,—0. As the stabilizer of a nonzero ¢ €9«(2) is
1-dimensional, properties (1)—(5) above of the sequence {(4;, ®;)} contradict the
assumption that «,, > 0.

To begin, let g;=V,®;. As ¢;=(4,;,P;) satisfies (5.1), one can infer from
Lemma 4.7 that || g, is finite. An estimate of || g;|| ., that is more useful than that in
Lemma 4.7 is provided by

Lemma 7.3. Let ¢ = (A4, P) € ¥ satisfy (5.1). Then
lgllZ <% (Gligl? +a) + Vel (A + gl gl (7.6)

where % is a constant that is independent of (A, ®) and j is given by the right hand side
of (1.2) with (4;, ®;) = (4, D).

Proof. Since VZ® =0, one obtains by commuting covariant derivatives:
Vig—2%(xFAg+g A *F)+ [*xDxF,®] = 0.
Next, take the L, inner product with g. As ge L,, one can integrate by parts to
obtain
—V4gll3 —4<F,g A&, + (D #F, %[, 8], =0.
A second integration by parts yields
—IVgllz —4<{F.g A, +<F,D,[®,gD,=0.
Together with the definition of Ve« this last equation implies that
—llglZ —4<F,g ng)r+Va (([P,g],0)=0. (1.7)

The fact that [@,g]leH, follows from the estimates of Lemma 4.7, and
Proposition 4.8.
In fact, since |®| <1,

I[P, glll.=2lgll.+2llgrglle,,
=200+ Mgl lgles

and the last line follows from Lemma 6.6. Thus

Ve, ([2,8],0)) <2 IVa |l (1 + %, llgll) llgll- (7.8)

Let {V,} be a uniform, countable open cover of R? by balls of radius 1. Let {f}
be a subordinate partition of unity. Using a trick due to Morrey [33, Lemma 5.2.1],

one obtains:
(Fgngd, =) Fpigng,=7- ) 1Bglz,
=7 %zz IIVAﬂng%,

=7 % 2 (18,7485 +11B,gl13)-
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Here, line 1 follows by Holder’s inequality, line 2 by Lemma 4.10 and line 3 because
the cover is locally uniform. From line 3, one concludes that

(Fogng) =7 % (gl + ). (7.9)

Equations (7.7)-(7.9) establish the lemma.
Continuing the proof of Proposition 7.2, one concludes using Lemma 7.3 that

lim |7, @, ~0, (7.10)
and by Lemma 4.10, that
lim ||V, ®;l[¢—0. (7.11)

In particular, (7.10) implies that
hm I[P, VA,(pi]Hz_’O' (7.12)

¢ — 0

The next step is to prove that || 1 — |®;]]|, — 0. This result is obtained with the
aid of the next Lemma.

Lemma 7.4. Let (A,d)e%, and satisfy (5.1). Let w(x)=1(1—|®|*(x)).
There exists a constant x < oo which does not depend on (A,®) such that
Wil < %(llgllz? g 8™ + lgl13*) l1g 113

Proof of Lemma 4.7. Since (A, @) satisfies (5.1), w(x) satisfies
—Aw(x) = |g]|*(x). (7.13)

The function w(x) is the unique solution to (7.13) which vanishes at infinity. Using
the Green’s function for (—4), one concludes from Corollary V1.4.2 of [2] that

v = - fay B

1 d 1 >y \V*
§H<j ||y> Ilglli+ﬁ<j Hy) lglEs.  (7.14)

lyl=1 |yI>1
Meanwhile Holder’s inequality yields
lgliz < lglz? gl while llglgs=<lglllgl,<lglld™ llglis™. (7.15)

Equations (7.14,5) establish the lemma.
Continuing with the analysis of (1 —|®;|), Lemma 7.4 and (7.11) imply that

Iwillo < % (llgill3? lglld* + llg:ll3*) Il g:112/*; and so the lim w;(x)— 0 uniformly
with x. Therefore it has now been established that o
lim [|(1 — |, )l,, — 0. (7.16)

As w; e K (Lemma 4.12), one can multiply both sides of (7.13) by w;, integrate over
R*, and integrate by parts on the left hand side to obtain

IPw:ll3 =i, 8172 S Iwill o 2 - @ (cy). (7.17)



290 C. H. Taubes

Since [Pw;ll,= (®,,V ®))|l,, Egs. (7.16,7) imply that

lim ||(,, 7, @)1, 0. (7.18)
To summarize, Egs. (7.12), (7.16), and (7.18) state that
lim ||V, &®;]l,—0. (7.19)

As a bonus from (7.10), one has

lim [|[®;, F,]Il,—0, (7.20)

{—©

as ||[F,®]ll,=IDD,®|, <|V,P|l.. Now turn attention to f;=(®;, F,). By
assumption, fie L,(A T*) NI (AT*). The fact that ||V, — 0 has the following
consequence: 2 2

Lemma 7.5. Given ¢ > 0, there exists ¢ (g) < co such that for all ¢ > i(g), and for all
w e K(T*) and ue K(R?) (cf. Eq.(4.8)),
[Kdw, £y, <ellVolly, [Codu, fo, ] <ellVull,- (7.21)

Proof of Lemma 7.5. 1t is sufficient to establish (7.21) for compactly supported
wand u. Let w e (A T*), p=0,1. Let (4, @) €%, and suppose that ||l ,@ |5 < 0.
14

Let 6 =w®el“(g® A T*), p=0,1. Then
p

1Vl WV ll,+ oV @1, S Vol + ol V421l
s Woll,(A+ LIV, @1l5) - (7.22)
Here, the last line uses Lemma 4.10. Using (7.22), (7,11), and (7.19) one establishes
that there exists 7, < oo such that for all 7 > i, and all we'*(A T*) (p=0,1),
p
Vil =20Vol,. (7.23)

Let wel“(T*). By integrating by parts, one has {dw,f;),=Va((®,0))
—<{o AD,®,, F,),. Therefore, using (7.23) one obtains
I<dw, f3,1 S 2IVa;ll IVl + llolls | Fll 1V, Pl
S Vol QIVall,+ (el IV, Bill5) - (7.24)

Here, line 2 is obtained with Holder’s inequality, and Lemma 4.10.
If ue CP (R?), then integration by parts establishes, via the Bianchi identities,
that (xdu, f;>, = (*u, D, ®; A F),. Therefore, using (7.23) one obtains that

| e, fi3 2| S Nulls N BN NV 4, @ills S WVully - Cai 21V, @lls . (7.29)

Because of (7.11) and (7.20), lim ||V, ®,||;— 0. Hence, the lemma is an immediate
consequence of (7.24,5). it
The Hodge theorem for R3, with Lemma 7.5 imply that (| f;]|,— 0. Indeed, let

KT(T*) = {we K(T*): d*w =0}
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Proposition 7.6. (Hodge Theorem.) There exists a unique, orthogonal decom-
position of L,(AT*) as follows: L,(AT*)=dK"(T*)® *dK(R?), and both
2 2

d and *d are isometric.
Proof. The proof is essentially Lemma 4.11, cf. [36].

The significance of Proposition 7.6 is that it implies that one can write
fi=dw,; + *du,, with (w;, u;) € KT(T*) + K(RR?). As the decomposition is orthogonal
and isometric

112 = Ve, 113 + 117w 13 - (7.26)
On the other hand, Lemma 7.5 implies that given ¢ > 0, for all 7 > i(g),

A3 S eVl + IV u DV S ell £l
and so
Ifill.=e. (7.27)
Therefore
lim |[(®;, F) |, ~0. (7.28)

Equations (7.16), (7.19), (7.20), and 7.27) contradict the fact that @, > 0; thus
Proposition 7.2 is true.

VIII. The Monopole Number

Consider the convergence of a sequence {¢;} €%, induced by good sequence
{c;(»)} € A. One must demonstrate that the limiting configuration, as given by
Theorems 5.6 and 7.1, is an element of %,,. Indeed, as the convergenceisin L} ., an
independent argument is necessary to prove this. A sufficient condition for the limit
to lie in &, is given below. This condition uses the fact that for sufficiently well-
behaved (4, @) € %,, the index k is given by [2, Chap.IV]

1
k=1—KD4®,*Fp,. 8.1

Theorem 8.1. Let {c;} €%, be a sequence which satisfies (5.2), and converges
strongly in L},  to a solution, c€¥, of Egs. (2.2,3). If @, <8m, then ce¥,.

2,loc

The strategy for the proof is to demonstrate that the statement c ¢ ¢, leads to a
contradiction. The physical intuition is that for c¢%,, the sequence {¢;} must
correspond to monopole, anti-monopole pairs, which have an infinite separation in
the limit. This requires energy («) = 8.

To begin, suppose that (4,P)e %, is a solution to Egs. (2.2,3). Then by
Theorem IV.1.5 of [2], Eq. (8.1) holds. On the other hand, for c€%,, one has

Lemma 8.2. Let (A, DP)e%,. Then
{D,P,%F),=0. (8.2)
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Proof of Theorem 8.1 assuming Lemma 8.2. AsD @, F,€ L,, the integral in (8.1) is
absolutely convergent. A consequence of this fact is that given ¢ > 0, there exists R
< o0 such that

[ (D@, F)—ank|<e/2. (8.3)

x| <R

The integrand in (8.3) is gauge invariant, so by the strong convergence assertion of
Theorem 5.6, there exists 7 (¢) < oo such that if i>1i(¢), ¢; = (4;, P;) satisfies

| (D, ®;,*F,)—4nk|<e/2, (8.4)

|x|<R

as well. By Lemma 8.2, if i > (¢),

| (D4, *F)+4nk| <e/2, (8.5)

|x|>R

also.
If UcR? is any open set, the triangle inequality gives

s JUE2+1D, @) 2
U

I(DA,@w *F,)
U

Therefore (8.4,5) imply that given ¢ > 0, there exists 7 (¢) < oo such that for all
i>1i(8), alc;)>8n|k|—e=8n —e. Since lim a(c;) > a,, by hypothesis, @, = 87,
which is a contradiction. ‘e

Proof of Lemmad8.2. By assumption, there exists R,<oo such that
[|®]|(x)—1|<3%if |x| > R,. In addition, as a map from Sz={xeR>: |x|=R}
to S?={ce€sx(2): |o| =1}, ®/|®| is null homotopic for all R> R,. The group
SU(2) acts on g«(2) by conjugation which, when restricted to S?ca«(2) is the
Hopf fibration 0 »S* — SU(2) » S*— 0. The Hopf fibration is a Serre fibration: A
consequence of this fact is that if @/|®|: S3— S? is null homotopic, there exists a
smooth gauge transformation g e C®(R?; SU(2)) such that g&/|®|g ' =1q° if
|x| > R, (cf. [25, Chap.2].)
Without loss of generality, one may now assume that if |x|> R,, then

=1|®|03. (8.6)

The assumption of finite action implies that the integral in (8.2) is absolutely
convergent. Let f(x) be the cut-off function introduced in (3.4) and fz(x) = S(x/R).
Given ¢ > 0, there exists R, < 00, such that if R> R,,

| [ Ba(D4®,%F,) = [(D4®,%F,) | <¢&/2. (8.7

Integrating by parts and using the Bianchi identities (2.2c), one obtains that
[Br(D @, %F,)= — [dBg A (P, F,); and using (8.6) and the definition of F,:

[Br(D®,%F) = — [5dBr|®| A (6%, dA+ A A A). (8.8)
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Define AT= A4 —t0°(03, A); AL=1% (03, A). By assumption, 47is C*®. In addition,
[ W= | {ldl®|]>+2]9*|47*},
Ix> R IxI> Ry
s0A7e L,(R*; g®T*)and d|®| e L,(R?; T*). Using these facts, one obtains from
(8.8) that 5
[[Br(D4®,*Fp) | = — [(dBr|P| A dAL)'f‘E Bl AT, (8.9)

where it is assumed that R is sufficiently large so that |®|<2. Note that

ldBrllo=R™*[|dBll-
Since [df g A dAL=0, the right side of (8.9) is

jdﬁR(i—Idﬁl)/\dAL+%,

< 1B~ 10 A0, F) + (5.10)

| =

where x =2 || d||,, | 47||3 < co. Now use the fact that df p = df (1 — f ) to obtain
from (8.10) that

1 2x
| JBR(D4®,*F,) | < 5 1dBells 1= 1P Dlle (1 = Brp) Fall2 + o= (8.11)
By Corollary 4.13, ||1 — |®|||¢ < ae(c), and by rescaling, ||dfx|l;=|ldB|l5. One
concludes from (8.11) that given ¢ > 0 there exists R, < oo such that for all R> R,
| [Br(D @, *F) | <e&[2. (8.12)
Together with (8.7), Eq. (8.12) implies Lemma 8.2.

Appendix A

The purpose of this appendix is to complete the proof of Theorem 3.4 by proving

Proposition A.1. The map I: Maps (S%;S?)— & of Definition 3.3 is a 1—1 map of
the set I1,(Maps (S?;S?)) onto I1,(%).

To prove the proposition, one must exhibit, given ce%, a path
c(f) € C°([0,1]; %), such that ¢(0) = c and c(1) = I(e), for ee Maps (S?;S?),.
By Proposition 4.8, it is no loss of generality to assume that ¢ = (4, @) satisfies

V2 =0. (A1)

As a consequence of (A.1) and Lemma 4.7, V ,® € L,(¢ ® T*). Choose R < o0 so
that |@|(x) > 1/2 for |x| > R. Then

e(X) = ®(RX)/|®| (RX) e Maps (S?;5?), (A.2)
and for | x| > R, the map @ (| x|X)/|®|(|x| £) e Maps (S?; S?) is homotopic to e(X).
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The homotopy lifting property of fibrations implies the existence of g(x)e¥%
satisfying

M gx) =1, for |x|=R,
2 g P(x)g () =|P|(x)e(x/|x]), for |x|=R. (A3)

As % is contractible, it is path connected. Then a consequence of (A.3) is that it is
no loss of generality to assume that

P(x)=12P|(x) e(x/|x]) for |x[zR. (A.4)
Note that
|V, @12=|V|®||2+|P|* |V e|*> for |x|>R, (A.5)
and as a consequence,
Va1 =P(x)e)eL,(g@T*)NLy(gRTF). (A.6)
Now consider the path
dO=AA=0D+1(1-p)e). A7)
A consequence of (A.6) is that ¢! (7)e C°([0,1], %) and
c'(0)=(4,®), while c'(1)=(4,(1—-p)e). (A.8)

Next consider the curve
) =(1—1p) 4,1 —p)e). (A.9)

The t-dependence of ¢?(¢) is compactly supported in the unit ball in R, so
c2(H) e C°(]0,1]; ¥). Meanwhile,

0)=(4,1—PBe), and (D) =((1-pA4,1-p)e). (A.10)

For notational convenience denote (1 — )4 by 4 again, keeping in mind that 4
now vanishes in the unit ball.
Examining V e, one observes that 47= [e, [4, e]] satisfies

(1=B)(AT+ [e,de])) e Li(g@T*)NL,(gR®T*). (A.11)

As |[e, de]| £ constant - |x| ™', one concludes that A7e L,(g ®T*) also.
For notational convenience, let
a=AT+ {1 —p)[e, de],
at=(e, 4). (A.12)

A short calculation reveals that for |x|>1,
le, F,]=le, da]l — at A a, (A.13)
V,e= —le,a], (A.14)
(e, F)=dar+%tr(de A A7) + (e, ATA AT). (A.15)
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It follows from (A.11) and (A.15) that date L,( A T*). Now let
2

S =(ate+1—PB)[e,de]+ (1 —Da, (1—f)e). (A.16)
Due to (A.12),

0)=(4,(1-B)e),
A1) =(ate+ (1 —p)[e, del, (1 — P)e). (A17)

It is a consequence of (A.13)~(A.15) and (A.11) that «(c’(f)) <oo. Thus
() eC°([0,1]; %) also. Finally, let

()= (1 -1t are+(1—f)[e del,(1—B)e). (A.16)

Then c*(0)=c3(1), and c*(1)=I(e). Meanwhile, «(c*(¢)) is finite as

date L,( A T*). Therefore, the path c(f) = (c*o ¢*o ¢?o ') (f) connects (4, @) with
2

I(e) and proves Proposition A.1.

Appendix B

The purpose of this second appendix is to complete the proof of Theorem 3.6 by
establishing that IT,(Maps((S?,n);(S? n)),/SO(2))~Z . This follows from
Lemma 3.7 which will now be proved.

To begin, recall that Q = Maps ((S?, n); (S, n)) has a natural operation, #
which is defined as follows: Represent S as the unit square /% = [0,1] x [0, 1] with
the boundary, I?, identified as the distinguished point n. For e,, e, € Q, define

81(2t1:t2)9 . OS_

. B.1
ez(ztl—l,IZ), %é ( )

(er#Fex) (11, 1,) = {

By inspection, e, # e, €, so # is well defined. The operation # endows the point
set IT,(Q) with the structure of an abelian group. In fact, degree [e, # ¢,] = degree
[e,]+ degree[e,], so that the degree is a group isomorphism between (I1,(£2), #)
and (Z, +) [25, Chap. 1,7]. In addition, for ¢, € Q,, it is relatively easy to check that
e # (1) Q- Q. is a homotopy equivalence.

Choose ¢, to be the constant map S*— n. Then e Maps ((S?, n); (2o, ey)) is a
map from (S* x $?)/((S* x n) U(n x S?)) to S?, which is to say, /4 defines a map from
S3t0 2 [(ST x SH/((S* x n) u(n x S?)) is homeomorphic to S3.] The converse of
the last statement is also true. One concludes that I1,(Q,, e;) ~ I15(S*) ~ Z.

Let [] € I15(S?). The class [h] is a multiple, o [1], of the generator of IT;(S?). The
integer o:[A] is the Hopf invariant of /# and it can be calculated in the following way
[37, Chap.4}: Let wel (/2\ T%) satisfy

fo=1. (B.2)
Sl
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Let he[h] be a C* representative. Since H>(S?) = (0),
h*o = dv, (B.3)

for some v,e ' (T'%). Then

a[h] = | (v, A H*w). (B.4)

Since H'(S?) = (0), v, is unique up to the image of d, and this ambiguity does not
affect the integral (B.4).

The action of SO(2) on Q, generates a class [é]€Il, (€, e,). Using the
operation, #, this gives a class [e_,# &, ] €11, (Qy,e_,# €,). As Q, is connected,

there exists a path b:[O,g]AQO with b(0)=e, and b %>=e_k=|=|=ek.

By conjugating the loop e_,#é, by b(f), one obtains a class
[bo(e_r#é)ob eIl (Qy,e0) ~I15(S?). The map B of the fibration (3.21) is
multiplication by the Hopf invariant, o [bo (e_,3 é,)o b~ ']. Therefore, Lemma 3.7
follows upon establishing that « [bo (e_, # ¢,)o b~ ) =k.

The calculation of « [+ ] is facilitated by fixing a basis (6%, 62, 6*) € 52 (2) with the
properties: (1) o'6/= — Y — ¢*6", and (2) {30’} is an orthonormal frame. The
distinguished point of the image S2 is the point — 4¢3, The distinguished point of
the domain S? is the point § =0 in polar coordinates. Let

e, =% [—cos 00+ sin 0 (cos kot — sin kpo?)]. (B.5)
The map e, € Q, and the loop that is generated by the action of SO(2) on Q, is
é, =L [—cos 00>+ sin 0 (cos (k¢ — 1) a* — sin (k¢ — 1) 6%)]. (B.6)
Up to homotopy, the loop (e_ % é,) is given by
. [5[—cos200° + sin20 (cos (k¢ — 7)o’ — sin(kdp —1)6?)] for 0Z0=m/2;
= {%[—cos 2003 + sin 20 (cos kpa! — sink¢pa?)], for n/2<0=m. B

_ do _
Here, 6(6) is a smooth function of 6 which satisfies (1) d—Zgo, (2) 6=0 for

9¢[3“ > ”] 3) 0——f fe [ZZ ?’6‘] Meanwhile, 7(¢) is a smooth function of

twhlchsatlsﬁes(l)d—>0 (2)r_Oforte[ ] (3)r—tforte[4 74} and (4)

157

t=2n forte[ g

211] For the curve b(), te[O, g:l, take

by () = $[— (cos 20sin?t + cos*t) o + sin v sin 20 (cos kpa' — sin kpa?)
—costsint (1 — cos 20) (cos kdpa? + sin k¢pal)]. (B.8)
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It is now a straightforward calculation to obtain that the integer k is the Hopf
invariant for the following loop in Maps ((S*, n); (2o, €,)):

[«
O'_ )
bk(t)a te_ 52:l
PN . (7 3n
(b/c 1Olukobk)(t)= luk(zt—_ﬂ)b te 55 7)’ (B9)
b,2n—1), te 3—71-, 2n).
| 2

. I . 3
Except for remarking that the contributions from the intervals [0, g) and [;, 2n)

cancel, this calculation is left to the reader.
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