Communications in
Commun, Math. Phys. 85, 221-264 (1982) Mathematical
Physics

© Springer-Verlag 1982

Linking Numbers of Closed Manifolds at Random
in R", Inductances and Contacts

Bertrand Duplantier

Service de Physique Theorique, Division de la Physique, CEN-Saclay,
F-91191 Gif-sur-Yvette Cedex, France

Abstract. We give here new results of topology and integral geometry
concerning the Gauss linking number I of closed manifolds in n-dimensional
space. The rigid manifolds have arbitrary shapes and dimensions, and are
statistically at random positions in R". Generalizing Pohl’s work, for two
closed manifolds %", €%, of respective dimensions r and s, with 0=r=<n—1,
and r+s+1=n we consider the “kinematic linking integral”
S ={[ I*(x,0)d"x), of the square linking number I of 4" and %, over the
group of Euclidean motions of one manifold (translations x, rotations 0).
Introducing a new tensorial method, and using group theory, we show quite

generally that # =num. fact. | dolo#,(0),(0) +9, %,(0) B,(0)], where ¢ is a
0

length variable and where «7,, % (¢ =1, 2) are characteristic functions associat-
ed with the manifold €, only. We study functions .o/ and % of a manifold ", of
dimension r, in all cases 0=r=<n—1. o/ always exists. .&/(0) gives ¥’s area,

0

whereas | 7(¢0)do equals the interior volume of a hypersurface €. 4 is found to

0

exist and not to vanish only if 2dimé+1=nand n=3+49=3,7,11... o/ and
% are explicitly calculated for segments and r-spheres S”. As an application the
topological excluded volume of a gas of nonlinked spheres S” moving in R* !
is calculated. We generalize to N manifolds ¢, =1, ..., N, linked successively
to each other and forming a ring. The cyclic product of their linking numbers is
integrated over the group of motions of the manifolds. It is shown to factorize
completely in Fourier space, with special algebraic rules, over the set of 2N
characteristic functions «7,, 4,, associated with the €,’s. The same algebra of
characteristic functions is shown to describe a larger class of topology and
electromagnetism properties: a new theorem is given for a family of Euclidean
group integrals involving the random linking numbers, mutual inductances
and contact distributions of N manifolds.

0010-3616/82/0085/0221/$08.80
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C

Fig. 1a—c. Linking number I of two closed curves in IR3; a I= +1 because each curve crosses the
interior surface of the other from the negative to the positive side; b two unlinked curves; ¢ the two
“eights” are topologically linked, nevertheless I=0 (taken from [5])

1. Introduction

1.1. General Background

Topological constraints can exist in a statistical system and bring in new physical
effects [1]. An example can be found in polymer theory. A set of closed polymer
rings not linked together have a phase space restricted by that topological
constraint, and the osmotic pressure deviates from that of an ideal solution [2].
Topology of links and topological invariants involve very interesting mathemati-
cal problems. In this article, we study remarkable integral properties of the Gauss
linking numbers of manifolds in R”. The Gauss linking number I of two closed
manifolds is a topological invariant counting the number of times one closed
manifold winds around the other one, both being oriented. Figure 1 gives examples
of linking numbers of curves in R3. Two curves can be topologically linked, their
algebraic linking number being nevertheless equal to zero (Fig. 1c). The analytic
formula for I was given by Gauss [3,4]

1 1
=_— V —ou, df, d ), (1.1
in gf%< V=g e )

where f and g stand for the positions in IR* of two generic points on %, and %,
respectively, and where df, dg are the corresponding differential vectors along the
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Fig. 2. Cords of length ¢ contributing to /()

oriented curves. V, represents the gradient with respect to point g. As indicated by
Maxwell [5], Gauss’ formula is closely related to electromagnetism: “It was the
discovery by Gauss of this very integral, expressing the work done on a magnetic
pole while describing a closed curve in presence of a closed electric current, and
indicating the geometrical connexion between the two closed curves, that led him
to lament the small progress made in the Geometry of Position since the time of
Leibnitz, Euler and Vandermonde....” A general Gauss’ formula exists for closed
manifolds embedded in R” [4] (Sect. 2). A quite interesting mathematical property
of the linking number of curves in space has been very recently discovered by Pohl
[6]. He considered the integral

S = < [ I(x, @)d3x> (1.2)

R3
of I? over the translations x and the rotations O of one rigid curve with respect to
. 0
the other. One notices that, for two plane convex curves, I = {+ 1 and . =V, where
V is the topological excluded volume between the two unlinked curves. For

nonplane curves # gives only a approximation of V. Pohl proved that for two
plane convex curves ¥, and 4,, .# can be transformed into a single integral

1 [o o}
= (f) o\ (0),(0)de, (1.3)

where ¢ is a variable having the dimension of a length. The 2’s are functions
characteristic of each manifold respectively. For a given curve € the .« function
reads [6]:

<(g)= [ds|cosb)|, (1.4)

where s is the curvilinear abscissa of a point f along %; 0 is the angle between the
tangent vector at f and the points f* on % such that |f—f| = (Fig. 2).

Pohl’s theorem was generalized recently to nonplane closed curves in R® by
Des Cloizeaux and Ball [7], and by Duplantier [8], using various methods. For
each nonplane curve, besides .2, a second characteristic function % appears, which



224 B. Duplantier

3(ey)

€y t2

Fig. 3. The manifold %, crosses the Seifert manifold &(%,) at discrete points 7

modifies (1.3). New further generalizations of Pohl’s theorem were also found by
the author [8]. For a set of N curves, the cyclic product I,,1,5...Iy, Was
integrated over the group of rigid motions of the curves. It was shown to factorize
over a special algebra involving the characteristic functions .7 and 4, associated
with each curve separately. Besides linking numbers, mutual inductances and
contact distributions were also studied [8].

The aim of this article is to study quite generally the linking numbers of closed
manifolds in R”, and their linking integrals similar to (1.2). It is quite general
because the dimensions of the manifolds can be arbitrary, going from zero
dimensional set of points to hypersurfaces in R". We give a set of factorization
theorems, similar to Pohl’s theorem (1.3). Because of the factorization property
[see (1.3)], these theorems yield a solution to the further problems of averaging
over the deformations of the manifolds. For a given statistical weight, one has
simply to average the characteristic functions independently. For proving these
theorems, we introduce a new mathematical object, characteristic of a manifold, its
inductance tensor I' (Sect. 3), in terms of which all quantities can be expressed. We
believe this tensor to be quite basic for such studies of integral geometry. The
linking integrals of two manifolds and of multiple manifolds are studied. Mutual
inductances and contacts are also treated. Topology, potential theory and
electromagnetism in R” are used here. Some results have been recently published
elsewhere [10].

1.2. Linking Numbers in R"

Consider two orientable differentiable manifolds 4", and %73, of dimensions r and s,
embedded in R". They are given by parametric equations in R":

fed f:fiuy,..,u,)
geb5:8:9:(v,....09)

where the u,, a=1,...,r; v, b=1,...,s are parameters, and f, g are differentiable.
The orientations are given by the natural orders a=1,...,r and b=1,...,s. The
manifolds are closed, i.e. they have no boundary 6:04=0. For a closed and
orientable manifold %', there exists a Seifert manifold &(%"), the boundary of
which is €" (Fig. 3). The dimension of #(%") is r+ 1, and its points f are given by

i=1,...,n, (1.5)
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Fig. 4. a The straight line D(x,y=0, teR) and the circle S}(x?+y?=1,t=0) are linked in IR3; and b the
corresponding situation in R*. The line (x, y, z=0, te R) and the sphere S*(x>+y?+z2=1, t=0) form a
link in IR*

parametric coordinates f(wl, .. W,; 1), such that &(%") is coherently oriented with
respect to its boundary €} [11]. We suppose that the dimensions of € and €%

satisfy
r+s+1=n. (1.6)

Then the intersection & (%)N%? is a set of points P, possibly empty. The linking
number of €| with %% is defined by

I,= Y, &P, (1.7)

PeS(€])n%5
where ¢(P)= +1 is the orientation of the local basis of IR"
- (offew,, ..., 0f/ow, . |, og/dv,, ..., 0g/v}

with respect to a canonical basis. I, is a relative integer, topologically invariant. A
simple example in R* is given in Fig. 4.

1.3. Summary

In Sect. 2, generalizing to R", we consider the “kinematic linking integral”
I ={[*(x,0)d"x) (1.8)

over the group of relative rigid motions (x,0) of two manifolds. Using a
generalized Gauss’ integral formula for the linking number, we introduce a
tensorial formalism, which enables us to calculate (1.8). We introduced the same
formalism in [8] in the simpler case of curves in R>.

Section 3 deals with the properties of the “inductance tensor” of a manifold. It
is calculated with the help of group theory [12]. In Sect. 4, # (1.8) for two
manifolds is calculated explicitly. We prove that two characteristic functions &/
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and 4 exist for each manifold, in terms of which (1.8) can be “factorized.” The end
of Sect. 4 is devoted to the geometrical properties of the functions & and #%.

Section 5 is concerned with the calculation of the “kinematic linking integral”
of multiple manifolds, which generalizes (1.8). We use the Fourier space and study
the characteristic functions .« and 4 in the momentum representation. We give a
general factorization theorem for the multiple linking integral.

Section 6 deals with a further generalization. For manifolds having the same
dimension, we define the mutual inductance M [13] and the contact distribution
C. Both M and C are related to linking number I via potential theory. We consider
cyclic products containing either the linking numbers I, or the inductances M or
the contacts C of the successive manifolds. A general factorization theorem gives
the integral of these products on the group of motions of the manifolds.

Finally, in Sect. 7, some particular geometrical cases are studied. We calculate
the .« function of a zero dimensional manifold made of two points, and the .o/
function of the r-sphere S". We finally compute the topological second virial
coefficient of a set of r-spheres S moving in R*" "1,

2. Linking Numbers and Euclidean Group of Motion

2.1. Gauss’ Integral
The algebraic linking number (1.7) in IR”, is given by the Gauss’integral, for n=>1:
[(%,%,)=(S,_(n=2rls)™" | det(v,If—g| " 2,d7,d%), (2.1)
€1x%2

where fe%,, ge%,, and where || || denotes the Euclidean norm . S, _, is the area
of the unit sphere $"~* of R"

S,-1=21"*/T(n/2); 2.2
d%, is the r-volume form associated with manifold &, at point f [11]:
dZ\, =dfi, A ... Adf; . (2.3)

This tensorial r-volume form possesses r indices i,, a=1, ..., r, taking their values in
the set {1,...,n}. The s-volume form d¥, is defined in the same way at point g of
manifold %,. Equation (2.1) reads explicitly

16 6)=T8,(n=2rist] [ et af;, = ;n" Y
(dg; A ...~ dg;), (24)
where ¢ represents the totally antisymmetric tensor of rank n in R":
goD--9) — g(5)

for any permutation ¢ of {1, ..., n}, its signature being &(o). Otherwise, as soon as
two indices coincide: &' =0. The identity of the Gauss’ integral (2.4) with the

I Expanding the gradient V, shows that (2.1) is also defined for n=2
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linking number (1.7) is proved in Appendix A. Owing to (2.4), the linking number I

satisfies
112=(_1)rs+1121‘ (2-5)

Equation (2.1) gives the intrinsic formula for the Gauss linking number. For a
particular parametrization (1.5) of the manifolds, we have, according to the theory
of differential exterior calculus [11]:

D(f“, i)
r‘i1 ..... i D(ul, U, ) dul ZAERRAN dur’ (26)

D(f...)
D(u...)
with a,d' =1, ...,r

It will be very convenient in the following to use the generalized Kronecker
delta tensor, defined as the r X r determinant [14]:

being the partial Jacobian of coordinates f; with respect to parameters u,,

s ol ot
I

-y —| % . @7
S 5

The tensor (2.7) possesses an equal number of indices i, [, with a=1, ..., r, taking
their values in R" in {1, ..., n}. The tensor (2.7) is obviously skew-symmetric under
interchange of any two of the indices of the set I = {i,, ..., i} and under interchange
of any two of the indices of the set L={l,, ...,[,}. Furthermore ¢ differs from zero
only if the sets I and L are identical, up to a permutation. For any totally skew-
symmetric quantity 4, , depending on r indices

55::::551411...1,:7‘!Ai1...ir- (2.8
The partial traces of tensor é are equal to
511 he wy o by (n_t)!éll...lt (29)

cithe 4 1...hy (n_r)! ig...0t2
where repeated indices &, are summed over. Using (2.7), the Jacobian (2.6) reads

dgzl 1 .lr% %

i = i“"i”ﬁul S (duy A ...ondu,). (2.10)

¥

Substitution of (2.10) into (2.4) and use of property (2.8) finally give a parametric
expression of the linking number :

of of o og
(Sn 1) 15 ( gn; .>_a—g’
f—g|" 0u,” " ou, dv,” 7 dv,

)du1 du,dv, ...dvg

in agreement with that of [4]. However, it will be more convenient in the following
to use differential exterior calculus and the intrinsic Gauss’ integral (2.1). To
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facilitate calculations, we define the tensor

1 o
e (XN, o= S_nghlmlmm]s (2.11)

which depends on one vector x of IR"” and bears r free right indices i,, and s free left
indices j,. One notices the conventional inversion of order for s and r between the
two sides of Eq. (2.11). Owing to (2.11), the Gauss’ integral (2.4) reads:

I, =[S, \(n=2r117" | [d%, &,(V,)-d7,] (2.12)

RTR If—gl""2’
where the dots represent the ordered contractions of the r indices of the volume
form dZ, with the r right indices of €, and the contraction of the s indices of d%
with the s left indices of &2

Sr>

2.2. Euclidean Group of Motions and Kinematic Integrals

Consider first a manifold % in R” as a rigid body. The position in IR" of % is defined
by that of an origin O on € and by the set of the Euler angles @ of 4. Let @, be the
measure of the group of rotations of a solid in IR":

Q,=[do. (2.13)

The angular position O of ¥ in R" is completely defined by the choice of an axis
rigidly attached to %, and by the rotation of this solid % in a hyperplane of
dimension n—1 around the axis. Thus we have Q,=S,_,Q,_,, where S,_, is the
area of the unit sphere in R", and

Q,=S,_ .S, ,..5,. (2.14)

In particular, for n=3: Q,=S5,S, =8z The linking number of two manifolds €,
and ¢, depends on the translation vector x=0,0, joining the two origins O, and
0, of ¢, and % ,, and on the relative angular position ¢ of ¥, with respect to &,. It
writes I, ,(x, 0). Generalizing the work of W.Pohl, we define the “kinematic linking
integral”

H(€,,%,)= < [ d™xI,,(x,0)I,,(—x, @)>, (2.15)

R”

where the brackets represent the average over the set of angular orientations @:

<(...)>Ejé—(f(...). (2.16)
This integral reads also, owing to (2.5)
F=(—1)*1 <|f£n d"xI*(x, (9)>, (2.17)
where I=|I,,|.

2 One has explicitly:

1 o
@ 7 _ Uiy it ds g g5
d s'ssr(x)'d/r_slxlau e Jd/r'i,..i,dgsbl...js
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Successive Links of N Manifolds. Consider now a set of N differentiable and
orientable closed manifolds in R":

{€¢,0=1,..,N}.

This set is ordered. Let us define I ,,, as the linking number of two successive
manifolds €,, €,, ,. By convention we set for a=N:

Inyi 1= 1y,

The linking number of manifolds %, and %,,, can be defined only if
dim%,+dim%,, , =n—1. Thus, if we denote by r the dimension of the first
manifold €, and set s=n—1—r, we must have the sequence of dimensions:

dim%,,_,=r,

2.1
dim%,,=s. @18)

Two different cases therefore appear.

a) r=s

The existence of the whole set {I,,,,,a=1,...,N}, together with condition
(2.18) obviously requires the number N of manifolds &, to be even.

b) r=s

This case occurs if r=s=n—1—r, that is for:

n=2r+1.

The dimension n of space is therefore odd. All %,’s have the same dimension. N is
arbitrary. This corresponds for instance to closed curves of dimension r=1
embedded in R3, the case considered in [6-8].

In the following, we shall denote the dimensions by r and s quite generally, and
distinguish cases a) and b) only when necessary.

Let us write x, the vector joining the origin O, of %, to origin O,,, of 4, ,
(Fig. 5). The set of translation vectors x, forms a closed polygon:

(2.19)

R
=
»

Each linking number [, ,(x,, @,) also depends on the set ¢, of Euler angles of
%, .+, with respect to %,. The kinematic linking integral .# of an ordered set of N
closed manifolds is defined as

N N
f((gl,...,ng)=<w f Rd"xl...d"xNé(lea) 1‘[ Lyt (%0, > (2.20)

where the brackets represent the average
N-1
=@) VD[] doy...). (2.20a)
a=1
For N=2, (2.20) coincides with (2.15). Integral .# represents a measure of the

successive links made by N manifolds over the group of rigid motions of these
manifolds. The integrand of (2.20) is nonvanishing only for the ring configurations
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Fig. 5. N manifolds ,, =1, ..., N, successively linked to each other. The set of translation vectors x,
forms a closed polygon: x; +...+x,=0

(€y)

(€z)

Fig. 6. The generic points on two manifolds used for calculating the square linking number I*(x), with
x=0,0,

of the N manifolds, in which all successive couples %,, €, ; are linked (Fig. 5). We
shall in the next sections show how linking integrals (2.15) and (2.20) can be
“factorized” into a product of terms associated with each manifold.

2.3. Tensorial Factorization Method

We generalize here in R” a method previously introduced for closed curves in R?
[8]. For the sake of simplicity, we make it explicit only for two manifolds, the
extension to N manifolds being straightforward.

Replacing in (2.15) each linking number by a Gauss’ integral gives

112(X,(9)121("(’@)=[Sn—1(n—2)]_2(7'!5!)_1 f dg;'ssr(Vg')'d%“/-—F—‘z‘
¢ x%s [f—g' —x]|

[ a7 eV;)-d% (2.21)

€2 %%, ‘lg—f+x|""%’

where generic points (f, g’) and (f", g) have been related to each other for building
up linking numbers I,, and I,, respectively (Fig. 6). Here, vectors f, f measure
positions with respect to the origin O,, and g, g’ with respect to the origin O,
(Fig. 6). Inserting (2.21) in integral (2.15), we use Fubini’s theorem and exchange
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the order of integrations over (¢, x%,, €, x%,) and x. We then perform the
change of variable x—y:
x=y+f—-g'. (2.22)

The Jacobian of this local change of variable trivially equals one. Then we have

f—g—x=f—f-y,

2.23
g—f+x=g—g'+y. 223)

The gradient operators transform, according to (2.23), into:
Vo=V,V.=V_,. (2.24)

We notice that the change of variable x—y has separated contributions of
manifolds ¥, and %, in (2.23). It remains for us to factorize ¥, and ¥, in (2.21)
with respect to their own differential volume-forms. We use the trivial algebraic
identity :

(A9, &, -AF) AT, -8, dG ) =tr[{g, (dF,®dF))} {2, (d9,®d%)}], (2.25)
where the dots represent naturally the ordered contraction of adjacent sets of

indices. The trace represents the ordered contraction of the external sets of s
indices. Collecting Eqgs. (2.22)-(2.25), we obtain for (2.15)

S= <“£n d"yl, 2121[)’]> ) (2.26)

where the integrand is the matricial trace

1
Ilzlzmy]=[s,,_1(n—2)1-2<r!s!)—1tr{Lligl 0ulF)- (UFOIF) it

1
. V_)(d9.Qd%)——F ;. 2.27
R | 227

For a given manifold €, of dimension r, we then define an associated tensor C

1
C=6,10-2) " [ 6,7 @AT) ). 229
ex If—1—yl
Here the brackets represent the angular average (2.16) over the rotation group of
%. Owing to Definition (2.11) (up to an exchange of r and s), tensor C reads, with
explicit indices:

0 1
C i i —— Sn_ n_2 r! 2 —1< Slllw'lr‘ll'“ls : _
(Y)Ilu-s,h»u]r [ 1( )( ) ] (gi(g aylw——i”f_f_y”" P

Ay, A ALY A5 A e df;.r)>. (2.29)

C appears clearly as a tensor of rank s+r=n— 1. For a manifold ¢ of dimension r,
C possesses r free indices i on the left and s indices j on the right. After the angular
average over rotations of manifold €, the tensor C depends only on vector y.
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Using Definition (2.28), integral .# (2.26) finally reads
= [ d'ytr[Cy(y)-Cy(—V)], (2.30)
IRn

where tensors C,; and C, are respectively associated with manifolds %, and %,>.
We have thus achieved a first factorization of the integrand of .#. This method can
be applied to general integral (2.20). Integral (2.15) and (2.20) have indeed the same
cyclic structure. The result is the following. To each manifold &, is attached its
characteristic tensor C,(y,). This tensor depends on an arbitrary external vector y,
of IR". The cyclic linking integral .# (2.20) can then be written as the generalized
trace:

I, ... C)= | d"yl...d”yN(S(;ya) tr{]j[lca(ya)}. (2.31)

RAX ... XR"

The set of vectors y, is obtained from the set of translation vectors x, by a local
change of variable generalizing (2.22). We refer to [8] where a similar algebraic
result was obtained for the successive links of N closed curves in R3.

We have now to calculate, for a given manifold, its characteristic tensor C.

3. Characteristic Tensor of a Manifold
3.1. Definition and Properties
Let us write tensor C (2.29) in the form
Cy)=2,()-T'(y), (3.1)
where the characteristic tensor I is defined by
dF.Qd4dF,
r@=a{ | ST,
ao=(S,_ (n—2)rH~ .

(3.2)

The tensor (3.2) generalizes to IR" a tensor previously introduced for closed curves
in R® [8]. In (3.2), n=2 is a special case for which the potential

1 .
= |y +f —f]| ="~ 2 has to be replaced by the limit for n—2: —In|ly +f —f|. We

shall not distinguish this case in the following, all the results being regular for n—2.
I' is a basic mathematical object for our problem, and will also be useful later on,
for describing the contact distributions and mutual inductances of closed man-
ifolds. Definition (2.3) of exterior r-forms d%,, d¥, shows that I is a tensor of
rank 2r, with an equal number r of left and right indices, reading explicitly :

dfo. A ... Adf) (S A...Adf’.)>
. .. = i1 ir. Jt i\
(Y)Ll..‘l,‘,“”.h aO<(€£% |ly+f/_f|ln—2

(3.22)

3 In(2.26) the angular average was performed on relative orientations @. It is obviously equivalent to
averaging over orientations of ¥, and 4, separately, as in (2.29)
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After averaging over angular orientations of %, tensor I' depends on vector y only.
Moreover, tensor I' is completely skew-symmetric with respect to the set of left
indices {i,, a=1, ...,r} and completely skew-symmetric with respect to the set of right
indices {j,, a=1,...,r}. T is not defined a priori, for 2r<n— 2, on a set of vectors y
of zero measure (i.e. y=f—1'). It is regularized by averaging on rotations and I' is
then defined by continuity for all values of y (Sect. 3.4).
We define the left divergence of T with respect to the a™ indice i, by

(3.3

itecda—1lia 1o dm i jr

0
div, = —
lv(la) ayl
with a summation over values ! of i,. The result of this divergence operation is
naturally a tensor, the rank of which equals 2r—1. A similar definition holds for
the right divergences of I" with respect to indices j, a=1,...,r.
Lemma 1. All the r left and r right divergences of tensor I' vanish identically :
div; ,I'=0
(ia) Va,a=1,...,r. 34
diV(ja)I‘=0} @4 ’ G4

Let us prove this for instance for the first left divergence of I'. Defining the

(r— 1)-exterior form w
o=|y+f -1 """ 2df, A ... Adf)

0 0 . .
and using FIoa a—f—~ we may write immediately the first left divergence (3.3) of
Vi i
(3.2a) )
div,;, I'= —a0< (] df(o®d97r’>,
fe¥ f'e€

where d ;o denotes the exterior derivative, or coboundary, of form w with respect
to vector f*. Keeping point f” fixed, we perform the integration over point f, fe %,
of the coboundary form d . Stoke’s theorem [11] gives immediately

fdw= [ =0 (3.5
% 9%=0

where for a closed manifold € : 0% =0. Thus: div(il)l" =0, Q.E.D. The same proof
extends to the whole set (3.4) of divergences.

These rather simple properties of tensor I are sufficient to determine the a
priori form of I', as will now be shown.

3.2. General Form of the Characteristic Tensor T’

We use the following key lemma:

Lemma 2. Consider a tensor I'; ; i (y), depending on only one vector vy,
vanishing at infinity, completely skew-symmetric with respect to indices

4 By definition of the exterior derivative [5, 6], for a form
o=H(f)df;, n ... Adf;_,

where H is a function of vector f, one has

dwsag—? o Adfoy A A,
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{ipa=1,..,r} and {j,,b=1,...,r} separately, and the 2r divergences of which
vanish. Then I is necessarily of the form

., 0 0
L, o o (y)=06ii — — ¢
zl.‘,lh‘]b,,‘],‘(y) Ujte.ojr 0yl ayll (“yH)

0
4 , 3.6
3 7D (36)

where @ and ¥ are two arbitrary scalar functions of the modulus | y]|.

48y, gl
r N

The Kronecker tensor 6 (2.7) is here a determinant of order r+ 1. Because
tensor ¢ in IR" possesses necessarily n indices, there is a factor 6,,, ; , in front of the
second term. Thus the function ¥ exists only for dim%=r=(n—1)/2, n being odd.

The proof of Lemma 2, given in Appendix B, uses main results of classical
group theory [12], here for the orthogonal group O(n). The condition that T’
vanishes at infinity is auxiliary °. Tensor I (3.2) vanishes at infinity like | y||~®~?
for n>2. For n=1,2, a direct construction of I' gives also the form (3.6)
(Appendix B).

Let us introduce a more compact notation:

1 o
6rr(x®y)li1.,.ir,jl..,jrz r*,sz’l'éll'l}{f.'.L;',.- 3.7

Using Definition (2.11) and (3.7) we finally may write Lemma 2 for tensor I' in the
form

L= o5 BT DN+ (= 0 )P )

o (3.8)

-

where we have introduced some numerical factors for simplifying forthcoming
calculations. One must notice that the ¥ term exists only for: 2r+1=n, or
equivalently: r=s.

3.3. Some Identities on Tensors

For calculating I', we shall need the following identities relating the numerical
tensors € (2.11) and 6 (3.7).

£,(x) &,(y)=(— 1)"0(x®y), (3.9
£,(%)8,,(Y®X) =(xy)g,(x), (3.10)

0, (X®Y) - &,(x)=(x"y)&,(x), (3.11)

0, (x®Y) "8, (x®y)=(x"y)3,(x®Y). (3.12)

The dots represent the ordered contraction on the r internal indices common to
both factors. These identities, proved in Appendix C, hold for any vectors X,y in
an

5 If the condition of vanishing at infinity is not fulfilled, one can have for 2r+ 1> n, besides (3.6), an

independent harmonic tensor U, depending linearly on y, and having the same properties as I’
(Appendix B)
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Let us now consider the generalized matricial traces of tensors € and 8, defined
by:

1 o
tI'S”.(X)= r_'xlgll‘...lrll...l,«’

trﬁrt‘(xéby): - lyl 551111
We thus have trivially
tre,, =0. (3.13)
Owing to identity (2.9), we have:
(n—1)!

3.4. Potential Theory and Calculation of Tensor I’

Starting from the a priori form (3.8) of tensor I', we determine now the two
unknown functions @ and V. Let us first calculate the trace of tensor I':

=T, (3.15)

Equations (3.13) and (3.14) immediately give
trI(y) = 49([lyll), (3.16)

where the n-dimensional Laplacian A acts on y. For determining the second
function ¥, we come back to tensor C (3.1) and calculate it with the help of
Egs. (3.9), (3.10), and (3.8). We find

r!

C—( 1)' {e, (V) AP +9,,,,,8, VRV)¥P}. (3.17)
For r=s, the trace of C can be defined and reads
trC(y)=4¥(|lyl). (3.18)

On the other hand, the traces of I" and C can be calculated directly from Egs. (3.2)
and (2.28):

tr(dﬁ’@dﬁ’)>
trl'=a < T 3.19
oA o) Tyrr—172 G-19)
1
trC=9 " na < dg?r’ €, (V) d‘/r/—n—>’ 3.20
et R (320

where ay,=[S,_,(n—2)r!]""'. Consider first (3.19). It involves the trace
tr(d7,®dF))=dZ, - dF, , which is the ordered scalar product of the differential
exterior forms (2.3). Thus dZ,-dF, is invariant with respect to rotations of € in IR".
Thus, the angular average in (3.19) can be inserted into the integral:

Ab=trT=a, [ (dF,-dF){|y+f—f] 2. (3.21)

ExE
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a) b)

Fig. 7a and b. Newtonian potentials IV and W are created by spherical distributions of respective radii
[f—f]l aand [y| b

Consider now (3.20). Factor d%, -¢,.(V)-d#, is clearly not invariant with respect to
rotations of . However, trC is a scalar function of modulus |y| only, and is
therefore trivially equal to its average trC=(trC), where the round brackets
represent the angular average
(A)=(S,-)~" [ dpA(y) (3.22)
. " Sn—-l
with y=y/||y].
Thus, using V,=V,. in (3.20) we may write

AP =trC=0,,,, a0 | [T &, (V;)-dF1(ly+F—£]70"2).  (3.23)
ExXE
If we compare Eq. (3.23) for trC and the generalized Gauss’ formula (2.12) for
linking number, we remark that

AP(|yl)=trCy)=(S,- )" Snj"_1 Aul(%,7),1%). (3.24)

where w,ueS""! is an arbitrary unit vector and where Tjjpja Lepresents the
translation of length |/y| in direction u. Thus, trC(||y|) is exactly the isotropic
average of the linking number of manifold € with its translated images by a fixed
distance ||y].

We now face the simple task of calculating the two different angular averages
V=L|y+f—1f] """ 2> and W=(||ly+f—f|~ " 2). Quantity ||y+f—f]| " 2 is
exactly, in IR", the Newtonian potential between points y and f—f". It satisfies the
Poisson equation [15]

Ally+F £ 70" = —(n-2)S,_ 6y +1 1. (3.25)

In V, rotations of manifold % reduce trivially to rotations in IR" of vector f —f
rigidly attached to manifold ¥ (Fig. 7a). Thus V represents the Newtonian
potential created at point y by a uniform distribution of unit masses on the §"~*-
sphere of radius ||f' —f|. In the same way, W is the Newtonian potential at point
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f—f" created by a source sphere of radius |y| (Fig. 7b). These two Newtonian
potentials ¥V and W are equal ® and read:

V=w=0(ly| = If=tDiyl~ "2+ 00t =1 = IyIDIf-£] 772, (3.26)

where 6 is the step distribution 8({)=1 for {>0, 8({) =0 for 6 <0. We shall need in
the following the Newtonian fields associated with these spherical sources:

VoV =—m=20(yl—f-fDy/lyI"

’__

-1

(3.27)
VeV=—=m=2)00f—f—yl)m—m
which vanish inside their own spherical source.

At this stage, we have all the equations determining 4@ and 4¥. We shall use
in the following V(4®) and AY. Equations (3.21), (3.23), and (3.27) give

V(AD)(y)=—(S,- )" f Oyl = lf=fI)(d7,-d7)  (3.28)

lly !I"

and

APy ==05s 1Sy )™ [ O(E=F] = ¥])

1
AT -6, (f—1)-d7].
oy =g 47 el =D 4%

(3.29)

4. Kinematic Linking Integral of Two Manifolds

4.1. Factorization Theorem

We can now give an explicit formula for the kinematic linking integral .# (2.15) of
two manifolds %', and €%, of dimensions r,s, with r+s=n—1. Both possess an
associated tensor C, which is decomposed into two parts containing function @
and ¥. Using factorization formula (2.30) and formula (3.17), we may write

J(%,,%,)= (( '1')') fd"ytr{[ssr(V)ACP +9, 8, (V@1 ¥, ]

[—&,149,+6, 8, VRVY,]}, (4.1)
where we used 6,,,; ,=0, ;and the parity property V®(—y)= —V®(y) in order to
take all the functions in the integrand of (4.1) at point y. Using algebraic rules
(3.9)+3.14), we obtain, after simplifications:

rls!
I(€,,6,)= _—1)’ f d"y{(= 1)V (49,)- V(d®,)+0, AP AY,}. (4.2)
! n

(n

One must notice the vanishing in (4.2) of cross terms involving products @Y%,
due to the opposite symmetry properties of tensors € and 6. The integrand of (4.2)
is rotationally invariant. Passing then to spherical coordinates

e=Iyll, y=y/llyll, d"y=¢"" 'dody, (4.3)
6  The fact that V=W is directly related to the covariant transformation properties of Newtonian

potential in an inversion with respect to a sphere [16]. The inversion with respect to a sphere of radius
R=(|f— f'll lyIN*'? indeed transforms Fig, 7a into Fig. 7b
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Tou€

Fig. 8. An example of a twisted curve ¥ making a link with its translated image 7,,%, such that
1(%,1,,6)%0

and defining two characteristic functions for each manifold

&f(Q)=Sn—1Q"_'_1<— di@) 49(0), (4.42)

B@)=S,-,0"4¥(0), (4.4b)

we obtain £ as a single integral
I(6,,C)=r!s!/(n=1)!S,_; [ dol(—1)"""o,(0) #,(0) +6, ,B,(0) B,(0)]. (4.5)
0

In this “kinematic linking formula,” characteristic functions 7, %,(a=1,2)
depend only on the manifold %, with which they are associated. Using the explicit
forms (3.28) and (3.29) of V(4®) and 4Y in Definitions (4.4a) and (4.4b), we find the
formulae for o/ and 4.

Q)= 0" | Olo—IT-T)dF;-dF), )
r: ExXE
and
B =01 1=2 ()2 [ 0T Q) det(V, |f—T|~"~2,dF, d7) .
ExXE
4.7)

Function .o/ exists for any manifold, and is given by the integral of the generalized
scalar product of volume forms d% and dZ'. On the contrary, the %-function
exists only for a manifold € having a dimension r=(n—1)/2 (with n odd). ¥ must
indeed be able to link with its own translated image. According to Egs. (4.4b) and
(3.24), we have:

%(0) =Q’S | 1 dul(%,7,,%); (4.8)
4 is thus proportional to the isotropic average of the linking number of & with its
translated image ©,,% at a distance ¢ (Fig. 8). % and 1% have the same dimension r
and can be linked if and only if: 2r+1=n, as expected. Equation (4.7) gives the
explicit form of the angular average (4.8). Because Gauss linking number I
satisfies (2.5), function 4 (4.8) verifies % =(—1)"""' % which can also be checked
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directly on (4.7). Therefore for r? even, that is for r itself even, # vanishes
identically. Finally, function # is nonvanishing only for

{dim‘g=2q+1, geN 49)
n=2dim%+1=49+3. ’
Using Eq. (2.17), we may also write (4.5) in a final form ”.
Theorem 1.
rls! °
<§ IZ(X)d"x> = =115, g dol.o/,(0) () +9, #,(0)B,(0)]. (4.10)
R™ Mn—-1

This formula (4.10) generalizes, for arbitrary closed manifolds in R”", the
factorization property (1.3) discovered by Pohl [6] for curves in IR®. The simple
case of two closed curves (r=s=1, n=3) corresponds in (4.9) to the first value
q=0. Then, one can expect the presence of two terms in integral .#. Pohl’s original
proof [6] was given in fact only for convex plane curves, for which 4 vanishes
identically. The existence of a characteristic 4 function was then established for
general skew curves in IR3, by Des Cloizeaux and Ball [7], using a method based
on Fourier transforms, and by Duplantier [8], by a direct method, which is the
origin of the method used here.

In summary, we notice that functions &/ and &% are directly related to the
functions @ and ¥ appearing in the fundamental lemma (3.6). The existence of two
functions o/ and 4 is thus a nontrivial result of orthogonal group theory, which
gives the decomposition of I' into two irreducible components.

4.2. Properties of Functions &/ and %#

4.2a. Parametric Forms. Consider a particular parametrization {u,a=1,...,r} ofa
manifold %. The ordered scalar product d% -d%' of volume forms can be
transformed with the help of Egs. (2.10) and (2.7):

of of
—~—}(du1 Aondu)(di A ad),  (411)

1
AT . JF =
A d/, de/’r det(a,b) aua 51/!;7

of of
Ou, Ou,
f'. The determinant is, as it must be, invariant with respect to rotations of €. The
characteristic function .o/ (4.6) has the parametrized form:
. , of of , ,
AQ) =0 "[0(e— If =T dety, | =— =) du,...du,du, ...du,. (4.12)
\Ou, Ouj,

In a similar way, substituting Eq. (2.10) into (4.7), and using (2.8), gives

is the scalar product of the two tangent vectors along lines u,, u; at f and

B@)=03,11,,n=2)" " [O(If 1 —Q)-det<l7f:llf—fll"‘""2),

of of of of ) ,
‘E,~-,M,a,...,at;—)dul...durdul...dur. (4.13)

7 Owing to (4.9), the #,%, term exists only for r=s=2g+1 and thus (- 1)*"*=1
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4.2b. Limit 9—0. In this limit, =/ (4.6) depends only on the local properties of €,
whereas # involves the whole structure. The measure d'f of an infinitesimal
r-volume element or “area” of & reads, for parameters u,:

of of\]'?
det(a,b)<—~———)} du,...du,, (4.14)

a7 = du, Ou,

and the total r-volume or “area” of € then reads

S=[df. (4.15)
€

In the integrand of .7, one has ||[f—f'|| < ¢ and for ¢—0, f~ f'. Thus, we can write

in this limit
of of of of of of
det (au ‘au;,) = ‘det (a—ua'a—ub) det (5&::'517;,)

a

1/2 1/2

Thus, using Definition (4.14), we find for </

ﬂ(@)zg_’(gjtgé)(@~ If—fafdy.

2=0

For ¢—0, the neighbourhood of f on %" is locally flat and tangent to R", and

S, _ . !
integration of f* gives the volume —*—1 o" of a ball of radius ¢. We finally find
r

A(0)= S, (4.16)

Sr—l
r

where S is the total r-volume (4.15) of €. For a closed curve of length L in R?;
2(0)=2L(S,=2), in agreement with previous results [7].
For ¢—0, in (4.8), 7,,4=% and # reads [10]:

g(g)zsn—l\g(n_l)/zlselb (417)

¢—0

where I is the self-linking number of manifold %, formally obtained from Gauss’
integral (2.1) by making the two integration points describe the same manifold €.
It is known that this Gauss self-linking number is not a topological invariant
counting the number of knots made by the manifold with itself [17]. For instance,
it differs from zero for a skew closed polygon in IR3, even if this polygon has no
knot [18].

4.2¢. Chords of Constant Length. It is possible to write expressions of functions ./
and % uniquely in terms of the chords of manifold € of constant length 9. Such is
the case for the original result (1.4) of Pohl for a plane closed curve [6] in IR3. The
calculation is made in Appendix D. We find

ﬂ(Q)=LQl"’ [ s—If—f)te[(ff - dF)(fF -dF)], (4.18)
r!

ExXE
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ds
3(e)

e df’

Fig. 9. Differential vectors building (o) for a curve in R?

where ff'=(f—f)/||f—f'|| is the unit vector joining f' to f. The trace reads explicitly
u[(f - dZ)@U - dF)= ¥ UIdfindfi A A df) D)

b jsiz, e i

(df) AL A A df).

Thus o7 is obtained by sweeping manifold ¥ with a needle of length o, the
extremities of which are constantly in contact with . For function %, we find
(Appendix D)

1
A(0) "] ] dle—If-fl)detdZ, . ,dF), (4.19)

=0 ¥ ny @ N

ELEL (1) FeF(B) fe%
where d%,,, denotes the differential (»+ 1)-volume form attached to a Seifert-
manifold % (%) of manifold 4. An obvious consequence of the preceding formulae

18
A(0)=0, Bg)=0 for ¢>diameter(%). (4.20)

Therefore .o/ and # have bounded supports. Specifying these results for a closed
curve € in IR?, with r=1, Eq. (4.18) gives Pohl’s form (1.4) [7]. For %, we can
obtain an interesting formula. We define at a point f on the two-dimensional
surface (%) the normal vector dS :dS, =3¢/ df; A df,, We have then trivially in
(4.19) det(d#,, d7|)=2dS-df and % reads

Blo)=0" [o(o—If—1])dS-df . (4.21)

This gives a simple geometric interpretation for % (Fig. 9).

Hyperplane Manifold

Definition. A manifold 4" in R", is hyperplane, if, having the dimension r, it can be
embedded in a subspace R""! of R" (r+1=n). This generalizes the notion of a
plane curve (r=1) in R3, which can be embedded in IR?. The coordinates of a point
of & are

f={f,1=1,...,n} VI>r+1:£=0. (4.22)
For such a hyperplane manifold, considered as embedded in R"*?, one can define a
normal vector

1,
ds,= r—'g”l“"rdfh ALAdf (4.23)
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Fig. 10. Construction of /() for a hyperplane manifold "~ . (II) is the hyperplane orthogonal to
segment ff’

where the indices i,1,(a=1, ...,r), take their values in set {1,...,r+1} only. It is
actually also possible to express volume form d.%, in function of dS:

A7), ., =€iids,, (4.24)
a formula which follows from the general identity [14]:

cdrtglieo e — 11 lr+1
8 &
Jr+1

valid for 2(» + 1) indices j, [ taking their values in the set {1, ...,r+ 1}. Calculating
(dS)?, one can check that the Euclidean norm of dS gives the elementary r-volume
(4.14) of the manifold: |dS||=d’f. Substituting (4.24) into function ./ (4.18) and
using (2.9), we finally find for a hyperplane manifold :

A(0)= ! ot” '(gf{éﬁ(@— IE—£]) {dS-(L— fF' ®ff")-dS'}, (4.25)
where 1 denotes the usual unit tensor of R™"*: 1,;=4,,-M=1— ff ® ff' projects
therefore onto the hyperplane (II) orthogonal to the direction of 7’ (Fig. 10). The
remarkably simple formula (4.25) allows practical calculations of .« for hyper-
plane manifolds (Sect. 7). The function # of a hyperplane manifold vanishes
identically. This is obvious from formula (4.13) where the 2r+1=n vectors of
the determinant all lie in R"*1,

5. Kinematic Linking Integral of N Manifolds

5.1. Fourier Transforms

The aim of this section is to evaluate the general linking integral .# (2.20), (2.31), for
an arbitrary number N of manifolds. We shall give a factorization theorem
analogous to Theorem (4.10). The convolution integral (2.31) is best evaluated by
means of Fourier transforms. We define the Fourier transform / of any function h
by

h(p)= [ d"ye™¥h(y), (5.1)

where p and y belong to vectorial space R”".
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Using the Fourier representation

1 .
S = NP (Y1t ... tyn) .
(yl + +yN) (27‘6)" j‘d pe bl (5 2)
we obtain immediately (2.31) as a Fourier integral
N
IE,,....,C= B )njd"ptr[n Ca(p)J, (5.3)
=1

where the tensors C are defined by:
Cp)=[d"ye™C(y).

We have obtained in (3.17) the general form of tensor C. The decomposition of its
Fourier transform C follows immediately

rls!
(n—1)!

The Fourier transforms are related to those of functions &/ and 4. Defining the
angular average

Cp)= {e, (VAP ()] + 02,1 1,0, L(VRV)¥)(D)]} - (5.4)

[ dpe™ (5.5)
Sn—— 1 Sn-t

0.(llplle)=

and using Eqgs. (4.4a) and (4.4b) and standard properties of Fourier transforms, we
obtain

( 1), — o V(49 (p)= —ip/[p],

s (5.6
A P ETYB) =@
where p=|p|| and p=p/p, and the functions &/ and % read in wave vector space
15!

A=~ - 1 T e el o) (57a)

L
Al= il [ 400, (o)’ #(0). (5.70)

Thus (5.4) becomes

Cp) =~ e, (p)#[p] + 05,1 1,,8,(F@PHALp]. (5.8)

Defining an angle 0 by p-j=cos6, we find Q,(po)=S,_, | e?2°%sin6)*~2d0,
0

where factor S,_, corresponds to O(n—2) rotations about p. In terms of Bessel
functions [19]: (Q2my2 .
Jn_ (x)/x> (5.9)

n—1 2

0,(x)=

where J, is the standard Bessel function of index v&.

8  Its series expansion is: R 2k

E Z—)"

0 2 C(v+k+ 1)
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5.2. Factorization Theorem

We have to calculate the trace of the product
)= ﬂ Cp (5.10)

where each tensor C is given by (5.8). As already discussed in Sect. (2.2) the
dimensions r and s of the manifolds are supposed to satisfy conditions (2.18). We
then distinguish two cases.

a) r=¥s.

1 . .
In this case 2r 1} +n and only o functions exist. Moreover the number of
s

manifolds N is even. Product P (5.10) involves then a tensorial factor [see (5.8)]
[&,(p)-&,{p)]"'%, which, according to rules (3.9)~3.12) for unit vector p, reads
simply &, (p®p). Taking the trace gives therefore trivially [use (3.14)]:

N

trP(p)=(— 1)"”“N’2(" 1 1‘[&/[] (5.11)

where N is necessarily even.

b) r=s, 2r+1=n.

In this case, all the manifolds have the same dimension r and their number N is
arbitrary. Owing to Eqgs. (3.9)-(3.12) the tensors ¢,.(p) and o, (p®p) obey very
simple multiplication rules. We then define the isomorphism

—ig,(p)—e,

o (5.12)
5, (p®p)—1,

where ¢, 1 are two objects, which, according to Egs. (3.9)-(3.12), obey the algebraic
rules:

e2=(—1)7"", el=le=¢, 1>=1. (5.13)

The image of tensor é(p) by this isomorphism is €[ p]
%[pl=e/[p]+%Lp]. (5.14)

The image of product P(p) is accordingly the product
N

Zp]= ] (e/[p]+Zp]). (5.15)

a=1

According to rules (5.13), product 2 can always be written as a linear combination
of 1 and ¢:

Zp]=21pl+e¥[p]. (5.16)

Inverting the isomorphism (5.12), tensor P is obtained as

P(p)=3,,(p®p)%[p]—ie.(p)¥[p], (5.17)
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and its trace reads

— 1
("r!sl) 2Ip]. (5.18)

trP(p)=

At this stage, we see that the case a) r+s, can be eventually treated by the same
method. For r=s, N even, we take the rule

er=(—1)ys*1L, (5.19)

No terms # exist and Eqs. (5.15)~5.19) give together the result (5.11) we want.
Substituting Eqgs. (5.14)—(5.18) into integral (5.3), and performing a partial
integration on the angular variables, we obtain the theorem:

Theorem I1. The integral # of the cyclic product of the successive linking numbers
of N closed manifolds €,,0=1, ..., N, with alternate dimensions r and s, r +s=n—1,
(N being even if r=s) over the group of motions of the manifolds, can be written as
the single integral

I(E,,....C0=; g dpp" ' Z[p], (5.20)
(n—1)!

Qmy "t sl
algebraic product

where j= and where function & is the even part in ¢ of the

P(p)= l:[1 (e, [p]+2B,[p])
=Z[pl+e¥[p]

calculated with the rule: e*=(—1)*1. o/ , B, are characteristic functions associat-
ed with each manifold €,. The function %, exists only for manifolds €, such that
2dim%,+ 1 =n, n being odd. In this case, %, differs from zero only if dim%, is odd.

This theorem extends to R”, and to arbitrary closed manifolds, a theorem
proven in [8] for closed curves in IR®. The latter case corresponds to dim%,=1,
Vo, and r=s=1, n=3. According to (4.9), product £ is complete only for a set of
manifolds such that

{dlmfga=r=2q+1 Ya=1,...,N, ¢eN (5.21)

n=2r+1=4q+3.

This gives space dimensions n=3,7,11 ...!. Then the algebraic rule (5.19) reduces

to e2=(—1)24"D**1=1, In all other cases, only .o/ functions exist. Then the
N

integrand & is a simple product [] o7, If all the manifolds have the same
a=1

dimension r such that 2r+ 1 =n (r being even) their number N can be arbitrary. If

this number N is odd, # vanishes identically and so does .#. If the dimensions of

the manifolds are r and s alternatively, r s, then their number N must be even.
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We finally remark that the product 2 is Abelian. This means that one can
exchange the order of the manifolds in .#. However, if »=s, one must respect the
sequence of dimensions r, s, r ... for defining linking numbers. We therefore obtain
the nontrivial corollary:

Corollary. The cyclic linking integral #(% 1, ..., €,, ..., €, ..., Cy) is invariant under
any transposition of two manifolds €, and € having the same dimension.

5.3. Properties of o/ and % in Wave Vector Space

The calculation of &/[p], #[p] defined in (5.7a) and (5.7b) is given in Appendix E.
We find the very simple expression:

—r=1)! o
%)'_)p—l j‘ <elp'(f_f)>sn—1(dg_",'df/’7), (522)
: ExE

or using the explicit form (5.9) of the angular average (5.5), we have

(n—r—1! Qmny"* _, L, o
(n—1)! Sn—lp /2fg£<gC1 /2J%—1(p5)(d‘fr'd‘/')’ (5.23)

where (= |f—1f'|. In a similar way, %[p] is given by

A[pl=

A[pl=

Bp]=0y,+1,,2m)" I 07", (p) det(f— 1, dF,, dF)).

(n_].)!Sn_l € x€
(5.24)

Recalling Egs. (5.5) and (5.9), it is possible to express formally 4 as an angular
average over the unit sphere $"** in R"*2:

1 . ,
Bl= 051, | (T )g det~ 1,47, d7), (5.25)
. ExE

where peR"* 2, The characteristic functions .o/ and %, in momentum space, may
be viewed as exploring, at wavelength 27n/p, the geometrical properties of the
manifold. Function &/ involves the invariant scalar product of volume-forms,
whereas function % reads as the interference superposition of infinitesimal volume
elements.

Asymptotic Limits. The linking integral .# (2.20) is necessarily convergent, because
linking numbers are finite integers, and because the volume of the group of
motions, where finite manifolds are linked together, is finite. We check the
convergence of the momentum integral (5.20) with the help of the asymptotic
behaviours of &/ and 4.

Limits p—0. They are trivial. Using Eqgs. (5.7a) and (5.7b) and expanding Q,, (5.9)
for small p, we find

Apl=ply+ ..., Blp]=Bo+ ..., (5.26)

p=0

</, and %, are constants proportional to r'® moments of Z(9) and %(o)
respectively, which exist since .7 and 4 have finite supports in direct space.
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Limits p—co. For studying the large p limit of «/[p] the asymptotic form of J,
[20]

2 1/2
{L(ﬁ)z (E) cos(x—vm/2—m/4) (5.27)

does not rapidly decrease, and large p limits cannot be trivially extracted from
(5.23). We find in Appendix F:

A[plrctO)p~ "D, (5.28)

p—®©

where c¢ is a numerical constant and where o7 (9 =0) is the value (4.16). Inserting
(5.27) into the explicit integral (5.24), we can majorize % by the integral of the
modulus and get immediately

1B[p]|<Bp~ "2, (5.29)

p— o

where 4, is a constant. As 2r+ 1 =n, for 4 to exist, both power law decays for .o/
and % coincide. Coming back to the momentum integral .#, we may evaluate the
product £ for large p:

N
->(n+1)
%1, |Hlocp 2 .

p—>©

(5.30)

Furthermore, there are no divergences at the origin. Thus, as expected, we check
that, for N =2, Fourier integral .# (5.20) is absolutely convergent.

6. Mutual Inductances and Contacts of Manifolds

In Theorem (5.20), use was only made of the even part & of the product £. A
geometrical interpretation can also be given to the odd part %. To find this
interpretation, it is necessary to consider not only linking numbers of manifolds,
but also their mutual inductances and contacts, which are defined below.

6.1. Definitions

We consider in this section manifolds having the same dimension r. The mutual
inductance M of two such manifolds €', %%, embedded in space IR", is defined by

A%, -d%
M=[S,_ (n—=2r!117! —r—n_r‘,
! g,!gz If—gl"2
where dZ,, d¥9, are the r-volume forms (2.3) of ¥, and %,.
This definition is the generalization to IR" of the notion of mutual inductance of
two circuits, in electromagnetism in IR® [13]. For two closed curves, (n=3, r=1)
the mutual inductance is given by Neumann’s formula

(6.1)

1 df- dg

= — 6.2
i ¢y, =gl 62)
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In Eq. (6.1), the scalar product of tangent vectors appearing in (6.2) becomes the
scalar product of differential forms, given by (4.11). The contact distribution C of
two closed manifolds 4" and %" is defined in a similar way by

C=(h"' | of-gld7, d%,), (6.3)

€1 x €,

where C is a distribution of dimension 2r— n in length units, as shown by a trivial
dimensional analysis on (2.3). This generalizes to IR" the contact distribution
introduced in [8] for closed curves in IR3. Let us now make clear the relation
existing between linking number I, mutual inductance M and contact distribution
C. The translation x of %, with respect to 4, reads

f-gof—g—x (6.4)

and substitution of (6.4) into Egs. (6.1) and (6.3) gives two functions M(x) and C(x).
Defining the “mutual inductance tensor” T,°:

LL00=(S, -2yt [ 4289 65)

wxe, If—g—x[""?

we may write I, M, C solely in terms of this tensor:

Ix)=tr{e, (V) T},(x)} (@), M) =tr[},(x) (b), Cx)=—41trI},(x) (o),
(6.6)

where V and A4 act on variable x. Note that a linking number and a mutual
inductance can be simultaneously defined only if both manifolds have the same
dimension

r=(n—1)2, 6.7)

n being odd. The process could be iterated by considering higher derivatives (g(V))?
and primitives ((V))~? of I'; ,(x). Differentiation gives local contact distributions of
higher order, whereas integration would give “mutual inductances” of higher order
describing long range influences.

Let us now consider a set of N closed manifolds %, =1, ..., N having all the
same dimension (6.7). To these manifolds we may associate a cyclic product, the
factors of which are quantities I, M or C:

(oiDpay o My Cpe ). (6.8)

This cyclic product contains N such factors, with indices running from 1 to
N+1=1. This product depends on the relative positions in space R" of the
manifolds %,. As in (2.20), we consider the integral over the group G of motions
of the manifolds

F= | (dpey Mgy .Cpyy )y (6.9)

g€Ga X ... XGN

9 I ,(x) relates two manifolds. The tensor I'(y) (3.2) relates a single manifold and its own translated
image by vector y
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The measure over the group of relative motions is, as in (2.20), (2.20a):

N N N d(g
dg= ] d"xa(3<z xa) 11 Q“.
a=1 a=1

a=1 n

We shall now calculate .#.

6.2. Factorization Theorem

We have shown in Sect. 2 that the linking integral (2.20) can be expressed by Eq.
(2.31). The rule is very simple: each factor I, has to be replaced by tensor C,.
One may notice that tensor C is related to I by (3.1) C=¢,,(V)-I', an equation very
similar in structure to (6.6a). We notice, at this stage, the formal analogy between
this last relation and the first Eq. (6.10) giving I. For the general cyclic integral
(6.9), the whole argument, given in Sect. 2, can be repeated step by step. One
obtains new substitution rules, which can be immediately guessed by inspection of
Eq. (6.6a—c):

Iaa+l_)ca=£(l7)'ra7 Maa:-!—l_)r Coza+1_)_AF

o

(6.10)

As already stressed, these quantities I, M,C relate two successive manifolds
%, %,.,, whereas the image by (6.10) is associated with manifold %, only.
Inserting (6.10) into (6.9) gives the tensorial factorization generalizing (2.31):

o

= deaﬁ(Zya,)tr{...Ca(ya)...l"ﬂ(y/,)...(—A)I‘y(yy)...}.(6.11)

ReX...XR*a'=1 =1

In Fourier representation (5.1), (6.11) reads immediately
f:(zn)—"ﬂi(nd"ptr{...(‘:a(p)...fﬂ(p)...(—)A’ry(p)...}. (6.12)
We have to calculate the above Fourier transforms. Using Eq. (3.1) and well-
known properties of Fourier transforms, we have
Co)=—ipe,(p) [(p): AT=-pT. (6.13)
Inverting (6.13) by using (5.8) for r=s, and tensorial identities (3.9)~3.12), we find
L(p)=p {8, (p@PA[p]+(—1)"" 165,01 (—De(DBPL}.  (6.14)
Using isomorphism (5.13) gives the rules'®
I>p N +eB), AT—p(d+eB).
Using this isomorphism in (6.12), as in the previous section, and taking care of the

numerical factors, we find the theorem:

Theorem III. Consider in IR", N manifolds €, of dimensions r=(n— 1)/2, n being odd.
The integral

I= [ (dey Mgy, C, i)y

G motions

10 (—1)*"! preceding # has been dropped, because Eq. (5.21) gives (—1)”*1=1
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of the cyclic product of linking numbers I, , of mutual inductances My, , and of
contact distributions C.,, . ,, over the group of Euclidean motions (translations and
rotations) of the manifolds, can be factorized into the single integral

I =7 [ dpp" P yealP], (6.15)
0
here j= =t O DL % s ' he algebraic prod
where j= o G and 2., is the even part in ¢ of the algebraic product
P=[ ...ty +B,) .0 sty +eB) .. p(A,+eB,)...]
= e@even + Ee@odd (6 1 6)

calculated with the rule e2=(—1y"*1 (=(—1Y*1), and built with obvious cor-
respondence rules.

Theorem IIT generalizes Theorem (6.18) of [8]. It yields in particular the
interpretation for the odd part % of product (5.15). One checks indeed that p~!%
(respectively p%) gives the even part of (6.16) for the product of N—1 linking
numbers and of one single mutual inductance (respectively one contact). More
generally, we note that a linking number I on one hand, and an inductance M or a
contact C on the other, have opposite parities with respect to e. Furthermore two
factors M and C annihilate each other according to the equivalence rule [see
(6.16)]:

MCe(—1)y**1]2, (6.17)

Until now, dimension r of the manifolds was fixed at 2r+1=n, so that I and
(M, C) were simultaneously defined. If we restrict ourselves to inductances and
contacts, the common dimension r can be arbitrary and differ from (n—1)/2. Only
</ functions exist in this case. .# reads for instance for N inductances:

N 0 N
| M, dg=7 [ dpp" ' "N [] o,. (6.18)

G2X...XGy a=1 0 a=1
If one considers two manifolds only, Theorem III can be also given in direct
space. The integral (6.11) can indeed be calculated in direct space for N=2, as it
has been done in Sect. 4 for the kinematic linking integral of two manifolds. We
refer to [8] where a similar calculation has been done for 1-curves. The kinematic
integrals [M?2, {C?, [IM, [IC, [MC=([I* (provided they exist) are given by
factorization theorems analogous to Theorem I, where the characteristic functions
(0), B(g) are replaced by some of their primitives or derivatives [8]. Similar
results hold here and can be obtained by starting either from Egs. (6.11), (3.8), and

(3.17), or from Theorem III by inverting the Fourier transforms.

Convergence. The general integral # (6.9) can be divergent. Inductances bring in
long distance divergences (p—0), while contacts bring in short distance divergences
(p— o0) [rule (6.16)]. The convergence must be checked in each case, with the help
of the asymptotic behaviours of &7 and # (Sect. 5). For instance, integral (6.18) is
defined for N<n—1, being otherwise infrared divergent at p=0, if functions %
appear.
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o

o

SI’

Fig. 11. Coordinates on sphere S”

7. Particular Geometrical Shapes

7.1. The Spheres
We consider the sphere S", of dimension r and radius R, embedded in R* (r£n—1):

{x%+...+xf+1=R2 .1)

xj:0, r+2<j<n.

Leaving aside the x/s, for j=r+2, the sphere §', considered as embedded in a

subspace R""1, is a hyperplane manifold (Sect. 4). Thus #=0 and function ./
(4.25) reads

A(e)=r""'o* " [o(e~[If—1£])(n-TT-n)dS,ds,, (7.2)

where n and n’ are the normal unit vectors at f and f’, and where TI=1—f7"® ff’
is the projector orthogonal to f—f'.
Let f’ be the North pole of S" and 6 be the cone angle (0f",0f) (Fig. 11):

n-n'=cosf, 0Oel0,7]

7.3
n-IT-n'=cos?6/2, |f—f|=2Rsinb/2. (73)

Besides 6, the position of point f is given by r— 1 other spherical angles belonging
to the unit sphere §"~! and the measure on S" reads dS,=R’(sinf) ~*d0ds, _ .
This, together with (7.3), gives

(0)=r""9'7"S,S,_, [ 8(o— 2R sin6/2) cos*6/2(sin )"~ 'd6
0]

_ %Lls,Rru — 0%/AR?1202R— o). (7.4)

For a circle St (r=1), (7.4) coincides with the result of Pohl [6]. As expected from

(4.16): (0)= S’; LS, where S=S,R" is the area of sphere S”. As expected also, the

finite support of o/ ends at the diameter 2R.
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1=0

Fig. 12. Linking number of two points at a fixed distance [, with a hypersurface "~ *

7.2. Zero Dimensional Case

As a limiting case, let us consider a manifold made of two points: €, = {g,, g5} in
IR", separated by a fixed distance I. %, is zero dimensional (r=0) and thus it can be
linked with any closed hypersurface "~ ! of R" #"~' divides space R" into
interior " and exterior ¥~. The linking number I(¢"~*,%,) is then defined by
I=+1if goe%" and gye %™, I=—1if g,e ¥ and g,€% ", and I =0 otherwise.
%, and 4"~ ' are thus linked whenever g, and g, stay on opposite sides of
boundary surface "~ ' (Fig. 12).

The set @, can be considered as the limiting case of a zero dimensional sphere
" S of radius R, 2R=1. Thus, taking the limit r—0 in (7.4) gives immediately the
o -function of %, :

Ao(0)=20(1-0), (7.5)

which can also be calculated from (4.6). In Fourier space &7, (5.7a) reads
accordingly

(2775)"/2
S

1 11

Aolp]=— P (/)

n—1

The function 4 of %, vanishes for n=2r+1=1, and does not exist for n=2.
The linking integral (4.10) of %, and of a hypersurface ¢"~ ' reads therefore

[ dost (o), (7.6)

n—10

<j' IZdnx> —

where .o/ is associated with closed hypersurface "~ '. This formula gives the
overlap probability for a segment and a closed hypersurface. This generalizes a
result by Pohl [6] for segments and curves in plane IR

For |- oo, one of the points at most lies inside 4"~ !, and (| I*> equals two
times the interior volume V, (%"~ !) of 4"~ '. Thus we get the simple formula

1
Su-1

n

Vil €)= do</(0), (7.7)

o3

11 For p— o, [ p] is not given by (5.28), which holds only for » >0 (see Appendix F)



Linking Numbers of Manifolds 253

valid for any closed hypersurface % in IR". This can be checked for instance for the
sphere S" considered as a hypersurface in R""!. Using (7.4) and properties of the

S
Euler I'-function, we obtain S j Ao (0)do= +’ i R which is exactly the

(r+ 1)-volume of the interior of sphere S” in space R"*™.

7.3. Topological Second Virial Coefficient for Spheres
Consider a gas of spheres S” of radius R moving in space IR" with

n=2r+1. (7.8)
Their phase space is restricted by the fact that they make no links together. For
two spheres the linking number I can only be equal to O or £ 1. Therefore .# reads

|7 = < ] d"x> (7.9)

top. excluded
volume

and measures the volume in space of translations x, averaged over angular
motions, over which the spheres are linked. This is exactly the topological
excluded volume. Then the virial expansion of the pressure IT [9] of the gas of
spheres at concentration C, reads

B o, = C+ 371 C* ... (7.10)

The topological excluded volume .# for two r-spheres is thus given by Theorem

2 ©
4.10): [A]= Ez)) Syt fdodsz, 0). We get by using (7.4) and properties of Euler

I'-functions:

(S,.;Sr)2 [(V(z 1))"]2 R2" j (1—02/4R?)do= LSNRZ"“. (7.11)
2r :

f:
o 2r+1

. . S, .
One must notice, according to (7.8) that |.#|=2V,(R), where V,(R)= "Tan is

the interior volume in IR" of the 2r-sphere S*', generated by the rotations in IR” of a
sphere S" about its centre. Thus, we finally have

ﬁHltopol.:(E-{_ V,,(R)(Ez-l- cees (712)

for a gas of nonlinked S'-spheres.

This can be compared with the pressure of a gas of hard spheres $”~! in R". In
this case, the excluded volume is obviously that of a S"~!-sphere of radius
2R:V(2R)=2"V,(R), leading to the virial expansion:

By g, = C+2" TV (R)C+ ... (7.13)

The topological excluded volume is evidently smaller than that of hard spheres.
Both are equal only for n=1. This corresponds to the obvious fact that, in one
dimension, the notions of link and overlap of two intervals S° coincide.
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Conclusion

In this article, we considered the Gauss linking number I in R" of two closed
manifolds of dimensions r and s, with r+s+1=n. We also defined the mutual
inductances M and contact distributions C of closed manifolds, which are closely
related to I. This study is quite general. The physical cases n=1 to 3 are contained
in it. For general n, all the cases r+s+1=n, 0<r=<n—1 are treated, going from
sets of points to hypersurfaces.

We have introduced a new, compact tensorial formalism, which underlies the
calculation of scalar quantities like I, M, and C. The new mathematical tool we
introduced is the inductance tensor I, a 2r tensor associated with any manifold of
dimension r. We believe that such a tensor I', and objects similar to it, are
important and quite basic for such studies of topology, potential theory and
electromagnetism, and provide a generic method. Using group theory, we proved a
key lemma, which shows that I' has two and only two distinct parts, each of which
generates characteristic functions &/ and % of a manifold 4. The calculation of &/
and 4 was reduced by this method to a direct application of the well-known Gauss
theorem of electromagnetism. This completely elucidates the origin and the form
of o/ and 4. The set of values #/(g) yields a scanning of the geometrical shapes of
manifold € at distance g. o interpolates in particular between the area of ¥ and its
inner volume, when % is a hypersurface. %, on the other hand, is quite peculiar,
being directly proportional to the average linking number of ¥ with its own
translated images. As a consequence, we have found that # appears only for a
manifold of dimension (n—1)/2 with n=3+4¢g=3,7,11, ...! Luckily enough, IR? is
generic. We calculated the kinematic linking integral .# = ([ I*d"x) over the group
of motions of two manifolds ¢, and %,. We established a general theorem giving
J as the single integral of products «,.%7, + %, 4%,, factorized over manifolds 1
and 2. As an application, the topological excluded volume V'=.# of hyperspheres
was calculated. In general, .# can provide useful numerical information on the
relevance of topological constraints. In particular, the problem of a further
statistical average over the deformations of the manifolds is solved by the
factorization theorem. One has simply to average independently the characteristic
functions.

More generally, the theory of rings (like polymer rings), or closed surfaces, with
topological constraints, could be tentatively described by a partition function

Z=Trexp{— pH —gI*},

where # is the Hamiltonian. The limit of large values of g, g— o0, would select
configurations such that I =0 (alas not necessarily unlinked). Thus, expanding in
powers of g, the integral .# = (| I*) gives the first moment of Z. It would then be
necessary, but difficult, to calculate the higher order moments for studying the
large g limit of the theory.

We gave in this article a generalization in another direction by considering N
manifolds, and the cyclic product of their successive linking numbers. The integral
of this linking product over the group of motions of the N manifolds, has been
shown to factorize completely in Fourier space. The factors read e</ + %, and are
associated with one manifold only. The objects (1,¢) obey special algebraic rules.
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The same algebra {7, #} with coefficients (1, ¢) has been shown to describe a
quite large class of topological and electromagnetic quantities. Defining mutual
inductances M and contacts C of manifolds in IR", we considered cyclic products,
the factors of which are quantities I, M or C. We established a general theorem
giving the integral of these products over the group of motions of the manifolds.
We showed that this integral factorizes over the same set of characteristic
functions .7 and % of the manifolds. These theorems allow practical or numerical
calculations of these integrals, which are reduced by the theory to integrals over
one single momentum variable.

All the quantities considered here were arranged in a cycle, going from
manifolds 1 to N. Work remains to be done for calculating kinematic integrals
involving multiple crossed terms, as in usual cluster expansions in statistical
mechanics. It would be an important step towards a general theory of topological
constraints.

Hopefully, these mathematical methods and results could be useful in to-
pology, electromagnetism and in statistical mechanics.

Appendix A
Proof of Gauss’ Formula
Equation (2.4) can be written I= [ , where w is the mixed (r+s)-form:
C1X %>
w=Hf—g)e I df, A...Adf,)(dg; A ... Adg;) (A1)
with
— -1 a —(n—2)
H.=—[S,_ n=2y!ls!]" ' —|f—g| . (A.2)
01
Stoke’s theorem gives
I= | do, (A3)
F(E)XE,

where &(¢,) is a Seifert-surface of %, such that 0.(%,)=%,. The exterior
derivative d @ of w with respect to f is by definition

djo=0 HE s dfy ndf A AdS)(dgy A~ dg;). (A.4)

1 1
(r+1)! s!
g telin (@ f Adfy AL Adf,) into (A4) and summing over indices i, to i,, we
get:

lig...iply.. s

Substituting the trivial identity dfiAdf, A...Adf, =

i 1 . .,
dfw=6,Hkr+—1555‘{1{;1'/;8’ okl ld fAdfy A Ad) dg; A Adg;)-

Then, expanding the generalized Kronecker delta with respect to indice I [14]:

Kji..ods Sk Sjie..js _ Sit Skiz...j
Ot il =0rof =0l & (A.5)

s
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we see that d .o can be written as the sum of two terms:
1 ’ j j /
dfw=6,H,m8’ Kokt df Adfi Ao ndf)(dgs A A dg; )+ d e

where d ' is the exterior derivative with respect to g of a second form ' coming

(3H 6H) Thus we find

from the second term of (A.5) (use Definition (A.4) and —
0 f] ag;

the exterior derivative of a form of type (A.1):
w=det(H,d%,,d%)

dfw - r——|1—T (divH)det(dZ, ,,,d¥9 )+ dga)/ : (A.6)

Inserting (A.6) into (A.3) gives

1
I= j ——1 (leH) det(df’, + 1> dgs) P

F@Nx6 T

by using | d,o' = | '=0. Using Poisson equation for H (A.2) yields divH
€2

0€2=0

1 !
= o(f—g), and finally

1
DL MR dS)ED ()

When explicit variables are introduced on both manifolds [see (2.10)], (A.7) reads:

of
[={5(f— g)det( ., 6‘% I

S AR )(dw1 Adw,, )(do, A ... Adp)(A.8)

which corresponds to the geometrical definition (1.7) Q.E.D.

Appendix B

Proof of Lemma (3.6) for Tensor T’
Consider a tensor I'(y)l;, ;. ;.. ;.» Which has the following properties:

B.1 I depends on only one vector y of IR".

B.2 T is skew-symmetric with respect to the set of indices i,, a=1,...,r and
separately skew-symmetric with respect to the set of indices j,, b=1,...,7.

B.3 All its divergences (in number 2r) vanish.

Then we want to prove that I' has necessarily the form

LYy iy i 5“ 0,0, D(|y])+ 0+ 1,n8i1"'irjl"'jrl

gl

0Py + U, (B.4)
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. . 0 . .
where @ and ¥ are two arbitrary functions, and ¢,= 3 U is a harmonic tensor
N

linear in y satisfying (B.2) and (B.3)!%. Conversely, all tensors (B.4) satisfy
conditions (B.1)~(B.3). Property (B.1) means that the transformation properties of
I' are given by those of vector y. Then we use a theorem analogous to a main
theorem on the invariants of orthogonal group O(n), which can be found in Weyl’s
book [12]. Tensor I' is built with the Kronecker delta 6,,,, the components y, of y
and the completely skew-symmetric n-tensor &' The other factors will be
invariants, i.e. functions of modulus ||y|. It is equivalent to consider, instead of
components y,, the dual differentiation operators d,= % as elementary bricks for
1

building I'. The equivalence can be seen in Fourier space, where 0, generates
components of the momentum variable. Using differentiation signs is more
convenient for dealing with scalar divergence properties. These differentiation
operators act on functions of the modulus | y||.

Consider then a component I'; , ; .. Because of the skew-symmetry
property (B.2), no symmetric terms 6, ; ,d,, ., ,and 6, 9; , or 9, 0,  appear. One can
have only terms:

0, 05, 0; and 9,0;. (B.5)
No monomials of higher degree in 0 appear, because they would involve
symmetrically at least two indices i or two j’s.

Consider now the skew-symmetric tensor ¢ It can bear some indices i and
some j’s: &' Let us first assume that

2r<n—1. (B.6)

Then the set i,...i,, j,...r, will not saturate the n indices of tensor e. The n—2r
remaining indices / of ¢ must necessarily be contracted with components 0, of the
gradient. If

2r<n—1, (B.7)

at least two dummy indices [, I appear and g'«+/*-"'9,9,, =0. Thus, if 2r<n—1, no
term involving tensor ¢ can appear in T
If 2r=n—1, the only possibility is given by a term

ghinitilg, (B.8)

which satisfies properties (B.1) and (B.2).

If condition (B.6) is not satisfied, the number of indices 2r=n allows much
more possibilities. For instance, a term 8i""ipj1"'jpc5ip+ljp+ \--:0; ;, with 2p=n, and
antisymmetrized, could appear in I However, we show later that a duality
property exists for tensor I', because of (B.3), which relates tensor I" with a large
number of indices 2r=n—1 to a dual tensor with a small number of indices 2s

=n—1(r+s+1=n). We thus prove first the lemma in case (B.6).

12 We give first the full group theoretic argument. The fact that U=0 for the actual I" (3.2) is left to the
end



258 B. Duplantier

I. Case 2r=n—1.1, reads, according to (B.5) and (B.8)

teobe i Jr
Zéiljo-(l) . 5'rJo'(r)('D"' ”y“ + az: Z ijoy"” 5iujo'(a)"‘5irja(r)
01,0, @Y+ 0y sy ™00, V(| 1)), (B.9)

where ¢ is a permutation of 1,...,r. The ¢’s and ¥ are arbitrary functions. The
notation 0, ; ~ means that this factor is missing.
First of all, one must remark that the last term of (B.9)

62r+Lngil...i,jl...jrlalgl (B10)

satisfies trivially properties (B.1) and (B.2) and also the divergence property (B.3).
Thus this term is always present in I, provided that 2r+ 1,=n, and we drop it from
now on. Now, the skew-symmetry property (B.2) gives immediately

0,=e(0)py, @ =¢e(0)p, (B.11)

where &(o) is the signature of ¢, and id the identity permutation. Removing the
subscript id, the unknown functions are @, ‘%, ..., @". We introduce the delta
tensor (2.7), and tensor I' (B.9) reads exactly, owing to (B.11):

Ly s =05 500y ) + Z 8,000,011 (B.12)

Let us fully exploit the skew-symmetry with respect to indices i,. Consider two
particular indices i, and i,. The only terms of (B.12) which are not obviously skew-
symmetric under exchange of i, and i, are &%\, 0,0, @'+ 8-k 0,0, 9.

Taking the partial trace i, =j, for a'+(a,b) we get the obJect
Olair = §liv. 0,0, ¢+ 8L 0,0, 0P,

JaJb Jajb

which must satisfy (9;“‘;;— —@;”‘J‘; Expanding the 6 > we find:

0,0,0'0=0,0,0" +¢d; Vi, j, (B.13)

where ¢ is a constant. The contribution of ¢d} to (B.12) can be absorbed in the first
term of (B.12) and we can set in (B.12):

Va, ¢9=—0, (B.14)

where @ is an arbitrary function of | y||.
Using the expansion with respect to I':

5{1...1‘,«1

R T I R (B.13
and using (B.14), we may write (B.12) as
il =4l (@ — AP) 464,00, 9. (B.16)

This is the general form of a tensor satisfying to properties (B.1) and (B.2) and with
2r<n—1. Let us now exploit the property (B.3). The divergences of the second
term of (B.16) all vanish because by skew-symmetry 6::*:~'0, 9,=0. The first term
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of (B.16) is divergence-free if V(¢ —A4®)=0. Thus: ¢ —AP=C, where C is a
constant. This constant term can in fact be absorbed in the second term of (B.16),

C

by remarking trivially that 6%t '-r C=0%"".0,0, [m sz. Remembering that a

term (B.10) also exists, we thus have proved that tensor I', for 2r<n—1, has the

form
I'=06:100,9+06,,,,,¢'0%. QED. (B.16a)

II. Case 2r>n— 1. Here, the number of indices 2r is great enough to allow a priori
much more possibilities than in (B.9). Here the vanishing divergence property (B.3)
plays a crucial role. We define the dual tensor of I':

K;cll'.'.'.llfsE 811...lsln...lr8k1---ksl.llu-.lrr;ll-.::f;‘r , (B.17)

The number s satisfies, as before r+s+41=n and 2r>n—1 implies
2s<n—1. (B.18)

Thus, for tensor K, we are in case I. The dual tensor K satisfies trivially (B.1) (B.2)
but not (B.3). However, we have proved above that the general form of a tensor
(B.1) and (B.2) is given by (B.16):

K =0 0+ 0 0,0, @ (B.19)
where @(||y|), &(| yll) are arbitrary. The tensor I' can be obtained back from K.
We have indeed

(Sa)ZK = 811 ...lsl'i’l.ui'rgkl ksl g 'j;.al‘al”K;c‘I....'.llis
=(slr))> ATk (B.20)
For proving it, one substitutes (B.17) into (B.20) and finds
(e0)*K =(s1)?0};t 36} 71 970,,0,, " 'r .

gy 0Ly, e
If '=i, a term 0, I"'=-=0 appears [use (B.3)]. Likewise, I"=j, gives
o.r . =0.
N

Thus I'=1"=1 and (e0)’K reads (s!)dj!: 3/t FA: > which gives (B.20).
Property (B.3) is crucial for (B.20) to hold. Substituting (B.19) into (¢6)?K (B.20),
and making some manipulations on numerical tensors [use (2.8) (2.9)] finally give

[0 K1 = (5178 4.0,00(p + 4d).

gl

Therefore, owing to (B.20), we get the Poisson equation

AL 5 =03 5.0000 (B.21)
with @=(r!)"%(¢+ AD). Integrating (B.21) gives:
r=6-10,0,0+U, (B.22)

where @(||y]|) is a spherically invariant function such that A®=¢. U(y) is a
harmonic tensor such that AU =0, which satisfies also (B.1)—(B.3). If I" vanishes at
infinity, (for n>2), then U=0. It is sufficient to consider a tensor U independent of
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the first term of (B.22). Then U vanishes at infinity, and being harmonic, vanishes
everywhere. Then for 2r+1>n (and n>2) we obtain the form of I

L'=5:1.00,, (B.23)

which achieves the proof of Lemma (3.6) for 2r+1>n, n>2. Q.E.D.

For n=1,2, Lemma (3.6) is also true. For n=1, r=0 and for r=0, I' is a scalar
function of ||y|, in agreement with (B.23). For n=2, r=0,1. For r=1, I'is a 2
indices tensor and has been constructed directly in [8] in the form (3.6). This,
together with (B.16a) achieves the proof of Lemma (3.6) for tensor I' (3.2). Q.E.D.

In the absence of boundary conditions, one can show that U is necessarily a
tensor linear in y. Owing to the first results of this appendix, a typical term of
Uit satisfying (B.1) and (B.2) depends on y in one of the following ways (apart
from numerical tensors in factor)

01;  0,0,0,2; & 00s3); 30, 0,(4);
e0,0,05(5);  ¢0,0,0;,0406).

la” Jb

(B.24)

Then AU=0 gives
Ap,=0; o=2,45 Vij a,.aj(Agoa)=0;
Vio(Ap3)=0; Vi jl 0,0,0{A4¢s)=0.
Spherically invariant functions f(||y[) such that 0,/ =0 or 0,0,f =0 or 0,0,0,f =0,
are necessarily constant. Therefore Yo=1,...,6; 4¢,=C,(C,=0), C, being con-
stant. By integrating: (pa=%\|yllz+c;(C1=0), and thus: 0,¢,= %yi, 0,0;0,

C o . .
= 7"‘6”.. This, inserted into (B.24), gives that all terms of (B.24) are constant,
excepted (3) which reads C,¢'y, Therefore U has the linear form U, +U, -y,
where U, and U, are constant tensors. This achieves the proof of the lemma in the
form (B.4). Q.E.D.

Here again, the fact that I' (3.2) vanishes at infinity (for n>2), gives U=0 and

(3.6) follows.

Appendix C

Multiplication of Tensors € and &
Let us prove Egs. (3.9)+(3.12). Definition (2.11) gives for (3.9)

g,(x) &, (y) = szyzie“‘“"*“””‘t?' St (C1)

We then insert in (C.1) the general identity [14]

Lyodejro jepl' T js — Sliteirji.. . j
gl irdiJsg Pl =Gt s (C2)

Permuting indices i and j in (C.1) and summing over indices i gives then

1 o
(- 1)rss_|xlyl’6mmjs =(— 1%, (x®y). Q.E.D

Uji... s
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Equation (3.10) reads, with Definitions (2.11) and (3.7):

1 L
ssr(x)'srr(y®x): ‘9'7 xlgl“.”lrjl.“]sy X 5$1111 (C3)
We then use the expansion with respect to m’
5m11 5"1 5!1 511 5"112 l,«_i_ (C-4)

m'iy. m'iy.

The second term of (C.4) (and the followmg ones) gives a contribution in (C.3)
xx;, 8" =0.

Inserting only the first term of (C.4) into (C.3) and summing over the r indices i
gives

U wi
(xy) g xiet e b= (xey)eg (). QED.

Equation (3.11) is proven in the same way. For Eq. (3.12), we have by definition
6:~r(X®Y)'6rr(X®y) ( ')2 xlyl mym 551111 1175::;1;1 -9 (CS)
and we use expansion (C.4) for the second 6. The second term of (C.4) (and the
following ones) gives in (C.5) a vanishing factor of the type
Ye¥iOiii,..=0.
Thus, keeping only the first term of (C.4) in (C.5) and summing over the indices i

finally gives:

1
(x-y) 5 Xy 0k = (x¥)8,,(x®y). - QED.

Appendix D

Formulae with Chords of Constant Length
Proof of Eq. (4.18) for of. We start from (4.6):

1
@)= 0" [0, -dF). (D.1)

Consider the exterior form:
w=00—f=1)(f—1),@df;,~...Adf;).
Its exterior derivative d o is
d;w=0d7);, . ~(f =)0~ f-F)(f"dZ;, ;).
Therefore, we have

[ 0@Z7, d7)= | d;w-dZ/+ | (. u[(f-dF)R(ff"-dF))]. (D.2)

€xE ExXE ExE
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The first term vanishes because of Stoke’s theorem (3.5), and (D.2) inserted into
(D.1) gives (4.18). Q.E.D.

Proof of Egq.(4.19) for #. We start from Eq. (4.7) and consider the exterior form

w=det(H,d%,, dF,), (D.3)
where
=—0(If-f -V If-£]~""?. (D.4)
Then
B=0311,n=2)"'r) " | o (D.5)
%x%
Stoke’s theorem gives:
f o= | do. (D.6)
“x% PGEG

Then the coboundary form d,w reads [use Eq. (A.6) of Appendix A]:

1 b A /
dpo= - (div, H) det(d, , .. dF))+d o (D.7)

The second term of (D.7) gives no contribution to (D.6). Furthermore div H can be
calculated easily with Eq. (3.25) and reads

divH=(n—-2)é(c— [If—f|)e~ " V. (D.8)
Inserting (D.6)—(D.8) into (D.5) then gives Eq. (4.19). Q.E.D.

Appendix E

Functions /[ p] and B[ p]

We perform the g integrals in Eq. (5.7). Substituting (4.6) into (5.7a), we have
Apl=)™" | alpl(dZ,-d7}),

gx%
where a[p]=——i doo *0(0—0)Q,(po) and {=|f—f|. Changing the inte-
dp !
0

gration variable ¢ into x = pg, we find a[p]=p~'Q,(p{). Using the angular average
(5.5), we find Eq. (5.22), while using Bessel functions (5.9), we get Eq. (5.23).
In the same way, substitution of (4.7) into (5.7b) gives for %[ p]:

g[p] =52r+ l,n(r!)_2 I b[p] det(f_fl, d‘%’ d%‘/)a

ExXE

where b[p]l={"" [ do0({—0)0"~'Q,(po). For computing b[p], we use (5.9) for Q,
0
and the identity [20]

d
X0 ()= L],
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Integrating by parts in b[p] finally gives
blp]=(2np0)~"2J,,(p),
and this yields Eq. (5.24) for %[ p].

Appendix F

Large p Limit of </[p]
&/[p] can be written [Egs. (5.7a) and (5.9)], with x=pg
(2m)"? (_ d

— —roo r—n/2" . .
S, dp)p (j) dxx Ji_l(X)Jzi(x/p) (F.1)

A[pl=
We use the identity ,
(F.2)

(_ d )QJv_qm_@

xdx) x4 X
valid for integer ¢. Inserting (F.2) for g—1 into (F.1), we get

L (i

A[p]=
P P dp

q © r—i _
) pm2e f dxx 2 o1 qJE (x)L(x/p). (F.3)
0 274

If the integral

n
w ,u=r+1——2——q
k= [ dxx"J(x) ) , (F.4)
0 T
V=24

is convergent, then &/(x/p) can be replaced for large p by /(0) in (F.3). Here x
converges and is equal to [20]

I'f(1+v 2
o= 2#%2—% (F.5)
for
—(v+1)<p<i. (F.6)
(F.6) applied to (F.4) gives the condition
r—m—1)/2<qg<(r+2)/2. (F.7)

The difference between the two bounds in (F.7) is equal to 1+(n—r—1)/2>1 and
thus the integer g does exist. Therefore integral x converges. On the contrary, for
g=1, which corresponds to the initial form (F.1), u=r—n/2 does not necessarily
satisfy (F.6). Inserting (F.4) and (F.5) into (F.3) finally gives the asymptotic
behaviour:

2r+1—n/21’v 1 1
5+

Ifn—n/21 -~

n/2
2191~ Z0 y0) pfﬂ

p—=© Sn—l
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where, of course, terms involving the auxiliary g have automatically cancelled each
other. One must notice that this does not hold for r=0 because (F.7) gives then
g<1, and we used (F.2) for g— 1 which must be a positive integer.

Acknowledgements. I am thankful to M. Gaudin and G. Mahoux for helpful discussions, and to J. des
Cloizeaux for a critical reading of the manuscript.

References

1. See for instance: Brézin, E., Gervais, J.L. (eds.) Nonperturbative aspects in quantum field theory.
Phys. Rep. 49, 2 (1979)
2. Edwards, S.F.: J. Phys. A 1, 15 (1968);
Brereton, M.G., Shah, S.: J. Phys. A 13, 2751 (1980);
Des Cloizeaux, J.: J. Phys. (Paris) Lett. 42, 433 (1981)
3. Gauss, K.F.: Complete works, Vol. 5. Konigliche Gesellschaft der Wissenschaften zu Gottingen,
1867, p. 605
4. Alexandroff, P., Hopf, H.: Topologie. I. Berlin: Springer 1935
5. Maxwell, J.C.: A treatise on electricity and magnetism. 3. ed., Vol. 2. Clarendon Press 1981;
reprinted by Dover Publications, New York 1954, p. 43
6. Pohl, W.F.: International symposium in honour of N.H. Kuiper, Utrecht 1980. In: Lecture Notes
in Mathematics. Berlin, Heidelberg, New York: Springer 1981
. Des Cloizeaux, J., Ball, R.: Commun. Math. Phys. 80, 543 (1981)
. Duplantier, B.: Commun. Math. Phys. 82, 41-68 (1981)
. See for instance Huang, K.: Statistical mechanics. New York: Wiley 1963
. Duplantier, B.: C.R. Acad. Sci. Math. Paris, t. 293, Série I, 693 (1981)
. Choquet-Bruhat, Y., De Witt-Morette, C., Dillard-Bleick, M.: Analysis, manifolds, and physics.
Amsterdam : North-Holland 1977
Loomis, L.H., Sternberg, S.: Advanced calculus. Reading Mass.: Addison-Wesley 1968
12. Weyl, H.: The classical groups. Princeton, New Jersey : Princeton University Press 1946, Theorem
(29A), p. 53
13. Neumann, F.: Abhandl. Preuss. Akad. 1845, reprinted in Ostwald’s Klassiker No. 10; see also
Sommerfeld, A.: Electrodynamics. New York: Academic Press 1952, p. 105
14. Lovelock, D., Rund, H.: Tensors, differential forms, and variational principles. New York: Wiley
1975
15. Schwartz: L.: Méthodes mathématiques pour les sciences physiques. Paris: Hermann 1961
16. Kellogg, O.D.: Foundations of potential theory. Berlin: Springer 1967;
Loomis, L.H., Sternberg, S.: Loc. cit.
17. Pohl, W.F.: J. Math. Mech. 17, 975 (1968)
18. Banchoff, T.: Ind. Univ. Math. J. 25, 1171 (1976)
19. Gradshteyn, LS., Ryzhik, LM.: Table of integrals, series and products. 4. ed. New York: Academic
Press 1980, p. 403, Eq. (21)
20. Gradshteyn, LS., Ryzhik, LM.: Loc. cit.

= O\ 0o

—_

Communicated by A. Jaffe

Received November 27, 1981





