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Abstract. We present a general method which enables us to prove the orbital
stability of some standing waves in nonlinear Schrodinger equations. For
example, we treat the cases of nonlinear Schrodinger equations arising in laser
beams, of time-dependent Hartree equations ....

Introduction

We consider here various nonlinear Schrodinger equations. To explain our results,
we will give three examples.

/. Local Nonlίnearitίes

dΦ
i {t,x) + ΔΦ(t,x) + \Φ(t,x)\p~1Φ{t,x) = O in IR+xlR*, (1)

dt

where p > l .

2. Hartree-Type Time Dependent Equations

dΦ m z ί 1 )
i —(t,x) + JΦ(ί,x)+ X _ - L ^ φ ( ί , x ) - j |Φ(ί,j;)|2- :dy\Φ(t,x)

oi i = 1 \x — χ.\ [R3 \χ — y\ J

= 0 in IR+xIR 3, (2)

where x 1 ? . . ., xm are some given points in 1R3 and z 1 ; . . . , zm are positive constants.

3. Pekar-Choquard Time Dependent Equations

( U x ) + Δ Φ ( U x ) + \ l \ Φ ( t , y ) \ .
dt 1 ; 3 \x-y\

= 0 in 1 R + X I R 3 . (3)

0010-3616/82/0085/0549/$02.60



550 T. Cazenave and P. L. Lions

In these three cases we are looking for a complex-valued solution Φ(t, x) and in
order to solve this problem, we will impose an initial condition

Φ(0,x) = Φo(x) inlR*; (4)

and Φo is a given function in 1RN.

In addition, in all three cases, we will require at least Φ(t, - j e L 2 ^ ) , Vί.
These three types of nonlinear Schrodinger equations arise in various domains

of Mathematical Physics ((1) arises for example in the study of propagation of laser
beams, see Kelley [16] and Suydam [34] (2) arises in Quantum Mechanics, see for
the original introduction of Hartree equations Hartree [15] and Slater [29] (3) is
a time-dependent version of some equation proposed by Choquard and we refer to
Lieb [17] for a brief discussion of the relevance of this problem to Physics).

In these three cases, it is possible to find (under appropriate conditions)
standing waves of (1), (2) or (3), i.e. to find solutions Φ(ί,x) of the form: Φ(ί,x)
= eιλtu{x) (/lelR). This yields the following equations for u(x):

-Au + λu = \u\p~1u in RN, (5)

-Au- Y -^^u + λu+l\u\2*~)u = 0 in 1R3, (6)
£=i \x-Xt\ \ \x\)

-Δu + λu- ( |u | 2 * — )tt = 0 in R 3 , (7)

\ Ml
where u is complex-valued and weL2(IR3).

Of course 0 is a trivial solution, and we are interested in nontrivial solutions :
wφO. Equation (5) has been investigated by many authors (Nehari [25]; Ryder
[28] Berger [5] Strauss [30] Berestycki and Lions [3, 4]) - in the last reference,
the most general results concerning equations of the type (5) are given. The
Hartree equation has been studied by many authors, we will mention Reeken [27],
Stuart [32], Lieb and Simon [18], and Lions [20, 22]. Finally Eq. (7) has been
solved by Lieb [17] and Lions [19].

In these cases, we will define a ground state solution uo(x) of (5)-(7) and we will
prove the orbital stability of u0, that is we prove :

4
1. In the case of problem (1): We assume p< 1 -\ then for all ε>0, there

exists δ>0 such that, if inf \\Φ0{ ) — eiθu0( + y)\\Hι(]KN)<δ then the solution
θeJR, yelRN

Φ(ί,x) of (l)-(4) satisfies (for all ί^O):

inf \\Φ(t,')-etθu0( +y)\\HHm<ε.

2. In the case of problem (2): For all ε > 0, there exists δ > 0 such that if

inf \\Φo-eiθuo\\HimN)<δ, then the solution Φ(ί,x) of (2)-(4) satisfies (for all ί^
ΘG IR

inf
θeIR

3. In the case of problem (3): For all ε>0, there exists (5>0 such that if
inf | | Φ o ( < ) - Λ o ( +3;)LiίiR3)<^ then the solution Φ(ί,x) of (3) and (4)

βelR, yeR3
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satisfies (for all t ^ 0):

inf || Φ(t9 ) - Λ o ( -+y)\\ H H m < ε.
θeIR, yelR3

[The presence of the infimum over all y of 1R3 in 1. and 3. above is due to the
invariance of (1) and (3) with respect to translations in space and will be explained
with more details below.] We also give various examples and remarks showing
that these results are optimal and we will also indicate various extensions.

In Sect. I below, we give a heuristic presentation of the underlying principle
which gives the orbital stability of some specific standing waves in nonlinear
Schrodinger equations. Then, in Sect. II, we treat the case of problems (l)-(4) Sect.
Ill is devoted to the study of problems (2)-(4) while we treat the case of (3) and (4)
in Sect. IV.

Our results are in some sense an extension of Cazenave [9] and heavily rely on
[9] and on the results obtained by the concentration-compactness method
introduced in Lions [21, 22].

Finally, for the solutions of the Cauchy problems (l)-(4), (2)-(4), and (3) and (4),
we will use the results of Ginibre and Velo [10-13], Cazenave [7, 8], Lin and
Strauss [23], and Pecher and von Wahl [26].

I. Orbital Stability of Standing Waves: A Heuristic Presentation

As indicated in the title, we will not give any rigorous argument in this section, but
instead we will indicate a general line of argument that will enable us to treat the
three examples mentioned in the Introduction.

Let us consider a nonlinear Schrodinger equation of the form:

I dΦ

i—+ΔΦ + F(Φ) = 0 in # + x ! R N

( 8 )

where F(Φ) is some nonlinear map from some Hubert functional space E into
another one H and where Φ, is some given initial condition in £.

1) We will assume that the map F is such that there exists a C 1 real-valued
functional $ defined on E such that:

g'=-A-F( ) onE;

that is

<?=A J VΦ-VΦdx-G(Φ)
2 JRJV

and Gf = F.
2) We will assume that, for some μ > 0, the following minimization problem:

Iμ = Min {δ{u\ ueE, \u\2

L2{RN) = μ] (9)
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can be solved and more precisely that we have:

Case 1

S is invariant with respect to translation.
Then we assume that, for all minimizing sequences (un)n<ί

 t n a t ^ s :

uneE, \un\L2im = μ, δ(un)-+Iμ-, (10)

we have: 3(yn)nCf^N such that un{ +yn) is relatively compact in E n l 2 ^ ) . This
implies obviously i) that (9) is solved (I is attained) and ii) that the set S of
solutions u of (9) is compact in EnL2(lR ) (up to translations, obviously).

In Lions [21, 22] this assumption is shown to be, in very general situations,
equivalent to the following sub-addίtίvίty condition:

W « + V«> Vαe]0,μ[. (S.2)

Case 2

$ is not invariant by translations.
Then we assume that, for all minimizing sequences (ww)w<i> (un) is relatively

compact in £nL 2(R i V). Again, this implies that (9) is solved and that the set S of
solutions u of (9) is relatively compact in EnL2(JR.N).

Let us mention that, if ${u)= \ e{x, A\x(x))dx, where e(x,p) is some real

function from R N x R p into R and where A is some operator invariant by
translations from E into M (a functional space of functions defined on 1RP) - and if,
for example, we have: e{x,p) > ̂ °°(p)? then the above assumption is equiva-

|x|->oo

lent under very general assumptions to the following generalized subadditivity
condition

Iμ<Ia + I?-a, Vαe[0,μ[, (S.I)

where /? = Infί j eOT(Au(x))d:x/we£nL2, \U\2

L2(]RN) = μ\ - see Lions [21, 22].

Let us indicate briefly why (S.I) or (S.2) imply some form of compactness on
minimizing sequences. This is proved by the use of the concentration-compactness
method introduced in [21, 22] that we shall briefly sketch now. It is based upon the
following remark: take υn a sequence in L\(RN) (or bounded nonnegative
measures) such that I I ^ J L I ^ ) ^ ' t n e n t n e r e exists a subsequence (that we still
denote by vn to simplify) such that one of the following possibilities is true for all
elements of that subsequence:

i) (vanishing) Sup f vΛx—>0 for all JR<OO,
y*R* y + BR

ii) (compactness) 3yneRN

9 Vε>0, 3.R>0 such that

μ^ j vndx^μ-ε,
y + BR

iii) (dichotomy) 3αe(0,μ), Vε>0, 3 ^ , vleL\(RΉ) such that:

l i m l l ^ - ^ + ί ; 2 ) ! ! ^ ^ , lim | | ^ | | L 1 = α, dist(Supp^,Suppί;2)—• + oo .
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Such a lemma is proved in [21, 22] with the use of concentration functions. Now if
we take a minimizing sequence un in problem (9) and apply the above result to
vn = (un)

2, one sees easily that cases i) and iii) are ruled out if (S.I) or (S.2) [for
ae(09μ)~} holds.

Finally in the case when S is not invariant by translations, one proves that yn in
ii) above remains bounded since (S.I) holds (take a = μ). In the two cases we will
denote by S the set of solutions to (9).

3) We will assume for any Φo in E, there exists a unique solution Φ(ί, x) of (8)
satisfying: for all t ^ 0, we have

. (12)

We remark that, formally, (11) is obtained by multiplying (8) by Φ: indeed we
remark that in view of 1. G(eiθΦ) = G(ΦψθelR) and thus F(eiθΦ) = eiθF(Φ) and

j F(Φ)ΦeR Thus multiplying (8) by Φ, integrating over 1RN and taking the

imaginary part, we find: — (|Φ(f, )|L2(]RiV)) = 0.In the same way, multiplying (8) by

— (Φ), integrating over 1RN and taking the real part, we obtain

— (<?(Φ(t,•))) = (), and this yields (12).

After having described our assumptions l)-3), we are now able to show that S
is orbίtally stable in the sense that we have

Vε>0, 3(S>0, VΦ o e£, inf | | Φ o - u | | E n L 2 ( R W ) < ( 5 implies:
ueS

Vί^O, inϊ\\Φ(t,-)-u\\EMN)<ε.

(We remark that if ue 5, eίθueS, W e R ) This claim is very easy to prove if
|Φ0IL2(IR^) — μ (we will make this assumption to simplify the presentation): indeed if
the above claim were not true there would exist ε o >0, Φn

0, and tn^0 such that:

M\\Φn(tn,')-u\\EnL2^N)^ε0
ueS

ί Φ"oeE,

I M\\Φn(
K ueS

[where Φ\t) is the solution of (8) corresponding to ΦJ]. But in view of 3);

Therefore we deduce from 2) that either Φ\tφ •) is relatively compact in
up to translations, or Φ\tn, •) is relatively compact in dίnL^lR^). In these two
cases, this implies:

inf||φ-(ίM, ) - « l l £ n L W ) - r ° .

and this contradiction proves our claim.
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Thus we see that the orbital stability of S is a straightforward consequence of 1)
the fact that the minimization problem (9) is well posed and of 2) the conservation
laws (11) and (12) (this was first observed in a particular case by Cazenave [9]).

We now explain why we call this phenomena "orbital stability of 5". Indeed let
us first remark that any u solution of (9) satisfies:

-Au-F(u) = θuinWLN, ueEnL^IR"), |u|£2 = μ, (13)

for some Lagrange multiplier # e R Therefore eiθtu(x) = Φ(t,x) is the solution of (8)
corresponding to Φ0(x) = u(x) and thus eiθtu{-) is the orbit of u (we remark that
Λ e S , Vί^O).

We finally explain why this result is in general the best possible: first, very
simple examples (linear Schrodinger equations, see also [2]) may be given that
show that no stronger forms of stability are in general true. In addition, in general,
one cannot replace in the preceding result S by {eiθu( ))θeR: indeed suppose F is
invariant by translations and following [9] we consider for ueS, ?

A simple computation shows that Φn(t, x) is the solution of (8) corresponding to

the initial condition Φn

0= Qxp l-(x,y)\u(x). Now, in our examples we will

have £ = if1(lRJV), and Φn

0—^u while Inf\\Φn-e i θu\\H H m remains strictly

positive.

II. Local Nonlinearities

We consider the following nonlinear Schrodinger equations:

dΦ
{t,x) + ΔΦ(t,x) + \Φ(t,x)\Φ{t,x) O i n l R + x i R * , (1)

ot
i n R N , (4)

where Φ^frQR?), p>l.
4

If l < p < l H , it is well-known (see Ginibre and Velo [10,11]; Cazenave

[7, 8] Lin and Strauss [23]) that there exists a unique solution Φ(ί,x) of (1)~(4) in
C([0, aolx H1^)) and Φ satisfies:

)> (12)

for all ί ^ O , where δ is defined on H\WLN) b y :

p+
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4
Remark II. 1. If p ^ l H , a solution of (l)-(4) may not exist for all time (see

Strauss [31]; Glassey [14]).

We now look for standing waves of (1), that is we consider the equation

-Au + λu = \u\p~1u in RN, ueH1^) (5)

and because of (11), it is natural to prescribe:

Mh^N^μ, (14)

where μ is given > 0, and λ is a Lagrange multiplier.
A natural way to obtain solutions of (5)—(14) is to look for the following

minimization problem :

Iμ = Inf {£{u\ ueH\W»\ \u\2

L2(RN) = μ). (9)

We will call any solution of Iμ a ground state solution of (5)—(14).
Concerning the solution of (9), the following result, due to Lions [21, 22], is

known:

4 4
Theorem ILL Ifp>l-\ , Iμ= - oo. / / p < H , we have Iμ<0for all μ>0 and:

i) Let (un)n be a minimizing sequence of (9): M / H ^ R ^ ) , \UΠ\LHRN)—> f1 an^

$(un) — * Iμ > t n e n there exists (yn)n CIRN such that:

un( +yn) is relatively compact in H1^^.

ii) Let u be a solution o/(9), then: u{-) = eιθu0(- +y)for some θelR, yelRN and
where u0 is a solution of (9) satisfying:

WO(X) = MO(|X|)GIR, UO(X)>O, and uo(\x\) is decreasing with \x\

-Au^ + λu^ul in ΊRNJor some λ>0; UQEC2^).

Actually in [21, 22], this result is proved for real valued H1 functions, but
obviously the proof of i) is totally similar, while we show now that if u is a
complex-valued solution of (9), then M( ) = Λ ( ) where θeJR, v is a real-valued
solution of (9). Indeed, if u = uι + iu2, where w1,w2eiϊ1(lR]V) are real-valued, then

is still a solution of (9) and this yields:

|«lp~1wi in 1RN

IH^Γ VI in IR*

for some real Lagrange multiplier λ. But this shows that — λ is the first eigenvalue
of the operator — A — \u\p~ι acting over Hι{^) and thus: M1, W2, IW1!, |U 2 | are all
multiples of a positive normalized eigenfunction ΰ of — A — \u\p~ \ i.e.:

in RN, ue&iWL^nH1^), ΰ>0 in R*

It is now obvious to deduce that: u = eιθΰ and that ΰ is still a solution of (9). This
completes the proof of Theorem ILL
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For all μ > 0, we denote by Sμ the set of all solutions of (9). Then we have the
following result of "orbital stability":

4
Theorem II.2. Let l < p < l H ,letμ>0; then for all ε>0, there exists δ>0 such

that for any initial data Φo satisfying :

ΦQEU1^), inf l|tt-Φollffi(iRN)<<5
ueSμ

then the solution Φ(t,x) of (1)~(4) satisfies:

inf | |M-Φ(ί, OIIHIURIV)^, for all ί ^ O .
ueSμ

Proof of Theorem 11.2. The proof has been already discussed in Sect. I except that
we assumed \Φ0\L2(TRN) = ί1- But, because of the assumption made, we have:

μ-δ<\Φ0\L2{m<μ + δ.

And using i) of Theorem II.l, we may conclude by a trivial adaptation of the
argument given in Sect. I.

4 4
Remark 11.2. If p Ξ> H and if p < H (< oo if N ^ 2) then there exist real,

positive solutions of (5)—(14) (for all μ>0) (see for example Berger [5] Berestycki
and Lions [3, 4]) but these are orbitally instable as it can be seen by a simple
argument (see for more general results Berestycki and Cazenave [2]): actually one
can exhibit initial data Φo as close to these solutions as one wants such that the

solution of (l)-(4) does not exist for all time ί^O (and there is blow-up).

Remark II.3. We could replace the nonlinearity \Φ\P~X by a general nonlinearity
f{Φ) where fe C((C) and f(reiθ) = eiθf(r) for all r e 1R, θe R Then similar results hold
provided one assumes:

(i) 3uoeH\]RN), \u

(ii) lin

/ * \
(iii) lim F(t)Γ 2 < + oo F(t) = J f(s)ds .

ί^0+ \ 0 /

Under these assumptions, Theorem II.l is still true (see [21, 22]) and as soon
as one can solve (l)-(4), Theorem II.2 holds. For example, if/(z)=zlog |z|2, (i), (ii),
and (iii) above are valid and Theorem II.l still holds. In addition, by a simple
application of Gross-Sobolev's inequality - see Adams and Clarke [1], Bialynicki-
Birula and Mycielski [6] -, one can prove that there exists a unique positive
solution of (9) u0 and thus:

Therefore, the analogue of Theorem II.2 holds in this case (and we answer a
conjecture given in Cazenave [9] where a related result was proved under the
restrictive assumption that Φo is spherically symmetric).
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Remark II A. If Φo is spherically symmetric, then we may replace in the above
result Sμ by the subset of Sμ consisting of spherically symmetric functions [the
proof is then identical since Φ(t, x) remains radial for all t ̂ 0 if Φo is radial].

4
Remark 11.5. If Λfg4 and if l < p < l H , then by a uniqueness result due to

MacLeod and Serrin [24], we have

where u0 is the unique positive radial solution of: — A u0 +λu0 = up

0 in 1RN, uoe J/
and \uo\l2 = μ. Indeed, in view of [24], any positive radial solution of

= up in ΊSLN

9 ueH^WL"), u>0in lR N

is given by u(x) = λ1Kp~1)u1{]/λx) where u1 is the unique radial solution of

-Auγ+uγ=u\ in 1RN, u^H1^), W l > 0 i n IR .̂

Thus

1 N
.

1 N
where a = . This yields the characterization of Sμ.

III. Hartree-Type Time-Dependent Solutions

We consider the following equation:

• (

Φ(O,x) = Φo(x)

vf

in

m
> c)+ Σ

i = 1

, 1

Ix-yl'
IR3,

\χ -
-Φ(ί,x)

,χ)=o in

in

IR+

R 3

X (2)

(4)

where xv...,xm are some points in IR3; z f >0. We denote by Z=YJzi. If

R3), there exists a unique solution ΦeC([0, ooC H 1 ^ 3 ) ) of (2)-(4) (see
Ginibre and Velo [12, 13]); in addition Φ satisfies:

|Φ 0 IL2(IR3) , (11)

^(Φo),

for all ί^O, where S is defined on H 1 ^ 3 ) by:

d 2 \ f ^ l Π \u{x)\2\u{y)\2\x-y\~ldxdy.
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For the same reasons as in the preceding sections, we consider the following
problems:

m z / 1 \
-Δu- Y-—i—u + λu+ M2* — U = 0inlR3, ueH\1&3), (15)

i=i\x-Xi\ \ \x\)

Mhm = μ. (14)

And we introduce again:

Before stating any result concerning (14)—(15) or (9), we need to introduce λv the

zz
first eigenvalue of the operator — A — ^ -—-—-, i.e.

λ^Minίf \Vu\2-
llR3 i

it is easy to check that λ1<0.
We may now state the following result, due to Lieb and Simon [18], and Lions

[20,22]:

Theorem III. 1. i) Ifλ<0 or λ^ —Λ,l5 there exists no positive solution of (15).
ii) // λe [0, —λ^, there exists a unique positive solution uλ of (15).

In addition uλeCι(J), -λ^ H^ΈPynC&O, -λj H^WL3)) and I w J ^ ^ is

strictly decreasing for λe[0, ~λ{]\ uλ λJ^_λi) > 0. We denote by μQ — |WOIL2(IR3)>'
m

we have: μo>Z= Σ zi

iii) // (un)n is a minimizing sequence of (9) and more precisely if (un)n satisfies:

uneH\JR.3)9 |wnlί2 ( 1 R3 )-^/ie]0,μ0], S(u^—^Iμ, (16)

or

w^eiί^R 3), lim|wJ?2/τR3ϊ^μn, ^(wj—>!., , (17)x μ o '

then {un)n is relatively compact in the Hilbert spaces X = {ueL6(1R3), DueL2(IR3)},
and if (16) holds, (un) is relatively compact in iϊ^lR3). In addition if (17) holds and
lim | M W | | 2 ( 1 R 3 ) > μ 0 ' ^ e n fl" ' ι 'm z > ί P o z ^ ί 5 Γ^ ^ strong topology ofX and the weak

n

topology of L2(IR3)J lie in Sμo.
iv) For any μe]0, μ 0 ] , ί/ẑ  5βί Sμ of solutions of (9) is given by Sμ = {eiθuλ, θelR},

where λ is determined by: |tίΛ|^2(IR3) = μ.

Remark IILί. This result is proved in Lions [22] and relies on previous results of
Lieb and Simon [18] and Lions [20]. Let us also mention the works of Reeken
[27] and Stuart [32,33].

In fact, in [22], iv) is proved only for real-valued solutions of (9). But by the
same argument as in the preceding section we extend iv) to any complex-valued
solution of (9).
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We may now state our stability result concerning Sμ (or uλ).

Theorem III.2. Let μe]0, μ 0 ] . For all ε>0, there exists δ>0 such that for all
initial data Φo satisfying:

i) Φ o e i ί W ) , inf \\u-Φ0\\HH]RN)<δ,

ueSμ

then the solution Φ(ί, x) of (2)-(4) satisfies:

inf ||M —Φ(ί, )HHi(iR3)<ε, for all ί ^ O .
ueSμ

ii) Φ o e H 1 ^ ) , mϊ{\\u-Φ0\\x + dR(u,Φ0)}<δ, \\Φ0\\LHl!L^R,
ueSμ

where dR denotes a metric for the weak topology of the ball of radius R o/L2(lR3) and

R is some arbitrary constant larger than j/μ 0 , then the solution Φ(t, x) of (2)-(4)

satisfies
mΐ{\\u-Φ(t, )\\x + dR{u,Φ{t,'))}<ε for all ί^O.
ueSμ

We will skip the proof of this result since it is an obvious consequence of
Theorem III.l above and of the argument given in Sect. I.

Remark 1112. Similar results may be proved for systems of Hartree equations or
Hartree-Fock time dependent equations.

IV. Pekar-Choquard Time-Dependent Equations

We consider now the following equation:

I dΦ ί 1

i ( ) Δ Φ ( ) ^ J Φ ( ) \ 2 d

(t,x) + ΔΦ(t,x)+^JΦ(t,y)\j^dyιΦ(t,x) = O in E+xR 3, (3)

in 1R3. (4)

If ΦQEH^IR3), there exists a unique solution ΦeC([0, oo[;HHlR3)), of (3)-(4) (see
Ginibre and Velo [12, 13]); in addition Φ satisfies:

2(R3), (11)

)> (12)

for all ί^O, where δ is defined on iί^lR3) by:

ff |tt(x)|2 |κ(y)|2 |x-yΓ'dxdy.
R 3 IR3 x R 3

Again we introduce the following problems:

-Δu + λu- l\u\2*-^\u = 0 in TR?, ueH1^3), (16)

Nί2 ( ] R3 ) = μ; (14)

and

Iμ = Inf { ί (II), ueH\1R\ \u\2

LHm = μ}. (9)
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We then have:

Theorem I V.I. Let μ>0.

i) Let (un)n be a minimizing sequence of (9): i^eH^IR3), |tίj£2(]R3)—>μ and
${un) —> Iμ then there exists (yn)n C1R3 such that :

un{ + yn) is relatively compact in i ί

ii) The set Sμ of solutions of {9) is given by:

where (λ9 uλ) (e]0, + oo[x /ί^lR3)) is the unique solution of (16)—(14) such that uλ is
real, positive and radial.

Remark IV.ί. Part ii) of the preceding result is due to Lieb [17] while part i) of the
above result is due to Lions [21, 22].

Again, an immediate application of the above result and of Sect. I is the

Theorem IV.2. Let μ>0; for all ε>0, there exists δ>0 such that for every initial
data Φo satisfying:

R3), inf \\u-Φ0\\Him<δ,
ueSμ

then the solution Φ(t,x) o/(3)-(4) satisfies for all ί^O:

inf | |w-Φ(ί, )Hfli(iR3)<fi.
ueSμ

Remark IV.2. Similar results may be given for equations of the form:

dΦ

i—(ί, x) + Δ Φ(ί, x) + V(x)Φ(t9 x)

\Φ(t9y)\2f(x-y)dy\Φ(t9x)==O in R + x RN , (18)

Φ(0,x) = Φ0(x) i n R N , (4)

where VeLP(1RN) + Lq(WLN) with ^ <p, q^ + oo, and feLα(lRN) + Lβ{WiN) with

N 2

—- < α , p < + oo.
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