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Ising Model With Ju = \i-j\-2

John Z. Imbrie*
Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. A low temperature expansion is constructed for the one dimensional

Ising model with Hamiltonian H = £ \i — j\~2(1 — α ^ ) . It is shown that the

two point function <o-j;σ7 > obeys upper and lower bounds of the form

f(β)\i —j\~2 for inverse temperature β sufficiently large.

Introduction

The one dimensional Ising model with Hamiltonian H= £ J(i — y)(l — a^j)

exhibits a phase transition with spontaneous magnetization at low temperatures
if the spin-spin coupling J{i — j) is sufficiently long range. If J(r) — r~a with α > 2,
there is no magnetization at any temperature [7, 15, 18], but if α:§ 2 there is a
transition. The case α < 2 was treated by Dyson [7] but the borderline case α = 2
was not treated rigorously until Frohlich and Spencer [10] developed a sophisticat-
ed Peierls argument for the model. (Anderson, Yuval, and Hamann [1,2] studied
this case in connection with the Kondo problem and predicted a spontaneous
magnetization.) In this paper a more detailed analysis of the borderline case α = 2
is made. We obtain precise upper and lower bounds on the long distance behavior
of correlation functions at low temperatures.

The technique of Frohlich and Spencer originated in their study of the two
dimensional Coulomb gas and plane rotator models [9]. There it provided a tool
to study the long distance behavior of correlation functions when truncation was
not necessary to obtain decay. When truncation was necessary, their technique
did not apply because it is not a full fledged cluster expansion—it is analogous to
Peierls expansion half of a mean field expansion [12]. One of the main motivations
of this work is a desire to combine the expansion of Frohlich and Spencer with
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a decoupling expansion, thereby obtaining full control of a number of massless
models.

In the two dimensional Coulomb gas, the decoupling expansion would have
to be done in various dipole-type gases—this seems too difficult at the moment,
although some simplified versions have been studied recently [8,11]. In the one
dimensional Ising model, however, we provide a Mayer or decoupling expansion
to go along with the Peierls expansion of [10]. This enables us to handle correlation
functions such as (σj σj) for which the truncation is nontrivial (due to the
magnetization).

The model involves spins σt= ±lJeZ, with interactions given by the
Hamiltonian

H L ( { σ i } ) = Σ | i - ; Ί " 2 ( l - σ , σj). (1.1)

We impose the boundary condition that σ{ = 1 for | ι | ^ L , and establish
estimates uniform as L-» oo. Expectations are constructed as usual:

<FilF2>L=<FiF2>L-<Fi>L<F2>L, (1-2)

where Z is the normalization. The following two theorems are our main
results about this model.

Theorem 1.1. Let β be sufficiently large. Then

(1.3)

Theorem 1.2. Let ε>0be given, and suppose ije( — L,L) with \i —j\ > M0(ε). Then
for β>βo(ε)

π
here ζ(2) = £ j ~ 2 = — . If\i -j\ ^ β1'2, then this implies that

7 = 1 6

(1.4)

y (1.5)

for β>βo(ε').
It is particularly satisfying that the expansion is sensitive enough to obtain

lower bounds on the two point function and thus establish the power law fall-off.
Upper bounds are usually much easier to obtain. More detailed bounds on the
two and higher point functions could also be obtained from our expansion with
a more careful study of the leading terms. General Ursell functions could also be
treated. More general systems with cx\i — j \ ~ 2 ^ Jtj ^c 2\i —j\~2 could be treated
with minor changes in the estimates.

The thermodynamic limit L-> oo of this model exists by [13]. (It would also
follow from our expansion.) Thus these bounds carry over to the infinite volume
correlation functions.
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Thouless [17] predicted a discontinuity in the spontaneous magnetization of
this model as β decreases through βc, the point where magnetization disappears.
Simon and Sokal [16] prove that this happens, provided there is a spontaneous
magnetization for β large and provided there is a power fall-off in < σ{ σ, > uniformly
for β>βc. Our proof of power fall-off is restricted to large β, so the proof of
existence of the Thouless effect remains an open question. Bhattacharjee et al. [19]
present a different picture of the region near βc. They argue that the power law
decay of ( σ σj) varies with β (in contrast to the situation at large β where we
find a constant r ~ 2 decay) and that the power goes to zero as β -> βc.

In Sect. 2, we give the Peierls or contour expansion in a form very close to
the one in [1.0]. Since we intend to quote certain estimates from [1.0], an explanation
of the ideas is given here. Each contour is a set of spin flips, and summing over
collections of contours is the same as summing over spin configurations. Each
contour has an even number of spin flips, so if no contour surrounds a spin then
it must be plus. To prove that there is a spontaneous magnetization, one must
show that it is unlikely for any contour to surround a given site. When constructing
contours it is therefore necessary to insure that the energy of contours in some
class is commensurate with the logarithm of the number of such contours (the
"entropy"). Then at low temperature the energy will win. This balance is assured
by forcing isolated parts of a contour to have an odd number of spin flips, and
by keeping contours very far apart. An odd set of spin flips has an energy that
behaves like the logarithm of the distance to the nearest other spin flip, so these
isolated parts of a contour provide a lot of energy. The entropy also behaves like
the logarithm of the distance between spin flips: There are D — 1 ways of placing
a spin flip pair of length D over a given point. Thus the aforementioned
energy-entropy balance is possible. Keeping contours far apart insures that
interactions between contour do not cause much of their energy to be lost. In fact
it is necessary to keep large contours even farther apart than in proportion to
their diameter.

In Sect. 3, we give the Mayer expansion. The weak interaction between contours
is removed step by step until the partition function is expressed as a sum over
collections of clusters (or contours connected into Mayer graphs) which affect each
other only by their excluded volume. Interactions between contours in a cluster
decay as r'2.

The next section deals with the hard core conditions on clusters. At the same
time, disconnected processes in an expectation are cancelled between the numerator
and the partition function in the denominator. The result is the expansion for the
correlation functions.

Section 5 proves convergence of the expansion and establishes Theorems
1.1-1.2. We proceed through the various levels of structure, taking care to preserve
a decay like r ~ 2 at each stage.

2. The Contour Expansion

We begin the construction of a cluster expansion by identifying an appropriate
set of contours for each configuration of spins. Each contour γ will be a collection
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of bonds across which the spin changes sign ("spin flips"). Unlike in the
two-dimensional Ising model, it is not immediately obvious what the appropriate
notion of connectedness of contours should be. If one includes too many spin flips
in a connected contour, then there will be too many contours of a given energy
surrounding a fixed point and so energy will not dominate entropy. On the other
hand, if too few spin flips are included in a connected contour, then the contour
can have strong interactions with the rest of the system. The construction of
contours we give here is basically the same as in [10], but we enforce certain
irreducibility conditions on the contours in an ensemble. This has the effect of
removing any trace of the inductive nature of their construction. While it may not
be absolutely necessary, this simplification aids the control of ratios of partition
functions since all constraints will be very explicit.

We fix the size of our finite system at 2L— 1, and require that σt = 1 for |z'| ̂  L.
Letters y, p, Γ will denote contours in this system, that is, sets of spin flips or bonds
6eZ* n [ — L, L] such that σtσi + ι = — 1 or ί the site just before b. We write \y\ for
the number of spin flips in y.

Definition. A contour y is called irreducible if:
A. The number of spin flips in y is even.
B. There is no decomposition of y into subsets y = y1^j... uyπ such that \yt\

is even for all i and distfy^y,.) ^ M{min{d{yι),d(yj)}γ12 for iφj. Here d(y) is the
diameter of y.

Proposition 2.1. There is a unique way of partitioning the spin flips of any spin
configuration into irreducible contours yα such that

C. dist(ya,7/?) g; M{mm{d{ya\d{yβ)}fi\

Proof. To find a partition satisfying A, B, C above, start by considering the set of
all spin flips as a single contour. Conditions A, C are certainly satisfied, but the
contour may not be irreducible because of condition B. If B is not satisfied, divide
up the contour into yx u . . .uy Λ for which A and C will hold. If B does not hold for
each of y1?...,yπ, then we split up the reducible y/s further. The procedure repeats (at
most finitely many times) until all contours are irreducible. Odd contours (|y| odd)
are never generated by this procedure. We need only check that the distance rule C is
never violated.

Whenever y is split into y x u . . . u yn as per B, we have C for ya, yβ in this splitting.
Furthermore

dist(y,y') ^ M(min{d(y),d(yΊ})3/2 (2Λ)

for y' ^ y in the ensemble of contours before the splitting. Since d(γa) :§ d(y)
and dίst(yα, y') ̂  dist(y, / ) for yα in the splitting of y, the inequality C is preserved.

Thus existence is proven and we concentrate on uniqueness, which is the main
content of the proposition. Suppose we have two decompositions of a set of spin
flips into irreducible contours, {yα} and {pα}. Then {pα} cannot be obtained from
{yα} by joining two or more y's into a single contour, because by C the resulting
contour would violate B and so be reducible. Hence at least one contour in {yα}
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must be broken up in forming {pα}. Let y be a smallest such contour.
Consider the splitting of γ given by {pac\y}. At least one element must be odd,

otherwise this splitting would violate B. (If the distance condition holds for {pα}
then it holds for {ρany}.) Since y is even, at least two elements of {pany} are odd;
denote them by P i n y , p 2 n y . Each of pup2 intersects a yα ^ y in an odd set,
otherwise they could not be even. Call these contours yί for p t ,y2 for ρ2 it is possible
that yί = y2. Since y^pi is odd, y. must be broken up in {pα}. Hence by definition
of γ,

d(yi)^d(γ),d(y2)^d(y). (2.2)

However,

£ M(min{dist(7,7l),dist(7,72)})3/2, (2.3)

and since

2 , ΐ = l ,2, (2.4)

we have
d(y) ^ M(Md(y)312)312 > d(y) (2.5)

for M > 1. We have a contradiction, so our supposition that {yα} φ {ρa} cannot
be correct, and the proposition is proven. •

Clearly any set of irreducible contours satisfying the distance rule C determines
a unique spin configuration. Thus there is a one-to-one correspondence between
spin configurations and collections of irreducible contours satisfying C. This means
that our contour expansion

Σ*-mM)= Σ
^ {y,} irreducible

dist(yt ,yΓ) ^ M{txun{d(yi),d(yv)})3i2 (2.6)

is valid. This formula will be the starting point for the Mayer expansion of
the next section. It is particularly useful in that all constraints on the sum over
contours are explicitly given as conditions on pairs of contours.

The next proposition proves the charged constituent condition of [10]. It is
used to extract self energies of contours.

Proposition 2.2. If y is an irreducible contour and p ^y,pψy, then

D. dist(p,y\p) ^ 2Md(p)3'2 implies that p is odd.

Proof. If p were even, then y\ρ would also be even and

dist(p,y\p) ^ M(min{φ),d(y\p)})3/2. (2.7)

This violates condition B for y. Thus p must be odd. •
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3. The Mayer Expansion

The Mayer expansion expresses the partition function as a sum over collections
of noninteracting connected graphs (or "clusters"). We know from [10] that for
M large a contour interacts only weakly with the other contours of the system.
It was shown that

0 ^ H(yi) + H(Γ) - H(yivΓ) ^ ^(logM) 3 H( y i \ (3.1)

for Γ = y2yj uy n and {yα}" = i satisfying A,C, D. This explains why a convergent
Mayer expansion should be possible. We will also need to control the 3-body and
higher body interactions between contours. Actually, their will remain hard core
type conditions on the clusters; these will be treated in Sect. 4.

We will use the tree graph formulation; see [5], or [6] for an overview on the

method. For this section, we will concentrate on a fixed {yα} satisfying A, B, C, D.

Letters Γ will refer to unions \Jya{β) where {ya{β)} e {γa}.
β

The Hamiltonian for Γ is

H(Γ) = 2 Σ \i-jΓ2Xr(iJ\ (3-2)

where

1 if an odd number of spin flips in Γ separate i from /,

θ otherwise. ( 1 3 )

Interpolating Hamiltonians are defined inductively:

HS{(Γι;Γ2 ) = H(ΓίuΓ2)sι + (HiΓJ + H(Γ2))(ί -Sl)9 (3.4)

a n d in g e n e r a l

H S l S 2 . . . s , 1 ( Γ 1 , Γ 2 , . ..,Γn;Γn+1)
:=zHSlS2...Sn_1{Γ1,...,Γn-ί;ΓnuΓn + 1 )sn

+ (HSιS2...Sn_ι(Γί,...9Γn-1;Γn) + H(Γn + 1))(l-sn). (3.5)

Here st are interpolation parameters, SJG[0, 1]. When sn = 0we have

1) (3.6)

and the contours in Γ 1 u Γ 2 u . . . u Γ n are decoupled from the rest of the
system (Γ π + 1 ) .

This interpolation procedure has the nice property of preserving "stability" as
the following proposition shows.

Proposition 3.1. Let Γ ί =(J>' α ί , i = 1, ,π + 1, and suppose the contour con-
a

figuration {yai}i=i,...,n + i satisfies conditions A, B, C, D. Put

,.) = ( 1 - ^ ( l o g M ) 3 )ΣH(yJ, (3.7)
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where c is the constant that appears in (3.1). Then

" (3.8)

Proof. When n — 0 the first inequality in (3.8) is an identity; we establish
the general case by induction. Since HSί Sn(Γ1,...,Γn;Γn+1) is a convex sum of
Haι...8n_1(Γl9...,Γn-1iΓnvΓn+ί) a n d "(Haι...8n_1{Γl9...,Γn-ί;Γn)
it suffices to prove the lower bound for each term separately.

For the first term we have by induction the lower bound

1). (3.9)
i = 1

By (3.1),

= H{Γn) + H(Γn+ι), (3.10)

and together with (3.9) this proves the lower bound for

Applying induction to the second term yields the lower bound

"ΣHiΓd + HiΓJ + WΓn^) (3.11)

and we can apply the steps in (3.1.0) to show

H(Γn) £ ' f ( l - ^ ( l o g M ) ^ H ( y J + H(yln) Z H(Γn). (3.12)

This completes the proof of the first inequality; the second is immediate if
we apply .(3.12) to Γn + 1. •

The next ingredient for the Mayer expansion is a formula for — HSι...Sn(Γ1?

ί 1 if an even number of spin flips in Γ lie

ΘΛUj) = \ between i and j , or if Γ = 0 ,

L— 1 otherwise
= l-2χΓ(i,j). (3.13)

Proposition 3.2. IfHSί^Sn{Γι,...,Γn;Γn+1) is defined through Eqs. (J.2)-(5.5), then

-f-Hs,. ..Sn(Γι ,...9Γn;Γn + 1)
ds
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1=1

(3.14)

Proof. The important aspect of this formula is the fact that Γt is "connected" to
Γn + ί in the term with a factor sι...sn-ί. We make the interpretation Γι + 1u...
uΓn = 0 if l^n. We derive (3.14) from the following formula for the
undifferentiated Hamiltonian:

« + 1

HSι...Sn(Γ1,...,Γn;Γn+1)= Σ H(Γk)
fc = 1

n k

ft = 1 Z = 1 ί < j

Equation (3.14) follows immediately, since differentiating with respect to sn

picks out the k = n term.
We prove (3.15) by induction on n; it clearly holds for n = 0. By (3.5) and the

induction hypothesis we have

HSι...Sn{Γ1,...,Γn;Γn + 1 )

nΣn(rk) + B(rnurn + 1))sn + (nΣH(rk)\i-sn)
\k=l J \k=l /

n - 2 k

k=1 I= 1 ί<j

n - 1

M s n ) ) . (3.16)

The first two terms equal the first term in (3.15) plus

sn(H(Γnuίπ + 1 )-H(Γ n ) -H(Γn +,))

= -4snΣ\i-JΓ2χrβJ)XrnM, (3.17)

which is the k = l = n term in (3.15). The third term in (3.16) was unaffected
by the interpolation since it was present in both terms of the convex sum. It
provides the k^n — 2 terms in (3.15). We use the identities

θΓl.r2 = θΓίθΓ2 (3.18)

to write the last term in (3.16) as

n - 1

Σ -4sι...sn-1 Σ\i-J\~2Xrι(hJ)χrn(iJWrι + ίu...urn.ί(Uβ
1=1 i<j

- " l 4 s I . . . s B £ | i - j r 2 Z r 1 ( U " ) Z r . + l(U")0r1 + lU...ur.(i,j). (3-19)
1=1 i<j
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The first term is the k = n—l term in (3.15); the second provides the k = n,
I < n terms. Thus (3.15) and the proposition are established. •

Remark. Any time ^ l o + l U . . . u Γ n f t i ) = - 1, the term in (3.14) with / the next
integer after Jo such that χΓι(i,j) = 1 will have 0 = 1 . Since that term has fewer

factors of s , it dominates the earlier term. Thus — {-βHSι...Sw(Γ1,...,Γπ;Γπ+1))
USn

is always non-negative.
We now give the expansion for e-β*1(yiu...vyn)^ u s i n g (3.14).

e - βH(yι u . . . u yn) _ . e - βH{yχ)e - βH(γ2 u . . . u y n )

+ μSl4β Σ \h-Jir
2Xyί(hJl)Xn....^JhJl)e'βH^^-^)- (3.20)

0 ί i < j i

We put Γx =yx and choose Γ 2 depending on which term (iιj1) we are expanding

further. Let Γ = y 1u...uyM . Γt will be defined as the union of all contours

γm ^ Γ\ΓX\.. .\Λ-1 s u c ^ ^ a t XYm(h- ιJι-1) = 1. This choice insures that

Xy2 u... uVn^l'Λ) = Xr2(hJl)' ( 3 2 1 )

If Γ 2 = 0 or if %r2(
i'iJ'i) = ^ then the (ZΊJΊ) term in (3.20) vanishes, and we

disregard it. The second term in (3.20) is expanded into

2

+ Σ Σ m2\h-hΓ2\i2-h\-2χΓι(h,h)lr2(h,h) Σ ldSlds2

(3.22)

Continuing the interpolations until Γ is exhausted, we obtain

oo 1

/ / / / I (iS 1 CiSl

Λ = 1 i i < j i ik- ί <jk-! η 0

/c

s ^ ( / ) 5 / - 2 ] ^ s i s » c - i ( 1 ) " > k ~ l ! k > β H ( Λ ' k ) . ( 3 . 2 3 )

Here f7 is summed over all maps from {l,...,/c} to itself such that η(l)<l. It
specifies which term in the sum over / in (3.14) is taken at each interpolation. If
k = 1 we replace Σ with 1. Our choice of Γz allows us to eliminate the dependence

η

of the χ- and ̂ -factors on Γ ^ ^ . . . ^ , as in (3.21).
Given Γ, the above construction was completely deterministic with the

exception of the choice of y1 = Γλ. To eliminate this freedom, we order once and
for all the set of all possible irreducible contours (not just the ones in a particular
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collection {yα}). When applying (3.23), we always choose Γ1 to be the first contour
of Γ. We write y1 Ly2 when yx is before y2.

Equation (3.23) defines the notion of cluster (or connected graph) that we
will use in the expansion. A cluster consists of the following data:

An integer k> 1
an irreducible contour Γi;

a tree η (that is, integers 0 < η(l) < I for / = 2,... ,/c);
for each / = 2,... ,/c, a pair of integers /z_ ι < j/-1,

a union of irreducible contours Γt = (J yαZ,
α

and an interpolation parameter ^ ^ ^ [ 0 , 1 ] .

These data satisfy certain compatibility conditions:

(0 The irreducible contours forming Γu...,Γk satisfy d i s t (γ ,/)^

M(mm{d(y)9d(y')})3ί2

9

(ii) Γx is before all yaί in the ordering fixed above,
(in) For { = 2,...,/c and all α, χ y α /(i z_ l 9 j z_ 2) = 1 and χγjίmjm) = θ for

m<l- 1,

(iv) For J = 2,...,fc, χΓ f ϊ ( I )0Ί-i5Λ-i) = λr I ( i ί- iJz-Ί)=l

Condition (zί) arises from our choise of Γ x ; (/ίi) from our choice of Γ2,...,Γ f c.
Denote by 7 a set of data satisfying these conditions, and let Γ(7) = Γ 1 u . . . u Γ k ,
Γi( Y) = Γ l 5 etc. We associate to the cluster Y the quantity in braces in (3.23), that
is,

1=2

(3.24)

The χ-factors have been dropped by condition (iv); we can take p(Y) = 0 when Y
does not satisfy (i)-(ίυ).

For two unions of irreducible contours Γ, Γ', each satisfying the distance rule
C, write Γ g Γ when every contour in Γ is a contour of Γ'. (This has nothing to
do with the ordering of irreducible contours chosen above). We also denote by
yι(Γ) the first contour in Γ.

With these notations we can write

Σ for Σ Σ ••• Σ Σ ί ^ i ^ - i
Y:Γ{Y)£Γ,Γι(Y) = yί(Γ) k=lii<j1 ik-ι<jk-i Ά 0

in (3.23). Thus (3.23) becomes

βHW (3.25)

Next, we apply (3.25) to g " ^ ^ ^ ) ) a n c j continue expanding until Γ is

exhausted. We say a collection of clusters {Yx,..., Yk} is compatible if
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(1) The contours of each cluster satisfy the distance rule with respect to the
contours in the other clusters.

(2) Whenever Γ1(yr)LΓ1(Y t.), the contours in Yr, do not span the vertices of
Yr. That is, if y is a contour of Yr',χy{Uj) = 0 for each of the k - 1 pairs of sites
iι-1<jι-1 of Yr.
Furthermore, {Y1,...,Yk} is compatible with Γ if in addition

(3) Γ(Y 1 )u.. .uΓ(Y k ) = Γ.

The expansion now takes the form

e-βHin= Σ UP(YS)- (3-26)
{Yi,..., Yk}compatible with Γ s= ί

Condition (2) takes care of the constraints on contours in Γ\Γ(Y) arising
from the choice of Y. Any compatible collection of clusters is automatically ordered
according to the order of their Γ/s. Thus condition (ii) insures that Γ1(Y) is the
first contour in Γ each time (3.25) is applied.

4. The Correlation Functions

In this section we combine the contour and Mayer expansions, deal with the
remaining constraints on clusters, and cancel disconnected processes in the ratio

(4.1)

We take F = Fί(σAί)F2(σA2) where σA = {σi]ieA9 A a finite set of lattice
sites. For example F = σIσj. Γ runs over all unions of irreducible contours in
Z* n [ — L,L] and satisfying the distance rule. In Sect. 5, we prove convergence of
the resulting expansion for correlation functions and derive decay estimates uniform
as L -> oo.

Using (3.26) we can write the numerator in (4.1) as

ZF = Σ F({ys})llp(γsl (4-2)
{Yi,...,Yk} compatible s = l

where by abuse of notation we write F({ Ys}) for the value F takes on the spin
k

configuration determined by the contour configuration [j Γ(YS).
s= 1

We say a cluster Y is odd with respect to ί if there is an odd number of spin
flips in Γ(Y) left of i. Consider two cases for each {Ys}. If no cluster is odd with
respect to at least one site in A1 and at least one in A2, we define Xj = (Aj9 { Ys}seΘ.)9

where {Ys}se& are the clusters that are odd with respect to at least one site in Ajt

Otherwise, we define Xί2 = (Ax vA2, {Ys}se&ί2) where {Ys}se&ί2 are the clusters odd
with respect to any site in Ax or A2. Write {Xα} for {Xί9 X2} or {X12} F depends
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only on {Xα}. Summing separately over {Xa} and the other clusters, we have

= Σ Σ
compatible with {

J
(4.3)

where

= Π (4.4)

We have summed over ordered families of YΓ's not part of an Xa9 and compensated

with a —. The L-ordering of Y/s does not necessarily agree with their indices r.

We next remove the compatibility conditions between X1 and X2, between Xa

and Yn and between the Yr's using functions 1/ taking values .0 and 1 (this is a
standard trick, see [3, 4, 11, 14]):

U(Y19Y2) =

0 if any pair of irreducible contours forming Y1? Y2 satisfy
dist ( 7 l,y 2) < M(min {d(yi\ d{y2)}ψ\

0 if Γ1(Y1)LΓ1(Y2) and any irreducible contour y of Y2

satisfies χ (i9 j)= 1 for (ij) a vertex pair of Y t; likewise

1 otherwise

0 if Y is odd with respect to a site in Aa (denoting Aλ u A2 by

U(Xa9 Y) = *\ 0 if U(YS, Y) = 0 for Ys a cluster from Xα,
1 otherwise;

0 if any cluster in Xx is odd with respect to a site in A2,

likewise for X2 and Aί9

0 if U{YSι, YS2) = 0 for Ysi a cluster from Xl9 YS2 from X2,
1 otherwise. (4.5)

C7(Xι,X2) =

Equation (4.3) becomes

zF= Σ Π ^ Σ ~] Π
» • = l

Π P W Π p(Yr), (4.6)

where F12 = F and the product over «£? is over all pairs {XUX2}, {Xa, Y,}, or
{yri, Yr2}. {XJ is still of the form {XUX2} or {X12} but now the clusters in Xί

can overlap with A2, etc.
Standard manipulations allow us to extract the connected part of this

expression. We put U = 1 + A and expand the product over 5£. This produces a
sum of graphs of vertices Xa, Yr connected with lines j£f and factors

Σ ^ Σ
Jc Gc

J

n
r = 1

Π
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Σ ^ Σ Π AwflftY'A (4.7)
J J

Here Gc is a graph involving all of (Y'x,..., Y'jc) such that each Y'r is connected
directly or indirectly to some Xα; Go is an arbitrary graph on (Y'[,..., Y'-o). The
second factor is what we would have obtained if A = 0 ; it is the partition function
Z. Thus, we obtain the final form of the expansion:

<fιF2>ί.= ΣΠfi^) Σ k π ^ Π f f l Π W <4 8)
{Xα} α (y i , . . . ,Y j ) . / i Gc &eGc α r = l

Notice that the sum of all terms with {Xa} = {XUX2} and Gc not connecting
Xx to X2 factorizes into independent sums associated with each Xa. Thus these
terms sum to <^F1}L(F2}L a n d s o

is given by the same formula (4.8) except that Gc is connected with respect to all
Y's and X's.

5. Decay of Correlations

We now estimate the expansions (4.8) and prove upper and lower bounds of
the type c\i — j \ ~ 2 on decay of correlations. We proceed in two stages: First, the
sum over clusters containing a pair of given points is estimated, and then the full
expansion is controlled using the first estimate. The second part is essentially a
ratio of partition function estimate, and we use the algebraic formalism. We must
also take care to preserve the \i—j\~2 decay at each state of the estimation, and
never to let a contour γ generate combinatorics worse than sβH(γ). We wish to
use only a small part of the energy of contours to control sums so that we can
see that the leading contribution to the two point function dominates all other
contributions. Finitely many factors e~εβH{Y) for each y will control the summations.
Thus with s small, most of the energy is still available. We take M large depending
on ε > 0, and β large depending on M. Let I(y) denote the set of sites between the
extremal spin flips of y. For Γ = [j ya we put I(Γ) = [j I(ya). Define

, | ί - 7 Γ 2 } . (5.1)

Lemma 5.1. For M > M0(ε),β > βo(M\ and y an irreducible contour,

Σ e-εβH^^C(iJ)2e~εβ. (5.2)
γ:ιel(γ),jel(γ)

Proof. This is not the optimal estimate, but it is all we will need here. As in [10],
we define Nn(y) to be the minimum number of open intervals of length 2n needed
to cover 7, and put

[log2d(y)]+ 1

N{y)= Σ NM (5.3)
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It was proven in [10] that the number of y with N(y) g R and 0eI{y) is less than
ecR. (Constants independent of ε, M, β will be denoted by c.) Furthermore, N(y)
was estimated in terms of H(y) by the inequality

N(γ)^c(logM)2H(y). (5.4)

Hence the number of contours spanning 0 with H ̂  E is less than e^
lo^M^2E, Thus

£ s u p g
y:ieJ(y)Jeί(y) y:ie/(y)Jeί(y)

We need at least one interval of length 2" to cover γ for 0 ^ / 7 ^

[Iog 2 ( l + \i - ; | ) ] 4-1. By (5.3) and (5.4) we have

and thus

e-εβH{γ)/2 < Q _|_ I j _ TΊ) ~ εβ/(4-c(\ogM)2)e - εβ

SC(ίJ)2e-Eβ. (5.7)

We have taken β sufficiently large, and used H(y) > 4 for non-empty y. This
completes the proof. •

In the next estimate, we use a modified function of clusters

Pi(Y)= Π ί\iι-i-Jι-l\-2sηll)...sι-2^YlY\e-3'βmi" ) (5.8)
1=2 1=1 a

related to p(Y) by taking absolute value and throwing out some factors we wish

to discuss later. Define L(Γ) — ]ΓL(yα) for Γ = [jya, where L(y) is the logarithmic
α α

length of γ defined in [10] as

i - * . ) ] + !}, (5.9)
k

where il9ί2> &*£ t n e coordinates in Z* of the spin flips in y.

Lemma 5.2. Let M> M0(ε) and β> βQ(M\ and consider the following restricted
sum over clusters. Let k be fixed and let three sites i0, i, j and two integers
pl9p2e{l,...,k} be given. Consider only clusters Y with k contours such that
ioeKΓ^Y)), iG/(Γ p l (y))u{i p i _ 1 j p i _ 1 }, and jeliΓJY))^^.,,]^,}. Fix
in addition the backbone of η(Y): This is the sequence B of integers 1 =
b1<b2<...<br = ma.x{pι,p2}, p1,p2eB, obtained by repeated application ofη to
Pi or p2. A tree ηB is obtained from η by restriction. It contains only the lines (I, η(ΐ))
that are essential in connecting p1 or p2 to 1. Define for x^y^z,

C{x,y,z) = C(x,y)C(y9z) (5.10)
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and let C(x, y, z) be invariant under permutations ofx, y, z. With the above restrictions,

Σ ( i 0 J J ) . (5.11)

Proof. Let cx < c2 < ... < ct be the integers in {1,..., k}\B. We represent the sum
over Y as

Σ Σ Σί***-ι Σ Σ ί v i . Σ
jΓl ίb2- 1 <Jb2- 1 Γb2 ΐb3- 1 < i b 3 - 1 Λ,, tbr-l<Jbr

•Σ Σ ΣK-. Σ Σ Σί^,-i, (5-12)
^7(ci) iC l - i <jCl - i Γci η(ct) ic, - l <jc, - l ΓC(

with each summation variable compatible with the ones to its left and with the
restrictions in the lemma. Sums are converted into supremums from left to right
using appropriately chosen combinatoric coefficients. We use the identity

g sup Cτf(n (5.13)

valid for f(T), Cτ ^ 0 when £ C f 1 ^ 1.
T

For controlling the sum over Γ x = y1 we put

(5.14)

Since iQsIiΓ^ Lemma 5.1 bounds ΣC^1 by 1.

Before going to the other sums in (5.12) we derive some estimates on sums
involving C(x, y) and C(x, y, z). We need the bound

Σ C{x, y)C{y, z, w) g cC(x, z, w). (5.15)

Let us prove first that

Σ C(0, x)C(x, y) ^ cC(0, y). (5.16)

Assume y ^ 0 and split the sum over x into two parts, x > y/2 and x g y/2. On
the second part C(x,y) ^ min{l,4/y2}, so

). (5.17)

By an easy induction, we obtain

.C(x t,y)^ckC(0,y). (5.18)
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Returning to (5.15), suppose x < z < w. We have

Σ C(x,y)C(y,z.w)^^C(x,y)C(y,z)C(z,w)

£cC(x,z,w). (5.19)

The same argument works for the regions z<y<w and w ^ y , and also for other
orderings of x, z, w. Thus (5.15) is proven.

We control each group of summations Σ Σ Σ ί ^sι - I together, writing

Tι = {η(l\ iι-ι, jι-ι, Γh s^J. The combinatoric coefficient is given by

1Jι_ί) (5.20)
α

for / = c l J...,c ί, where

Just one of ii-1,ji^1 is odd with respect to Γ^(/); call it i{Lx and call the other
one ιz

+-i. At least one of i ^ - i , J^o-i must be odd with respect to an irreducible
contour yaη(l) that is odd with respect to iz~-i- (See compatibility conditions (iii)
and (iv), Sect. 3.) Choose the smaller one, say, and call it ί(ϊ"Γ-i) When η(l) = 1
we define ΐ~(/)_i =iη(ι)-1 =i(i/1i) = io- Let bp be the element of B at which ηB

branches—bp is the only element of B which is the image of two b's. If no such
element exists, put bp = mm{p1,p2}. Larger b's connecting bp to p x are denoted
b{

a

1] and those connecting bp to p2 are denoted b^\ For the other groups Tι we
put

o-εβH{yβιl)

c(Kh- ά h- J c(ς_ 19 c x) {C(i[_,, i, j)

C(ί(h-1), iΓ-i)C(iΓ-1, it-i)(C(»T-1,0 + C(i,+-1, Q) π e_β/,H(,.,)

I = px ^= bp or I = b^ for some α,

if-iλ if-i)C(iΓ-1, iΓ-1

I = p2^=bp or I = b(

α

2) for some α,

C(ί(if- i), if- i)C(ίf-1, ̂ +- i)(C(if-1? 0 + Cfoί 19 0)(C(/Γ-! j ) + C(izt i,j))

γ\e-^H^'\ l = bp. (5.21)
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Each CTι depends only on variables from earlier sums, which are fixed at the point of

converting ]Γ to sup.

We bound £ C^ 1 for l = cl9...,cv With η(l) fixed, sum over i ί _ 1 < < / z _ 1 .

One of these (ίf-^ lies in some elementary interval / of length lj of some contour

yaηd), while the other (it- x) lies outside this interval. Changing the coordinate on

Z appropriately, we have

Zu _ l i - i ϊ - i l = ZJ I / - l l

g c{[log2//] H- 1}

and so using (5.9),

; ( ) ) . (5.22)

The sum over Γι surrounding iι_ί or j ι ^ ι is bounded using Lemma 5.1. If there
are m irreducible contours in Γι then

m oo

(2e-°pyn£e-εβl2. (5.23)

Combining (5.22) and (5.23) yields the estimate

Consider now I = b2,.. 9bp-1. We use (5.15) and (5.16) to obtain

Σ C(ί(ίΓ-1), iΓ_ i) C(iΓ-1, it-1) (C0T_!,/,)) + C(it- uhj))

This is one of the terms in the denominator of C^ 1 . The sum over Γt is controlled
as before, and the integral over sι_1 is bounded by the supremum over s^i. Thus

we obtain Σ CT^ = 1 f° r these /. The estimate is similar for the next two
Tι

classes of Γs in (5.21). The case l = bp is also similar if we use inequalities like
C(i^_!, 0 C(ϊf_ l 9j)^ C(if_!, i, ).

To bound the full sum we need only collect the coefficients Cτ :
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The factors eEβH{y*ι) in the C's cancel against factors in p^Y), as do factors

{StUiy Si-iΓ1 and C{i^^iY" Note that C(f( iΓ-1),Ϊ 'Γ-I)~'Π^~ ε / ? f ί ( 7 α ( i - 1 ) ) / 2 ^ 1
α

by (5.2), since some yα ( /_υ contains both Γ(ifΊ_ x) and iι~_1. The factor
(C(i~il)-1,iJ) + C(i*{l)_ίJJ) in CT b α cancels against the same term in the
denominator of CTb^_ i likewise for terms with / = b{

a

1] or b(^\ There are two factors
in the denominator of CTb to cancel against the factors coming from any legs
running into bp. There remains the term C(z0, i, j) from / = b2 and uncanceled terms
at I = p t or p 2 . The bound now takes the form

μ = l , 2 α

Adding the extra factors eu -sι - ι)Lι-1 only makes the inequality stronger. If

^ { ί p l - i J P l - i } then ( C ^ - ui) + C ( ^ _ ̂ ί ) ) " x g 1. Otherwise some yαpi

contains i and at least one of ίpι-ι, jpι~ι a n d we can use (C(ipi_iJ) +

^ p V i ' O Γ 1 ^ ^ 0 ^ 2 ύ 1. Similar remarks hold for the factors at p2.
The s-dependent factor is handled by noting the cancellations between terms:

α = 1

1= 1 α

The last inequality follows because L(y) is less than Λf(y) (see [10]) and hence
by (5.4),

LtΓ^ΣcOogM) 2 //^) . (5.24)
α

This completes the proof of (5.11). •
The next proposition controls the remaining parts of the sum over all clusters

containing three given points. Define

p2(Y) = Pi(Y)mk~1 Π l\e-^H^\ (5.25)
1= 1 a

Proposition 5.3. For M > M0(ε), β > jS0(M), /eί 7 i αrj; oi βr α// clusters such that

and such that i and j are in (J(/(Γz(Y))u{iz_ I Ji- i}) τ / l ^

X p 2 ( y ) ^ C ( i 0 , U ) ^ 2 ^ . (5.26)
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Proof. There are k2 choices of pί,p2 such that i e Γ p i u { i p i _ 1 J p i _ 1 } J e Γ p 2 u
{ip,-iJP2-i} There are less than 2k possible backbone subsets B of {1,...,/c} and
less than k choices for bp. There are less than 2k assignments of the b > bp to the
two classes {b^}, {b{2)}, which then completely specifies the backbone of η as
described in Lemma 5.2. The lemma now yields

Y fc=l

to complete the proof. •

An immediate corollary is obtained by summing over i0. Since

Σ ρ2(y)^Qi,j)e-">, (5.27)
Y:ieY,jeY

Σ P2(Y)Se-El1, (5.28)
Y .ίeY

k
where ieY means ieΓ^Y)^ \J iJ

1 = 2

We now proceed with the second stage of the estimation of the expansion (4.8),
namely the control of the "external sum" over collections of clusters.

Define for R = 3,4,...

PR(Y) = P2(Y) Π Πe~(R~2)εβH(γ"ύ. (5.29)
1= 1 a

Lemma 5.4. .For M > M0(ε), j8 > βo(M\

(5.30)

where L(Y) = Σ LiΓ^ and A = [/ - 1 wΐίft C/ ̂ ίfen m (4.5).

Proo/. There are two ways for A to be nonzero. A contour y of Y2 could come
within Md(y)3/2 of a spin flip or a vertex iz _ x or j ι - ί of Yi. Secondly, a vertex
pair (i~,/ + ) of Y2 could satisfy χy(z",/ + ) = 1 for γ a contour in Y1.

In the first case, summation over which spin flip or vertex is bounded by 3L( Y^.
Suppose 2m ̂  d(γ)< 2m+1. Then there are less than 4M2 3 m / 2 choices of iel(γ) that
we need consider. Furthermore, by (5.7)

-εβH{γ) < (^m\~εβ/(c(logM)2)p-εβ < 9 - 2m - εβ (c -

Thus using (5.28) we obtain

Σ \A(Y1,Y1)\p3(Y2)ύ3L(Yι) Σ Σ2~2me~εβ Σ . ^2(^2)
Y2 in case 1 m = 0 i Y2 containing i
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oo

4M2~m/22-2εβ

. (5.32)

In the second case we k n o w that the vertex pair (i~,i + ), and hence Y2, has
one point in an elementary interval / = [1 , //] of y and one point outside /. If we
sum over all Y2's compatible with a choice of points (z~, / + ) using (5.27), we obtain

Σ \Λ(YuY2)\p3(Y2)SΣ Σ Σ 2C(Γ9i
+)e-2^

Y2 in case 2 α ' / intervals/ , + < 0 £ i - ^ ls

^e-'tHYJ. (5.33)

The i~,i+ sums have been estimated as in (5.23), (5.24). The lemma follows from
(5.32) and (5.33). •

Define the following function of clusters Z,., Ys:

Φ(z 1,...,z J ;y1,...,y,) = Σ Σ A&)ΠPΛYS), (5.34)
Gc££eGc s = l

which appears as part of expressions such as (4.8). Here Zr is either an X or a Y.
Gc is summed over graphs composed of lines {Z,., Ys} or {7Sl, 7S2} connected with
respect to {Zr} (that is, each Ys is connected directly or indirectly to some Zr).

We put L(X)=' Σ ^(^) + ML where |̂ 4| is the number of sites in A, X =
y in X

(A, {Yj). We say xeX if XG Y for some Y in X or if xeA.

Proposition 5.5. For M > M0{ε\β> j80(M),

C(y,x), ( 5 3 5 )

Σ

Proo/. When k = 0 we define Φ(Z 1 , . . . ,Z / ;0) = 1 and the proposition holds. For
general k we proceed by induction. The following Kirkwood-Salzburg type equation
will be used:

Π

Here Ω is summed over subsets of {l,...,fc}. See [14] or [3] for a derivation.
Inserting this into (5.35) and taking absolute values we can drop the U- and
A -factors (which are bounded by 1) and just enforce the condition that A(ZU YJ ^ 0
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for seΩ. This yields

Σ < |
(Yι,...,Yk):xe U Ys

s= 1

^Σ Σ ' UpΛYs)mz2,...,zj,(γχeΩ;(γχφΩ)
Ω (Yi,...tYk):xe (j YsseΩ

A(YS,Z1) = O for seΩ

k / k\ | | | |

^ Σ lol Σ

+ Σ (,o,yfil Σ Σ

• exp X L{Zr)+ Σ UY'sψ-^^.* (5.37)
\r=2 s=ί /

We have applied the induction hypothesis, and considered the cases xeYs, seΩ

and xe Ys, sφΩ separately. Replacing p4 with p 3 , we pick up factors J~[ f| e~
£βH(y^

I a

for each Y;. By (5.24), these dominate the exp £ L(Y;) factors and the
= l\ /

eεβ\Ω\ factors ψQ c a n a j s o j n s e r t a factor e"e/? | i2lC(w,y0) for some w(y;)eZ 1 ;

and some yoίy^ey^. To see this, consider three cases: A vertex of Y's lies within
a contour of Z1; some γal of Ŷ  lies within Md(γal)

312 of a contour of Z1; or a
point of the set 4̂ of Zx lies in Ŷ . In the first and third cases we can take w = y0,
in the second we use (5.7) to show

e-«/»H(,.,)/2 ̂  ( M φ . , ) 3 ' 2 ) - 2 ^ C(w,y0). (5.38)

Now (5.37) is bounded by

it. i ^ T ^ ' ^ p f Σ Li^VH ί Σ
| β f l 0 | Ω | ' Vr=2 / \r=2y

+ e " ε " | ί 2 | Σ Σ cC(w,yo)C(yo,y)C(y,x)
s= 1 weZj

+ fe' Σ TΓ^-T
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"«"* V V C(v.x). ( 5 3 9 )

We have applied Lemma 5.4 to some sums over Y's and (5.27) to others.
When Z1=(A9{YU}) the lemma yields a L(YU) for each case A(Y'S, Yu)φ0 and
(5.28) yields an additional \A\ for the remaining cases, or IXZ^ in all. In each term
s = 1,..., |Ω| we sum over Yf

s compatible with w, yθ9 y (yielding the factor C(y0, y))
and then sum over yθ9 y. By (5.18) we obtain the desired decay cC(w,x). This
proves (5.35). To obtain (5.36) we can drop the second term in (5.37), where Y[
is required to contain x. The factor Σ C(y, x) is also dropped. The sums over Y's
are handled as in (5.39). D

We now proceed to control the full expansion

1
<FχlF2>L = Σ Π n X ύ Σ TTΣ Π

Gc

π
(5.40)

where Gc is connected with respect to all 7's and X's. Consider first terms
where {Xα} = {XUX2} and Gc does not contain the line {Xι,X2

three parts, = Gc luG iuGC 2. GC1 contains lines {Xl9Yr} and
Gc breaks into

{yri, 7r2} that
are connected to Xλ without passing through X2. GC2 contains lines {Z2, Yr} and
{7ri, Yr2} with yr, Yπ, yr2 not part of GCi. Gt contains the remaining lines {X2, Yr}
with Yr part of GCl. GCl, GC2 are arbitrary graphs connected with respect to Xl9 X2,
respectively. Gt is arbitrary, expect that it cannot be empty because then Gc would be
disconnected. Let us fix {Xa} in (5.40) and replace p with p 4 . Put
{x:xeX2 or dist(x,y) :g M^(y)3/2 for some y in X2}. Then

X2

 =

Σ I
Gc

Π

Σ . τ~τ

Σ

ί—>

j

Π

Σ Π
G C l J?eGCi r = l

Σ Π A(&) ft
1

— 2h\Φ(X1,Y'1,...,Y'h)

y (5.41)

The restriction on (Y'1?..., Yh) comes from the nonemptiness of Gf. There are less
than 2h choices of G>. Proposition 5.5 now bounds (5.41) by

2eL(xl)eL(X2) (5.42)
χeX2

When Gc contains a line {XUX2} we obtain a bound 2eL{Xί)eL{X2) A{XUX2)
and when {Xα} = {Xί2} we obtain a bound 2eL{Xί2\
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Finally we sum over {Xa}. Defining p4(Xα) as in (4.4), replacing p with p 4, we

have

Σ Σ 77
{Xa}(Yι,...,Yj)J

ΣJΓI

^ Σ Σ Σ_
x,y X\3y X2:xeX2

Σ Σ Σ_
X Xl3X X2'.XβX2

j

Π
r = 1

(5.43)

We can replace L(Xa) with \Aa\ and 2 with e εβ if p 4 is replaced with
p 3 . A factor C(x,z), zeX 2

 c a n be procured at the same time. The summation over

a cluster in Xy containing a point w is bounded by ]£ C(α,w) by (5.27). The

summation over the others is bounded by J"

Here n is the number of clusters in Xa containing a. Thus (5.43) is bounded by

C(auy)C{y9x)C(x9z)C(z9a2)

C(α1,x)C(x,z)C(z,α2) + C(α l 5α 2)

A2)Γ2e-εβ/2. (5.44)

Similar but easier estimates prove the convergence of the comparison series for
untruncated functions. In that case one should allow for the possibility of no
clusters in {Xa}, and we obtain an overall bound ec{^Al

Comparison of (5.43)-(5.44) with (5.40) now yields

\-2o-εβl2
sup

{x«},(yi,...,y., )
compatible with some Gr

Π π (5.45)

Checking back through (3.24), (5.8), (5.25) and (5.29) yields

k

ί = l a
k

= Π (5.46)

In the second step Proposition 3.1 has been applied, and M has been chosen
sufficiently large, depending on ε.
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Taking Ft to be a product of spins σ, (5.45) proves the bound of Theorem 1.2:

A2)Y2e~^2. (5.47)
ieAi ieA2

Next we analyze the spin-spin correlation function

< σ . ; σ . > L = <(1 - σ.);(l - Gj)}L (5.48)

for i<je(— L,L). (Of course (σi;σj}L = 0 if either ί or j is outside this
interval.) For simplicity we assume \i — j\^.M + 2. The largest terms in the
expansion (4.8) are obtained when there are four spin flips, one on each side of i,
j . Terms where X1 or X2 have no clusters vanish because then 1 — σ = 0. The spin
flips must be part of one cluster in X12, because \i — j\ Ξg M + 2 implies that a con-
nected graph between the two contours is impossible. They must form two contours
y1j2 because of the charged constituent rule. Thus we have a k = 2 cluster, with
one interpolation. Performing the integral over s yields

*β\i-J\-2_u (5.49)

where we have evaluated

H(yi yjy2) = H(yi) + H(y2) - 4|i -j\~2. (5.50)

There is an additional factor 4 = (1 — σt)(l — σ7 ) when we consider the contribution
to (4.8).

The sum of all other terms in (4.8) can be estimated as in (5.45). The supremum
runs over {Xa}, {Yu > ^/) whose contours are not of the type already considered.
It is easy to see that the next lowest energy configuration has a block of minus
spins of size 2 around i ox j , but not both. The minimum energy is H(γ1) + H(y2) =
12ζ(2) - 4. Hence the error terms are bounded by 4\ί -j\~2e-β{1 ~ Ί^2^~*\ and
we have

— - L ) I = = 4 | I — j j g (j.jlj

for \i -j\ ^ M + 2, M > M0(ε), β > βo(M).

This completes the proof of Theorem 1.1.
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