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Abstract. This paper develops the Riemannian geometry of classical gauge
theories - Yang-Mills fields coupled with scalar and spinor fields - on compact
four-dimensional manifolds. Some important properties of these fields are
derived from elliptic theory: regularity, an "energy gap theorem", the manifold
structure of the configuration space, and a bound for the supremum of the field
in terms of the energy. It is then shown that finite energy solutions of the
coupled field equations cannot have isolated singularities (this extends a
theorem of K. Uhlenbeck).

Introduction

One of the major discoveries of physics in this century is the recognition that
non-abelian Lie groups play a role in particle physics. For many years this was
regarded as a peculiar aspect of quantum mechanics having no classical analogue.
Then in 1954 C. N. Yang and R. Mills proposed a classical field theory incorporat-
ing these groups. Recently their theory has received considerable attention from
both mathematicians and physicists.

Yang-Mills theory is easily described in terms of modern differential geometry.
One begins with a principal bundle P with compact Lie structure group G over a
manifold M. The Yang-Mills field is then the curvature Ω of a connection V on P
which is a critical point of the action

A(V)=$\Ω\2.
M

When G is the circle group the Yang-Mills field satisfies Maxwell's equations.
Physically, Yang-Mills fields represent forces. As such they interact with a

second type of field - the field of a particle. This is interpreted as a section φ of a
vector bundle associated to P and the action for the system is essentially

\\Ω\2 + \Vφ\2-m2\φ\2,
M
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where m is a constant (the mass of the particle). The critical points of this action are
solutions to a pair of coupled non-linear partial differential equations - the
"coupled Yang-Mills equations." These are invariant under the infinite dimen-
sional "gauge group" of all fibre preserving automorphisms of P. This setup
constitutes a (classical) gauge theory and is the subject of this paper.

Four-dimensional compact Riemannian manifolds are the natural context for
Yang-Mills theory for several reasons. First, the four-dimensional Yang-Mills
action is bounded below by the characteristic number of the bundle, so the field is
constrained by the topology. This is linked by invariant theory to the conformal
in variance of the action. This conformal in variance occurs only in dimension four
it means that the relevant geometry lies in the conformal structure of the base
manifold. The curvature is expressed in terms of the connection form ω by
Ω = dω + ̂ [ω, ω] and the Yang-Mills action is, essentially, J \dω\2 + |ω| 4 . This is the
sum of a gradient term \dω\2 and a non-linear ("self-interaction") term |ω| 4 . By the
Sobolev inequalities these terms are of compatible strength only in dimension four.
Thus conformal in variance - which dictates the Sobolev inequalities - is reflected
in the analytic aspects of Yang-Mills fields.

To date, the main analytic result for Yang-Mills fields is Uhlenbeck's proof
[19] that a Yang-Mills field on a four-dimensional space with finite energy cannot
have isolated singularities. As a consequence, a field on R 4 with finite energy
extends via stereographic projection to a field in a non-trivial bundle over S4. This
theorem is striking because it shows that the topology is inherent in the field for

example the quantity —-^ j Ω A Ω is always an integer - the characteristic number
loπ M

of the bundle. In this sense Uhlenbeck's theorem completes the circle: the analytic
properties of the Yang-Mills field imply the topology.

It is natural to ask if isolated singularities can exist for coupled Yang-Mills
fields. Our main result (Theorem 8.1) shows that such isolated singularities are
indeed removable. The proof depends crucially on the conformal invariance of the
coupled field equations.

In the first three sections we develop Yang-Mills theories on compact
Riemannian four-manifolds. Section one is an overview of four-dimensional
Riemannian geometry and is primarily intended to introduce the (considerable)
notation used in subsequent sections. We begin by discussing the special features
of the linear algebra of IR4 which stem from the isomorphism
Spin(4) = SU(2)xSU(2). This algebraic structure carries over to vector bundles
over four-manifolds and, when connections are introduced, leads to relationships
between the curvature, topology and differential operators on these bundles.

In Sect. 2 we introduce the coupled Yang-Mills equations and show that the
action is naturally associated to conformal structures on oriented four-manifolds.
As in physics, we consider two types of equations: the "fermion" equations based
on the Dirac operator for bundle-valued spinors, and the "boson" equations based
on the bundle Laplacian. The key properties of the Yang-Mills equations - their
gauge and conformal invariance - extend to these coupled equations.

The Yang-Mills equations are not elliptic because of gauge invariance.
Section 4 contains a local slice theorem - similar to those of [4, 12, 20] - for the
action of the gauge group on the product of the space of connections and the space
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of fields. In Sect. 5 this slice theorem is used to construct local "gauges" (sections of
the principal bundle). This breaks the gauge in variance of the equations, which are
then elliptic and possess the expected regularity; for-example a bounded weak
solution is C00.

The last three sections are devoted to the proof of the removability of isolated
singularities for finite energy solutions of the coupled field equations. This builds
on the work of Uhlenbeck [19,20]. The proof involves three steps: (i) gauge
independent estimates, (ii) a choice of gauge and the corresponding gauge
dependent estimates, and (iii) an examination of how these estimates depend on
the metric within the conformal class. Together, these yield an energy growth rate,
from which the theorem follows.

The gauge independent estimate of Sect. 6 is perhaps of interest in other
contexts: it shows that the supremum of the total field F = Ω + \Vφ + φ is bounded
by the L2 norm (the energy) of F. One consequence of this is the fact that a solution

to the coupled Yang-Mills equations is 0 i-j) around an isolated singularity. This

growth rate is enough to establish the existence of a particularly nice gauge around
the singularity using a theorem of Uhlenbeck. Estimates in this gauge are carried
out in Sect. 7. These estimates go considerably beyond those of Uhlenbeck [19] by
showing that the particle field φ satisfies an inequality (Theorem 7.6) analogous to
Uhlenbeck's inequality on the curvature (Theorem 7.7).

The removability of singularities is proved in the last section. Note that this
means that both the bundle and the field extend across the singularity. Finally, as
an application, we prove an extension theorem: solutions of the coupled field
equations 1R4 which decrease at infinity at a certain specified rate extend by
stereographic projection to solutions over S4.

1. Four Dimensional Riemannian Geometry

Riemannian geometry in dimension 4 is distinguished by the fact that the
universal cover Spin (4) of the rotation group SO (4) is not a simple group, but
decomposes as

Spin(4) = SU(2)xSU(2).

On the group level this is seen by identifying 1R4 and (C2 and with the quaternions
H. We may regard SU(2) as the group of unit quaternions. For unit quaternions g
and h, the map x-^g~1xh is an orthogonal transformation of ίf = IR4 with
determinant 1, and hence gives a homomorphism π:SU(2)x SU(2)->SO(4). This
map has kernel (—1,-1), so displays SU(2)xSU(2) as the 2-fold universal
covering group of SO (4).

On the algebra level the isomorphism so(4) = su(2) x su(2) is a consequence of
the Hodge star operation: *:Λ2(1R4)-*Λ2(1R4) with *2 = Identity, and the metric
gives an identification so(n) = Λ2(V). Thus /12(IR4) decomposes into ± 1 eigen-
spaces: so(4) — A\®Λ2_. The spaces Λ\ are 3-dimensional spaces of skew-
symmetric matrices which are isomorphic as Lie algebras to so(3) — su(2).

We will distinguish the two copies of SU(2) in Spin (4) by writing Spin (4)
= SU+(2)x SU_(2) (this labeling is determined by orientation since a change in
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orientation switches * to — *). The elements of Λ2

+(Λ2_) are called self-dual (anti
self-dual) 2-forms.

The representations of Spin (4) can be determined using the isomorphism
Spin (4) = SU + (2) x SU _ (2). First, recall the structure of the representation rings of
SU(2). The fundamental representation D 1 / 2 is SU(2) acting on (C2 in the usual
manner and all other irreducible representations are symmetric powers
At/2 = SymfcZ>1/2

 w i t n keΈ+. Tensor products of these representations decompose
according to the Clebsch-Gordan formula

The representation ring of Spin (4) is generated by the two fundamental repre-
sentations - the spin representations - Df/2 obtained by projecting Spin(4) onto
SU±(2) and applying D 1 / 2 . The representation D^2®D^2

 n a s dimension
(fc+ 1)(Z+ 1) and factors through SO(4) if and only if fc + Z is even; these are the
orthogonal irreducible representations of Spin (4) and all others are symplectic.

It is often convenient to view the spin representations in the context of Clifford
algebras. For details we refer to Atiyah et al. [3].

Let E = ]R.2k with the positive definite inner product g and let {ej be an
orthonormal basis of E. The Clifford algebra C(E) of E and g is the graded algebra
C(E) = T(E)/I, where T(E) is the tensor algebra on E and / is the two-sided ideal
generated by the elements x®x + g(x,x) l for xeE. Thus C(E) is generated by
{eh ...eir\i1<ί2< ... <ίr, r^lk] with relations eiej + ejei=—2dij. The map
ehA ...A eir-*eh ... eir from exterior algebra on E gives a (non-canonical) isomor-
phism A*(E)~C(E) of graded vector spaces. Furthermore, the complexified
Clifford algebra CC(E) is algebra isomorphic to the endomorphisms of a
2fc-dimensional complex vector space V: Λ*(E)~ CC{E)~Έnd(V).

The group SO(2k) acts on E and this action extends, showing that Λ*(E) ^ C(E)
as SO (2k) modules. In fact, SO(2fc) acts on C(E) by inner automorphisms and this
gives an embedding of Spin(2/c) in C e v e n(£) with group multiplication given by
multiplication in the Clifford algebra. On the algebra level so(2fe) = Λ2(E) ^C2(E)
embeds as the tangent space to Spin(2/c) at the identity and the restriction of
Clifford multiplication Λ2(E)®Λ2(E)-+C(E) coincides with the Lie bracket under
the identification Λ2(E) = so(2k) by (ei®ej—ei®ei)t->' — ^ei-ej.

The inclusion Spin(2/c)cCc(£)^End(F) makes F a Spin(2/c) representation.
Since 2fe is even this is a reducible representation: s — e1e2 ... e2k is invariant, ε2 = 1,
and hence V=V+@V_ decomposes into the ± 1 eigenspaces of ε. The even
elements of C(E) commute with ε, so C e v e n(F) = End(F + )0End(K_) as Spin(2fc)-
modules. The odd elements of C(E) interchange V+ and F_. In particular, each
xeE maps V+-*V_ and F_->F+, giving the Clifford multiplication map
E®V±-^VT which we denote by x(g)φ\->x φ.

In four dimensions the representations V± are the 2-dimensional complex spin
representations D^2 mentioned above. In the isomorphism
/L*(IR4)-Cc(IR4)^End(F), /L c

1-Hom(F+, F_)-Hom(F_, F + )-/t c

3 with the real
parts embedded in Hom(F+, F_)®Hom(F_, V+) as Λ1 = {{A, - A*)}. Also, A2

decomposes as A2

+C®A2_C with A2

±c = [¥ίom(V±, F±)]°, where ° denotes the
component consisting of traceless matrices. The real parts A\ consist of traceless
skew hermitian endomorphisms of V+.
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These algebraic facts carry over to vector bundles on oriented four-manifolds
except for one topological obstruction. By studying the fibration of classifying
spaces corresponding to the sequence 0-^Z2->Spin(4)-»SO(4)^0 and noting that
BΈ2 = K{Έ2,1), one sees that an oriented manifold M 4 has a spin structure if and
only if its second Stiefel-Whitney class ω2M vanishes, and that when ω2M = 0 the
spin structures are classified by H1(M\ΊL2\

When M has a spin structure the frame bundle F of T*M lifts to a Spin (4)
bundle and there is an associated vector bundle

for each irreducible representation of Spin (4). In particular, the spin bundles
V+ = E 1 > o and V_ = E01 and the total spin bundle V=V+®V_ are defined. One can
also form the Clifford algebra bundle C(T*M) on the cotangent space and obtain a
global Clifford multiplication map

Γ(T*M)(g)Γ(K±)-+Γ(Fτ). (1.1)

Sections of V are called spinor fields, or simply spinors.
When ω 2 M Φ 0 the only bundles Ekl which are globally defined are those

associated to a representation which factors through SO (4) - those with k + l even.

Connections, Curvature, and Operators

Now assume that M is a Riemannian manifold. The metric determines the Levi-
Civita covariant derivative

V:Γ{T*M)-*Γ{T*M®T*M) (1.2)

on the cotangent space. Choosing a local basis of sections {e1} of T*M we can
write Vei = Σωι

k(g)ek, where {ωι

k} are the connection 1-forms. The nature of these
connection forms is best seen in the context of connections on an arbitrary bundle.

Let G be a compact semisimple Lie group with Lie algebra # and let π:P->M
be a principal G-bundle over manifold M. A connection on P is a choice of an
equivariant horizontal subspace on T^P, or dually a ^-valued 1-form on P which
(i) has horizontal kernel: ω(i^A) = A for Ae^, where i*\#-*TJP is the natural
inclusion into the vertical subspace, and (ii) is equivariant: g*ω(X) = (kάg~i)ω(X)
for xeΓiT^P) and geG.

Let ^ denote the affine space of C00 connections of P; ^ becomes a vector
space when a "base" connection ω 0 is fixed. The equivariance property shows that
the difference η = ω — ω0 pulls down to M as a 1-form with values in the adjoint
bundle P x A d^, which we shall also denote by #. As such, it determines a covariant
derivative map

) (1.3)

by Φ^-V0 + [rj,φ'], where Vo is the covariant derivative corresponding to ω 0 . If
ρ: G-* Aut(£) is a representation and E = P x ρE the associated vector bundle, then
ω induces a covariant derivative

) (1.4)

on E by applying the Lie algebra representation ρ:^-»End(E) to (1.3).
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For example, if P is the frame bundle of T*M the Riemannian connection can
be described either in terms of the covariant derivative (1.2) or in terms of the
corresponding sρ(n)-valued connection for ω. In a local frame ω = {ωi

k} are the
forms described above.

Given a connection VE on a vector bundle E we can form several natural
operators from VE and a symbol map. Extending VE to the covariant derivative
\V= V® 1 + 1 ®VE on Λ*®E (where Pis the Riemannian connection on A*) and
taking exterior multiplication or its adjoint (contraction) as the symbol, we obtain
an exterior differentiation D:Γ(/L*®£)-*Γ(/L*+ 1®£) and its formal adjoint D*.
In a local orthonormal frame {e1}

There are also two second order operators of interest: the trace Laplacian

on Γ(E) and the bundle Laplace-Beltrami operator [3={DD* + D*D) on
Γ(A*®E). We will discuss these later in relation to the Weitzenbδck formulae.

The covariant derivative V=V9 of (1.3) now extends via (1.5) to an exterior
differentiation D on the space of sections A* = Γ(A*®g)

Γ{^) = A° >A1 >A2 >... (1.6)

by φ\->V0 + [rj, φ~\, where Vo is the covariant derivative corresponding to ω 0 . Then
v4* is a graded Lie algebra with operations

(i) The bracket on g and exterior multiplication give a map Ap®Aq-^Ap+q

which we denote by ω®γ\\->[ω,γ\\.
(ii) The Killing form gives a positive definite metric on g and a multiplication

Ap®Aq^Γ(Ap+q{T*M))
by

{a®A)®{β®B)^->{A, B}OL A β

for oteΓ(Apl βeΓ{Aq\ and A,BeΓ{^). We denote this by ω®η^ωAη. These
operations satisfy (cf. Atiyah and Bott [1])

(c) ( - \)prlωp, [_ω\ ωrj] + ( - ΐ)M[ω\ [_ω\ ωpj] + ( - l)qr[_ω\ [_ωp, ωqj\ = 0
(Jacobi Identity),

(d) [ω, η] A ξ = ω A [η, ζ] (Invariance of the Killing form),
(e) D [ ω ' , η] = \_Dωp, η] + ( - l)p[_ωp, Dηl
(ί) d(ωpAη) = DωpAη + (— l)pωpADη.
The curvature of a connection ω on the principal bundle P is the ^-valued

2-form Ω(X,Y) = dω(KK,hY)9 where h is the projection onto the horizontal
subspace of ω. In fact, D = d°h is a derivation on equivariant ^-valued 1-forms on
P given by Dφ = dφ + \_ω,φ'] for 1-forms with vertical kernel and Dφ = dφ
+ | [ ω , φ~\ for connection forms φ (Kobayashi and Nomizu, Sect. 2.5). In particular

•|[ω, ω] on P. Now fix a connection cυ0. For any other connection ω, the
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difference η = ω~ω0 descends to M as an element of A1 and the difference of the
curvatures is

Ω-Ω0 = dη + %lω,ω']-±[ω0,ω0] = dη + %[rι,η'] + lω,η'],

+ i[rι,η-].

There is a second way to describe Ω in A*. Any φeA° lifts to an equivariant
-valued function on P and Dφ has vertical kernel. Hence

= [Dω, </>] - [ω, Dφ'] + [ω, Dφ] = [Ω, φ~\ .

This formula descends to the base:

lΩ,φ-] for φeA°, (1.8)

i.e., the curvature endomorphism Ω on A0 is the composition of the first two
operators of (1.6). Similarly, the curvature of an associated bundle E is
Ω£EΓ(/l2(x)End(£)) defined either by ΩE = ρ(Ω) where ρ :^->End(E) is the defining
representation, or as the composition ΩE = DE°VE in the sequence

Γ(E) -^-> Γ(Λ'®E) - ^ Γ{A2®E) -^-> ...

corresponding to (1.6). In terms of a local basis of vector fields {β } and dual forms

and noting that Vie
j—VJe

ι = le\ej^ for the Riemannian connection,

and similarly for Ω£.
An important consequence of the Jacobi identity is the Bianchi identity DΩ = 0.
When P is the frame bundle of M it has a metric connection and we will denote

the Riemannian curvature of M by ReΓ(A2(E)so(n)).
In four dimensions the Riemannian curvature .Re/l2®so(4) = /t 2®/[ 2 decom-

poses under the splitting A2 = A2

+QA2_. In fact, because of the symmetry
Rijkl = Rklip R is an element of the symmetric tensor product Sym2(yl2 φA2.). As a
Spin(4) = SU + (2) x SU_(2) module this breaks into 5 irreducible pieces according
to the Clebsh-Gordon formula

(Sym2/l2)0®le[yl2(x)yl2_]e(Sym2/l2_)0®l, (1.10)

where ° denotes the traceless elements in the symmetric product. The components
is s\

of R under this decomposition are R=[ W+, —, IB, W', — where s is the scalar

curvature, B is the traceless Ricci tensor, and W± are the self-dual and anti-self-
dual components of the conformally invariant Weyl tensor (cf. Singer and Thorpe).
This decomposition distinguishes several important classes of four-manifolds: M 4

is Einstein if B = 0, conformally flat if W = 0, and self-dual (anti-self-dual) if
W ΞΞO {W+ =0).
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On a four dimensional Riemannian manifold the metric covariant derivative
on the spin bundle V+ is a map V :Γ{V+)-+Γ(V+®T*M). Note that
V+®T*M~V+®V*®V_ = V_@Λ2

+C and that the projection V+®T*M-+V_ is
Clifford multiplication. Thus V on V± decomposes into two operators: the Dirac
Operator Θ :Γ(F±)-^Γ(FT), whose symbol is Clifford multiplication, and the
Twister Operator 3> \Γ(V±)-^Γ(Λ2

±C\ whose symbol is the orthogonal complement
of Clifford multiplication. In a local orthonormal frame {e1}

[SJ-W W φeΓ(V).
Ψ v

The Dirac operator is elliptic and is formally self-adjoint on the total spin
bundle V.

The metric connection also gives a covariant derivative on each bundle Eκι

associated to the frame bundle of T*M, V:Γ{Ek^Γ{Eκι®T:¥M\ Because

V decomposes into four operators: two Dirac operators, a Twistor operator, and
the adjoint of this Twistor operator. For example, d®d* : A\®A\-^A2

= Λ2^C@Λ2_C is a homogeneous first order operator Ex x—• JE2 > 0©£0 > 2 which
coincides with the sum of the two Dirac operators on E i v

Finally, if P is a principal bundle with connection over M 4 and £ is a vector
bundle associated to P, then the covariant derivative on E extends to \V=V®\
+ 1®VE on Ek j®£ and we obtain Dirac and Twistor operators on EkJ®E.

Topologίcal Invariants

Compact four dimensional manifolds M possess two real characteristic classes:
the Pontryagin class pxM and the Euler class β(M). By Chern-Weil theory these
can be expressed locally as polynomials in the curvature of M and hence as
polynomials in the irreducible components {s,B, W±} of the curvature

M
2 ( U 1 )

ΊΓ2 ί ^8π M 24

More generally, let G be compact simple Lie group. Then Hι(BG R) vanishes for
ί = l , 2 , 3 and is 1R for z = 4. Thus there is a single real characteristic class for
principal G-bundles over M 4 it lies in dimension 4. In the context of Yang-Mills
theory the corresponding characteristic number is called the Pontryagin Index of
the bundle and is denoted by k. According to the Chern-Weil prescription it is
obtained by substituting the curvature Ω of P - or of the adjoint bundle ^ - into
the Killing form. In terms of the anti-self-dual components Ω± of Ω

fc=Λ J I Ω Ί 2 - I « Ί 2 . (1.12)
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Weίtzenbδck Formulae

Let M be a spin four-manifold with Riemannian connection V and curvature R and
let E be a vector bundle over M with connection VE and curvature f2£. Then the
Dirac operator

is defined for E-valued spinors by Θ = £ Y |Fi9 where |F = F® 1 + 1 ® VE is the total
covariant derivative on V®E. The square of this operator has an algebraic
decomposition into Laplacian and curvature terms; such a decomposition is
called a Weitzenbόck formula.

To compute Q)2 it is convenient to choose an orthonormal local frame {e1}
around a point xeM and vector fields {ej dual to {e1} with (Vee

j)x = 0 for all ί,j.
Since V has no torsion it follows that [ei,ej]x = 0 and that the total curvature
Ω = R®1 + 1®ΩE of V®E is Ωij = \V1\Vj-\VJ\Vi. Squaring 9 and separating the
symmetric and skew-symmetric parts:

or

® 2 = | F ^ + i ^ β i . e

/ JR i i /(8)l+iΣe ί e/ (l(8)Ωg). (1.13)

The principal term \V*\V is the positive trace Laplacian of \V. The endomorphism
^~\Σel'eJ'Rij °f ^ involves only the Riemannian curvature of F and can be
expressed in terms of the irreducible components {s,B, W±} of R as follows.

R acts on spinors via the spin representation ek /\eι\-+ — \ek -eι - and the image
c(R)= —8YJRijkiei'eJ'ek'el i s a n e v e n element of C(Λ% so has three components
ΛΌ@Λ2®ΛA according to whether 2 pair/1 pair/none of the indices of eι eJ! ek eι

are the same. But the A2 component vanishes because R: Λ2->Λ2 is symmetric, the
A4 component vanishes by the Bianchi identity, and the Λ° component is

Thus we arrive at our first Weitzenbόck formula: the square of the Dirac operator
on £-valued spinors is

@2 = \V*\V+ - +±Σei -ej -Ωfj. (1.14)

By replacing E by V*®E we get a Dirac operator on V®V*®E~A*®E, i.e.
on E-valued forms. For this 3)

and @2 is closely related to the bundle Laplace-Beltrami operator \Z\=DD*
+ D*D. Indeed, 2 = D + D* on A*®E and @2 = • + D2 + (D*)2. Although D2 and
(D*)2 are not zero, we can ignore them by focusing only on that component of Q)2

which preserves degree and then (1.15) decomposes ••
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Under the isomorphism V®V* = Λ*, ei'ej' corresponds to
— (etJejA +el ΛβjJ ), so the middle term of (1.15) is

Alternatively, we can write RΛ* = Rv(g)l + 1®RV* and

^=-ϊΣ^ijkiei'ei'eKel'®i + i Σ Rijkle
i'ej'®ek'e1',

ijkl i<j,k<l

where the first term is - as above. In the second term R is acting through the

Clifford multiplication map

ReΛ2®(Λ2)* • End(F)®End(F*) -End(Λ*) (1.16)
c®c

which can be computed on each component of Λ* using the decomposition (1.10)
of the curvature.

1. Scalars embed in Λ* = F® F* as multiples of the identity and on them

Hence the Weitzenbόck formula for £-valued scalars is simply

Π = W*\V. (1.17)

2. One-forms embed in F ® F * as skew adjoint elements of
{V+®V*)®(V_(g)V%) and the only traceless Ricci tensor can act on them through

(1.16). Thus 0t= - +B( ) = Ric() is contraction with the Ricci tensor (more

explicitly,

applied to a 1-form em is ̂ (em) = ΣRimeί) The Weitzenbock formula for 1-forms is

3. Self-dual 2-forms embed in V®V* as traceless self-adjoint elements and
only the scalar and self-dual Weyl curvatures can act on them. In fact, (1.16)

s s
restricted to End(/L+) is twice the identity and, by (1.10), St=-Λ h W+(). As

noted earlier, Clifford multiplication coincides with brackets in sg(4) = Λ2, so for

The Weitzenbock formula is

| + W r + ( ) - [ ( β E ) + , ] . (1.19)
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The same formula holds for anti-self-dual 2-forms when W+ and (ΩE)+ are
replaced by W~ and {ΩE)~.

4. Since Π commutes with the star operator, the Weitzenbόck formula on
E-valued 4-forms is given by (1.17) and on E-valued 3-forms by (1.18) with the
curvature terms replaced by their *-adjoints.

Sobolev Spaces

For functions on a bounded domain D in Rn the Sobolev space Lk p{D) is the
completion of the space of C°° functions in the norm

I k \l/p

11/11*.,= J Σ I3./IΊ
YD |α| = l /

These spaces are related by the Sobolev embedding theorems: for p,g = l> the

inclusion LKp{D)-+Lliq(D) is continuous for k ^/ and compact for k

>l , and the inclusion Cι(D)-*Lk p{D) is compact for k >/. This setup

carries over to vector bundles on compact Riemannian manifolds M (Palais). In
fact, given a C°° vector bundle E with metric over M, we can complete the space
Γ°°(£) of C00 sections of E by either

(i) choosing a coordinate covering {F } and a subordinate partition of unity
{φt} and defining LKp{E) by the inclusion {φ.} : Γ ^ ( E H 0 * Γ £ ( E ) ;

(ii) choosing a connection V on E compatible with the metric and defining the
norm || \\kiPiV by the above formula with d replaced by V.

These procedures yield equivalent Banach spaces. We will use the second
definition, and, after fixing a connection, write \\Kp,v as \\Kp.

In dimension 4 the relevant Sobolev inequality for functions is

\Br I [Br

on the ball Br of radius r, or

M

on M. Here c is a constant depending on M. If / has compact support on Br then
we have the Poincare-Sobolev inequality

4 ) 1 ' 2

These inequalities extend to sections of vector bundles by Kato's inequality

d\φ\ ^\Vφ\ on the set where φφO or d\φ\ = 0 and, by continuity, everywhere).
Thus, for example, there is a constant c = c(M, V) such that for any φeLίf2

Such inequalities will be used frequently in Sects. 6-8.
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Four dimensional Riemannίan geometry provides the background for the field
theories we shall be concerned with. We now turn to the dynamical aspects of
these theories, introducing the action and the field equations themselves.

2. Coupled Yang-Mills Equations

An important guiding principle in geometry is the requirement of naturality. We
begin this section by describing the geometrical data necessary for a gauge theory
and indicating how naturality determines the theory once this geometric context is
fixed.

Let π : P-+M be a principal bundle over an oriented four-dimensional manifold
M with compact simple structure group G. Let ρ:G->Aut(£) be a unitary
representation of G, E = p x QE be the associated vector bundle, and let W be any
bundle associated to the frame bundle of M. The field equations we seek will
specify a metric g from the space Jί of Riemannian metrics on M, a connection V
from the space ^ of connections on P, and a section φ from the space $ = Γ(E® W)
of sections of E. We shall assume that they are variational equations, that is, they
arise as the stationary points on Jt x ^ x 8 of an action integral

A(g,V,φ)= ί%,ω,0), (2.1)
M

where the Lagrangian A is a 4-form constructed from g, V, and φ.
Now P is a manifold with a certain geometric structure - a free right action of

G. An automorphism of P is a map / : P->P which preserves this structure: f{xg~x)
= f(x)g~1 for all xeP and geG. Let Aut(P) denote the group of all bundle
automorphisms / such that the induced map π°f:M-+M preserves orientation,
and let Aut0 (P) denote the subgroup of automorphisms which induce the identity
transformation on M. There is an exact sequence

0 -> Aut0 (P) -> Aut (P) -> Diff (M),

where Diff(M) is the group of orientation preserving diffeomorphisms of M. The
group Auto(P) can be identified with the space of sections of the bundle of groups
P X A d G

In the terminology of physics, a section s: M 3 U->P is called a local choice of
gauge, an automorphism /eAut o (P) is a gauge transformation, and the group
^ = Auto(P) is the gauge group of the bundle.

Note that the Killing form provides an invariant metric h on the adjoint bundle
p and hence a hermitian metric on E.

We shall require 3 things of the Lagrangian form λ(g, V, φ)
(i) regularity — in a local coordinate system and local choice of gauge, λ

should be given as a universal polynomial in g, h, Γ, φ, (det$)~1 / 2, (det/z)~1/2 and
their derivatives, where Γ are the Christoffel symbols of V;

(ii) naturality - the map λ'.Jίx^x <f->yl4(M) should be a natural transfor-
mation with respect to the bundle automorphism /, i.e.,

Mίπ°f)*9, f*r, Q(f*)φ) = f*λ(g, V, φ)

(iii) conformal invariance - for any function σ on M, λ satisfies
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Remark. If there is no bundle P present then the naturality property (ii) is Einstein's
''principle of general covariance" asserting that the equations of physics are
covariant under arbitrary coordinate changes. Naturality with respect to Aut0 (P)
means that λ(g, f*V, θ(f*)φ) = λ(g, V9 φ): this is WeyFs principle of gauge in-
variance.

We can now use invariant theory to determine the possibilities for ?,. For the
case λ = λ{g,V) if we require naturality under orientation preserving diffeo-
morphisms of P then SO(4) invariant theory (Stredder [18]) implies that

λ = a1\s\2 + a2\B\2 + a3\W+\2 + a4\W~\2 + a5ΩΛΩ + a6ΩΛ *Ω,

where {s, B, W±} are the components of the Riemannian curvature of g, Ω is the
curvature of ω and the α are real numbers. The actions \λ for various values of the
a{ include the topological invariants px{M), χ(M), and px(p) from (1.11) and (1.12).
Of the remaining three independent possibilities two depend on the curvature of g;
for remarks on these see (Bourguignon and Lawson [6]). Here we will be
concerned with the action which depends on the bundle curvature: the Yang-Mills
action

A(g,V)= $ ΩA*Ω = ^Ω^l/dotgdx1 A ... Adx4. (2.2)

This action is evidently regular and Diff(M) covariant. It is conformally invariant
because the * operator on 2-forms is, or more explicitly

A{e2σg9r)= ί e'^g'ψiΩ^Ωj.yidotie^g))11^1 A ... Λ dx4 = ΛLfo ω).
M

As for gauge invariance, a gauge transformation ge^ carries V to goγog~ι and
Ω = D°V to gΩg~ι\ the Lagrangian \Ω\2 is then unchanged because the Killing
form is invariant.

Since |Ω|2 = | Ω + | 2 + |ί3~|2, Eq. (1.12) shows that A(g,ω)^$π2k with equality if
and only if Ω~ ~0. Thus self-dual connections are absolute minima of the Yang-
Mills action.

It would be interesting to continue with the invariant theory, incorporating the
field φ and finding all Lagrangians satisfying (i), (ii), and (iii). Instead we will
simply write down the two action integrals considered by physicists and verify
naturality. Following the terminology of physics we will call these the "fermion"
and "boson" actions.

Definition. The fermion action is defined on E-valued spinors φeΓ(V®E) by

A{g,V,φ)= J \Ω\2 + (φ^φ}dv(g), (2.3)
M

where 3) is the Dirac operator and <, > is the inner product on V®E and

dv(g) = yάotgdx1 Adx2 Adx3 Adx4

is the volume form of g.

Definition. Similarly, the boson action is defined on E-valued scalars φeΓ(E) by

A(g,V,ψ)= \\Ω\2 + ψφ\2+S-\φ\2-P{φ)dv{g), (2.4)
M 0



576 T.H.Parker

where the potential P:E->ΊR is a gauge invariant polynomial on the fiber of
degree ^ 4 .

Both Lagrangians are regular, Diff(M) covariant, and gauge invariant. The
conformal properties of these action integrals will be discussed in the next section.

Remarks. 1. For our purposes the requirement d e g P ^ 4 arises as follows. We wish
to vary the action over the Sobolev space <^ί 2 x Sx 2. By the Sobolev inequality
(1.20) any polynomial in φ of degree ^ 4 is then integrable, while higher degree
polynomials need not be.

2. The term j<</>, Θφy in the fermion Lagrangian is not positive definite.
Indeed, suppose φ = φ++φ_eΓ(V+@V_) satisfies Θφ = λφ for some eigenvalue λ.
Then φ = φ+ — φ_ satisfies 3)φ=—λφ. Thus the spectrum of Θ is symmetric
about zero.

Variation of the actions (2.3) and (2.4) yields a complicated system of nonlinear
equations for g, ω, and φ when the Lagrangian Js of general relatively is included
these are complete classical equations of a Yang-Mills particle coupled to gravity
(Hawking and Ellis, Sternberg). We shall simplify this system by disregarding
the dependence on g (and fixing h). Because of conformal invariance this amounts
to fixing the conformal structure of M.

With this agreed, the next step is to calculate the Euler-Lagrange equations of
the fermion and boson actions.

The Field Equations

For a spinor field φeΓ(V®E) the first variation of the action (2.3) is computed as
follows. Choose a 1-parameter family of connections Vs=V0 + sη+ ...,
ηeΓiΛ1®^) and a 1-parameter family of spinors φt = φ0 + tψ+ ..., φeΓ(V ®E).
The curvature and total covariant derivative on V®E are [cf. (1.3) and (1.7)]

Hence

M

where {e1} is a local orthonormal frame and we have retained only the terms linear
in s and t. The first variation equations are

0 = f
M

M

or (noting that Q) is self-adjoint)
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where {σj is a local orthogonal basis of sections of^, {σα} the dual basis in Γ(^*).
Here J(φ) is the current due to the field φ; it is real-valued since {φ^e^ρiη^φ}
= —^-φ.ρiη^φy — ^'ρiη^φ.φy and is thus an element of (A1)*. It should be
interpreted as a 1-form on the space of connections (€.

The calculation of the first variation of the boson action (2.4) is similar.
More generally we shall replace the second field equation by the corresponding

eigenvalue equation. In the fermion case this is 3)φ = mφ, where m is a real
constant (β is self-adjoint). In the boson case there are two possibilities: the

eigenvalue equation \V*\Vφ— -φ = m2φ or the equation with potential \V*\Vφ
6

φ = P'(φ) the latter equation is particularly important when P is the Higgs
6

potential P(φ) = \φ\4 — \φ\2. We shall deal with both possibilities simultaneously by
taking P' of the form P' = a\φ\2φ + m2φ, where a and m2 are real with α = 0 and
m2 ^ 0 allowable.

Thus the equations which we shall study are the coupled fermion equations

\@φ = mφ, [ ' }

and the coupled boson equations

( )

\Vψψφ + a\φ\L 6

In physics, Ω is a gauge field, ω its potential, φ is the field of a particle
interacting with Ω and m is the mass of the particle. For example, when the
structure group is S1 (2.5) describes an electron interacting with an elec-
tromagnetic field.

When φ = 0 the fermion and boson actions reduce to the Yang-Mills action
and the field equations become the Yang-Mills equation D*Ω = 0. Self-dual
connections satisfy this equation because they are absolute minima of the action.
This also follows from the Bianchi identity: if Ω is self-dual Ω = *Ω and D*Ω

The current JeA1* which appears in the field equations is a D-coclosed form.
This is a consequence of a gauge invariance. In fact, evaluating D*J on XeΓ(^)
gives D*J X = J{\VX). But \VX is an infinitesimal gauge transformation [see (4.1)
below] and J is constant on gauge orbits; hence JJ(|FX) = O and D*JΞΞO.

The equation D^J — 0 also follows from direct calculation. For example, in the
fermion case * J = ̂ (φ, e{ - ρ(σa)φ}σa® * eι and, in an orthonormal frame {V} with
Vie

ί=ViσΆ = 0 at a point xeM, the field equations give

since (φ,ρ(σa)φy is pure imaginary. Alternatively, we can use the first field
equation: for Ω = Ωa®σaeA20^ we have

D*J = DD*Ω = [Ω, *Ω] = * X <Ωα, Ωβ) [σα, σβ~] = 0.
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When the structure group G is abelian the equation D*J = 0 becomes d*J = 0.
This is the equation of (infinitesimal) conservation of charge in electromagnetism.

Gap Theorems

The field equations (2.5) and (2.6) are simplest when a = m = 0. Then φ satisfies

either <3φ = 0 (φ on E-valued spinor) or \V*\Vφ= -φ {φ an E-valued scalar).

Proposition 2.1. Let E be a vector bundle over a manifold M and let (φ,Ω) be a

solution to the coupled boson equations D*Ω = J, \V*\Vφ= —φ. IfM is compact with
6

positive scalar curvature, or ifM = lR4 and φ vanishes at infinity, then φ = Q and Ω is
a Yang-Mills field.

Proof. When M is compact and s > 0 integration by parts gives

M °

so φ = 0 and J = 0. On 1R4, we can convert the equation |F*|F</> = 0 into a differential
inequality for \φ\ by

(a) d*d\φ\2 = 2d*(φ, \Vφ} = - 2\\Vφ\2 + 2<φ, ψ*\Vφy = - 2\\Vφ\2,

(b) d*d\φ\2 = 2d*{\d\φ) - - 2\d\φ\\2 + 2\φ\ d*d\φ\.

These give \φ\d*d\φ\ = \d\φ\\2-\\Vφ\2^0, or Δ\φ\^0. If \φ\ vanishes at infinity
the maximum principal (Morrey, p. 61) implies that φ = 0; hence the current
J = (\Vφ>Q(')φ} vanishes, and Ω is a Yang-Mills field. •

For the pure Yang-Mills equations and for the coupled fermion equations, we
have the following L2 "gap theorem" (part (a) is essentially due to Bourguignon
and Lawson [6]).

Proposition 2.2. Let M be a compact Riemannian 4-manifold with - — \W~\ ^

Then there is a constant c0 such that

(a) Any Yang-Mills Ω with | |Ώ"Ίlo,2< < : ;o ί 5 self-dual
(b) Any solution (Ω,φ) to the massless coupled fermion equations (2.5) with

\\Ω~ IIo 2 < c o satisfies Ω~ =J = φ~=0.

Proof (a) From 0 = D*Ω = DΩ we obtain 0 = DΩ+ ±Z)ί2", 0 = DΩ~=D^Ω' and
hence • & " =0. Integrating <ί2~, Π ^ ~ ) over M, using (1.19), integrating by parts
and applying Kato's inequality gives

M

By the Holder and Sobolev inequalities the last term is bounded by
c| |Ω~| | 0 2( | | ί iΩ~| | | o > 2 + | | ί 2 " | | o 2 ) , which is dominated by the first two terms
whenever | |Ω~| | 0 2 is sufficiently small. This is a contradiction unless Ω~ =0.
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(b) lϊφ = (φ + ,φ-)eV+®V_ satisfies 9φ = 0, then (φ,@2φ-} = 0. Using (1.14)
on V~ and repeating the above argument shows that φ~ Ξ O whenever \\Ω~ | |0 2 is
sufficiently small. But then

and ί2~Ξθby part (a). •
This argument and the fact that ||/H0,4^c|l4f Ho,2 f° r feLx 2{β*) also shows

that Proposition 2.2 holds for M = 1R4.

3. Conformal Invariance and Rescaling

From physics we know that the Lagrangian and the energy must be conformally
("scale") invariant. The Lagrangians introduced in Sect. 2 do not, a priori, have this
property. We will now show how to arrange conformal invariance by further
specifying the geometric properties of the field φ.

Let Mn be an oriented manifold and F the GL(n) frame bundle of its cotangent
bundle τM. A choice of conformal structure on M reduces F to a principal bundle
Fc whose structure group is the conformal group CO(n) = IR+ x SO(rc). The
representations of CO(n) are specified by pairs (w5ρ) where we 1R+ and
ρ:SO(n)-+GL(W) is a representation of SO(n); the representation (w, ρ) takes the
matrix B = λllnΛ, where A = |detjB| and AeO(n\ to λwρ(Λ). The number w is the
conformal weight of the representation and of the corresponding bundle
Fcx(w,ΰ}W.

In this context there are two vector bundles of primary importance: a trivial
real line bundle L = i 7

c x ( 1 1 ) l R with weight 1 and an orthogonal bundle
T = Fcx{0 Id)lR

n with weight 0. A choice of a metric within the conformal class,
trivializes L and τ*M then becomes an orthogonal bundle under the conformal
isomorphism τ*M=T®L.

If M 4 has a spin structure, Fc lifts to a conformal spin bundle Fc with structure
group CO(n) = R x Spin(n). Spinors of weight w are then sections of

A metric g on M provides a trivialization of L and a Riemannian connection
on τ*M and T. This connection on T induces one on V° ^ Y" and allows us to
define a Dirac operator @:Γ(VW)->Γ(VW®L) for each conformal weight w. More
generally, if E is a vector bundle associated to a principal bundle P over M then a
connection on P gives Dirac operators @:Γ(Vw(g)E)->Γ(Vw+ί(g)E).

Replacing ^ by a conformally equivalent metric g' = s2σg changes the
Riemannian connection on τ*M and the trivialization of L9 and transforms the
Dirac operator Si on Γ(V") to Si' given by (cf. Hitchen [9])

@'φ = @φ-^dσ φ + wdσ-φ. (3.1)

In particular, the Dirac operator on spinors of weight 3/2 is independent of the
metric within the conformal class (see also Fegan [7]).
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This conclusion also follows by examining the spinor Lagrangian

f (φ^φ)]/dotgdx1 Adx2 Adx3 Adx4 φeΓ{Vw®E). (3.2)
M

This integral is invariant under constant conformal changes g\->e2σg, σeIR, when
the integrand has weight 4. But φeΓ(Vw®E) has weight w (assuming E is
weightless) and @φeΓ(Vw®E®L) has weight w+ 1. Thus the Lagrangian, and the
corresponding field equations, are scale invariant on spinors of weight w, when
2w+1 =4, i.e., w = §. Invariance under arbitrary conformal changes follows from
(3.1).

The equation @φ=mφ is conformally invariant if we interpret m as a section
of L:^φ = φ®me V3I2®L. Then both Q)φ and mφ have weight f.

The boson equations for scalar fields can likewise be made conformally
invariant. In this case the Lagrangian is basically [cf. (2.4)]

ί <\Vφ9 \Vφ} l/άotgdx1 A dx2 A dx3 A dx4 φeΓ{E®L). (3.3)
M

If φ has weight w, \Vφ has weight w + 1 and this Lagrangian is invariant under
constant scale changes when 2w + 2 — 4 and w = 1. Thus we take φ to be a section
of E®L.

While this Lagrangian (3.3) and the corresponding Laplacian are not invariant
under arbitrary scale changes, there does exist a modified Laplacian which is
conformally invariant. To find it we return to the viewpoint taken in Sect. 2 and
seek a second order weight 2 operator A on Γ(E®L) constructed naturally from
the metric on M, the connection on E, and their derivatives. By invariant theory
(Atiyah, Bott, and Patodi and Stredder) A = \V*\V+p(R, ΩE). where |F*|Fis the trace
Laplacian on E®L and p(R, ΩE) is a polynomial in the curvature tensors R of M
and ΩE of E. But p(R,ΩE)eEnά(E®L) must have weight 2; the invariant theory
then shows that A = | F* | V+ a • s for some constant a. A direct calculation (see Hitchen
[10]) shows that this is indeed conformally invariant when a=l/6, that is,

/ s\
solutions of \\V*\V + - \φ = 0 remain solutions after a conformal change of metric.

\ 6/

In the corresponding field equations with mass, \V*\Vφ= ~φ + m2φ, m is again
6

interpreted as a section of L. Likewise, in the potential P(φ) = a\φ\4 + m2\φ\2, a has
conformal weight zero and meΓ(L).

The above argument also shows that the Lagrangian

ϊ + ~\Φ\2dvg (3.4)
M °

is scale invariant. Together with the conformal invariance of (2.2) and (3.2), this
completes the verification that the fermion and boson Lagrangians (2.5) and (2.6)
meet the requirements of Sect. 2: they are regular, natural, and conformally
invariant.

We conclude this section by describing several useful devices, related to
conformal invariance, which will be important later.
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The first of these is the total field F. To define it, fix a metric g0 on M and let
τeΓ(L1/2) be the function of weight \ with T Ξ I in the trivialization of L 1 / 2

determined by g0.

Definition 3.ί. The total field F is the section of a weight 2 bundle J^ defined as
follows.

(i) When (φ, Ω) is a solution of the fermion equations (2.5),
F = Ω + τ~1ek®\Vkφ + τφ ({ek} is an orthonormal coframe) is a section of

^ = (Λ2T®<?®L2)e{T®Lll2®V3/2®E)®{L1/2®V3l2®E).

(ii) When (φ,Ω) is a solution of the boson equations (2.6),
F = Ω + ek®\Vkφ + τ2φ is a section of

^ = {Λ2T®p®L2)®{T®L®E®L)®(L®E®L).

When #" is given the direct sum metric, \F\2dυg is a conformally invariant
energy density for the field {φ,Ω). Fix a point peM and let B(τ,r) be the ball of
radius r in the metric 0 = τ~4go The local energy integral of (φ, Ώ) around p is

£ ( τ , r ) = f | F | 2 = f |Ω)2 + lτ" M^φl2 + | x φ | 2 ,
B(τ,r) B(t,r) , , ^>

£(τ,r)= J |F| 2= J |Ω|2 + ||F0|2 + | τ W
B(τ,r) B(t.ι )

in the fermion and boson cases respectively. E(τ, r) thus depends on both the scale τ
and the radius r we will abbreviate it to E(r) when the scale has been fixed. The
conformal invariance of \F\2-dvg implies that E(τ,r) = E(l,τ2r).

Suppose that \F\2 is integrable on some neighborhood U of peM. Then, given
ε>0, we can find an JR such that B(l,2R)cU and E(l,2jR)<e. Now change the
metric to g = R~2g0. Under this rescaling solutions of conformally invariant
equations remain solutions, while J5(l, 2R) becomes B(2) and the energy in the new
metric satisfies E(2) = E(R1/2,2) = E(l, 2R) <ε. Thus we have the

Rescaling Principle

Given ε > 0 and a solution {φ,Ω) to conformally invariant field equations defined
in a neighborhood of psM with locally finite energy, we may assume - by a
constant conformal change of metric - that (φ, Ω) is a solution on B(2) to the field
equations (with rescaled m and s) and that E(2) < ε.

4. A Slice Theorem and the Orbit Space

In this section we prove a local slice theorem for the action of the gauge group on
ΉxS. This extends similar theorems which appear in Atiyah et al. [4] and
Uhlenbeck [20].

The center of the gauge group - the sections of the trivial bundle P x A d Z ,
where Z is the center of G - acts trivially on the space of connections. Thus we will
deal with the group &e = Γ(Px AάG/Z) of effective gauge transformations. To
topologize &e, note that the adjoint representation is a faithful representation
Ad :G/Z->End(^) and hence defines an embedding &e-+Γ(P xA dEnd(^)). This
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latter bundle inherits a connection from any given VeΉ and the Sobolev
completion c§Kp of the effective gauge group - with norm determined by V -
appears as a closed subspace of Lk P(P x AdEnd(^)). For pfc>4, C3kp is a smooth Lie
group, any g^Kv is continuous, and the mapXι->exp(X) induces a smooth (non-
linear) map from a neighborhood of 0 in Akp into C3k p. This is a standard result.
Mitter and Viallet [12], for example, give a proof for p = 2, and their proof is valid
for pk>4 because multiplication induces a continuous map Lk px Lk p-+Lk p

(Palais, Sect. 9). The effective gauge group Ήe also acts on $ = Γ(P x QE) if Z C ker q
this occurs if the highest weight of q lies on the root lattice of ^*. In this section we
will assume that ρ is such a representation.

We first determine the equation for the orbit of $e in a neighborhood of a C°°
field (V, φ)e^ x S. This connection ^provides an identification ^ = Aι by V-\-η<r->η.
Choose a gauge transformation g close to the identity and write g = exp(X),XeA°.
Then g transforms the connection V+η to

or

This expression is non-linear in X; we can write it as its linearization plus a
remainder:

expVC){V+η)-V=η + VX + R(X,η). (4.1)

R(X,η) is a power series of brackets ofX, VX, and η, and R(tX,tη) = O(t2).
Now suppose that there is a field φeS = Γ{W®E) present (H^is any bundle

associated to the frame bundle of M). Write nearby fields as φ + ψ where xpeS is
small. Then g = exp(X) transforms φ + ψ to q{g){φ + ψ), or

exp(X)(φ + ψ)-φ = ψ + ρ(X)(φ + ψ) + SQC,φ + ψ)9 (4.2)

where S(tX9 φ + ψ) = O(t2).
It follows from these transformation formulae that the action of the gauge

group induces a smooth map

for (/c + l)p>4 (cf. Uhlenbeck [20]).
It is also apparent from Eq. (4.1) and (4.2) that the tangent space to the orbit of

the gauge group through {V,φ)ec£e$ is the image of

K\A°-^A1xδ by Xt->(VX,ρ(X)φ). (4.3)

The L2 orthogonal complement of the image - which is the kernel of the adjoint
operator X* - provides a natural slice for the gauge orbit. This adjoint is
K* :(η,ψ)\-*V*η + (ψ,ρ( )</>>, where this last term specifies an element of A°={A0)*
via the Killing metric and evaluation. More generally, for each OrglelR we can
consider the subspace kerK* where

From (4.1), (4.2), and (4.3) we see that 0 = K%[g (V+η)- Kg -φ-φ] if and only if

),ρ( )</>>

(4.4)
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This is an elliptic equation forX, and if X is a solution then g = exp(X) is a gauge
transformation which carries (V+η, φ + ψ) onto the slice kerXJ through (V,φ).

The slice theorem will apply at the regular points of ^ x 8 - the open dense set
of points (F7, φ) where kerKλ = {XeA%+2tP/VX = O and ρ(X)φ = 0} is zero (i.e. where
the action of the gauge algebra is free).

Theorem 4.1. Let M be a compact Riemannίan 4-manίfold, possibly with boundary.
Fix a regular field (V,φ)e{^x S)k + 1 pwithk^0,2<p<4. Then there is a constant c0

such that for every field (η,ψ)e(A1 x$)k+ίfP with \\{η, ψ)\\k+ι)P<c0 there is a gauge
transformation g^^k+2,P > unique in a neighborhood of the identity, with

K*(g.{V+η)-V,

weakly. If V, φ, η, and ψ are C00 then g is C00.

Proof The proof is an application of the Banach space implicit function theorem.

Let TCAk+2p be the subspace oΐ XeAk+2p which vanish on dM {T = Ak+2fP if

dM = φ). Let F be the map

defined by F(X, (η, ψ)) = right-hand side of (4.4). Since multiplication is a con-

tinuous map

Lk+ι,p

 x Lk+lίP-+Lkp and Lk+2>px Lk+lp-+Lk+ι>p

(Palais, Sect. 9) we have

\\k+1,p+\\R&,η)\\k+i.
P

When the norms of X, η9 and ψ are small, the continuity
implies that

and similarly \\R(X,η)\\k+Up^c(\\X\\k+2iP+\\η\\k+Up). Thus there are neigh-
borhoods U of zero in Tand Vof zero in (A1 x S)k+1 p such that F is a continuous
map F :U x V->Ak p. Similar estimates show that F is C1.

The differential of F at zero is DιF(O,O)X = K*KX=V*VX + λ(ρ(X)φ,ρ( )φ}.
For fc^l multiplication is a continuous map Lk+ί pxLk+ί pxLk p-^Lk p (see
[14]) so

\\\κ^κx\\Kp-\\v^vx\\Kp\Scjψ\\l+Up\\x\\Kp,
while for /c = 0 this difference is bounded by \\φ\\l p | |X | | c 0 ^c 2 | |X | | 2 p ; in both
cases | |X*KXΊ| t i P ^c 3 | |X | | t + 2tp. The elements of Γsatisfy the Poincare inequality
| |X| | 0 j 2gc 4 | |KX"Ί| 0 i 2 . Integrating by parts,

PKXyγi^εcJXWo^ + Ctε-H&KXWo^



584 T.H.Parker

for any ε > 0 ; choosing c sufficiently small and subtracting yields
\\X\\o,2 = c5\\K*KX\\o,P' Also, using Kato's inequality as in the proof of
Proposition 2.1,

\X\d*d\X\ S <X, V* VX} = <X, K*KX> - \ρ(X)φ\2 ̂  |X| \K*KX\,

so d*d\X\S\K*KX\ pointwise and by standard theory (Morrey [13,
Corollary 5.3.1])

Hence

For k ̂  1 interpolation gives

\\X\\k+2,pύ\\K*KX\\Kp + cJφ\\^

and - again choosing ε small - ||X|| fc+2,p =
 cio\\K*KX\\k>p. Thus

for all k, so D x / is an isomorphism.
By the implicit function theorem there is a map (η, ψ)\->X(η, ψ) uniquely defined

on a possibly smaller neighborhood of the origin, such that F(X(η, φ), (η, ψ)) = 0.
X(η, ψ) then satisfies (4.4) and the desired gauge transformation is g = Qxp(X(η, ψ)).
If V,φ,η9 and ψ are C°° then, applying the theorem with fc^4, X is C 2 ; elliptic
regularity (Morrey, Sect. 6.8) then implies that X, and hence g9 is C°°. •

The slice theorem gives a manifold structure on the orbit space of the gauge
group.

Theorem 4.2. Let fflQ^xS be the set of regular points. Then for fc>0, 2 < p < 4 ,
^k+i,p/^k+2,P ™ a smooth Banach manifold and &k+i,p~~*^k+i,p/^k+2 P

 1>s a

smooth principal ^k+2 p-bundle.

Proof We must first show that the slice of Theorem 4.1 is globally effective, i.e. that
the slice intersects each gauge orbit at most once. For this we adapt the argument
of Atiyah et al. [4].

Fix (Vo,Φo)€&k+1>p and let N be a neighborhood of {V0,φ0) in the slice at
(V0,φ0). Since 01 is open we may assume that NC&. The orbit through any
{Vl9φί)eN under the identification <βxδ = A1xδ by (V,φ)^{V-Vι,φ-φ1) is

{{gV1g~1,(ρ(g)-I)φί)/ge(gk+2ίP}. Under the embedding ^ e CEnd(^) the elements
ge$e have pointwise constant norm c0. Let Enά(^)=V0@V1 be the orthogonal
decomposition, where Vo corresponds to the Ad G-invariant endomorphisms and
write g = go + gv Now Vί induces a connection on End(^) and L2(V1) decomposes
into the (finite dimensional) eigenspaces of the Laplacian V*Vγ:

^ 2 (^i) = ̂ o(^ i )θ Σ Γ A ( ^ I )
λ>0

The map g\->{ρ(g) — ΐ)φ1 induces a continuous map
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whose image is compact and - since (V^φjis regular - does not contain the zero

s e c t i o n . H e n c e \\(ρ(g) — I ) φ 1 \ \ l f 2 = c ί

for all gε^k+2 P

n ^ o ( ^ i ) Since the elements of Γ^V^ / l>0 satisfy the Poincare
inequality we obtain

ltP. (4.5)

Interpolating as above and noting the equivalence of \\kiPfVo and \\kίPfv^
extends to

Now if (V2,φ2) = {gV1g~1,ρ(g)φι)eN is gauge equivalent to {V^φ^) then

from (4.6). By the Sobolev embedding this implies (with JV possibly smaller) that g1

is small in the sup norm. Decompose # into simple factors ^ so ( ^ e c i

= Σ F o 0 1 ^ , where each VQ is one-dimensional. We then have

and \g — I\2 = \g0 — I\2 + \gι\
2^2\g1\

2 pointwise. Inserting this in (4.5) and (4.6) gives

\\(V2-Vvφ1-φι)\\k+ί,!,,vo^c4\\g-I\\k+2tPrPo. (4.7)

Again making N possibly smaller, (4.7) insures that \\g — I\\k+2,p is small enough
for Theorem 4.1 to apply and we conclude that g is the identity. Thus the slice is
globally effective.

The proof is completed by a straightforward argument; see Mitter and Viallet

[12]. D

5. Gauges and Regularity

In this section we show that solutions to the coupled field equations have the
regularity properties expected for elliptic equations, specifically, that for p > 2 an
LίiP weak solution is C00. This is basically elliptic regularity; the subtlety is that
the coupled equations are elliptic only after a choice of gauge. We first reinterpret
the Slice Theorem. Rather than using a connection to identify c€ = Aι, we shall
choose a point xeM and a ball B—-B(x;r) around x and use a fixed gauge -
considered as a section of the frame bundle of E - to pull down connections. This
identifies the space ^B of connections over B with A1\B. Let Vo be the connection
corresponding to Oe^l1!^ under this identification. Then, in terms of covariant
derivatives, the original connection is V=d + ω, and Vo is simply exterior
differentiation d. The Slice Theorem4.1 (with φ = 0) yields:

Proposition 5.1. Let V be an Lk+1 p, fc^O, 2 < p < 4 connection on a bundle E over a
4-manifold M and let σ:M->Frame(E) be a C°° gauge for E. Then there exists a
constant y>0 depending only on M such that if V=d + ω and \\co\\k+lfP<y in the
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gauge σ then there is a gauge transformation g^^k+2 p

 s u c n that d*ω = O in the
gauge g-σ.IfV is C00 then g is C00. •

We now have a two step program for obtaining natural gauges: (i) Choose a
C00 gauge around a given point x0, and (ii) modify this to a gauge in which d*ω = 0
using the above proposition. To accomplish (ii) it is necessary to make the Lk p

norm of the fields small. For this we shall use the rescaling principle.

Theorem 5.2. Let V be an LltP p<2<4 connection on a domain D C M 4 Then there
is a C00 gauge σ and a gauge transformation ge$2p such that, after a constant
conformal change of metric, d*ω = 0 in a neighborhood ofOeD in the gauge g σ and
the new metric.

Proof. Given ε > 0 choose a C00 gauge in a neighborhood of OeD and a small ball
5(1,τ2), τ > l , around 0 with | | F ω | | O p < ε in the original scale. Enlarge 5(1,τ2) to
the unit disk B(τ, 1) by a conformal change of metric. Since \ω\2p and \Vω\p

= \Yje
k®Vkω\p have conformal weight 2p rescaling gives

ll«||gf2p;i,(tfi) = T 2 p- 4N||gf 2 j,.B ( l i t 2 ) and \\Vω\\p

!p;B{τΛ) = τ2p^\\Vω\\p

>p.ίB{Uτ2y

In the new metric we have, by Holder's inequality,

where c2p is the volume of the unit ball in the rescaled metric which is uniformly
bounded in τ for τ < l . When ε is sufficiently small Proposition 5.1 applies. This
completes the proof. •

Uhlenbeck [20] has proved the much more difficult fact that the rescaling used
in this proof depends only on | |Ω||0 > p.

We can now prove a regularity theorem.

Theorem 5.3. Let (Pζ φ)e(Ήx £>)lpp>2 be a weak solution to the coupled Yang-
Mills eguations (2.5) or (2.6). Then there is an L2p gauge in which (V,φ) is C00.

Proof Fix XEM. By Theorem 5.2 there is an L2tP gauge defined in a neighborhood
of x such that V = d + ω with d*ω = 0 in this gauge. Expanding the field equations
in this gauge, we have J = D*Ω = d*dω + ωJdω + jωΔ1[ω9ώ]. But dd*ω = 0, so
d*dω = Πω=V*Vω + Rk(ω) by (1.18). Thus a boson field satisfies

6

weakly, where A is the (metric) Laplacian on functions. Applying 3) to the
equation 2>φ — mφ and using (1.14) gives similar equations for fermion fields.
These are uniformly elliptic systems, and regularity follows by standard elliptic
theory (Morrey, Sect. 6.8). •



Gauge Theories on Four-Manifolds 587

6. Gauge Invariant Estimates

We now begin the calculations leading to our first main estimate on solutions to
the coupled field equations: the supremum of |F | in a ball is bounded by the energy
\\F\2 in a larger ball (Theorem 6.3). For this we use the DeGeorgi-Nash iteration
scheme, following (Morrey, Sect. 5.3). There are, however, two complications.
First, because differential equations for vector-valued functions are not directly
amenable to this approach we must convert the coupled differential equations for
φ and Ω into a differential inequality for the function \F\. Second, in order to
manage the non-linearity of the resulting inequality we need a growth condition
on the L2 norm of the coefficients. This is easily verified if we assume sufficient
regularity for the fields, as we shall. (In the next section, when we take up the
problem of the removability of singularities the need for this growth condition will
be the chief difficulty.)

All estimates in this section will be a priori, that is, we will assume (by Theorem
5.3) that the fields are C00 away from an isolated singularity. We will also treat m as
a function rather than a constant this will be important later, in Sect. 8, when we
examine how solutions on R can extend to S4.

The computations are greatly facilitated by choosing an appropriate coor-
dinate system. Fix a point xeM and let {e } be an orthonormal basis of TXM.
Extend the β to local vector fields et such that (VieJ)(x) = 0 for all ij, and hence
[ei,ej](x) = 0. Let έ denote the 1-form dual to et. The Riemannian curvature form
R and the bundle curvature form Ω = ΩE at x are then

Choose a local basis of sections of the adjoint bundle # in the same manner: let
{σα} be an orthonormal basis of ^ x and extend these to local sections with
(ViV0C)(x) = 0 for all /, α. Let {σα} be the dual sections of^*. Our calculations will be
done in these frames at xeM, but the final result will be manifestly independent of
x and the orthonormal frame.

Theorem 6.1. Let (</>, Ω) be a solution of either the coupled fermίon equations (2.5) or
the coupled boson equations (2.6). Then the total field FeΓ{ϊF) (see Definition 3.5)
satisfies

0^d*d\F\2 - \d\F\\2 + μ\F\2 + (5|β| + o # | 2 ) | F | 2 , (6.1)

where a is a constant of weight 0 (in the boson case) or 1 (in the fermion case) and
μeΓ(L2) depends only on the 1-jet of the Riemannian curvature of (M, g0) and either
the I'jet of m (in the boson case) or the 2-jet of m (in the fermίon case).

Proof We begin with the fermion case, dividing the proof into five steps.

Step ί. Apply <3) to the equation @φ = mφ to get @2φ = dm φ + m@φ = dm φ
+ m2φ and

O = (φ,$2φ}-m2\φ\2-(φ,dm φ>. (6.2)
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Step 2. Differentiate the equation 22 = m2φ + dm-φ using the total covariant
derivative ψ on V®E

0 = ψk®
2φ-dkm

2 φ-m2\Vkφ-{Vkdm) φ-dm-\Vkφ. (6.3)

Commuting derivatives in the leading term introduces curvature terms: \Vk2>
= ψy • |F.) = e«. (f.\Vk + Ωki) = Wk + eι • Ωki and

\Vk3>2 = 2>ψk2ι + έ • Ωkie
j • |F}

= 92\Vk- el • e< • (\VjΩki) + eJ • έ • Ωkiψj + έ • e> • ΩW |P.

- 2 0 k i r i (6.4)

(using the Bianchi identity). Here Ω = RV®1 + l(g)ΩE is the total curvature of
V®E so, for example, the second term is

\Vpki = V^n + VpE

ki = (D*R)k + {D*Q*)h. (6.5)

In this we recognize the current (D*ΩE)k = Jk [originally Je(Ax®^)*, but here we
have its image under the identification ^ = ^ * and the representation
l®ρ \{Λ1)*®^-+{Λι)*®E®E*~\. Combming (6.3), (6.4), and (6.5), taking the inner
product with \Vkφ, and summing on k gives

0 = <\Vφ, ®ψφ)> - <\Vφ, [_(D*R)k + J J φ} - 2(\Vkφ, (Rki

- dkm\\Vkφ, φ} - mψφ\2- (\Vkφ, (\Vkdm) φ + dm-\Vkφy. (6.6)

Step 3. Differentiate the second field equation D*Ω = J. With the Bianchi identity
DΩ = 0, this gives

+ D*D)Ω = DJ=- ^D[(φ, ek

and

0 - <Ω, @2Ω} + \ Re < \V.φ, ek Ωik(φ)}. (6.7)

Step 4. Combine (6.2), (6.6), and (6.7) into a single equation for F = Ω

(6.8)

The leading term can be expanded according to the Weitzenbock formulae (1.14),
(1.19) for Q)2 on the spinors φ, \Vkφ and on the ^-valued 2-form Ω

J \F\2 + ^ \Ω\2 - <
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Let 9t be the bundle map ϊF-*^®L2 defined by

(regarding τ~2D*ReT®g®L2 as a map F 2 ® £ - + T ® F 4 ® £ ) . Then 9t depends
on the 1-jet of the Riemannian curvature of M and is bounded by a constant ρ of
conformal weight 2. Now substitute into (6.8), multiply by — 1, and estimate, using

[cf. (2.5)]. The result is the more manageable inequality

- 2 | (/) | 2 ) |F| 2 , (6.9)

where μ = [ρ + m2+ \drn\ + τ~2\drn2\ + τ~2\2dm\'] is a function of conformal
weight 2.

Step 5. Because \V is compatible with the metrics on V®E and Λ2®^,

d*d\F\2 = 2d*[_Re(F, I F ^ y ] = 2Re[<|FF, \VF) + <F, l ^ i 7 ) ]

so < F J F f | p ; . F > = ^ * d | F | 2 - - | | P F | 2 ^ § d * d | F | 2 - | d | F | | 2 by Kato's inequality. Putting
this in (6.9) completes the proof in the fermion case.

The boson case is completely analogous so we will be brief.

Step ί. From 0 = \Vψφ-^φ-a\φ\2φ-m2φ we obtain 0 = <φ, -\V.\Vφ}- -\φ\2

-a\φ\*-m2\φ\2.

Step 2. On £-valued scalars we have |P*|P=Z>*D, while

\VkD = \Vk[e{ A |P.) = e>A (m + Ωkί) = D\Vk + έ A Ωki

and similarly \FkD
ί¥ = Dψk~ejJΩkj. Hence

= D*D\Vk - 2(Rki + Ω&Wi - (D*R)k - Jk

II s
(Jk is the boson current), and 0 = ( \Vkφ,\Vk \V*\Vφ--φ-a\φ\2φ-m2φ

\ \ 6
becomes

o=<\vkφ, - Wί\vkφy> - 2{\vkφ9 (R
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Step 3. From £>*Ω = J we obtain 0 = <Ω, QΩ — DJ}. Here QΩ can be expanded
using (1.19) while

ρ( )φ}ek)}

(\Vkφ, Ωik(ψi

Step 4. Set F = Ω + \Vφ + τ2φeΓ{^\ deϊine m-. ^^^φL2 by

and let ρ be an upper bound for J>. Add the results of Steps 1, 2, and 3, multiply by
— 1 and estimate, noting that

<\Vkφ9 Jk(φ)> ^K\Vφ9ρ{ )φ}\2 S \Φ\ΨΦ\2

and

The result is

where μ' = (ρ + m2 + τ'2dm2) has weight 2. The proof is completed by Step 5
above. •

Proposition 6.2. Let F be a C00 field which satisfies the differential inequality (6.1)
on a ball BrcM of radius r. Then for any ηeCQ(Br) and p>\

ί \d(η\F\η\2SC(p) J (\d*dη2\ + 4\dη\2)\F\2?

+ c'β(r)PC{p)$\d(η-\F\η\2 (6.10)
Br

for some constant c\ where C(p) = p/2p — 1 and β2 is the conformally invariant
integral

By

Proof. Set b = \μ\ + 5\Ω\ + a\φ\2 and evaluate (6.1) on the test function η2f2p~2,
where f = \F\ (technically, take f = \F\ + ε and let ε->0 at the end). Integrate by
parts and simplify using df2p = pf2p~2df2, etc.



Gauge Theories on Four-Manifolds 591

2p2

Transfer the middle term to the left-hand side, multiply by and note that

P > - and \d(ηf)\2S2\dη\2f2p + 2η2\dfp\2. This gives
2 p - l 2

/ 2p i P f|,.,,2/-2p

and the last term is bounded by the Holder and Poincare-Sobolev inequalities

Theorem 6.3. Let (φ,Ω) be a C00 solution on a ball B2RCM to either
(i) the coupled fermion equations (2.5) with meL2p(B2R) for some p>2,

(ii) the coupled boson equations (2.6) with m2eLlp{B2R) for some p>2.
Then there is a constant C of conformal weight zero such that for all xeBR and

\F(y)\2dy.
BR

Proof. Since F and the Riemannian curvature of M are C00 the hypotheses imply
that μeLp(B2R) for some p>2 and, by Holder's inequality, that β{r)^cxr

δ for some
(5>0.

Fix p ^ 1 and set rp = (2cίc'pC{p)Γ1/δ. Then whenever r ^rp, β(rp) ^(2c'pC(p))~x

and we can move the last term of (6.10) to the left-hand side. Choosing ηeC^(B2r)
with η = ί on Br, O^η^ί, \dη\^2/r and \d*dη2\^2/r2 gives

^ J \d(η \F\η\2^cr-2 J p
Br B2r B2r

for some constant c. Now given a ball BR of large radius we can cover it with balls
of radius r < rp and use the above and the Poincare-Sobolev inequality to obtain
(cf. Morrey, p. 136)

\F\*pYl2^c{pC{p))2lδ'r-2 J \F\2p,
J

The inequality now follows by iteration (Morrey, Theorem 5.3.1), and counting
conformal weights we see that C is weightless. •

Theorem 6.3 is immediately applicable to the problem of the behavior of fields
around a singularity.

Corollary 6.4. Let (φ, Ω) be a solution to the coupled field equations which is C00 in a
neighborhood of a point peM but is undefined at p. Assume that the energy α(r) is
finite on some ball B(p r) and that the mass m satisfies the hypotheses of Theorem
6.3 on B(p r). Take p as the origin and let ε>0 be given. Then (φ,Ω) is conformally
equivalent to a solution on B2 with

\Ω, (x)|, \\Vφ{x)\ S \F(x)\ S C\x\ ~ 2 • E(2\x\) g Ce|x|" 2

for each xeB1 — {0}. Moreover, \φ\ = θ[-\ at the origin.
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Proof. By rescaling we may assume that (φ,Ω) is defined on B2 and that
For xeB1 - {0} set r = ±\x\. Then B2rCB2 - {0} and F is C00 in £ r By Theorem 6.3

Γ4 J |F|2^C|xΓ4 £2(2|x|)
β(x, 2r)

for X G 5 1 — {0}. This gives the first statement and the second follows by noting that
| and integrating inward from the unit sphere. •

7. An Energy Growth Rate

We shall now focus attention on C00 solutions of the coupled field equations with
finite energy and with an isolated singularity. We have just derived one fact about
such fields: |Ω| and \\Vφ\ grow as O(r~2) at the singularity. We also have the
regularity Theorem 5.3 at our disposal, but this requires that the field be L l p for
some p > 2. What is needed is a growth rate of the form

for some c and δ >0, where the ball Br is centered on the singularity. This section is
devoted to establishing such an estimate.

Although the growth estimate involves only gauge independent quantities the
proof requires a specific choice of gauge - a trivialization of the principal bundle P.
For this we rely on a theorem of Uhlenbeck which provides a trivialization around
the singularity and includes rather specific information about the connection and
curvature forms in this gauge. Integration by parts in this gauge, first for the field φ
and then for the curvature form Ω, results in an inequality for the energy integral
E(r). By the rescaling process this becomes a differential inequality and integrating
gives the desired growth rate for E(r).

Throughout this section we assume the fields are C00 away from an isolated
singular point, taken as the coordinate origin. We shall also assume that the mass
coefficient m satisfies the hypotheses of Theorem 6.3. The rescaling process allows
us to work in an arbitrarily small neighborhood of the singularity, conformally
enlarged to the unit ball. Consequently, we expediently ignore the curvature of the
base manifold. This simplification does not essentially affect the theorems.

A few words on notation. The letter c will be used for a universal constant
(depending on Sobolev norms, the volume of the unit ball, etc.). Its value will be
continually updated so, for example, when c is multiplied by 2 the result is
immediately renamed c. We will need the energy integral E(τ,r) defined by (3.5).
After fixing a scale we will denote E(τ, r) by £, or replace it in the estimates by an
upper bound ε. We will frequently use the evident inequalities | |Ω| | 0 2 5 IIFΦII02
^E^ε and the Sobolev inequality | |φ | |Q 4 ^cE 2 ^cε 2 . All Sobolev norms are taken
on the unit ball.

The starting point for our gauge dependent estimates is the following theorem
of Uhlenbeck.

Theorem 7.1 (Uhlenbeck [19]). Let ω be a C°° connection form on B2 — {0} with
curvature Ω. Then there is a constant K such that if \Ω(x)\ \x\2^ε<κ on Bί — {0}
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then there exists a "broken harmonic gauge" on B1 — {0} whose properties we now
describe. Set

Si={x\\x\ = 2~ί} = inside boundary of At.

The broken harmonic gauge is C00 on each At and the gauges from A{ and Ai+1 agree
on St. Write

1 > expressed m the gauge on At.

Then {ω1} and {Ω1} satisfy
(a) ωι

Θ\s =ωι

θ

+ί\s., ωθ = tangential components of ω,
(b) d*ωι = 09

(c) d*ωι

θ = 0 on St and St_v where denotes restriction to the sphere,
(d) J ωj.= j ωι

r = 0, ωr = radial component of ω,
Si S χ _ i

and there exist constants b,λ>0 such that
(e) | |ω ί | | 0 0 ^2- ί | |Ω | | 0 0 ^2 i bε,
(f) j lωf^μ-foVΓ 1 ^- 2 ' j|ί2Ί2.

Aτ A,

This theorem is proved in (Uhlenbeck [19]). In outline, the construction of the
gauge proceeds as follows. Choose a basis for g at the north and south poles of S1

and extend these by parallel translation along polar geodesies. These gauge meet at
the equator and one shows that the transition functions can be made small. These
transition functions can be spread out away from the equator, resulting in a C°°
gauge over Sv The Slice Theorem then gives (c) on Sί and, by the same process, on
each S . Now repeat the procedure to fill in between the Sί: we have a gauge on St

which extends inward by parallel translation and one on Si+1 which extends
outward these meet in the middle of A{ and the transition functions are small.
Spread out the transition functions and apply the Slice Theorem; this gives (b).
Statements (a) and (d) are inherent in this process and (e) and (f) are consequences
of (a)-(d) and the curvature hypothesis. •

Remarks. 1. Note that such a gauge can be chosen for any connection; it is not
necessary that Ω satisfy the field equations.

2. The broken harmonic gauge trivializes the principal bundle P and therefore
trivializes all associated bundles E over Bv

Since we are assuming that the coefficient m satisfies the hypotheses of
Theorem 6.3, we can apply Corollary 6.4 to obtain a field on B2 — {0} satisfying the
hypotheses of Theorem 7.1. Hence there exists a broken harmonic gauge.

In the subsequent theorems this gauge is used as a "reference frame" in which
to observe the field φ we will express ω and φ in the broken harmonic gauge and
use estimates (a)-(f) to argue that the covariant derivatives \Vφ of φ and Ω of ω are
essentially the same as Vφ and Vω. In doing this we may assume, by the rescaling
principle, that ε is as small as required.
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As an example of a theorem in this vein we have

Lemma 7.2. In the broken harmonic gauge the connection form ω on the unit ball B
and the unit sphere S satisfies

(a) j | ω | 4 ^ c ε 2 J | β | 2 ^ c ε 4 ,
B B

(b) §\ωθ\
4^c82 -§ \ΩΘΘ\2, ωθ = tangential components of ω

B B

for some constant c whenever ε is sufficiently small

Proof From Theorem 7.1e,f,

f M^Hω'lβ ί lωψSiTbε^iλ-bh2)-1!-21 J lOf^cs2 J \Ω\2.
Aί Ai At Ax

Summing on i gives statement (a). By Theorem 7.1c d*ωθ = 0 on S, i.e., ω is a
coclosed 1-form on S3. Let λr be the first eigenvalue of the Laplacian on such forms
(λ'ΦO by Hodge theory). Then λ'\\ωθ\

2^\\dωθ\
2 on S and HωH^&ε by Theorem

7.1e, so

ϊ\Ωθθ\
2 = S\dωθ + tiω,ωθψ^\dωθ\

2-^

when ε is sufficiently small. The desired inequality for ωθ is then

2. D
s s s

The next lemma shows that the Sobolev Lt 2 norm based on ψ is essentially
equivalent to the one based on V in the broken harmonic gauge. Before stating it
we introduce some notation which will facilitate changes from \V to V and allow us
to deal with the fermion and boson equations simultaneously.

According to the Weitzenbock formula, the fermion equation @2φ = m2φ

+ dm-φ (cf. Theorem 6.1) is \V*\Vφ = m2φ + dm φ φ-Yιe
i-ej-Ω^φ) and, since

d*ω = 0 by Theorem 7.1b,

F* Vφ = (\V - ω)*(|F - ω)φ = \V*\Vφ - 2ω J \Vφ + ωJω(φ).

Thus φ satisfies

in the broken harmonic gauge. Similarly, a boson field satisfies

2 S

6
Set

M(φ) = m2φ-^φ+(dm-φ-^φ

= 2ωJ\Vφ + ωJω(φ)
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[the terms in parentheses occur only in the fermion case and the Hίggs potential
H(φ) occurs only in the boson case]. With this notation

and φ satisfies

-Q-Ω)φ. (7.1)

Lemma 7.3. There is a constant c such that whenever ε is sufficiently small

in the broken harmonic gauge.

Proof. We have \\Vφ\2 = \Vφ\2+ (φ, Q(φ)}, while \(φ9Q{φ)>\£2\ω\ \φ\ \\Vφ\
+ \φ\2 - \ω\2 can be estimated using Lemma 7.2a:

. •

Equation (7.1) shows that to highest order the components of the field φ are
harmonic functions. We next note an interesting fact about finite energy harmonic
functions in four dimensions: the L2 norm of the tangential derivatives dominates
the norm of the radial derivatives.

Lemma 7.4. Let f be a harmonic function on Bx — {0} ClR4 with J \Vf\2 finite. Then

Proof Expand / in spherical harmonics {σn}: f=γ^anσnr
n. Because the σk are

orthonormal

By hypothesis the right-hand side is finite and hence the spherical harmonic
expansion of / involves only non-negative powers of r. In four dimensions
VrVr = r~2Vr{r3Vr), so VrVJ^Yjn{n + 2)anσnr

n~2. On the sphere of radius r

while

Thus

ίf-KKf-\Kf\2= Σ
Sr n>0

and integrating by parts

Sr Sr Sr Sr

The lemma follows by integrating over r. •
Of course the field φ is not harmonic in the broken gauge so Lemma 7.4 does

not directly apply to it. However,
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Lemma 7.5. Let φ be a solution ofEq. (7.1) over the flat unit ball Assume MeL2{B).
Then if ε is sufficiently small

B B

when φ is expressed in the broken harmonic gauge.

Proof. The field φ satisfies —Aφ = e(φ\ where e(φ) = (M + H — Q — Ω)φ is an
"error" function which we shall estimate. Let u be the potential oϊe(φ) (obtained by
convolving with the Newton kernel). Then u satisfies Δu = e(φ) and the function
f = φ + uis harmonic. Applying Lemma 7.4 to / leads to the inequality

There are standard estimates on the last integral. In particular, (Morrey,
Theorem 3.7.3b) if e(φ)eL4/3(B) then \\Vu\\l2^c\\e(φ)\\lAI3. This can be estimated
by Holder's inequality and Lemma 7.2:

Scε2\\M\\2

02

when ε is sufficiently small. The lemma follows. •

Theorem 7.6. Let (φ, Ω) be a Cm solution of the coupled field equations on B2 — {0}.
Assume that the energy ε is sufficiently small. Then for some constant c

f Wφ\2 + \φ\2-cεE2-cε J \M\2^c J \\Vφ\2 + \φ\2.
Bί Bι Si

Proof We are going to subtract from φ a radially symmetric solution to Axp = O on
each annulus Ani and integrate by parts. Let φ(r) be the average value of φ on Sr

and let \pn be the function on An linear in 1/r2 with values ψn = φ on dAn. Then \pn is
continuous and radially symmetric and Δxpn = O. Furthermore, because

~ψ)\2 = \Vφ\2 + \Vψ\2-2Re<T0,FV> and

= f <
An dAn dAn An

on each An, the function ψ = {ψn} satisfies

\ \ (7.2)

Set f = φ — ψ. Then J / = 0 and by the Poincare and Kato inequalities
sn

\ 2 l 2 l 2 (7.3)
Si Si

where \VΘ is the covariant derivative on Sx and λ~ι is the first non-zero eigenvalue
of the Laplacian on Sv

With these facts, we shall examine the integration by parts formula

ί iff VΦ> - </, \V*ΨΦ> = ί if, WrΦ> • (7-4)
An dAn
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The first step is to sum this equation on n to get an integral over Bv For this it is
necessary to check that the intermediate boundary terms cancel and that the inside
boundary term vanishes as n-^co.

The intermediate boundary terms will cancel if </, \Vrφ} is continuous across
each Sn. But ψ is continuous and - because the gauges from An and An+1 agree on
Sn— φ,\Vφ and hence </, \Vrφy are continuous in the broken harmonic gauge. As for
the inside boundary term, the bounds \\Vφ(x)\^cE{2\x\)'\x\~2 and \φ(x)\ ̂  cE(2\x\)
•\x\~λ from Corollary 6.4 give

<f,KΦ> r = 2~n.

But lim£(r) = 0, so this vanishes as rc-^oo.

After summing on n and using the field equations, (7.4) reads

f <\Vf,\Vφ)-a(M-Ω-H)φ}= J </,|FΓ0>. (7.5)

The sphere integral can be estimated by first using (7.3)

ί </, \vrψy sU\f\2 + \KΦ\2 ^ ™ ί \Kf\2 + \KΦ\2, (7.6)
s z s z s

ψand writing_ \\Vθf\
2 = \VΘφ\2-2Re<\Vθφ,\Vθψy + \\Vθιp\2. Note that 0=Vθψ = \Vθψ

— ωθψ and d*ωθ = 0 by Theorem 7.1c so, integrating by parts,

j (\Vθφ,ωθψ}= - J <φ,ωθ|Ft/;>= J ζωθφ,ωθψ}.
s s s

Hence

s

by Theorem 7.1e and (7.3). When ε is sufficiently small this gives

(7.7)
s s

and (7.6) becomes

\<f,\Vrφ>m+λ)\\\Vφ\2. (7.8)

To estimate the left-hand side of (7.5), we write (\Vf,\Vψ) = (Vf, Vφ)
+ <ω/, \Vφ) + <Γ/,ωφ> and bound <P/, Vφ} = \Vφ\2-(Vrψ, Vrφ} below using (7.2)
and Lemmas 7.5 and 7.3

^ j i|Pφ|2-Cε2£2-cε2||M||g2-i|Pφ|2

). (7.9)
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Using Lemma 7.2 we also have

(i)

(ii)

(iϋ)

- t - ^ ^

-i-

Combining (7.5), (7.8), (7.9) and these estimates yields

J

It remains to estimate | | / | | o 4 and ||</>|lo4. For this we use the Sobolev-type
inequality (see Morrey, p. 82)

(7.11)

(7.12)

Bι |Bi Si

which can be combined with the usual Sobolev inequality to give

We can also apply (7.12) to / Note that \Vf = \Vf+ωf satisfies

that | |ω | |o 4 ^cε 2 by Lemma 7.2a, and that

2)E2\\Vf\\2

2^2\\Vφ\\2

2^c(l+ε2)E

by (7.2) and Lemma 7.3. The sphere integral is bounded by (7.3) and (7.7). It
follows that, for ε sufficiently small,

\\f\\2

4ScE2 + cj\\Vφ\2. (7.13)
Si

Finally, multiply (7.10) by l + c 0 and add to (7.11), incorporating (7.12) and
(7.13). The theorem follows when ε is sufficiently small. •

We next derive an analogous estimate for the curvature field Ω. This theorem
was obtained by Uhlenbeck [19] when Ω is a Yang-Mills field. We repeat her
proof, adding a current term.

Theorem 7.7. Suppose that Ω satisfies D*Ω = J onB2 — {0}, where J is thefermion or
boson current. Then for s sufficiently small there is a constant c such that

j \Ω\2-cεE2^c$ \Ω\2.
Bi Si

Proof Again, integrate by parts in the broken harmonic gauge and estimate the
extraneous terms. Since Dω = dω + [ω,ω] = ί2 + -|[ω5ω], the differential of the
1R-valued 3-form ω Λ *Ω is

d(ω A *Ώ) = DωΛ*β-ωΛD(*ί2)

= Ω A *Ω -f ^[ω, ω] Λ *£2 — ω A *D*Ώ

= [ |Ω| 2 +K[ω,ω],Ω>-<ω,D*Ω>] volume form.
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From the field equations <ω,D*Ω> = J(ω), so on the annulus An

Because &4Π is spherical only the tangential components ωθ Λ (*Ω)Θ contribute to
the boundary integral. But the components of (*Ω)Θ are the components of Ω with
a radial part, so we can replace (*Ω)Θ by Ωr = £ Ωridr Λ eι.

Now sum on n. The intermediate boundary terms cancel as before. The inside
boundary term can be estimated using Corollary 6.4 and Theorem 7.1e

Sn

which vanishes when r = 2~w-»0. This gives

J | Ω | 2 + f < [ ω , ω ] , Ω > - J ( ω ) = ί <ω β,β r>. (7.14)

Now by Lemma 7.2 and Theorem 7.If we have

B

and can bound the fermion and boson currents, respectively by

\\J(ω)\\01 =

Also, j |cυθ|
2 Sc J \ΩΘΘ\2 from the proof of Lemma 7.2, so

The theorem now follows from (7.14). •
Finally, we combine the previous two theorems and make explicit how these

estimates depend on the metric within the conformal class.

Theorem 7.8. Let (φ, Ω) be a solution to the coupled fermion or boson field equations
with locally finite energy at a singularity peM. Assume that the mass coefficient m
satisfies the hypotheses of Theorem 6.3. Then for all r^r0 the energy in the ball of
radius r around p satisfies

E{r)^crδ for some (5>0.

Proof. Rescale and fix a metric g0 in which (φ, Ω) is defined on B2 — {0} and ε is
small enough for the previous theorems to hold. Let B{τ, r) be the ball of radius r in
the metric g = τ~4g0 and let £(τ,r) be the integral (3.5) of the energy density over
B(τ,r). Then £(τ,r) = £(l,τ 2r) and the function E(τ) = £(τ,l) satisfies

dτ

The expression — Ez(r)
dr

sphere.

τ = i dτJ

τ=ί dr

is the integral of the energy density over the unit
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Adding the inequalities of Theorems 7.6 and 7.7 gives

£ 2 (τ)-cε I | M | 2 ^ c τ 2 [ £ 2 ( τ ) ] ' (7.15)
B(τ, 1)

when τ = l . But this equation is conformally invariant (M has weight 2 and the
sphere integral has weight — 1) except for the factor ε, which decreases as τ
decreases. Hence (7.15) holds for all τ ^ 1 with ε = £(l, 1) fixed.

The hypothesis MeLxJ^B^) for some p>2 implies, by Holder's inequality,

J I M p ^ c ^ for some δ>0. Since M has conformal weight 2 we have

f |M|2 = J | M | 2 ^ C l τ
δ .

#(τ, 1) B(l,τ)

Substituting into (7.15) yields the differential inequality £ 2 (τ)-cτ 2 (£ 2 (τ)) '^c 1 τ ό ,
τ ^ 1, and integrating this gives (even when M = c1 =0)

for some c and (5' > 0. Π

8. Removable Singularities

The regularity theorems of Sect. 5 and the energy growth rate established in Sect. 7
together yield a theorem on the removability of singularities.

Theorem 8.1. Let (φ,Ώ) be a solution to the coupled field equations (2.5), (2.6) with
finite energy in a neighborhood D ofpeM. Assume that (φ,Ω) is C°° in D—{p} and
that the mass coefficient m satisfies

(i) meL2p{D) for some p>2,
(ii) m2eLlp{D) for some p>2,

in the fermion and boson cases, respectively. Then there exists a continuous
trivialization of the principal bundle over D in which the connection and the field φ
extend over p to C00 solutions of the field equations.

Proof By rescaling we may assume that D — {p}=zB2 — {0} and that a broken
harmonic gauge exists. Theorem 7.8 then implies that FeLp for some p > 2 , so
φeLί>p and ΩeLp. Furthermore, since d*ω = 0 in the broken harmonic gauge,

I Vω\ = \dω\ = |Ω - | [ ω , ω] | g |Ω| + |ω| 2

and hence ωeLlp (using Lemma 7.2a). Regularity now follows from
Theorem 5.3. •

Finally, we will use Theorem 8.1 to show how solutions to the coupled fermion
or boson equations defined on R 4 extend to solutions on S4.

Suppose that (φ, Ω) is a C°° solution to the coupled field equations on R4. Let
σ:5'4-^R4 be the stereographic projection from the north pole p. Because σ is a
conformal transformation and the field equations are conformally invariant, the
pulled back field (σ*φ, σ*Ω) is a C00 solution on S4 — {p}. Theorem 8.1 will now
show that the singularity at the north pole is removable provided that the energy is
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finite and that the condition on m is valid. To state this condition, it is convenient
to follow the stereographic projection σ by the stereographic projection σ' from
the south pole. The composition σ'σ is the conformal inversion /:IR4-»IR4 by
f(x) = x/\x\2 which transports the singularity to the origin of IR4. The differential of
/ is /#(x) X = |x|2 X for Xe TJR* = IR4. A quantity ξ of conformal weight w then

/ x \
satisfies (f*ζ)(x) = \x\ 2 w ( r ^ l We can then translate the hypotheses of

Theorem 8.1 into hypotheses on the original field on IR4. The conditions on m
become conditions involving weighted Sobolev spaces on IR4 or - after the in-
version - conditions at the origin. We then have:

Corollary 8.2. Let (φ,Ω) be a C00 solution to the coupled Yang-Mills equations (2.5)
or (2.6) on IR4. Assume

1) For fermion fields φ, that the energy

J |Ω|2 + |x

is finite and that \x\ 2m\γ-rj ] eL2>p(p>2) locally at the origin.

2) For boson fields φ, that the energy

I X \
is finite, that |x|~4m2 —ry G L 1 p(p>2) locally at the origin and that a and da (see

(2.6)) are bounded at infinity.
Then (φ, Ω) extends via stereographic projection to a C00 solution on S4. •

Acknowledgement. I thank Professors K. Uhlenbeck and S.-T. Yau for their suggestions and
encouragement.
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