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The Existence of a Non-Minimal Solution
to the SU(2) Yang-Mills-Higgs Equations on R 3 . Part I
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Abstract. This paper (Part I) and the sequel (Part II) prove the existence of a
smooth, non-trivial, finite action solution to the SU(2) Yang-Mills-Higgs
equations on 1R3 in the BogomoΓnyi-Prasad-Sommerfield limit. The proof uses
a simple form of Morse theory known as Ljusternik-Snirelman theory. Part I
establishes that a form of Lusternik-Snirelman theory is applicable to the SU (2)
Yang-Mills-Higgs equations. Here, a sufficient condition for the existence of the
aforementioned solution is derived. Part II contains the completed existence
proof. There it is demonstrated that the sufficient condition of Part I is satisfied
by the SU(2) Yang-Mills-Higgs equations.

I. Introduction

The SU (2) Yang-Mills-Higgs equations on IR3 are the variational equations for a
connection (the Yang-Mills potential) and a minimally coupled, associated scalar
field which transforms according to the adjoint representation of SU (2) (the Higgs
field). These are the variational equations of an action functional [see Eq. (2.1)].
The equations become interesting when one requires the action to be finite, and the
boundary condition that the Higgs field have unit norm, asymptotically on IR3, see
Eqs. (2.2) and (2.3). This is the BogomoΓnyi-Prasad-Sommerfield limit. In addition
there is a first-order system of equations which characterize minima of the
functional (2.1); these are called the BogomoPnyi equations (2.6). As minima, every
solution to (2.6) also satisfies the second-order equations (2.2) and (2.3). This
general set-up has an analogy with Yang-Mills theory on S4 [1] and also with
Ginzburg-Landau theory [2] (λ = l) on IR2. Both these have second-order
variational equations and associated first-order equations for minima. The
following conjecture has been made for the Yang-Mills-Higgs equations (2.2) and
(2.3), the λ = 1 Ginzburg-Landau equations on IR2 and the Yang-Mills equations
on S 4 : Every finite action solution to the variational equations is a minima; hence
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satisfies the associated first-order equations. The conjecture is true for the
Ginzburg-Landau theory [3], and unsettled for the Yang-Mills theory on S4 [1].

The following theorem shows that the conjecture is false for the Yang-Mills-
Higgs equations.

Theorem 1.1. There is a smooth, finite action solution to the SU(2) Yang-Mills-
Higgs equations in the BogomoΓnyi-Prasad-Sommerfίeld limit (2.2), (2.3) which does
not satisfy the first-order BogomoΓnyi equations (2.6).

As in the case of the Yang-Mills equations on 4-manifolds [4,5] and 2-manifolds
[6], topological aspects play a role in the structure of the solutions. This role is
explicit in Theorem 1.1 indeed, the solution is obtained via a mini-max procedure
using loops in the function space which are not contractible. These homotopically
non-trivial loops arise because the space, #, of finite action pairs of Yang-Mills
connections and Higgs fields (Definition 2.1) is homotopically similar to the space
Maps (S2; S2) of smooth maps from the two sphere to itself. There is a
monomorphism of the homotopy groups of Maps (S2;S2) into the homotopy
groups of #, and the respective path components are in 1 — 1 correspondence
(Theorem 3.4).

The zero'th homotopy group of Ή is the set of path connected components, of
which there are a countable number, # = ]J[ <£k. It was proved in [2] that the action

functional achieves its infimum on each #fc. These are the solutions to the first-order
BogomoΓnyi equations.

The first homotopy group of ̂ 0 contains a subgroup which is isomorphic to TL.
The solution of Theorem 1.1 is intimately related to this subgroup, as the proof
details.

It should be remarked that spherically symmetric solutions to the monopole
equations which are not solutions to the first-order equations are known to exist
when the structure group has rank larger than 2 [7]. For the SU (2) case it is known
that there are no spherically symmetric solutions other than the solutions to the
BogomoΓnyi equations in #0, ± I [8] The techniques that are developed here should
shed light on these other solutions with rank ^ 2 groups.

The proof of Theorem 1.1 uses a mini-max (saddle point) technique known as
Ljusternik-Snirelman theory [9]. For a C2 function, /, on a compact w-manifold,
this technique is easy to describe. Suppose that/? eMis an isolated minima of/. Let
eo:(Sk,ή)^(M,p) be a generator of the pointed homotopy group, Πk(M,p).
Consider the set A of maps from (Sk, ή) to (M,p) which are homotopic to e0. For
each eeΛ, choose teeSk such that

f-e(te) = supf-e(t). (1.1)
teSk

Since elements in A are not null-homotopic,

Inf f e(te)=fΛ>f(p). (1.2)
{eeΛ}

As M is compact, a sequence {et} GA with

et(te)^fΛ (1.3)
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can be found with the property that

l i m e t ( t e ) - > q ( Λ ) = qeM; q^p (1.4)

and
q is a critical point of /, df\q = 0. (1.5)

This procedure has a generalization to infinite dimensional Banach manifolds
(cf. [10]). The gauge invariance of the Yang-Mills-Higgs equations, and the non-
compactness of IR3 complicate the application of Ljusternik-Snirelman theory to
the action functional of (2.1). Because of the gauge invariance, the variational
problem is not strictly an elliptic one. This is circumvented using K. Uhlenbeck's
weak compactness theorem [11]. Her theorem states that over a small, bounded
domain in IR3, there is a gauge which makes the equations uniformly elliptic.

The non-compactness of IR3 means that Palais-Smale condition C (cf. [10])
does not hold. The papers of Sachs and Uhlenbeck [12] and Schoen and Uhlenbeck
[13] on harmonic maps teach that it is often productive to investigate in detail the
ways that condition C fails. For the Yang-Mills-Higgs action, a good sequence of
configurations (Definition 5.2) fails to converge only by approaching, asymptoti-
cally, two exact solutions to the equations which are separated on IR3 by an infinite
distance. (This is the analog to the "bubbling off of harmonic spheres in [12].) This
is a manifestation of the physical intuition that the solutions to the equations
describe real magnetic monopoles [14], which are localized objects.

The Ljusternik-Snirelman procedure is applied to non-contractible loops in ^ 0 .
In this case, condition Ccan fail only if the sequence of maxima [corresponding to
the sequence in (1.3) and (1.4)] resembles asymptotically a monopole and an anti-
monopole [2] which are separated on IR3 by an infinite distance. Such a
configuration has action 8π or greater. An explicit, non-contractible loop, in ^ 0 is
exhibited whose maximum action is less than 8π. These two facts are used to prove
that the mini-max procedure over non-contractible loops in ^ 0 yields, as in (1.4), a
convergent sequence. And, the limit of this sequence is a solution to the second-
order Yang-Mills-Higgs equations, but not the first-order BogomoPnyi equations.

The outline of the proof of Theorem 1.1 is given below. The proof divides into
two parts. This paper is Part I. Here the basic technical tools, and apriori estimates
of Ljusternik-Snirelman theory on Ή are established. Part I consists of Sects. 2-8,
where it is proved that the mini-max procedure yields sequences which converge to
non-trivial solutions to the second-order Yang-Mills-Higgs equations (2.2) and
(2.3).

The second half of the proof is contained in the sequel, Part II [Commun. Math.
Phys.86, 299-320 (1982)]. In Part II, the mini-max procedure is applied to a
specific class of non-contractible loops in <^0. It is shown that the limiting
configuration is not a solution to the first-order BogomoΓnyi equations. Below is
an outline for both Parts I and II. The symbol ^ ( ) denotes the Yang-Mills-Higgs
action functional (2.1).

/. Ljusternik-Snirelman Theory on %?

(a) Section 2 contains a short review of Yang-Mills-Higgs theory. Here, the space
^ of finite action field configurations, and the space of gauge transformations ^
are defined.
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(b) Section 3 describes the topology of #, ^ and #/^ and the relationship with
Maps (S2; S2). In particular, it is shown in Sect. 3 that there is a monomorphism of
the homotopy groups of Maps (S2;S2) into those of <β.

(c) The class A of non-contractible maps of spheres into # on which the
Ljusternik-Snirelman procedure is applied is defined in Sect. 4. Here, some useful
properties of A, in the form of aprίori estimates, are given.

(d) It is established in Sects. 5 and 6 that for each k ^ 0, there is a sequence of
^-spheres {cf( )} eA such that the sequence of configurations, {cj defined for each
i to maximize ^(q( )) over Sk, converges on 1R3. The limit configuration is a
smooth, finite action solution to the Yang-Mills-Higgs equations. This is
Theorem 5.6.

(e) Theorem 7.1 of Sect. 7 establishes necessary and sufficient conditions on the
sequence {cf( )} for the limit, c to have ^(c) > 0.

(f) Theorem 8.1 of Sect. 8 establishes sufficient conditions for the limit c not to
satisfy the first order BogomoΓnyi equations.

(g) The first appendix contains the proof that the path components of # and
those of Maps (S2;S2) are in 1 — 1 correspondence.

(h) The second appendix is a calculation of π1 (Maps (S2;S2)/S0(3)).

//. Minimizing Over Loops

(a) Theorem II.2.1 and Sects. II.2-Π.4 contain the proof that there exists a
sequence of loops, {ct (•)} e A which satisfy the conditions set forth in Theorem 5.6,
and Theorems 7.1 and 8.1. Thus, the limit c of the sequence {cj must satisfy the
second-order equations but not the first-order equations.

(b) Section II.5 contains the proof, based on ideas of Bourguignon et al. [1],
that the configuration c can not be a local minimum of ^. Here it is proved that
every local minimum of a on # satisfies the first-order BogomoΓnyi equations
(Theorem Π.3.4).

(c) Section II.6 is a summary where the full proof of Theorem 1.1 is exhibited
(Theorem II.6.1).

II. Yang-Mills-Higgs Theory

The variables for the static, SU (2) Yang-Mills-Higgs theory are a pair consisting of
1) a connection on the principal bundle IR3 x SU(2) and 2) a section of the vector
bundle g< = IR3 x d^(2), called the Higgs field. Let Γ(A) denote the space of
smooth connections on IR3 x SU(2). The fixed product structure of IR3 x SU(2)
identifies Γ(A) with Γ(# ® T*) where Γ* is the cotangent bundle of IR3. Thus, for
AeΓ(A), A = A{dx\ where At(x) is a 2x2, traceless, anti-hermitian matrix. A
Higgs field, ΦeΓ (#), is at each x e IR3 a 2 x 2, traceless, anti-hermitian matrix, also.

The Euclidean metric on Γ* induces, via the Hodge * : Λ Γ * - > Λ Γ*, a
P 3-.P

positive inner product on Λ Γ * . The Lie algebra, d^(2), as the vector space of
p

2x2 anti-hermitian matrices, has the positive definite inner product (σ\σ2)
= — 2 trace (σ1 σ2). Together, these metrics induce an inner product on $> ® A T*.



Non-Self-Dual Gauge Fields. I 261

Thus, for ωί, ω2 e Γ (y ® Λ T*), the pointwise inner product is (ω1, ω2) (x) and the
P

pointwise norm is | ωt \ (x) = (ωx, ω x)
1 / 2 (x). By abusing notation, the bilinear map

^>Γ(ΛT*\ is denoted (Φ, ω) (x) = - 2 trace (Φ (x) ω (x)),
\ P /P

for ΦeΓ(gt) and (^®
P

In the usual way, the L2-inner product on Γ ( ^ ® Λ Γ * ) is defined as
<ω1 ?ω2>2 = $d3x(ωι,ω2)(x), and I K | | 2 = <ω l J ω 1 >| / 2 . P

The Yang-Mills-Higgs action functional is defined on Γ (A) ® Γ {^) to be

MAΦ) = Ϊ\\FA\\2

2+±\\DAΦ\\2

2. (2.1)

Here FAEΓ(^® A T*) is the curvature of A, so FA= dA + A Λ A, where d is the

usual exterior derivative, and Λ is the usual exterior product between /?-forms (so
A A A ^^[A^A^dx1 Λdxj). The 1-form DAΦeΓ(#®T*) is the covariant
derivative of Φ: DAΦ = dΦ + [A, Φ].

It should be remarked that the covariant derivative extends to Γ (# ® A Γ*) in
P

two ways. The first, VA\ Γ(? ® A T*) -• Γ((# ® A T*) ® T*) is defined by

ω •

The symbol V will always be used for Vo. The second extension,
A Γ*) ->Γ(^® Λ Γ*) is the covariant exterior derivative Z^ω
P p+ 1

The formal variational equations of *&(•) are the Yang-Mills-Higgs equations:

* ^ * ^ + [ Φ , ^ Φ ] = 0, (2.2a)

*DA*DΛΦ = 0, (2.2b)

DAFA = 0, (2.2c)

i ) ^ ^ Φ + [ Φ , ^ ] = 0. (2.2d)

Equations (2.2c, d) are the Bianchi identities and they are satisfied by every
configuration (A,Φ). These equations are supplemented by the requirement that

lim |Φ|(x)-^l . (2.3)
||*|->oo

The action (2.1) is not finite for every (A, Φ) eΓ(A) ® Γ(p). For this reason,
restrict attention to the subset

% = {c = (A,Φ) eΓ (A)® Γ (#): a{c) < oo, and lim | Φ ( x ) | - * l } . (2.4)
|*|->oo

This set will now be given, except for two changes, the standard C00 topology.
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Definition 2.1. The topological space c€\ Let ^ as a set be defined by (2.4). The open
neighborhoods of c = (A, Φ)e(& are generated by the sets N{c\ K, {sj}jL0)9 where
Kcz IR3 is a compact set, and Sj > 0, j = 0, 1, These sets are defined to be

(1)

(2)

(3)

sup
xeK

sup
xeΊR

for

[IF

3

each

0

j

(>

c ) - | «

= 0, 1

P' (x

, . . .

)l-

5

1 + - Φ'(x))\] < Sj} . (2.5)

Here VU) = V0 ... Vo,y-times.
That the sets Λ^(c, Â , {εj) define a topological space is best seen in the following

way: The space Γ((#® T*) ® #) has the standard C°°-topology (or C^-topology
in the terminology of [15, Chap. 2]). The set of continuous functions on IR3 is the
topological space C°(IR3) when given the topology that is induced by the
supremum-norm [16, Chap. 1]. Now consider Γ ((> ® T*) ® #) Θ C° (R3) ® IR
with the product topology. The topology on ^ of Definition 2.1 is induced by the
inclusion ι: %^>Γ((y® T*) ®?)®C° (IR3) Θ IR given by i (A, Φ) = (A, Φ,
\Φ\,a(A, Φ)). The functional a(-), Eqs. (2.2) and (2.3) and the spaced are invariant
under the action of the gauge group, <S.

Definition 2.2. The gauge group ^is the set ^ = { g e C00(IR3 SU(2)) ;g(χ = 0) = l},
with the induced topology.

The topological space ^ is a continuous group. The group ^ acts continuously
on # with action given by

(g,c) = (g, (Λ, Φ)) -• gc = (gAg-' + gdg- \ gΦg'1).

The group ^ acts on Γ (^ ® A Γ*) by pointwise conjugation
p

(g, Ψ) -> (g (Ψ)) (*) = g(χ)Ψ(χ)g~1 (x) •

The topology of (€, Φ and ^j'S will be considered in greater detail in Sect. 3. There <£
is shown to be the union of path components

keZ

Formally, ^ ( ) on ζβk is bounded below by 4π \k\ [17]. It is known that every finite
action solution to Eqs. (2.2) and (2.3) lies in some ^k and every such solution does
have action greater than or equal to 4π \k\ [2, Chap. IV]. As for the existence of
solutions to Eqs. (2.2) and (2.3) on # f c, it was known prior to this date that the
functional z&( ) attains its infimum on (€k for all keZ [2]. These solutions to (2.2)
and (2.3) on (€k with a(-) = 4π \k\ necessarily satisfy the BogomoPnyi equations

*FA= ±DAΦ(+ i f k ^ 0 , - i f /c^O). (2.6)

There has been a great deal of literature concerning solutions to (2.6) [2,18-22].
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Concerning non-minimal finite action solutions of (2.2) and (2.3) on #, the only
published result up to now is there are no 0(3) symmetric solutions which do not
satisfy (2.6) for k = 0, ± 1 [8]. However, given a solution to (2.2), much about its
behavior is known apriori [2, Chaps. IV and V].

Formally, the calculus of variations identifies solutions of (2.2) and (2.3) in #
with finite action critical points of a,{ )on%>. This is accomplished in practice once
a C1-manifold structure for ^ is specified. Here, the non-compactness of IR3

presents a problem. Specifically, a manifold structure which is compatible with the
topologies in Definitions 2.2 and 2.3 is not convenient to work with. At the same
time, manifold structures based on Sobolev spaces [23] induce topologies which are
not compatible with the preceding definitions. [For example C°°(IR3) with the L2-
topology has an uncountable number of path components.] In practice, a Sobolev
manifold structure will be employed. Essentially, this works because finite action
means that the fields FA, DAΦ are in an L2 neighborhood of the origin; and using
this fact, one can obtain apriori estimates which allow one to work with gauge
invariant Sobolev norms, as one does over compact manifolds [11,24].

For the present, in order to be unambiguous, the following definitions are
necessary. For £->IR 3 a vector bundle, ΓC(E) denotes the space of smooth,
compactly supported sections.

Definition 2.3. The gradient of ^ : For c e ^ , the gradient of ^ a t c is the following
linear functional on Γc((# ® T*) ® ̂ ) :

where ψ e Γ c ((> ® T*) Θ g).

Definition 2.4. A configuration ceΉ will be said to be a critical point of ^ when
F^c( ) = 0 on Γc((# ® T*) ® #).

For future use, the hessian of a at c needs to be defined too.

Definition 2.5. The hessian of ^ : This is the bilinear functional on
Γc ((> ® T*) Θ ?), defined for c e % by

Thus, for c = (A, Φ) and ψ = (ω, η)9

Vac(ψ) = <DAω, FA}2 + <[ω, Φ], DAΦ}2 + (DAη,DAΦy2, (2.7)

while

K(Ψ) = <DAω,DAω}2 + (DAη,DAη)2 + <[ω,Φ], [ω,Φ]>2 + 2<ω Λ ω, FA}2

(2.8)

III. The Topology of

The Yang-Mills-Higgs functional can be considered as a ^-invariant functional on
^, or as a functional on ^ = # / ^ . Having endowed # and ^ with topologies, the



264 C. H. Taubes

map

β : # - • # / » = ί? (3.1)

gives %> the quotient topology. This allows one to consider continuous maps from a
topological space Zinto <? or #. Of particular interest are the spaces of continuous
maps from ^-dimensional spheres. Let n e Sk denote the north pole, and let q e f be
some fixed orbit under ^ . Two maps, e0, eίeC°((Sk,n);(<£,q)) are said to be
homotopic, written eo~ eί9 If there exists a map FeC°(([0,1] x Sk, [0,1] x ri);
(<&,q)) such that 1) F(0, •) = e0, 2) F( l , •) = eγ. This notion is standard [25].
For k^ί, the homotopy classes of maps in C0((Sk,ri);(<^,q)) form a group,
denoted Πk(β, q). For fc = 0, Πo(% q) = Πo (β) is the set of path components off.

It is the purpose of this section to provide a description of Π^,(β\q)
00

= 0 Πk(β; q). The space <% is defined by the map Q of (3.1); and endowing <& with
fc = 0

the quotient topology insures that Q is continuous. The properties of this quotient
are summarized in the following theorems:

Theorem 3.1. The map Q: %? -+ %?is afibration. In fact, there is a continuous map ρ:
<£ -> # such that Q ρ = i d f . (The section ρ is the polar gauge, Eq. (3.13) J

The map Q induces a homomorphism

Q^Π^,c)^Π^{β,Q{c)) (3.2)

of the respective kth homotopy groups. In fact, Q^ does more, as the next theorem
states.

Theorem 3.2. The space & is contractible so Q^ : Π^ (Ή, c) ^ 77^ (f, Q(c)\ is an
isomorphism and ρ^ is the inverse.

As suggested by previous authors, [17,26,27], there is a relationship between ^
and the space Maps (S2; S2). The relationship, on the level of homotopy groups is
deeper than what is discussed in the literature. There is a map /:
Maps (S2; S2) -> ρ (β) a <g, given by the following definition:

Definition 3.3. The map I: Consider an element e eMaps (S2;S2) as a map from
the unit sphere in IR3 to the unit sphere in όui^Σ). Then

= ( - (1 - β(x)) [e(x)9 de(x)]9 (1 -β(x)) e(x))eV, (3.3)

where x = x/\x\ and 0 ̂  β{x) e C£ (IR3) is a cut-off function such that

2) β(x) = ί if \x\< 2 •>

3) β(x) = O if | x | > l . (3.4)

The significance of the map I is summarized in Theorem 3.4.

Theorem 3.4. Endow Maps (S2;S2) with the C0 0 topology [15, Chap. 2]. The \
of Definition 3.3 is continuous and I induces an exact sequence

0-+Π* (Maps (S2;S2\ e) h Π* (V, I(e)). (3.5)
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In addition, 1^ is a 1 — 1 correspondence between 770(Maps(S2;S2)) and Πo(^).
The conjecture is that 7̂  is an isomorphism. In fact, define

|P^Φ|U<oo}, (3.6)

with the induced topology. Then / maps into <^1 and / induces an isomorphism

/ί : 77 , (Maps(S 2 ;S 2 ) ,^77^ 1 ,7(6>)) . (3.7)

For the purposes fo this paper, one could just as well consider the space ^ . For the
sake of generality Ή will be used, and (3.7) will not be proved here.

The set of groups 77^ (Maps (S2; S2), e) is readily described. Maps (S2;S2) has
countably many path components; these are labeled by the topological degree.
Thus

Maps(S2;S2) = [ ] M a p s ^ S2)*. (3.8)

The space Maps(S2;S2) has a distinguished subspace, Maps((£2, n); (S2, ή)),
which is the subspace of maps taking n to n. For each keZ, there exists the fibration

0 -* Maps ((S2, n); (S2, n)\ -> Maps (S2;S\ A S2 -> 0, (3.9)

where π is evaluation at the north pole, n. The set of homotopy groups
77* (Maps ((S2,ft);0S2,/?)),,) is independent of k and IJI(Maps((S'2,»);
(S2, ή))0) ~ Πι + 2(S3) [25, Chap. 1]. Thus, in principle one can compute
77* (Maps (S 2 ;^ 2 ^) from the fibration (3.9). For k = 0, this is relatively easy:

Theorem 3.5. The inclusion 6>/Maps ((S2,«); (S2, n))0 into Maps (S2; S2)0 induces α
canonical splitting

Π, (Maps (S2;S2)0) - 77, (Maps ((52, n); (S2, ή))0) θ 77

~Πι + 2(S2)®Πι(S2). (3.10)

Consider ^ ( ) as a functional on ̂ . The group SU(2) acts by conjugation on ̂
by imbedding SU (2) in C00 (IR3; SU(2)) as the subgroup of constant matrices. This
action factors through SO(3), and ^ ( ) is invariant. The SO(3) action is
continuous, and for k φ 0, the action is free on ̂ k. So, for k Φ 0 <$k is fibred over the
quotient, $k = ̂ fc/SO(3). (βk is given the quotient topology.) For k φ 0, one may
consider ^ ( ) as a nonlinear functional on #/c, and for this reason the topology of $k

is interesting.
The group SO(3) acts freely on M a p s ^ 2 ; ^ 2 ) ^ for ^ΦO by rotations of the

image S 2. With this action, the map 7: Maps (S 2; S2)k ->
 <%k is SO(3) equivariant, so

7 induces the continuous map 7: Maps (S2;S2)k/S0(3) -> #/c.

Theorem 3.6. Fί?r /: φ 0, //ze map I induces an exact sequence of homotopy groups^

0^Π,(Maps(52;S2ySO(3))-^ir,(<lk).

In addition,

~ Zlkι and

^ Πι + 2(S2) for 1^2.

The remainder of this section contains the proofs of the preceding theorems.
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Proof of Theorem 3.1. The theorem is proved by exhibiting ^ as a product,

^ = ^ x ^ , (3.11)

where ρ becomes the inclusion <? -» # x 1.
First, it should be remarked that as in the pure Yang-Mills case, ^ acts

effectively on ^ [4]. Next, the project ionp:^^^ will be defined. Let (r=\x\,θ,φ)
be spherical coordinates on 1R3. For c = (A, Φ) e % p (c) e C00 (IR3 SU(2)) is defined
to be the unique solution to the following ordinary differential equation:

— p(c)(r,θ,ψ)-p(c)(r,Θ,φ)Ar(r,θ,φ) = O, and p(x = 0) = 1. (3.12)

Here Aγ = xj ^-η lA. This is the polar gauge [28]. The element p(c) is C00, and the
ox

map/?: #-• ̂  is readily seen to be continuous with respect to the given topologies.
Now define the map ρ: # -• # by the following device: Let g (c) e ̂  denote the class
of c e # . Then

ρ(c)=p(c)c. (3.13)

It must be established that ρ (c) depends only on the class of c. By construction, for
(A,Φ),

A(χ = 0) = 0, and Ar = 0. (3.14)

Let c, deΉ with Q(c) = Q(c') Necessarily, one has ρ(c) = uρ(cf) for some ue^.

But Eq. (3.14) implies that —- u = 0 and so u = 1. Therefore, ρ (c) depends only on

or
Q(c) e # . Because j^( ) is continuous, and 0 acts continuously on ̂ , the map ρ:
^ -• # is also continuous. The map ρ is, by inspection, 1 — 1 onto its image. Identify
^ with the image ρ(^)<=^. The product structure of ^ is exhibited by the
homeomorphism if: ^-• ( ?x^, defined by if(c) — (p(c)c,p(c)). This proves
Theorem 3.1.
Proof of Theorem 3.2. The contractibility of ̂  is proved by exhibiting a continuous
map, « : [ 0 , l ] x # - ^ , with

2) * ( 1 , ) = 1- (3.15)

Consider the map 01 given for g e ̂ , / e [0,1] and x e IR3 by

0*). (3.16)

The map ̂  is continuous with respect to the C °° topology on <S. It satisfies (3.15) by
construction, so ^ is contractible, and necessarily, Π^{&) = (0).

The long exact homotopy sequence of a fibration implies that Q^ is an
isomorphism [25, Chap. 7].

Proof of Theorem 3.4. The map / is clearly continuous in the given topologies,
hence by functorality, 1^ is a homomorphism of the respective homotopy groups.
To establish that 1^ is a monomorphism, consider, for / ̂  0 and k e Z, two elements

^ 2 ) , , ^ ) ) , with /(ι//0) ~/0//J . (3.17)
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Let F(s, )e Maps (([0,1] x S\ [0,1] xn);(% I(ek))) be a homotopy between

I(ψ0) and I(ψx)9 and write F(s,y) = (A(s9y)9Φ(s,y) for (s,y)e[0,l]xSl. A
consequence of the topology given to ^ by Definition 2.1 is that the continuous
function | Φ (s, y) \ (x) e C° ([0, l ] x ί x IR3) is continuous in (s, y)9 uniformly with
respect to xeIR 3. In particular, this means that there exists R<co such that

\Φ(s,y)\(x)>± forall (s,y)e[0,ί]xSι if \x\>R. (3.18)

On the two-sphere {xeIR3: \x\ = R + 1}, the map

Φ(s,y)(') = Φ(s,y)( )/\Φ(s,y) |(•)eMaps(([0,1] xS ι, [0,1] x ή),(Maps(S2;S2),ek)\

(3.19)

and is a homotopy between ψ0 and ψ1. Hence 7̂  is a monomorphism. The proof
that / j : 77O (Maps ( 5 2 ; S2)) _> i7 0 (#) requires a result from Sect. 4, so this will be
proved in Appendix A.

Proof of Theorem 3.5. The projection π: Maps(S 2 ;S 2 ) ->S 2 in (3.9) is given by
π(e) = ^(«). For Λ: = 0, (3.9) admits a global section,

<7:S2-*Maps(S2;<>2)0, (3.20)

which sendspeS 2 to the constant map q (p): S2 -> p. Clearly πo q = id5 2. Thus the
long exact homotopy sequence that is associated to (3.9) for ^ = 0 splits and

Πt (Maps (S2 S2)0) - il z (Maps ((S2, Λ ) ; (5 2 , /i))0) Θ Πt (S2),

as claimed.

Proof of Theorem 3.6. The homomorphism 7# is a monomorphism for the same
reason that 7 :̂ Π^(Maps(S2;S2)) -*Π^0%) is a monomorphism.

To calculate 77 ϊ l c(Maps(S 2;5 2ySO(3)), observe that SO(3) acts naturally
on the fibration (3.9). Indeed, the base S2 is homeomorphic to SO(3)/SO(2) and
this implies that Maps(5t2;»S2)fc/SO(3) is homeomorphic to Maps((S2, ή);
(S2,n))k/SO(2). Here SO(2) rotates the image sphere around the axis defined by
the north and south poles. From the long exact homotopy sequence, one obtains
immediately that

Ux (Maps ((S2, /i); (S 2, /i)ySO(2)) - Ux (Maps ((5 2, ή); (S 2, ή)\\ for / ̂  3 .

For / ̂  2, one has the exact sequence

0 -* Π2(Ωk) Λ Π2(Ωk/SO(2)) -> 77! (SO(2)Λ 77! (Ωk)

J71(Ωk/SO(2))->0. (3.21)

Here Ω/c is shorthand for Maps((5 2,n); (S2,n))k. Recall that
Π2(Ωk) - 774(>S

2) ~ Z 2 and 77!(Ωfc) ^ 773(5'2) - Z [25, Chap. 9], while
Π1(SO(2)) ^ Z. Because y of (3.21) is an isomorphism if j8 φ 0, Theorem 3.6 is
implied by the following lemma:

Lemma 3.7. The map β in Eq. (3.21) is multiplication by k.
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Proof. Fix a configuration ekeΩk. The orbit of ek under the SO(2) action is a 1
parameter loop, ek(t), teS1 and hence an element of Maps ((S1, ri); (Ωk, ek)). The
loop ek(t) is homotopic in Maps^S1,/?); (Ωk,ek)) to some multiple, m, of the
generator of πx (Ωk,ck). By definition, the map β of (3.21) is multiplication by the
integer m. The lemma follows by demonstrating that m = k. This task is
straightforward, but lengthy and is completed in Appendix B.

IV. Ljusternik-Snirelman Theory on ^

By design, the action functional ^ ( ) is a continuous map from ^ to IR, and its
derivatives are defined as distributions on Γ c ((^ ® Γ*)® g). The Ljusternik-
Snirelman procedure begins with the definition of the space of maps over which to
apply the mini-max procedure o n ^ ( ), as outlined in Sect. 1. The procedure uses
non-contractible maps from Sk into ^. Here, only homotopy classes induced by the
map /: Maps ((S2,n);(S2, ήj) -» %> will be considered, and in particular, only
homotopy classes in ^ 0 . The analysis for &(-) on ^k is similar. The only difference is
that the minima of ^ ( ) on <?0 is a 2-sphere, while the minima of α( ) on <&k, k Φ 0
have more complicated topologies [21,29,30].

The homotopy groups of ^ 0 (and of ^ 0 by identifying ^ 0 with ρ (βQ) cz ̂ 0 , as in
Sect. 3) are defined with respect to the distinguished point

c^ = (0, - j σ3), where σ3 eo#(2), and σ3 σ3 = - 1 . (4.1)

Note that θy(c^) = 0. The configuration c^ is not in the image of the map / of
Definition 3.3. Because change of base point in ^ 0 induces an isomorphism
between Π^(^o, I(e0)), and Π^{^,c^), this is not a serious problem. An explicit
isomorphism is given below. The distinguished point in Maps(S 2 ;S 2 ) 0 is the
constant map: e^\ S2-> — \ σ3. Let y = (t,y) be coordinates on Sk, k^l where
ίe[0, π] is the polar angle and y are coordinates on the equatorial Sk~ι.
The distinguished point is n={t = 0}. Define for k^ί, J\ C°((Sk,n),

0 k

\ for ίe[π/2,π], l }

for c( )eC°((Sk,«), (^, I(eJ). It is a standard argument that ./induces an
isomorphism between Π^ (%, I(e^)) and Π^ (<&, c^) [27, Chap. 7]. Thus, a generator

2 , * ) ; (S2,n))0,eJ induces

f(l-2/πίj8(x))(0,-£σ3), for ίe[0,π/2],

-)5(x))(-K2ί-π,j)(x),^(2ί-π,j))(x)],e(2/-π),^)(^)? for ίe[π/2,π],
(4.3)

where x = x/|x| and c(e) is a generator of Πk(Ή0,c^) (and i7fc(^0,c#).)
The sphere c (e) (•) e C° ((5fc,«), (^0, c )̂) is the paradigm for the set of functions

A on which the mini-max procedure takes place.

Definition 4.1. The function set Λ: For k^ί, let e( )eC°((Sk,/ι);
(Maps ((512,«); (52,«)), ej) be a fixed generator of Πk (Maps ((52,«); (S2,«)), e j .
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Define Λ = Λ(e) to be the set A = {c( ) = c(e) (•) + (ω( ), η(-)) e C° ((S\ n); (V, c j ) :

(1) There exists a compact set KczJR3 such that ω(y) eΓc(K; p® T*) for

(2) lim \η(y;x)\-> 0, uniformly with respect to y eSk.
|x|-oo

(3) Let c(e)(y) = (A0(y)9 Φ0(y)). Then VAMη(y)eC°(Sk; L2(#® T*)).}
It follows from (1) and (3) that ^(c( )) e C°(Sk; IR) for c(-)eA.

Definition 4.2. The configuration induced by c(-)eA:Ύo each c( )eΛ, associate
one configuration c — c(y0) where a(c(y0)) = supa(c(y)).

yeSk

As a{c(-)) is a continuous function on Sk, it achieves its supremum at some
y0 eSk. If there is more than one supremum, the choice is immaterial. One is to
think of c( ) eΛ as having associated to it, the induced configuration c.

Before considering the detailed properties of A, some remarks are in order. One
may be concerned that for c(-) = (A(-), Φ(-))eA, the Higgs field, Φ( ) is
constrained to satisfy

lim Φ(y;\x\x) = e(y)(x) for all yeSk. (4.4)
|x|->oo

This constraint amounts to a choice of gauge, asymptotically in IR3. To put
it another way, Eq. (4.4) implies that the gauge group ^ has been reduced to
^° — [ge^: lim g(x)-+l\. As ^ carries no topology, there is no harm in

doing this. Indeed, one could reduce ^ to 1 and work directly on ^ - ^ but this
complicates the analysis.

The constraint on ω(y) = A(y) — A0(y) has to do with the following
observations: Consider the subspace c€i'aΉ which is defined for δ > 0 by

# ' = {c = (A,Φ)e<g:uc(x)

}
(4.5)

Give c€' the topology induced by considering it as a subset of ^ x C°(ΪR3) as
follows: ^'ec->(c,uc(x)) e ^ x C 0 ( R 3 ) . Every critical point of a(-) on ^ lies in
<<Π2, Ch.IV]. In addition, /maps Maps(S2;S2) into ^'-^c€\ but here /# an
isomorphism 1^: Π^ (Maps (S2; S2), ek) ~ Π^ (<g; I(ek)). Therefore, the Ljusternik-
Snirelman theory applied to homotopy classes induced by 1^ takes place in #' , and
hence $'.

For {A, Φ) e #' , Ar = 0, and A (rx) = -] dtt ί^-iFA (tx\ so
r 0 \ot J

\A\ ^ const τ ^ r , c f . [28]. (4.6)

In addition, one can show that the

lim Φ(\x\x) = Φ(x)eCi(S2;S2). (4.7)
|x|->oo
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It is a fact, following from (4.5-7), that given ε > 0, and a sphere c'( )
= (A'(-\ Φ'( )) 6 C° ((Sk, n); ( f , cj) which is homotopic to co(ek)9 there is a sphere

sup (IIF^) - FA(y)\\2 + II^OO - ^ ' Φ ' ω i D < β. (4-8)
yeSk

As Eqs.(4.6)-(4.8) are explanatory remarks, they will not be proved here.
For the proof of Theorem 1.1, the crucial properties of the space A are given by

Lemmas 4.3 and 4.6 and Theorems 4.4. and 4.5.

Lemma 4.3. The set A, as a topological subspace of C°((Sk; n); (<£, c^)) is
contractίble onto c(e)( )

Proof. The space A is readily seen to be convex. Thus, every c( )eA is homotopic

t o <?(<?)(•)•

Theorem 4.4: Define the number a^ = inf a(c). Then a^ > 0.
c( )eΛ

Theorem 4.4 is crucial in proving that the Ljusternik-Snirelman procedure
doesn't produce the trivial critical point c^.

The following theorem provides the most useful tool for obtaining aprίori
estimates. It will be invoked again and again in the proof of Theorem 1.1.

Theorem 4.5. Lei c( ) = (A( )9 Φ(-))eA. There exists a unique c( ) = (A( ),
Φ(-))eA with the property that for all yeSk, (1) a,(c(y)) g &(c(y)), and (2)
V2

Aiy)Φ(y)^*DA{y)*DA(y)Φ(y) = Q.

The proof of Theorem 4.4 requires the next lemma. This lemma, in some sense,
is the heart of the connection between the topology of # and the critical points of

Lemma 4.6. Let e be a generator of Πk(Ma,ps((S2,n); (S2,n),e^)), and let c( )
= ( i ( ),Φ( ))eC°((^,n) ;(^c ! i ! )) be homotopic to c(e). There exists (y,x)eSk

x IR3 such that Φ(y x) = 0.

Proof of Lemma 4.6. Suppose no such (y, x) existed. The homotopy between c(-)
and c(e)(-) must be continuous with respect to the topology of Definition 2.1.
Therefore, R> 0 exists such that, restircted to the sphere \x\ = R9

ef(y;x) = Φ(y9R£)/\Φ(y;R£)\~ e(y x) (4.9)

in C°((S\n); (Maps (S2;S2), ej). Let F(s9y) (x)eC°(([0,l] x S\ [0,1] x n);
(Maps (S2;S2X ej) be the homotopy of (4.9).

Since Φ never vanishes, Φ(y;(l—s)Rx + sRri)/\Φ(y;(l—s)Rx + sRri)\,
se[09l] defines a homotopy between e'(y x) and q(er(y;n))(x) in C°((Sk,n);
(Maps(52;52),e#)). The map q: S2-> Maps (S2;S2) is defined in Eq.(3.20).
Meanwhile, q(F(l—s,y)(ή))(x) defines a homotopy between q(ef(y;n))(x) and
q(e(y;n))(x) = e^ in C°((Sk,n); (Maps(5 2 ;5 2 ),^)). Thus, the chain of homo-
topies e(y x) - e'{y\x) - q(e'(y;ή))(x) - q(e(y;ή))(x) = e+ shows that e(y x)
is homotopic to e^ in C°((Sk,n); (Maps^ 2 ;^ 2 ),^^)). But by Theorem 3.5, this
contradicts the assumption that e is a generator of Πk (Maps ((S2; ή)9 (S2;n)), e^).
Therefore Φ vanishes on S2 x IR3.
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The remainder of this section contains the proofs of Theorems 4.4 and 4.5. The
essence of the proof of Theorem 4.4 is that due to Lemma 4.6, there exists y eSk

such that d\Φ\ (y; x) and hence || V AΦ (y) | | 2 is not identically zero. Theorem 4.5 is
used to obtain a uniform lower bound with the aid of the following apriori estimates
from [2].

Lemma 4.7. Let c = {A, Φ) e #, and suppose that VjΦ = 0. There exists a constant
0 < ξ < oo, which is independent of {A, Φ), such that

(i) \\r\vAΦ\\\i + \\vAΦ\\l£ξ*(c)(ί+*2(c)).
(2) If\Φ\2(x) = 0, then \Φ\2{y) < \ whenever \x-y\ < ξ(a,(c){l +^ 2(c)))" 1.

(3) Let V= {xelR3: \Φ\2(x)<^}. Then v = J d3 x ^ ξa?(c).
v

Proof of Lemma 4.7. Statement (1) is Proposition V.8.1 of [2]. Statement (2)
is Lemma I V.I 6.6 of [2]; while Statement (3) follows from the identity
A\Φ\2 = 2\VAΦ\2. The argument is proved in Sect. IV. 16 of [2], see Eq. IV. 16.17.

Proof of Theorem 4.4, assuming Theorem 4.5. Let c( )eA be given, and let <?(•) e A
be the /r-sphere resulting from Theorem 4.5. By Lemma 4.6, there exists
Oo, xo)eSk x IR3 such that Φ (yo; x0) = 0.

Using Statements (2) and (3) of Lemma 4.7 on Φ(yo;x), one obtains upper and
lower bounds for t>:

ξa3(c(y0)) ^ v ^ f πξ3[a(c(y0))(l +a2(c(y0))Γ3. (4.10)

These bounds imply, by rearranging terms, the upper bound
6 ^ξ'>0. (4.11)

Equation (4.11) gives a lower bound for a(c(y0)) independent of c(y0), and since
a(c) ^ a(c) ^ a(c(y0)), Theorem 4.4 follows. The crucial fact in the proof was
Lemma 4.6.

The proof of Theorem 4.5 is an application of the calculus of variations. One
first proves that for each yeSk, Φ(y x) exists. Then, with ellipitic regularity
theorems, one shows that Φ (y; x)eC°(S1; C° (IR3; ̂ ) n Γ (#)). The proof is begun
with a proposition that establishes that for each c = (A,Φ)e(£, there exists

which satisfies V\ Φ = 0, and is such that (A, Φ)e(£ also.

Proposition 4.8. Let (A, Φ)e(£. There exists a unique, smooth η eL6(#) such that:
(1) V}(* + ri) = 0. (2) \\VA(Φ + η)\\22= mf \\rA(Φ + Φ)\\l (3) |Φ + ι j | ^ l and
lim \Φ + η\ = 1. φeΓ{^

\x\-*oo

To facilitate the proof of Proposition 4.8, the following Banach space will be
used.

Definition 4.9. Define for A e Γ (A), the Banach space KA(# ® Λ T*), p = 0,1,2, 3,
to be the closure of Γc(# ® A T*) in the norm p

\\Φ\\2K=\\VAΦ\\22. (4.12)

This space is modeled after the Banach space K(1R3) (K( A T*)9 p = 1,2,3) which is
P

the closure of C^°(1R3) ( Γ C ( Λ T*)) in the norm || P ( ) | | 2 .
P
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Some useful properties of KA are given in the next lemma:

Lemma 4.10. There exists a constant ξ < oo which is independent of A, such that for

® Λ Γ * ) ,

\\Φh£ξ\\Φ\\κA, (4.13)
and

11(1+ |*IΓ 1 φ| | 2 :g ami*, . (4-14)

Similar estimates hold on K(Λ T*).
P

Proof of Lemma 4.10. Equation (4.13) is Corollary VI.6.2 of [2]. Equation (4.14)
follows from Kato's inequality [2, Chap. VI.6] and Lemma 5.4 of [31].

To prove Proposition 4.8, it is useful to be more general, so consider the
function Q (φ) on KΛ(* ® A T*) or on K( A T*) (p = 0, . . . 3) which is defined as

P P

follows. For G eL2((# ® Λ T*) ® T*) and φeKA(# ® A T*)
P P

Q(Φ) = ^WAφ\\2

2 + <VAφ,G}2. (4.15)

For GeL2(A Γ* ®T*), and ΦEK(AT*\ Q(φ) is defined to be
p P

Q(Φ) = τ\WΦ\\22 + <Vφ,Gy2. (4.16)

In order to simplify notation, KA will denote KA(# ® A T*) OTK(A T*) and VA will
P P

denote V on Γ ( Λ Γ*). The relevant properties of Q(-) are summarized by
p

Lemma 4.11. The functional Q (•) on KA defined by either (4.15) or (4.16) attains its
infimum at a unique η eKA. The section η satisfies

= 0 for all φeKA. (4.17)

If G is a C 0 0 section, then η is C 0 0 also.

Proof of Lemma 4.11. Since GeL2, the functional Q is C°° on KA. It is weakly
lower semi-continuous, and strictly convex. Further, Q satisfies the coercive
estimate, Q{φ)^\\\φ\\2κA— \\G\\\,φ εKA. Since KA is a reflexive Banach space, the
calculus of variations [32; 2, Chap. IV.7,8] implies that Q( ) achieves a unique
minimum, ηeKA and η satisfies (4.12). The apriori estimates in [33, Chap. 5] imply
that η is smooth if G is.

Proof of Statements 1) and 2) of Proposition 4.8. Use Lemma 4.11 with G = V AΦ.

To prove Statement (3) of Proposition 4.8, it is necessary to establish the
following apriori estimate:

Lemma 4.12. Let weL2 l 0 C(IR 3) and suppose that \ Vw | e L2 (IR3) and
lim w(x) -• 0. Then w is in K(R3) and hence in L6(IR3).

M-oo

Proof of Lemma 4.12. Consider the functional Q(-) on 7£(JR3) defined by

(4.18)
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Applying Lemma 4.11 to Q, above, one concludes that there exists a unique veK
such that for all veK, (Vυ, V(v + w)> = 0. By elliptic regularity, v + weC00(IR3)

) = 0. (4.19)

The maximum principle implies that V (v -f w) = 0, so v + w = 0 and w = — ίJe AΓas
claimed. Lemma 4.10 states that weLβ(R3) also.

Lemma 4.12 has the following aprίorί estimate as a corollary:

Corollary 4.13. There exists ζ < oo, such that for all (A,Φ)e<g, | | ( l - | Φ | ) | l i

o/ Corollary 4.13. Use Lemma 4.12 and the fact that | F | Φ | | ^ | ^ Φ |

[2, Chap.VI.6].

Proof of Statement (3) of Proposition 4.8. Let 3> = Φ + η. Then | | Φ | - 1 | ^ | | Φ |

- 1 I + |»71, so (1 - |Φ|)eL 6 (IR 3 ), as | ^ | a n d ( l - | Φ|) are in L 6 . Because Φ satisfies
p j φ = 0, the function (1 — | Φ | ) G ^ ( I R 3 ) satisfies the integral inequality
<Pι>, V(1 - \Φ|)> ^ 0, for all 0 ^ t;GCo°° (IR3). By the weak maximum principle,
(1 - |Φ|) ^ 0 on 1R3 (cf. [2, PropositionVI.3.5], or any standard PDE text).

The apriori estimate, Theorem V.8.1 of [2] is now available. The result is this:
There exists a constant ξ < oo, independent of A such that

II \VAΦ\ \\2κ^ξ(\\FA\\2

2 + \\VAΦ\\2

2 + \\FA\\t H ^ Φ I I i ) . (4.20)

(Compare with Lemma 4.7.) Using Lemma 4.10 and Eq. (4.20) one obtains that
IVAΦI eL6(IR3) and hence V \Φ\ eL 6(IR3). Therefore, (1 - |Φ|) eZ4(IR3) and one
can appeal to Proposition III.7.5 of [2] to complete the proof of Proposition 4.8.
[Functions in Lj(IR3) decay to zero as |x|-> oo.]

Before turning to the proof of Theorem 4.5, it is necessary to know that the
section η eΓ(#) of Proposition 4.8 decays to zero as \x\ -» oo.

Proposition 4.14. Let (A,Φ)e(£ and suppose that υ=VAΦeL2(^). Let
be given by Proposition 4.8. Then(ί) lim \η\(x)-+0,(2)VAηeKA

|x| o

and its norm is bounded by a number which depends only on a(A, Φ) and \\v\\2.

Proof of Proposition 4.14. The section ηeΓ(#) satisfies VAη = —υ. Since \Φ + η\
< 1 and \Φ\ is bounded, then \η\ is bounded. The result now follows from the
apriori estimate given by Theorem V.8.1 of [2], and Proposition III.7.5 of [2]. The
argument is similar to that used to prove Statement (3) of Proposition 4.8.

Proof of Theorem 4.5. The results of Propositions 4.8 and 4.14 will now be applied.
Let c(') = (A('),Φ(>))eΛ9 and let c'(-) = (Λ( ), Φo(0). As A(y) - A0(y) is
compactly supported in a fixed, bounded domain in IR3, independent of y eSk, so is
DA{y)ΦQ(y). Therefore, c'( )eA.

Both Propositions 4.8 and 4.14 are applicable to c' (y) for each y eSk. Define
Φ (y) = Φ0(y) + η (y), with η (y) given by these aforementioned propositions. For
each yeSk, c(y) = (A(y),Φ(y))ec^>, and by uniquencess, c(n) = c^ = (0, |-σ3).
Due to the convexity of the L2-norm, a{c(y)) ^ a(c(y)) for all y eSk.

For the proof of Theorem 4.5, it remains to show that c(y) e C°(Sk; <$) and that
Statements (2) and (3) of Definition 4.2 are satisfied by Φ (y). This is done using
Statement (1) of Proposition 4.8.
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To begin, the equivalence of the norms on KA{y),yeSk must be established.
This is so that η (y) and η (yr) for y φ y' can be compared. It is for this purpose that
A (y) — A0(y) is defined to have compact support which is uniform in y eSk. The
topology on Ή also plays a crucial role here.

Lemma 4.15. Let (A(y), Φ(y))eA. The Banach spaces KA{y) and Ko are equivalent
for ally eSk. Indeed, there exists a constant 0 < z < oo, which is independent ofy eSk

such that for all φ eK0(#® A T*).

^ , (4.21)

and for all yeSk and y' eSk,

lim\\VAMφ-VA(y)ψ\\2^0. (4.22)

Proof of Lemma 4.15. It is sufficient for the proof of this lemma to establish
(4.21)and (4.22) for φeΓc(#® Λ P ) . Write A(y x) = A0(y;x) + ω(y x). By

P

assumption, R < oo and a ball BRa IR3 exist such that for all y eSk, ω(y;x) = 0

if x$BR. Fix φ eΓc(p® A 7"*), and consider the difference in the norms:
P

\\\VA(y)Φh - WΦh\ ̂  \\[Λ(y),φ]\\2,

The last line follows using Holder's inequality, and the fact that |/ ί o ( j) |
^ ( 1 + lxlΓ1. By assumption, ω(y)eC°(Sk;Γc(BR;?®T*)), so \\ω(y)\\3 is
uniformly bounded on Sk. Thus

ί2z2ζ\\Voψ\\2, (4.23a)
or

£2z2ζ\\VΛly)φ\\2. (4.23b)

Here, the last two steps follow using Lemma 4.10. Equation (4.21) follows directly
from (4.23).

The assumptions in Definition 2.1 on A(y) = A0(y) + ω(y) imply that a
continuous function, z (y, y') on Sk x Sk exists such that

(1) lϊmz(y,y')-+0.
y->y'

(2) \A0(y) - A0(y') \ ̂  z{y,y'){\ + \x\y1.

(3) \V(A0(y)-A0(y'))\ίz(y,y')(l + \x\y2. (4.24)

To prove Eq. (4.22), fix φ e Γ(? ® Λ T*). Then for all y, y' e Sk,
p

II VΛWΦ ~ VAWΦ \\I ̂  II [A0(y) - A0(y'), φ] ||2 + II [ω(y) - ω(y'), φ] ||2 (4.25)

ύ(z(y;y') + ||(1 + \x\)\ω(y)-ω(y')\ | | J ||(1 + \x\y^\\2.
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Equations (4.24) and (4.25), the fact that ω(y)eC°(Sk;Γc(BR;?®T*)) and
Lemma 4.10 now establish Eq. (4.22). One may conclude from Proposition 4.14
and Lemma 4.15 that η (y) and Vη (y) e KA(yΊ for all y, y' eSk.

In order to compare η (y) with η (/) one uses Statement (1) of Proposition 4.8.
Thus, for y, y' eSk, η(y) — η (/) satisfies

V2

A{yΊΦ0{y')-2 [At(y) - At(y%

], (4.26)

where At = ^-r J A and V1 = J-J J d. Let v(y,y') denote the right hand side of
ox ox

(4.26). Continuity properties of υ(y9y') as y'-+y imply continuity properties of
η (y) — η(yr) as y' -> y. Elliptic regularity techniques, the "bootstrap" arguments,
are used to exhibit this. These begin with

Lemma 4.16. Let v(y,y') denote the right hand side of (4.26), then lim || (1

Proof of Lemma 4.16. The proof is simplified by splitting v (y, y1) (x) into two parts.
The part exterior to the ball of radius R [where ω (y; x) = 0] is denoted vex(y,yf).
The part interior to this ball is denoted ι>in(j>,/).

For \x\ > R, A (y) = A0(y) and Vjiy)Φ0(y) = 0. It follows from (4.24) that

I (1 + \x\)v"(y9y')(x) \ £ zx z(y,y') {\Vη(/)\ + (1 + I x l ) " 1 \η(y')\} . (4.27)

Using (4.27), Proposition 4.8, Lemmas 4.15 and 4.10, one obtains the inequality

||(1 + \x\)v°*(y,y')(x) | | 2 ^ z2 z(y,y'). (4.28)

Meanwhile, vm(y,y') satisfies

|| (1 + |x | )^0; ,/)(x) | |2 ^ Zl(R) ' z&y1) \\η{y')\\κ0 (4.29)

4π \ 1 / 2

τ R3) sup I V2

A{y)Φ0{y) - V2

A{y)Φ0{y') |,

The right hand sides of both (4.28,9) vanish as y' -• y, which proves Lemma 4.16.

Completion of the Proof of Theorem 4.5. Take the L2-inner product of both sides of
(4.26) with (η(y) — η{y')). As both η{y\ η{y')€KA{y){g>), one can integrate the left
hand side of the resulting expresson by parts to obtain

h = - <η(y) - η(y'), v(y,y')>2,

^ || (1 + Ixl)-1 (η(y) - η(y') | |2 ||(1 + \x\)v(y,y') | | 2,

(4.30)

Using Eq. (4.30) and Lemmas 4.16 and 4.15, one concludes that

η(-)eC°(Sk;K0). (4.31)
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By using (4.26) in conjunction with (4.31), Lemmas 4.15, 4.16, and Theorem V.8.1
of [2], one obtains as well that

Vη(y)eC°(Sk;K0). (4.32)

Since Ko-+ L6 continuously, Eqs.(4.32,1) imply that η(y)eC°(Sk;Ll(p)), and
since L\ -• C°(ΪR3) continuously, η(y) e C°(Sk; C°(IR3; g)). Thus η(y) is uniformly
continuous with respect to the supremum norm on 1R3. The continuity ofVAMη(y)
in L 2 ( ^ ® Γ * ) follows from Eqs. (4.26) and (4.31). The proof that
η (y) e C° (Sk; Γ {#)) requires only local estimates. This is standard, and the reader is
referred to [33, Chap. 5,6]. Thus η(y) satisfies all the requirements of Definition 4.1
and c(y) = (A(y), Φ0(y) + η(y))eΛ. This completes the proof of Theorem 4.5.

V. The Minimizing Sequence

Presently, a sequence in A will be used to construct a solution to Eqs. (2.2) and (2.3).
This entails choosing a "good" sequence of spheres {cf( )} e A and proving that the
resulting sequence of configurations {cj converges to a solution. This section deals
only with the question of convergence over bounded domains, where the
convergence follows from K. Uhlenbeck's weak compactness theorems. A good
sequence has the property that Va,^ -• 0 as well. As in the finite dimensional case, the
existence of "good" sequences is a consequence of the fact the spheres in A are not
null-homotopic. The following simplified notation will be used: If {c^y)} c A, then
ci(y) = (Ai{y), Φ,O0), ϊi = (Ai,Φi), Vac{y) = Vauy, Va-^Va, and JTe= ^ .

Crucial to the proofs in this section is the fact that there exist configurations
c = (y4, Φ) G # which satisfy

DA*DAΦ = 0, (5.1)

and spheres c(y) eA which satisfy (5.1) for all yeSk (Theorem4.5).

Definition 5.7. Let c = (A, Φ) e cβ. Define the Banach space Hc to be the closure of
Γ c ( ( ^ ® Γ * ) ® ^ ) i n t h e n o r m | | ^ | | c

2 - \\VAψ\\2

2 + | | [ Φ , ^ ] | | | . The symbol || ||cwill
also denote the above norm on Γc{#® Λ Γ * ) , ^ = 0,1,2,3. For c(y)eA, the

following shorthand will often be used: Hc{y) = Hy, \\ \\c{y) = || * | | r For {cj
sequence: He = Ht and || \\e= \\ H,.

Proposition 5.2. Let c ε f . Thenac( ) = Λ ( C + •) extends to a C™ functional on Hc. If
and a(c) ^ 5, ίAe« ίAe following estimates hold with κ = x(B): (1) |ΛC(I//)

2 ||c
2), (2)

S κ\\ψ\\Ul + \\ΨΛ)- Ifc{y)€Λ,andψeΓ((?®T*)®<?), then(3)ay(ψ), V*y(ψ),
and \\ψ\\y are all continuous functions of y.

Next, consider sequences {cf( )} eA which satisfy (5.1) for all yeSk.
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Proposition 5.3. // is possible to choose a sequence {ct(y)} e A which satisfy (5 A) for
all yeSk, and satisfy in addition

(1) lim^te)-*^.

(2) ^ ^ t e + i) . (5.2)

(3) l i m | | F ^ | | „.-><).
i-» oo

The proofs of Propositions 5.2 and 5.3 are deferred to Sect. 6. For the remainder
of this section, assume their validity.

Definition 5.4. A good sequence {cf( )} = {(^(0, Φ/0)} εA is one which satisfies
(5.1) and (5.2).

The next theorem states that the sequence {cj that is induced by a good
sequence of loops converges. More generally, Theorem 5.6 below states that a form
of Condition C of Palais-Smale, (cf. [10, Chap. 6]) is valid locally. The main part of
the proof is due to Uhlenbeck [11] (see also [34]). The next definition defines the
relevant form of convergence.

Definition 5.5. Let {ci = (Aί,Φi)}?L1e
(&. The sequence {cj is said to converge

strongly in L\Xoc to c = {A, Φ) e %> if the following is true: (1) There exists a uniform,
open cover of 1R3 by balls {Va} of radius r > 0. (2) There exist, for each z, α, gauge
transformations ga(ί)eLl(Va;SU(2)). (3) For each α, the sequence {ga(ΐ)Ci}
converges strongly in L\ (Va; (# ® T*) Θ g) to some (Aa, Φa). (4) For each α, β, the
sequence { ^ ( 0 = ̂ ( 0 ^ H O } converges strongly in Ll(VanVβ;SXJ(2)). (5) In
each F α n Vβ; {Aa, Φa) = gaβ (Aβ, Φβ). (6) For each α, there exists haeL2

2 (Fα; SU(2))
such that hac = (Aa9 Φa) in Va.

Armed with this definition, the convergence result can be stated.

Theorem 5.6. Let {cj = (Ai9Φi)e<& be a sequence that satisfies (1) a{c?) ̂  B,
(2) lim llP^ill/f*-^ 0, (3) Eq. (5.1). Then there is a subsequence of {cj which

i-» oo

converges strongly in L\loc to (A,Φ)G(£, and (A,Φ) is a solution to Eqs. (2.2)
and (2.3).

Proof of Theorem 5.6 assuming Propositions 5.2 and 5.3. The proof is a direct
application of K. Uhlenbeck's weak compactness results for gauge fields [11]. For
convenience, her relevant results are stated in the following proposition.

Proposition 5.7 (Uhlenbeck [11]). Let {Ai}^=1 be a sequence ofC00 connections on
ΊR3 with || FA \\\ ̂  B. There is an infinite subsequence, also denoted {At}9 a constant
μ>0,an r(B) >0,a countable, uniform cover ofJR3 by balls {Ua)™= x of radius r(B),
and a sequence of gauge transformations {ga(i) e Γ (UaίΛUβ; SU(2))}^α = 1 such that
the following is true:

(a) In UvAM^gMAtgM-'+gaWdg.®-1 satisfies (ί) d*Aa(i) = 09

(2) i*(*Aa(ι)) = 0, (3) \\Aa(i)\\LW^μB.

(b) Aa(ί) converges weakly in L\(Ua) to Aa.

(c) FA converges weakly in L2(UJ to FAa.
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(d) gaφgβ1® converges weakly in Ll(UaΓλUβ;S\J(2)) to gaβ and
gaβeC°(UanUβ;Sυ(2)).

(e) A^gtβApg-β1 + gafidg-β

ί in UanUβ.

(f) d*Aa=0inUa.

(g) /*(M β ) = 0.

Here iΛ\ dUa-+ Ua is the inclusion.

The sequence of connections in mind is that defined by the sequence
{cf = (Ai9 Φf)}. With no loss of generality, assume that the {At} satisfy (a)-(g) of
Proposition 5.7.

Next consider the Higgs field. It will be shown that in each Ua, the sequence
{gaiήΦiga1^} has a weakly convergent subsequence in L\(Ua;#). This is
established by proving that the L\ (Ua;#) - norms of the sequence are uniformly
bounded in i. Set Φa(j) = ga(i) Φtg~x (/) in Ua. Notice that because (Ai9 Φf) satisfies
(5.1), |Φα(z)| g 1. Now compute the L\(Ua\#) norm of Φa(ί):

Bf. (5.3)

The last line follows because by construction, the sequence AJJ) converges weakly
in L\(Ua), and, do to the Rellich Lemma, strongly in L2(Ua).

Lemma 5.8. Let {ct = (Ai9 Φf)} as before. There exists an infinite subsequence, also
denoted {Ci} such that {A{} satisfies (a)-(g) of Proposition 5.7, and (a) Φα(i) converges
weakly to Φα in L\(Ua)9 (b) DAΛi)Φa(ί) converges weakly to DAaΦa in L2(Ua), (c) Φa

= g«βΦβg«β

1 inUar\Uβ.

Proof The proof uses a process of choosing subsequences called diagonalization
[34]. Begin in U1. The unit ball in L\ (U^ is weakly compact; thus (5.3) implies that
an infinite subsequence {/'} e Z + exists such that Φι(i') converges weakly to Φ1 in
LKU,). The map (A, Φ)->DAΦ from L\{JJ^\{^® Γ*)® #) -> L2(Όγ\?®T*) is
weakly continuous (use the Rellich lemma [16]), which implies statement (b) above,
in U1. Now relabel / / ->/ = l , 2 . . . (this is diagonalization) and repeat the
procedure in U2 Since the open cover {UΛ} is countable, this procedure proceeds by
induction, establishing (a), (b) of the lemma. To establish (c) of the Lemma, it is
enough to remark that multiplication from Ll(Ua) x L\(Ua) -» L\(Ua) is weakly
continuous in three dimensions [16].

It will now be established that the configuration (Aa, Φa) e L\ (Ua; (# ® T*) Θ ^)
is a weak solution to (2.2) in Ua. It is a straightforward exercise to verify that the
Bianchi identities (2.2c, d) are automatically satisfied by any (A, Φ)eL\.

Let L\ c(Ua; •) denote the Banach space of L\ sections over Ua which vanish on
dUa.

Lemma 5.9. The imbedding, SaΛ\ L\tC{UΛ\(#® Γ*)®^) -+Ht given by SΛfi(ψ)

= ga(ί)~1ψga(ΐ) satisfies lim \\S*ti F ^ O I I * - ^ 0, uniformly in a. Here || | |# is
l-*O0

shorthand for the norm on L\jC(Ua;
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Proof of Lemma 5.9. In order to prove the assertion concerning Va{ it suffices to
show that the norms on ψ e L\c and g~* (/) ψga(i) e Hi are equivalent, uniformly in
the index α. Using the inherent gauge invariance,

lisβfi WOllέ, = 11^,^111 + 1 1 ^ ( 0 ^ ] 111

All integrations above are implicitly restricted to Ua. Line 2 follows from line 1
using Holder's inequality and Lemma 5.9. Line 3 uses the imbedding L\ -• L 4 and
(a) of Proposition 5.7. On the other hand,

\\Vψ\\l + \\ψ\\2

2 S 2 ( 1 1 ^ ^ 1 1 1 + \\Aaii)\\l \\ψ\\l + \\ψ\\l)

Here, line 1 uses Holder's inequality. Line 2 follows from Proposition 5.7 (a) and
the fact that the volume of U2 is r 3 4π/3. Line 3 uses Lemma 4.9.

Notice that S*tiV^) is just Va{AMΦΛί)}( ) restricted to L\tC(Ua;(p® T*)®?).
If (A, Φ) GL\(Ua; ^ ® Γ * ) Θ g ) ) then it is a straightforward exercise in the

Sobolev inequalities to show that Va(AtΦ)e L\*{Ua\(#®T*)® #).

Lemma 5.10. Let {ct = (Ai9 Φj)} satisfy the assumption of Theorem 5.6 and denote by
(Aa, Φa) G L\ (Ua; (p ® J Γ * ) Θ ^ ) , the limiting configuration of Proposition 5.7 and
Lemma 5.8. Then Va{Aa)<rg( ) = 0 on LlfC(Ua;(#®T*)®?).

Proof of Lemma 5.10. Using Lemma 5.9, one shows that the map
(A, Φ) -> Va{A φ){ ) from L\ (Ua) to L\ * (Ua) is weakly continuous. For example, for

^ 2*(co)\\η\\ 4\\Aa-Aa(ΐ)\\4+KDaη,DAΦa-DAa{0Φa(i)>2\

The first term vanishes as i -> oo as the imbedding L\ (Ua) -> L4(Ua) is compact. The
second term vanishes as /-»oo because the map (Aa(ϊ),Φa(ϊ))-+DA{ί)Φa{ΐ) of
L\ (£4) "^ L2(Ua) is weakly continuous. The remainder of the proof is similar and it
is omitted.

In order to discuss the strong convergence of {(Aa(ΐ), Φa(i))} in L\, choose a
subcover {Fαc£/α} of balls of radius ^ r/2.

Lemma 5.11. For each α, the sequence {(Aa(ί), Φa(i))} converges strongly in
L\(Va\(?®T*)®#) to (Aa,ΦJ. Thus the sequences {FAΛί),DAΛi)Φa(ϊ)} converge
strongly to (FA,DA ΦJ in L2(Fα), and the sequence {gaβ(ί)} converges strongly to gaβ

in L2

2{VaΓΛVβ).

Proof By the Rellich lemma, {(Aa(i)9 Φa(ί))} converges strongly to (Aa, Φa) in
Lp(Ua), p<6. Let β be a cut off function which is 1 on Fα and 0 on ΊR3 \Ua. For
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convenience, the index α will be suppressed. Let a{ = A — A(i). Then /fa^eL^^t/α).
Using Lemma 5.10 and both (a) and (f) of Proposition 5.7,

0 = <Vβah VA}2 + (β(A A at+ a{ A A) A * FA + [ai9 Φ] A *DAΦ}2 ,

0 - (βVai9 Va^2 + <M Λ ( ^ Λ •/?,- *FAAA- [Φ, *A,Φ] - Λf Λ */^

+ *FAΛAi+ [Φi9 *DAtΦi])> + (at Vβ, Va{y2 + V*{Aι,Φt)((βai9 0)). (5.4)

To derive line 2, add and subtract V^(A φ)((βah0)) from line 1 above. Now,
Vβ 6 L^, ;4f converges strongly to A in L4(U) and F 4̂, F ^ , i7^ and FA, are uniformly
bounded in L2(U). Hence, from (5.4), one obtains with Holder's inequality that
| |V(A-A t ) | |\. v ^constant ( | | ^ - ^ ί | | 4 ; ί / + I I ^ I U ) . Hence At-*A strongly in
L\(V\ (# ® f*)). The proof that Φ ^ Φ strongly in L\ (V; g) is similar. To see that
the transition functions converge, note that by the Rellich lemma, gaβ(ί) converges
strongly to gaβ in L\{yac\V^ and C°(VaΓλVβ). Strong convergence in L\(Var\Vβ)
follows by differentiating

By construction, (Aa, Φα) = gaβ(Aβ, Φβ) in Var\Vβ. Using Theorem V.2.4 of [2],
and Proposition 5.7, one obtains that (Aa, Φα) is C°° in Va, and gaβ is C°° in F α n Vβ.
Hence, by Theorem V.6.1 of [2], there exist sections /zαeZ,2(Fα;SU(2)) such that
ha(Aa,Φa) is C0 0 and hagaβhβ

1 = l, for all α, j8. In addition, (y4, Φ) defined by
(^[, Φ) I = ha(Aa, Φα) is a solution to (2.2).

It remains to establish that (A, Φ) e #, that is, to establish that a (A, Φ) < oo, and

that the lim | Φ | -> 1. Let ίj = i ^ . The sequence {| Ft \} G L2 (IR3) converges strongly
I JC I —> G O

to I F\ in L2 (U) for any open, bounded set C/c R 3 . Since C °̂ (IR3) is dense in L2 (IR3),

the sequence converges weakly to |,F| in L2(IR3). By the weak-lower semi-

dontinuity of the L2 norm, | | F | | | ^ lim || ̂  111 < oo. A similar argument holds for
ί-* 00

IIA,Φ Hi. Thus α(c) ^ limα(Ci) < oo.
i-* oo

To establish Eq. (2.3) for Φ, it is important that Eq. (5.1) hold for each ct. Using
(4.20), Lemma 4.10 and Kato's inequality one obtains a uniform upper bound for
1117(1 — |Φj | ) | | 6 . Meanwhile, Corollary 4.13 and Lemma 4.10 give a uniform upper
bound for ||(1 — |Φ£ |) | | 6 . Therefore, {(1 — |φ f | )} has weakly convergent sub-
sequences in L\. On any bounded domain Ucz IR3, {1 — \Φt\} converges strongly
to (1 — IΦ I) in L\ (U). Hence, the weak limits of {1 — | Φt |} are the same and they are
equal to (1 - | Φ |) a.e. on IR3. Therefore (1 - | Φ |) e L\ too. By Proposition III.7.5 of
[2],

lim (1 - IΦI (.v)) -• 0.

VI. The Gradient of α

The existence in A of good sequences has the following intuitive basis. Imagine
c(y)eA with α(c) very close to α^. By definition, c (y) is a continuous map from Sk

into c€. It is here that the topology of # plays a crucial role. In the C00 topology,
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Vac{y)(ψ) is continuous in y when ψ is a fixed element of
(Proposition 5.2). Because of this continuity, the ^-sphere c(y) can be deformed in
the direction of the gradient flow to lower the action along the loop. There must
exist an seSk with both /z(c(s))>aO0 and Vac{s) small or else this deformation
would produce a new c'(y)eA with <a(c') Ka^, an impossibility. In fact, the
gradient flow yields c'{y) eA with c' = c(s). This new /^-sphere is a good one.

The above procedure outlines the proof of Proposition 5.3. There are four steps.
The first step is to prove Proposition 5.2, and this step is done last. The remaining
steps are done in order. Step 2 is to prove that || Vac{y) \\ H* is a continuous function
ofy eSk when c{y) e A. The third step is the construction of the deformation along
the gradient flow. The fourth step is the verification that this deformation has the
required effect.

Proposition 5.3 will be shown to be a consequence of

Proposition 6.1. Let c(y)eΛ, with a(c{y))^B. Given ε > 0, there exists
b{y)eA which satisfies (1) a,(b(y))^a,{c(y)) and (2) Eq. {5.1) for all yeSk.
(3) l l ^ f J l + l l ^ l i J - ^ m a x f e v ^ K ^ ) - ^ ) ] . Here, || ||, denotes the
norm on Hg, and v is a constant which depends only on B.

Proof of Proposition 5.3, assuming Proposition 6.1. Choose a sequence {ct(y)} eA
such that lim ̂ (q)—•^ 0 0 . Now apply Proposition 6.1 to obtain the sequence

ϊ-» 00

{bi(y)}eΛ. A strictly decreasing subsequence will satisfy the requirements of
Proposition 5.3.

Proof of Proposition 6.1 assuming Proposition 5.2. The following shorthand will be
used throughout: ay = aC(y), Vay = V<ac{y)... etc.

To begin, it is necessary to consider the continuity of the gradient of a.

Lemma 6.2. Let c{y) eA. The function \\ Vay || ̂  is a lower semi-continuous function
ofyeSk. Here \\ Ĥ  is the norm on Hy

Proof Let seSk. As ΓC = ΓC((#®Γ*)®^) is dense in Hs, given ^ ε ί > 0 there
exists ψ eΓc such that

(l)\\ψ\\s=l, and (2)V*s(ψ)>\\r*sL-εi C6-1)

The section ψ has compact support. As a consequence of Proposition 5.2, there
exists δ > 0 such that if \y — s\ <δ, then | | | ^ | | y - 1 | < ε l 5 and Vay(ψ)> I I ^ J I ^
— 2ε1. Therefore, when \y — s\<δ,

II^IU^II^IIy" 1 ^(^)^( l-ε i ) | | ^ IU-4ε 1 . (6.2)

Let ει = (4 + || Vas \\ H ί ) " x ε2. From (6.2), one concludes that given ε2 > 0, there exists
δ (s, ε2) > 0 such that || Vas ||^ — || Vay \\^ < ε2, whenever yeSk satisfies \y — s\<δ.
Thus jμ-> HF^yll* is lower semi-continuous.

Lemma 6.3. Let c(y) eA. Then the function \\ V*zy \\^ on Sk is upper semi-continuous.

Proof Suppose that the lemma is false. Then there exists seS^ and a sequence
{yj}?LίeSk

9 converging to s with, \\V<Zj\\^ ^ H ^ H * + δ, with δ>0. Here,
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VΛJ = Vay. Keep in mind that the || II* norm depends on yeSk. There is, in this
situation, for each yj9 a section ψjθΓ ((#® T*)®#)),

\\ψj\\j=ί, and V*j(ψj)^\\V*s\\t + δ/2. (6.3)

The Banach space Kj = KA{y)({p ® T*)®#)) is given by Definition 4.9. There is the
obvious imbedding HjCiKj. By Lemma 4.15, the {Kj} are all equivalent to Ks. In
fact, using (4.22), there exists λ < oo, independent of ψj and j such that

II VAMΨJ II2 g || 17^-1| 2 ( l + λ ) g ( l + λ ) . (6.4)

The sequence {ι//;} is, therefore, uniformly bounded in /£s, so it has a weakly
convergent subsequence which converges to ψ e Ks. Denote this weakly convergent
subsequence by {ψj} also.

It will now be shown that ψ eHs and | | ^ | | s ^ 1. Indeed, consider the sequence

%=(VAjψj, [Φj9 ψj])} G L 2 ( ( ( # ® Γ * ) θ ^ ) ® Γ * θ

The sequence {^} is uniformly bounded in L2(1R3) with norm 1, so it has a weakly
convergent subsequence which converges to 9 ε L2(IR3). The norm is weakly-lower
semi-continuous, so

l |3 | | 2^i. CM

On the other hand, (A(y),Φ(y))eC°(Sk; C°°(t/;(>® Γ * ) θ ^ ) ) for any
bounded, open ί/eIR3, and as a consequence, {(^,4^)} converges strongly to
{Asy Φs) in C°°(p). The sequence {i//̂ } converges weakly to ψ in Ks. Now consider a
fixed EeL2(U). Then, the inequality

\<^Λsψ-VAjψj,Ey2; Ψu\ rg | < F ^ - ^ . ) , ^> 2 ; ψϋ\

allows one to conclude that VAψj converges weakly to VA\ji in L2(U). Here, one
must use Lemmas 4.10 and 4.15 to obtain a uniform bound on | | ^ | | 6 . By a similar
argument, [Φj,ψj] converges weakly in L2(U) to [Φs, ψ].

Therefore ^ = 0/

Aψ,[Φs,ψ]) a.e. in 1R3, and using (6.5) one concludes that
ψ6 Hs and

^ l . (6.6)

Now consider Vas(ψ). Write ψj=(oίj,η^) and ψ = (ά,if). Note first that

<yAiηp VAΦ^2 = (vAjηj, VAΦS}2 + <yAjηj9 vAΦj- VAΦS}2

= < p Λ ^ , F Λ Φ S > 2 + <yAjηp vAΦj- VAΦS}2

+ <[Aj-As,ηjlVAΦsy2. (6.7)

Write A (y; x) = Ao (y; x) -f- ω (7; x) as in Sect. 4. Then Eq. (6.7) implies that

\(vAjηΓ vAΦjy2 - < ^ Λ , vAΦsy21 g Z ^ H P , Φ 7 - VA ΦS\\2

+ \\[A0(yj)-A0(s)9ηj]\\2 + | | ω ( j , . ) - α φ ) | | 3 | | ^ . | | 6 ) . (6.8)

By assumption, (P,Φ)(j/)eC°(^;L2(^®P)), while ω(y;x)eC°
k ) . (Recall that there exists R<oo such that ω(y;x) = 0 if
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\x\> R, for all y eSk.) Therefore, one can conclude from Eqs. (4.26) and (6.8), and
Lemma 4.10 that

I \ Aj Ij ? Aj J/ Z \ As IJ > As s/ s
J-* 00

Because {^} converges weakly to ή,

lim \{VA ηj9 VA Φs}2 - (VA ή, VA Φs}2 \ -» 0,

as well. Hence

<yAfi9 VAΦS)2 = l im<VA jη p VAΦj>2 . (6.9)

Similarly, one shows that

<DAd, FA) = lim <DAjotJ9 FA)2 . (6.10)

In addition, one has

lim K[Φj,Xj],DAΦjy2 - <[ΦpXjlDAΦs)2\ S Jim \\DAΦj-DAΦ8\\2 = 0.

And by weak continuity,

lim ([Φj, 0Lj],DAΦsy2 = <[Φ5? U],DA&^2 •

So

{[Φs^lDAΦsy2 = lim<[ΦJ,α i],i)^Φ, >2 . (6.11)

To summarize, Eqs.(6.9)-(6.11), (6.6), and (6.3) imply that

This is a contradiction unless (5 = 0. Hence y-*\\ Vay || ̂  is upper semicontinuous, as
claimed.

The proof of Proposition 6.1 requires the construction of a deformation along
the gradient flow. The deformation will be a j-dependent, compactly supported
section of Γc((?® J 1 *)®^).

As a preliminary, define for δ ^ 0 the sets

and Ωo = Ω(0). Since HF^H* is a continuous function of y, the sets Ω(δ) are open
sets and Ω(δ)c=Ω0 if δ > 0.

Lemma 6.4. L^ c(j) eΛL ΓAer̂  exists ψyeC°(Ω0;Γ((p®T*)®p)) such that: (1)
\\ψy\\y=l.(2)V^y(ψy)^-^\\V^y\\JoryeΩ0.(3)Ifδ>0,thereexistsR(δ)<(χ),
such that for ye Ω(δ), ψyeΓc{Bm\{#®T*)®#).

Proof^ For each j e Ω 0 , there exists ψyeΓc which satisfies | | ^ y | | y = l and
Vay(ψy)i^ —3/411^^11^. However, y^ψy may not be continuous. Since ψy is
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compactly supported, Proposition 5.2 implies that there exists δt = δ1(y) such that
whenever seSk satisfies \s — y\<δ1, then

V*s(ψy)^ -11/16 IIF^IU, and | \\ψy\\s- 11 g 1/8. (6.12)

As j ; -» || F 7 ^ || ̂  is continuous, there exists <52 (jμ) ^ dt (y) such that whenever s EΩ0

and I s — y \ < δ2, then

F * 4 ( 0 , ) £ - 5 / 8 | | F Λ j | | , . (6.13)

There exists a locally finite cover of Ωo by open balls {Dr (>"j)} c: Ωo with centers
yy It follows from Eqs. (6.12,3) that the cover can be chosen so that whenever

F ^ ( ^ ) g - 5 / 8 | | F ^ | U and | | | ^ | | , - 1 | < 1/8, (6.14)

where φ} = ψy. Let {/?,-} be a partition of unity subordinate to the open cover
{Brj(yj)}. Set '

Ψy=Σβj(j)Φj, yeβo- (6-15)

As F^( ) is a linear functional, one finds using (6.14,5) that for y eΩ0,

y^y(ψy) = Σβj^yiψj) ^ -5/8 I I ^ I U ( 6 1 6 a )

j

The norm of ψy is bounded by

II^II^Σft ll^ll^9/8- (6 1 6 b )
j

Now let ^ = ̂ 3,/ll^lly. Then | | ^ | | y = 1, and from (6.16), V^(ψy) ^ - i l l ^ l U
By construction, ψyeC°(Ω0; Γ((^®Γ*)©^)) and if KcΩ is a closed set, there
exists R(K) such that ψyeΓc(BR{κ); (>®Γ*)®^)) for all yeK. Therefore, ψy

satisfies all the requirements of Lemma 6.4.
The map ψy will be used to construct a deformation of c (y) which will satisfy the

requirements of Proposition 6.1. It is no loss of generality, however, to assume that
the c(y) satisfies (5.1) to begin with (cf. Theorem 4.5). Let ε > 0 be given. The
deformation is constructed with the help of a function 0^fyeC°(Sk) which
satisfies fy^l and fy = Q on Sk\Ω(ε/4). The function fy will be specified further.
Let ψy be given by Lemma 6.4 and define the loop

b'(y) = c(y)+fyψy. (6.17)

Since Ω(ε/4) is compact, and contained in Ωo, Lemma 6.4 insures that b'{y)eA.
From Proposition 5.2 and Lemma 6.4.,

y ^ , (6.18)

The function fy will be identically zero outside of the following set:

Ω1 = j j e S 1 : J Ί ^ > max[β,4(1 + 8x)(* y-*„)]}• (6-19)
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It is no loss of generality to assume that ceΩl9 as otherwise fy = 0 and
b'(y) = c(y) satisfies the requirements of Proposition 6.1.

The function fy is defined as follows: Let {£/,} be the connected components of
Ωl9 and let dUj=Uj\Uj denote the boundary of Uj. Denote a,j= sup^(c(j)) .

yedU

Let d(y, dUj) denote the geodesic distance between y eSk and dUj. Let θ (x) be the
usual step function, so

B(χΛ fl if 1*1^0,
θ i x ) = \0 if \x\<0.

The function fy is:

(1) Forje^ ,

/ ^ I I ^ I U K l + S κ J ί l + IIF^IU)]-^^, where

r̂  - min {1, [</(>;, δ φ + (^ - ̂  ) 0 (^ - ^)]

•4 (l + 8κ) | | ^ | | ; 2 ( 1 + | |F^IU)} .

(2) For yeSk\Ωufy=0. (6.20)

The relevant properties oϊfy are summarized in the following:

Lemma 6.5. Let f be definedby (6.20). Then (1) 0 ̂ / y ̂  ry ̂  1. (2)/ y w continuous.

Proof. Statement 1 follows by inspection. Consider the continuity statement. The

function is clearly continuous in the open sets I n t ^ X Ω J and Ωx. It remains to
establish that fy is continuous at points p e dUx. It is sufficient to prove that if
{pJ}eΩ1 and \Pj — p\-*0 then /(/?/)->0. But this follows because a(c(y)) and
ll^c(y)ll* a r e continuous functions on the sphere.

With/ y given by (6.20), let Z?'(jμ) be given by (6.17). Using (6.18), one obtains
that

^(6^)^^(^))-i(l+8^-^l + ||r^||J-Ml^llJry. (6.21)

For y$Ωu bf(y) = c(y). But for yeΩu Eqs.(6.18,20,21) imply that a,{b\y))
<a(c(y)), and in particular, that there exists seSk\Ωί such that

a{b'(s))>aψ'{y)) for all yeΩ,. (6.22)

Therefore, the new sphere, b'{y) satisfies Statements (1) and (3) of Proposition 6.1.
Now apply Theorem 4.5 to b'{y). Call the result b(y). As b'(y) = c(y) for
y eSk\ Ω l 5 and c(j) satisfies (5.1), Theorem 4.5 insures that b(y) = b'(y) = c(y) for
yeSk\Ω1. Therefore b = b', and b(y) satisfies all the requirements of
Proposition 6.1.

Proof of Proposition 5.2. Suppose that the space Hc were imbedded in L 2 ,
uniformly with c. Then the proof of Proposition 5.2 would be no different than the
proof of the proposition with IR3 replaced by a compact 3-manifold, where the
proposition follows using standard Sobolev inequalities, cf. [11, 35]. However Hc

does not imbed in L2. Nonetheless, Proposition 5.2 is true, essentially for the
following reason: Let c = (A, Φ) e c€. The || [Φ, •] | | 2 component of || ||c provides a
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bound for the L2-norm of those ψ e H c which satisfy (Φ, ψ)(x) = 0. This bound
depends only on a(c). Indeed, the volume of the set in IR3 where | Φ \ < \ is uniformly
bounded (cf. Corollary 4.13). Where Φ(x) + 0, the stabilizer of Φ(x)e# is 1-
dimensional. Since the non-linearities in the action are all commutators this is
sufficient to establish Proposition 5.2.

The proof begins with the following observation:

Lemma 6.6. Let c = (A,Φ)e<£. Let V= {xeΊR3: \Φ\ (x) <\) and let v = $d3x.
v

There exists a constant α(v) such that for any two ψl2eHc, and μ, δ = 0, 1, 2, 3

^ α | l^i lUI^2llc (6.23)

Proof of Lemma 6.6. Let 0 ^ be Q°(IR3) be a cut-off function which is 1 if
xeV and 0 if distance (x,V)>%. Given ηeΓc(p), there exists the following
linear decomposition: η = ηVjrηLjrητ, where ηv=bη, ηL= (1 — b) |Φ|" 2 (Φ,η)Φ,

As Hc^>Lβ uniformly, (Lemma 4.10), one has the following inequalities:

(6-24)

Using the fact that [ψ\L, ψ$L] = 0 for all μ9 δ = 0, 1, 2, 3, one obtains

M^flL, (6.25)
s = τ,v

where the subscripts μ, δ have been suppressed. Next, notice that if υ e L6 and
ueL2r\L6, then

Il^ll2^ll«ll6ll«ll6/2ll«ll2/2. (6.26)

After applying (6.26) to (6.25), and using (6.24) one obtains (6.23).
Armed with Lemma 6.6, the proof that ̂ c ( ) extends to a C0 0 functional on Hc is

an exercise in Holder's inequality that is left to the reader. The uniform estimates
given by Statements (1) and (2) of Proposition 5.2 follow from Lemma 6.6 and
Corollary 4.13. Corollary 4.13 gives a uniform estimate for v, depending only on
*(c).

Statement (3) of Proposition 5.2 is a consequence of the choice of topology on
c€. In particular, Λ c C ^ S ^ Γ ^ Θ Γ * ) ® ^ ) ) and since ψ is compactly supported
in some ball BRa IR3, Statement (3) follows readily.

VII. A Nontrivial Limit

Let {cay)} eΛ be a good sequence. It follows from Theorem 5.6 that the sequence
of configurations, {ct = (Ah Φt )} has a subsequence which converges, modulo gauge
transformations. It is possible that the limit configuration has zero action. By
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Theorem 5.6, this will occur only if (FAι,DAΦι) converges to zero in every fixed,
bounded domain. There are only two ways that this can happen. The first
possibility is that there is a fixed R<co, such that for each /, a ball BR {xt) c ]R3

exists, with Rt ^ R, and on which (FA,DAΦι) have uniformly large L2 norms. But,
the sequence of centers, {xj, diverges on R 3 . This situation is rectifiable by
translating each ci so that xi becomes the origin. The second possibility is that
limi^-χx). This situation will be shown to be incompatible with the condition

aQO>o.
Let a E IR3 and ceΉ. Denote the translated configuration

= (Tac)(x). (7.1)

Theorem 7.1. Let {ct} e%> be a sequence which satisfies (5.2) with a^ > 0. Then there
exists a sequence of points {xt} elR3 with the following properties: (1) The sequence
{Tx ct} has a subsequence which converges strongly in L\Λoc to {A, Φ)ec£. (2) {A, Φ)
satisfies Eqs. (2.2,3). (3) a,(A, Φ) > 0.

The proof of Theorem 7.1 is based on the physical intuition that monopoles are
localized objects. This intuition is affirmed by the next proposition:

Proposition 7.2. Let {ct = (Ah Φ£)} e ̂  satisfy (5.2) with a^ > 0. Define for each i,

(7.2)

(7.3)

| Λ Γ - Λ Γ ' | < 1

Then

The remainder of this section contains the proof of Theorem 7.1 and
Proposition 7.2.

Proof of Theorem 7 A assuming Proposition 7.2. Let a e IR3 and c e ^ . Then /z{Tac)
= a{c), \\VaTaC\\^ = IIF^II* . . . etc. If c satisfies (5.1), then Tac does also. For any
choice of {xj, the sequence (Tx c j satisfies (5.2), and appealing to Theorem 5.6
establishes Statements (1) and (2) of Theorem 7.1.

By Proposition 7.2, there exists z0, and for all / > z0, there exist ^elR 3 such
that

J J 3 x ( | ^ J 2 + | ^ Φ / | 2 ) > 7 > 0 . (7.4)

For / ̂  i0, set xt = 0 and for i > i0 choose xt so that (7.4) holds. Denote the new
sequence {Γ xcJ by {(Ah Φf)} as well. Then for all / > i0,

J d3y(\FAι\
2+\VAlΦi\

2)>γ>0. (7.5)
| x | < l

By Theorem 5.6, {FA;)DAΦ^ converges strongly in L2 of the unit ball. Hence if
{A, Φ) denotes the limit in Theorem 5.6, a(A, Φ)>y>0.

Proof of Proposition 7.2. The proof is by contradiction. Suppose there exists a
subsequence, {cf = (^tf, Φf)} which satisfies the assumptions of Theorem 7.1 and
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such that lim^-^O. The strategy is to show that the three conditions, <zao>0,
i » oo

II* "^ 0 a n ( l 7ί "^ 0 are incompatible. The last two conditions will imply that (1)
O, (2) | |1 — IΦilHoo — 0 , (3) \\{Φi9VAΦύ\\2^Q9 (4) \\[Φi9 FA)\\2->09

and finally that (5) \\(Φi,FA)\\2-*0. As the stabilizer of a nonzero σ e ^ ( 2 ) is
1-dimensional, properties (l)-(5) above of the sequence {{AUΦ^} contradict the
assumption that ^ > 0.

To begin, let gi=VAΦi. As ci = (Ai9Φi) satisfies (5.1), one can infer from
Lemma 4.7 that H& || Cι is finite. An estimate of \\gt \\ Cχ that is more useful than that in
Lemma 4.7 is provided by

Lemma 7.3. Let c = (A,Φ)e% satisfy (5.1). Then

+ l l ^ c l U ( i + ll^llc)kllc)? (7.6)

where κ is a constant that is independent of {A, Φ) and γ is given by the right hand side
of {12) with (Ai9 Φt) = (A, Φ).

Proof Since VAΦ = 0, one obtains by commuting covariant derivatives:

J *F)+ [*D*F,Φ] = 0.

Next, take the L2 inner product with g. As geL2, one can integrate by parts to
obtain

A second integration by parts yields

- l l i 7 ,g | | 2 2-4<F,g

Together with the definition of V4ZC, this last equation implies that

- k l l c 2 - 4 < ^ g Λ g > 2 + ̂ c (([Φ,g],0)) = 0. (7.7)

The fact that [Φ,g]eHc follows from the estimates of Lemma 4.7, and
Proposition 4.8.

In fact, since \Φ\ < 1,

and the last line follows from Lemma 6.6. Thus

],0)) ^ 2 | | ^ C | U ( 1 + κ, \\g\\c) \\g\\c. (7.8)

Let {Vv} be a uniform, countable open cover of IR3 by balls of radius 1. Let {βl}
be a subordinate partition of unity. Using a trick due to Morrey [33, Lemma 5.2.1],
one obtains:

^7 «3Σ(\\β^Ag\\22+\\β,g\\D
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Here, line 1 follows by Holder's inequality, line 2 by Lemma 4.10 and line 3 because
the cover is locally uniform. From line 3, one concludes that

<F,gAg)2^y κ,'(\\g\\^+^). (7.9)

Equations (7.7)-(7.9) establish the lemma.
Continuing the proof of Proposition 7.2, one concludes using Lemma 7.3 that

lim | | F Λ Φ J C i - > 0 , (7.10)

i'-* 00

and by Lemma 4.10, that

l imH^ΦilU-O. (7.11)

In particular, (7.10) implies that

limll^^ΦJH^O. (7.12)
<"-»• oo

The next step is to prove that || 1 — | Φf 11| ̂  -• 0. This result is obtained with the
aid of the next Lemma.

Lemma 7.4. Let (A,Φ)e<g, and satisfy (5.1). Let w(x) = ±(l-\Φ\2(x)).
There exists a constant κ < oo which does not depend on {A, Φ) such that

Proof of Lemma 4.7. Since (A,Φ) satisfies (5.1), w(x) satisfies

-Δw{x)=\g\\x). (7.13)

The function w(x) is the unique solution to (7.13) which vanishes at infinity. Using
the Green's function for ( — A), one concludes from Corollary VI.4.2 of [2] that

1/2 1 / d3v\1/4-

Meanwhile Holder's inequality yields

\\g\\lίk\\g\\y2\\g\?J\ while | | g | | ^3^l lg lUkl l2^l l^ l l6 / 4 kl l2 / 4 . (7.15)

Equations (7.14,5) establish the lemma.

Continuing with the analysis of (1 — |Φ f | ) , Lemma 7.4 and (7.11) imply that

Klloo ύ κ ' (llgJII'2 | | f t | | i / 4 + | |ft | |I / 4) \\gi\\l14; and so the lim Wi(x)^0 uniformly

with x. Therefore it has now been established that

l imlKl-IΦiDlloo-O. (7.16)
I -> 00

As wf GK (Lemma 4.12), one can multiply both sides of (7.13) by wi9 integrate over
IR3, and integrate by parts on the left hand side to obtain

l l ^ | | ^ < w ί , | g i | 2 > 2 ^ | | w ί | | o o 2 ^ ( c ι ) . (7.17)



290 C. H. Taubes

Since \\Vwi\\2=\\(Φi,VAΦi)\\2, Eqs. (7.16,7) imply that

To summarize, Eqs. (7.12), (7.16), and (7.18) state that

lim H^Φilla-^O. (7.19)

As a bonus from (7.10), one has

lim \\[Φi9FA)\\2^09 (7.20)

as \\[F,Φ]\\2=\\DADAΦ\\2S\\VAΦ\\C.
 N o w t u r n attention to fi = (Φi9FA). By

assumption, feL2(AT*) rλΓ(ΛΓ *). The fact that || V^ || # -+ 0 has the following
consequence:

Lemma 7.5. Given ε > 0, there exists i{ε) < oo such that for all i > i(ε), and for all
ω e K(T*) and u e K(1R3) (cf. Eq. (4.8);,

K^ω,/ i > 2 |<ε | |P 7 ω| | 2 , \(*duji}2 | < ε \\Vu\\2 . (7.21)

Proof of Lemma 7.5. It is sufficient to establish (7.21) for compactly supported
ω and u. Let ω G Γ C ( Λ T*)9p = 0,1. Let (A, Φ)e%, and suppose that | | ^ Φ | | 3 < oo.

P

ΛT*),P = 0,1. Then

(7.22)

Here, the last line uses Lemma 4.10. Using (7.22), (7,11), and (7.19) one establishes
that there exists i0 < oo such that for all i > iθ9 and all ω eΓc(Λ T*) (p = 0,l),

P

\\VAω\\2S2\\Vω\\2. (7.23)

Let ω e Γ c ( Γ * ) . By integrating by parts, one has {dω,fi}2 = P ^ ((ώ, 0))
— <ω Λ ΌAΦi9 FAy2. Therefore, using (7.23) one obtains

2 | | ^ | U + C ^ 2 | | ^ Φ ί | | 3 ) . (7.24)

Here, line 2 is obtained with Holder's inequality, and Lemma 4.10.
If ι/eQ°(lR3), then integration by parts establishes, via the Bianchi identities,

that <*<iw,/>2 = (^u^DAΦi Λ Fiy2. Therefore, using (7.23) one obtains that

| < * ^ ^ . ^ r , > ^ I ^ Π ^ i U I I - ^ I U I I i ^ ^ . Φ , | i 3 ^ I ! ^ w i U - C^^. 1 7 ^ I ! I ^ ^ . Φ ^ l l 3 . ( 7 . 2 5 )

Because of (7.11) and (7.20), lim HF^ΦiHa-^O. Hence, the lemma is an immediate
consequence of (7.24,5). '~>c0

The Hodge theorem for 1R3, with Lemma 7.5 imply that ||/! | | 2 -^0. Indeed, let

KT(T*) = {ωe K(T*): J*ω = 0}.
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Proposition 7.6. (Hodge Theorem.) There exists a unique, orthogonal decom-
position O / L 2 ( Λ P ) as follows: L 2 ( Λ T*) = dKτ(T*)@ *dK(JR% and both

d and *d are isometric.

Proof. The proof is essentially Lemma 4.11, cf. [36].

The significance of Proposition 7.6 is that it implies that one can write
f. = doit + *dui9 with (ω, , ut) e KT{T*) + K{W^). As the decomposition is orthogonal
and isometric

= 1 1 ^ 1 1 1 + | | F κ £ | | l . (7.26)

On the other hand, Lemma 7.5 implies that given ε > 0, for all / > i(ε),

l l/i l l l^βdl^ii l + iiΓi/iiiD^^fiii/iiu,

and so

Il/ill2 = fi. (7 27)

Therefore

limlKΦ^FOL-^O. (7.28)

Equations (7.16), (7.19), (7.20), and 7.27) contradict the fact that a,^ > 0; thus
Proposition 7.2 is true.

VIII. The Monopole Number

Consider the convergence of a sequence {cJe^Ό induced by good sequence
{ci{y)}eA. One must demonstrate that the limiting configuration, as given by
Theorems 5.6 and 7.1, is an element of # 0 . Indeed, as the convergence is in L\Xoz, an
independent argument is necessary to prove this. A sufficient condition for the limit
to lie in ψ0 is given below. This condition uses the fact that for sufficiently well-
behaved (A, Φ)e<£k, the index k is given by [2, Chap. IV]

k = ±-<DAΦ,*FA>2. (8.1)
4π

Theorem 8.1. Let {cJe^Ό be a sequence which satisfies (5.2), and converges
strongly in L\loc to a solution, c e ^ , of Eqs. (2.2,3). If a,^ < 8π, then ce^0.

The strategy for the proof is to demonstrate that the statement c φ ̂ 0 leads to a
contradiction. The physical intuition is that for c φ ^ 0 , the sequence {cj must
correspond to monopole, anti-monopole pairs, which have an infinite separation in
the limit. This requires energy (a) ^ 8π.

To begin, suppose that (A,Φ)e<#k is a solution to Eqs. (2.2,3). Then by
Theorem IV.1.5 of [2], Eq. (8.1) holds. On the other hand, for cef 0 , one has

Lemma 8.2. Let {A, Φ)e%Q. Then

<DAΦ9*F^2 = 0. (8.2)



292 C. H. Taubes

Proof of Theorem 8.1 assuming Lemma 8.2. As DAΦ, FAeL2, the integral in (8.1) is
absolutely convergent. A consequence of this fact is that given ε > 0, there exists R
< oo such that

J (DAΦ^FA)-4πk
\χ\<R

<ε/2. (8.3)

The integrand in (8.3) is gauge invariant, so by the strong convergence assertion of
Theorem 5.6, there exists i (ε) < oo such that if i> i (ε), c{ = (Ai9 Φ{) satisfies

J (PAΦi9*FA)-4πk
\x\<R

as well. By Lemma 8.2, if i > i (ε),

ί (DAΦh*FΛ) +
\x\>R

<ε/2,

<e/2,

J.4)

(8.5)

also.
If Uci IR3 is any open set, the triangle inequality gives

Therefore (8.4,5) imply that given ε > 0, there exists / (ε) < oo such that for all
/ > /(ε), ̂ (ct) > 8 π | & | — ε^8π — ε. Since lim afa) -^a^ by hypothesis, a^ ^ 8π,
which is a contradiction. *~>0°

Proof of Lemma 8.2. By assumption, there exists R0<oo such that
I \Φ\(x) — 1 I <\ if |x | > Ro. In addition, as a map from SR = {xelR3: \x\ = R}
to S2={σeόίt(2): |σ | = l}, Φ/\Φ\ is null homotopic for all R> Ro. The group
SU(2) acts on όa(Ί) by conjugation which, when restricted to S2a<i€t(2) is the
Hopf fibration 0-^S1->SU(2)^>S2->0. The Hopf fibration is a Serre fibration: A
consequence of this fact is that if Φ/\Φ |: S^-^S2 is null homotopic, there exists a
smooth gauge transformation gGC°°(IR3; SU(2)) such that gΦj\Φ\g~x = \σ3 if
| x | > Λ 0 ( c f . [25, Chap.2].)

Without loss of generality, one may now assume that if \x\ > Ro, then

Φ = ±\Φ\σ3. (8.6)

The assumption of finite action implies that the integral in (8.2) is absolutely
convergent. Let β(x) be the cut-off function introduced in (3.4) and βR(x) = β(x/R).
Given ε > 0, there exists Ro < oo, such that if R > RQ,

I j βx(DAΦ, *FA) - \φΛΦ, *FA) I < ε/2. (8.7)

Integrating by parts and using the Bianchi identities (2.2c), one obtains that
\βR{DAΦ, *FΛ) = - \dβR A (Φ, FA); and using (8.6) and the definition of FA:

SβxψAΦ, *FA) = - tfdβR\Φ\ Λ (σ\ dA+AΛ A). (8.8)
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Define A τ= A - iσ3(σ\ A); AL=\(σz, A). By assumption, AΓis C00. In addition,

ί \VAΦ\2= \

so A τe L2 (R 3 ^ <g> Γ*) and </| Φ | e L2 (IR3 T*). Using these facts, one obtains from
(8.8) that

HdβWWAm, (8.9)

where it is assumed that R is sufficiently large so that | Φ | < 2. Note that

IL = ̂ "ΊI^IU
Since \dβR^dAL= 0, the right side of (8.9) is

1 2x
^ - ί ^ ( l - | Φ | ) Λ ( σ 3 , F 4 ) + — , (8.10)

where κ = 2 ||dβ W^ \\Aτ\\l < oo. Now use the fact that ^ = ίή8Λ(l - j8Λ/2) to obtain
from (8.10) that

1 2κ
J | | ^ | | 1 | ( 1 |Φ | ) | | ||(1 -βR/2) FA\\2 + — . (8.11)

By Corollary 4.13, ||1 - \Φ\ | | 6 ^ O Λ ( C ) , and by rescaling, | | ^ | | 3 = | | ^ | | 3 . One
concludes from (8.11) that given ε > 0 there exists R1<co such that for all R > Rh

\$βR(DAΦ,*FA)\<ε/2. (8.12)

Together with (8.7), Eq. (8.12) implies Lemma 8.2.

Appendix A

The purpose of this appendix is to complete the proof of Theorem 3.4 by proving

Proposition A.I. The map Γ. Maps (S2; S2) -• V of Definition 3.3 is a 1-1 map of
the set Πo (Maps(S2;S2)) onto Πo(^).

To prove the proposition, one must exhibit, given c e ^ , a path
c(ί)eC°([0,l];^), such that c(0) = c and c(l) = /(e), for eeMaps(S 2;S 2) / c .

By Proposition 4.8, it is no loss of generality to assume that c = (A, Φ) satisfies

P^Φ = 0. (A.I)

As a consequence of (A.I) and Lemma 4.7, VAΦ e L 4 ( ^ ® 71*). Choose i^ < oo so
that |Φ | (x)>l/2 for \x\>R. Then

= Φ(Rx)/\Φ I (ΛJc) e Maps (S2; S2), (A.2)

and for |x | > R, the map Φ( |x |x)/ |Φ|( |x |x) e M a p s ^ 2 ; ^ 2 ) is homotopic to e{x).
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The homotopy lifting property of fibrations implies the existence of g(x) e &
satisfying

(1) g(x) = ί, for \x\£R,

(2) g(x)Φ(x)g-i(x)=\Φ\(x)e(x/\x\% for \x\^R. (A.3)

As ^ is contractible, it is path connected. Then a consequence of (A. 3) is that it is
no loss of generality to assume that

Φ(x)=\Φ\(x)e(x/\x\) for \x\^R. (A.4)

Note that

\VAΦ\2=\V\Φ\\2+\Φ\2\VAe\2 f o r \x\>R, (A. 5)

and as a consequence,

VA((l-β(x))e)eL2&®T*)nL4(?®T*). (A.6)

Now consider the path

cί(ή = (A9(ί-t)Φ + t(ί-β)e). (A.7)

A consequence of (A.6) is that cι(t) e C°([0,l], <g) and

cί(0) = (A,Φ), while cι(l) = (A,(l-β)e). (A.8)

Next consider the curve

c2(ή = ((ί-tβ)A9(ί-β)e). (A.9)

The ί-dependence of c2{t) is compactly supported in the unit ball in 1R3, so
c2 (t)eC° ([0,1]; V). Meanwhile,

, and c2{\) = ((1 -β)A9{\ -β)e). (A.10)

For notational convenience denote (1 — β)A by A again, keeping in mind that A
now vanishes in the unit ball.

Examining VAe, one observes that Aτ— [e, [A, e]] satisfies

. (A.ll)

As I[e,de]\ ^ constant I x Γ 1 , one concludes that ATeL^®T^) also.
For notational convenience, let

a = Aτ+(l-β)[e,de],

aL=(e,A). (A. 12)

A short calculation reveals that for |x | > 1,

[e, FA] = [e, da] -aL/\a, (A.I3)

VAe=-[e,a], (A.14)

(A.I 5)
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It follows from (A.ll) and (A.I5) that daLeL2(Λ Γ*). Now let

2

c\t) = (μLe + (ί -β) [e,de] + (1 - t)a, (ί-β)e). (A.16)

Due to (A. 12),

c3(l) = (aLe + (1 -β) [e, del (l-β)e). (A.17)

It is a consequence of (A.13)-(A.15) and (A.ll) that a{c3(t))<oo. Thus
c3(ί)eC°([0,l];<ίί) also. Finally, let

Then c4(0) = c 3(l), and c4r(l) = I(e). Meanwhile, a(c4(ή) is finite as

daLeL2(Λ Γ*). Therefore, the path c(ί) = (c4 o c

3 o c

2 o c1) (/) connects (Λ, Φ) with
2

7(e) and proves Proposition A.I.

Appendix B

The purpose of this second appendix is to complete the proof of Theorem 3.6 by
establishing that i l^Mapsf tS 2 , n);(S2,n))k/SO(2)) ~ Zm. This follows from
Lemma 3.7 which will now be proved.

To begin, recall that £2 = Maps ((S2, ή)\ (S2, ή)) has a natural operation, #
which is defined as follows: Represent S 2 as the unit square 72 = [0,1] x [0,1] with
the boundary, 72, identified as the distinguished point n. For eι,e2^Ω, define

By inspection, eί # e2 e Ω, so # is well defined. The operation # endows the point
set Π0(Ω) with the structure of an abelian group. In fact, degree [e1 # e2] = degree
[eγ] + degree[e2], so that the degree is a group isomorphism between (Π0(Ω), # )
and(Z, + ) [25, Chap. 1,7]. In addition, for ekeΩh, it is relatively easy to check that
ek # (•): Ωz-> Ωι+k is a homotopy equivalence.

Choose e0 to be the constant map S2->n. Then h e Maps((S 1, ή)\ (Ωθ5 e0)) is a
map from (S1 x S2)/^1 xή)\j(nx S2)) to *S2, which is to say, h defines a map from
S3 to S2. [(S1 x S2)^1 x ή) \j\n x *S2)) is homeomorphic to S3.] The converse of
the last statement is also true. One concludes that Πι(Ω0,e0)^Π3(S2) ^ Z.

Let [h] eΠ3(S2). The class [h] is a multiple, a [A], of the generator of Π 3 (S
 2 ) . The

integer α [A] is the Hopf invariant of A and it can be calculated in the following way
[37, Chap. 4]: Let ω e Γ ( Λ T&) satisfy

2

fω = l. (B.2)
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Let h e [h] be a C 1 representative. Since H2(S3) = (0),

h*ω = dvh (B.3)

for some vheΓ(T&). Then

α[A]= f(vΛΛA*ω). (B.4)
s3

Since i/ 1 (S3) = (0), vΛ is unique up to the image of d, and this ambiguity does not
affect the integral (B.4).

The action of SO(2) on Ωk generates a class [ek]eΠ1(Ωk,ek). Using the
operation, # , this gives a class [e_k#ek] eΠ1(Ω0,e_kφek). As Ωo is connected,

there exists a path b: 0 , - -> £20

 w r t n δ(0) = ^ 0 and Z>(- J = e_kΦek.

By conjugating the loop e_kΦek by 6(ί), one obtains a class
[ io(^_ / c #4)oZ?~ 1 ]e/7 1 (Ω 0 ,e 0 )-/7 3 (5 τ 2 ) . The map β of the fibration (3.21) is
multiplication by the Hopf invariant, a[bo(e_kΦek)ob~1]. Therefore, Lemma 3.7
follows upon establishing that α [b ° (e_ f c# efc) ° δ " x ) = k.

The calculation of α [ ] is facilitated by fixing a basis (σ1, σ2, σ3) e ϋa(2) with the
properties: (1) σισj= —δij — είjkσh, and (2) {^σ'} is an orthonormal frame. The
distinguished point of the image S2 is the point — ̂ σ 3 . The distinguished point of
the domain S2 is the point θ = 0 in polar coordinates. Let

ek = j[ — cos 0σ3 + sin θ (cos / ^ σ 1 — sin kφσ2)]. (B.5)

The map ek e Ωk and the loop that is generated by the action of SO(2) on Ωk is

tk = ^[-cos θσ3 + sin θ (cos (kφ-ήσ1- sin (kφ -1) σ2)]. (B.6)

Up to homotopy, the loop (e_,c# 4 ) ^s given by

sin 20 (cos (kφ - ^ σ 1 - sin (kφ-τ)σ2)] for 0 ^ 0 ^ π/2;

H~cos20σ 3 + sin20(cos/c(ί)σ1 - sin£ώσ2)], for π / 2 ^ 0 ^ π .
(B.7)

Here, 0(0) is a smooth function of 0 which satisfies (1) - ^ 0, (2) 0 = 0 for
do

0 φ I -^-, — , (3) 0 = — for 0 G I — , ^^ |. Meanwhile, τ(t) is a smooth function of
8 J "2 ^ 1 6 Ί 6

ί which satisfies (1) ^ ^ 0, (2) τ = 0 for ί e 0, | , (3) τ = ί for ί e ^ , ^ and (4)

τ = 2π for ί e - ^ , 2 π . For the curve fe(ί), /e 0 , ^ 1 take
L * J L 2 J

6k(ί) = \ [ — (cos 2Θ sin2τ + cos 2 τ)σ 3 + sin τ sin 2(9 (cos kφσ1 — sin fcφσ2)

- cos τ sin τ (1 - cos 20) (cos £ψσ2 + sin ^φσ 1 )] . (B.8)
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It is now a straightforward calculation to obtain that the integer k is the Hopf
invariant for the following loop in

hit), te

μk(2t-π), te

bk(2π-ή, te

π

'2J'
π 3π

"Jπ

y
,2π

(B.9)

Except for remarking that the contributions from the intervals I 0, — j and — ,

cancel, this calculation is left to the reader.

2π
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