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Abstract. The equation

in three dimensions is investigated. Uniqueness and other properties of the
positive solution are proved for 3/2<p<2. There are two physical in-
terpretations of this equation for p = 5/3: (i) As the TFW equation for an
infinite atom without electron repulsion (ii) The positive solution, ψ9 suitably
scaled, is asymptotically equal to the solution of the TFW equation for an
atom or molecule with electron repulsion in the regime where the nuclear
charges are large and x is close to one of the nuclei.

I. Introduction

The equation to be analyzed here of primary physical interest is

{-Zl + |ψ(x) | 4 / 3 - |xΓ 1 }φ(x) = 0 (1.1)

in three dimensions and with ψ real valued. (1.1) was introduced in [9], wherein it
was asserted without proof that (1.1) has a unique, positive solution. The present
paper contains that proof. If z,y,A > 0 and

φ(z, γ, A, x) = (z2/Aγ)3/4 ψ(zx/A), (1.2)

then

{-AA+γ\ψ(x)\4/3-z\x\-1}ψ(x) = 0. (1.3)

and conversely. Thus, (1.3) and (1.1) are equivalent problems.
(1.3) is to be compared with the Thomas-Fermi-von Weizsacker (TFW)

equation for a molecule [2-4, 9, 10, 13, 14]:

{ - A A + 7 |φ(*) | 4 / 3 - V(x) + (|x|"' * ψ2) (x)} ψ(x) = - μψ{x), (1.4)
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k

with V(x) = Σ zj\χ ~ Rj\ ~ί being the potential of k nuclei of charges z} ^ 0 located
7 = 1

at Rj. The term |x| x *tp 2 is called "the electron respulsion." (1.3) has a unique
positive solution (denoted by ψ) for all μ = 0 [2,3,9]. — μ is the "chemical
potential." For all μ^O, ψeL^JR3) [3, 9].

(1.3) is seen to be the TFW equation for an atom (fc= 1, z1=z9 Rx = 0), but with
the electron repulsion omitted. It will be shown here that (1.1), which is equivalent
to (1.3), also has a unique positive solution, ψ, and F(ψ)<co [cf. (1.8)]. The fact
that μ = 0 in (1.1) and (1.3) means that the electron number, λ= J φ 2 , is maximal.
We shall see that in this case [for (1.1) and (1.3) but not (1.4)], λ=oo, which is
physically reasonable since the maximum electron number for the quantum
mechanical Bohr atom (without repulsion) is also infinity.

If the foregoing were the only interpretation of (1.3) it would not be especially
interesting. However, (1.3) has another interpretation as proved in [9] : Consider
the full TFW equation, (1.4), with the scaling zJ = az(}9 Rj = a~1/3R(j and λ = aλ°
with λ°>0. If α—>oo (with A,y fixed), and if x is close to one of the Rj then
ψ(x)->ψ(x — Rj) (with z = Zj) in the following sense: Fix y e R 3 then

lim zj 3/2ψ(Rj + zj V) = lim zj 3l2ψ(z7 V) = (Ay) ~ 3/*ψ(y/A), (1.5)

where ψ is the positive solution of (1.1) and with the convergence being pointwise
and in L{oc. [Note that the second expression in (1.5) is, in fact, independent of a.
The right side of (1.5) is independent of λ ]

Not only does ψ-*\p as in (1.5) but also the difference between the TFW energy
and the TF energy is given, to leading order in α, by ψ:

EΎFW-EΎF = D Σ zj + o(a2), (1.6)

where the constant D is given by [9]

D = A1/2y-3/2F(ψ), (1.7)

and where the functional F is defined generally for all real ψ by

F(ψ)=S\VΨ\2+lk(ψ{x)9x)dx (1.8)

with

fc(φ^)ΞfM10/3-N"V + f M " 5 / 2 ^ o . (1.9)

Note that k(ψ,x)>0 and fe(φ,x) = 0 if and only if ψ = \x\~3/4.
The positive solution of (1.1) has been evaluated numerically [8] with the result

that

ψ(0) = 0.9701330

F(ψ) = 17.1676.

Generalization. Equation (1.1) has the following obvious generalization

\2^2-\x\-1}ψ(x) (1.10)
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with p>ί. The physical case, (1.1), corresponds to p = 5/3. The TFW equation,
(1.4) can be generalized in the same way; this was in fact done in [2, 3, 9]. In TF
theory, p = 4/3 and 3/2 play a special role, while p = 4/3, 3/2, and 5/3 are special in
TFW theory [9]. In the analysis here of (1.10), p = 3/2 and 2 are special
(Theorems 3-5 and 7-9). Fortunately, the physical value 5/3 is in the range
3/2<p<2 in which all theorems are applicable.

The appropriate energy functional is (1.8), but with k(ψ,x) replaced by

i £ z i (1.11)

The corresponding F will be denoted by Fp. However, as will be seen in Sect. Ill,
Fp is useful only when 3/2<p<2. It is for this range of p that the existence of a
positive solution will be proved.

One of the more amusing technical exercises is in Sect. IV where an asymptotic
expansion for ψ is established. While the expansion is heuristically obvious, its
proof is not, primarily because A in (1.10) is essentially a singular perturbation.

II. Properties of Eq. (1.10)

Initially, (1.10) will be interpreted as a distributional equation. Although our main
interest is in positive solutions, we shall not restrict ourselves to such and will
assume only that ψ is a real valued function. It will turn out that the class of
functions such that Fp(ψ) < oo is the natural class to consider, when 3/2 <p < 2, but
this will not be assumed initially. The only assumption to be understood in all the
theorems is that p > 1 and

}. (2.1)

We begin with two "local" theorems.

Theorem 1. Let Bbe a bounded open ball in R 3. Let ψ satisfy (1.10) in B in the sense
of distributions with ψeL1(B) and VψeL2(B). Then

(i) ψ is continuous. More precisely, \peC°'\B) for all 0 < α < l . I.e. there is a
constant, C, such that \ψ(x) — ψ(y)\^C\x — y\a for all x,yeB.

(ii) // ψ(x)^0, Vxeβ, then either ψ(x) = 0 or else ψ{x)>0, VxeB.
(iii) IfOφB thenψeC1Λ/2(B).
(iv) // OφB and ip(x)^0, VxeJ3, then ψ is real analytic in B.

Proof, (i) ψe W1Λ. By the Sobolev imbedding theorem [1],

in particular feLq for some q>3/2.
If p<5/2 then ψeL6=>\ψ\2p"ίeL3l2 + ε for some ε>0. Then ψeW

2'ε+3/2 and
thus ψeC0'* for some α>0. Then the right side of (1.10) is in L3~\ all ε>0, so

ψE w2>3-\ Then ψeC0'* for all α < l . This proves (i) for p<5/2.
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If p^5/2 a different argument is needed. The fact that (1.10) holds as a
distributional equation means that the right side [call it ft(x)] must be a
distribution and hence must be in L{oc. Since \x\~1ψeL1, \ψ\2p~1eLl0C. Kato's
inequality [7], A\xp\^(sgnψ)Aψ as distributions (with sgni/? = |t/;|/t/; if φ + 0 and
sgn ψ = 0 if ψ = 0), then implies that

2 i M ^ ( s g n v ) { M 2 p " 2 - W " 1 } v = M 2 l l " 1 - W " 1 M . (2.2)

Therefore — zl|t/?| ̂  |x|~ 1|t/;| = / . A result of Stampacchia [12, Theoreme 5.2] is that
if fe Lfoc with q > 3/2 then \ψ\e L^c. But our / satisfies this condition. Returning to
(1.10), heLfo~

ε, ε>0, and (i) is thus proved as before.
(ii) We have Λxp = gψ with geLq and q>3/2. By the Harnack inequality (cf.

[5]), ψ = 0 or ψ(x)>0, Vx.
(iii) ψ,AxpeL™ and VxpeL2=>ψe W2>2=>VψeL6=>ψe W2>6=>ψeC1Λ/2 (see

[1]).
(iv) Assume ip(x)>0, whence M 2 p 1 has as many derivatives as ψ has. By a

bootstrap argument y; is C00 (see [10, Theorem IV.5]). Since I*!" 1 is real analytic
for x + 0, by [11, Theorem 5.8.6] ψ is real analytic. Q

Theorem 2 (cusp condition [6]). Assume the hypotheses of Theorem ί and also that
OeB. Then

ψ(0) = - 2 lim f Ω Vψ{rΩ) dΩ, (2.3)
riO

where dΩ is the normalized invariant measure on the unit sphere. In particular, if ψ is
spherically symmetric about zero, then

ψ{0)=-2\imdψ{r)/dr. (2.4)
riO

Proof. Simply integrate (1.10) by parts. •

Theorem 3. Assume that p^3/2. Suppose ψ satisfies (1.10) in the sense of
distributions on all of IR3. Then ϊy?(x)|<|xΓ1 / ( 2 p~2 ).

Remark. Some condition on p is needed and we believe p ̂  3/2 is the right one. If
p<3/2 there cannot be any positive ψ satisfying both (1.10) and \p(x)^\x\~1{2p~2\
For then 0^h=-AxpSM{1~2p)K2p~2) = f(xl where -ft is the right side of (1.10).
Since g = \χ\~1*f is finite for | x |>0 and #(x)->0 as |x|->oo, ψ = 4π|x| ~x * ft. Since
ftφO, this implies that ψ(x)^c\x\~1 for |x|>some,R and c>0. This is a con-
tradiction. Thus, p^.3/2 is the right condition for positive ψ. It is possible that
(1.10) has no positive solution even when p = 3/2, for in that case ψ(x) = \x\~1

satisfies (1.10) everywhere except at the origin.

Proof. By Theorem 1 we can assume that ψ is continuous. Let
b=-ί/(2p-2)^-1 (it is here that p^3/2 enters). A\x\b^0. If g(x) = \ip(x)\-\x\b

we have, by (2.2), that Ag>0 on the set A = {x\g(x)>0}. Since ψ is continuous
(Theorem 1) we have that (i) A is open; (ii) OφA; (iii) ft(x) = max[g(x\0] is
subharmonic on IR3, i.e. Ah^O. If we knew that ft(x)->0 as |x|-»oo we could then
conclude that h = 0 and thus that |φ(x)|^|x|&. But this has to be proved.
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We have, in fact, that on A

Δh^M-^-W1}^. (2.5)

Since \y\=h + \x\h on A, and (α + j8)'>α'+ j8* for α,)8^0, ί^ l ,

Δh^h2p~ι on IR3. (2.6)

Now let /(x) = /(|x|) be the spherical average of h, i.e. /(r)= \h(Ωr)dΩ with dΩ
being the normalized invariant measure on the unit sphere. By averaging (2.6), and
using av{Λf} ^ {av/z}ί for t ̂  1, we have that Δf^f2p~ K With r = | 4 let rf(r) = u(r),
whence

u"^r-2p+2u2p-γ for r>0. (2.7)

Assume that w(r)φθ. Since OφA, there is a i^ 0 >0 such that w(r) = 0 for
0 ^ r < # 0 . Since w"^0 and t/^0, u is continuous, convex and non-decreasing in r.
Therefore for some Rί>0, u(Rί)>0 and uf(Rί)>0. Thus u(r)>br for r > s o m e K 2

and with b > 0.
Let wκ(x)ΞΞσ#CR-r)2b be defined on DK = { r | 0 < r < £ } with σ2p~2

= p(p — 1)~ 2. On D^, wE satisfies w^ ̂  r~ 2 p + 2w 2

ι

p~ x. Since w(r) > for for large r, there
is some R such that wR(R/2)<u(R/2). Consider m(r) = u(r) — wR(r) on D^ and let
E = {r\m(r)>0,0<r<R}. Clearly, (i) m is continuous and m">0 on E (ii) Eis non-
empty and open; (iii) ECDR [since u(r) = 0 for r < # 0 and wR(r)^oo as r ^ K ] .
Therefore m has its maximum on dE, but m = 0 on dE. Therefore E is empty and we
have a contradiction.

Thus u = 0, which implies that f = O=>h = O^>ψ(x)rg \x\b. We have to prove that
g(x) < 0 everywhere. The Harnack inequality argument used in Theorem 1 implies
that either ^ Ξ O or g(x)<09 all x. Since g(x)<0 for x near zero, the result is
proved. •

The following complements Theorem 3.

Theorem 4. Suppose ψ(x)>0 satisfies (1.10) on IR3 and ψ is spherically symmetric. If
p<2 thenψ(x)^(A + \x\)-1(2p-2) with A = l/(p- 1).

Remark. The hypothesis that ψ is spherically symmetric is not really necessary but
it simplifies the proof. It is assumed here because Theorem 5 states that any
positive solution is necessarily spherically symmetric when 3/2Sp<2.

Proof. Let f(r) = (A + r)b with b=-l/(2p-2). Then Δf=Wf with
W(r) = b(b-l)(A + r)-2 + (2b/r)(A + ry1. W{r)> f(r)2p~2 -r" 1 . Let
£ = {r > 01 ip(r) < /(r)}, which is open and which is assumed to be non-empty. Let D
be a connected component of B. Thus D = (s, t) with 0 ^ 5 < ί . Let h = f — ψ>0 on
Zλ On D9 W(r)>ip(r)2p~2-r-\ so

Od-FF)/φ*)>0, all reD. (2.8)

First, assume ί is finite. Multiply (2.8) by / and integrate over the shell
s < | x | < ί . An integration by parts gives

K(t)-K(s)>0 (2.9)
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with K(r) = r2 f{r)2 (h/f)f (r). (h/f)'(t) S 0 since ft(t) = 0 and h(r) > 0 for s < r < t. Thus
K(t)^0. Likewise, if s > 0 K(s)^0 and therefore (2.8) is a contradiction. If 5 = 0
then K(s) = 0 since t// and / ' are bounded near r = 0.

Now assume t— oo. Integrate (2.9) over s< |x| < T. (2.8) holds as before (with T)
and K(s)^0. Since p < 2 , r / ( r ) 2 ^ 0 as r^oo. 0<(ft//)(r)<l on D, so there is a
sequence {TJ, with TM^oo, such that Γw(ft//)' (Γπ)->0. Thus X(Tπ)->0 and (2.8) is
again a contradiction. Π

Theorem 5. Tftere zs αί most one φφO ίftαί satisfies (1.10) orc IR3 m ίfte sense of
distributions with the properties that tpM^O, all x and φeL6(IR3). (By Theorem 3,
the second property is automatic if 3/2

Remark. It is not at all clear whether or not p = 2 is special. If it is additionally
assumed that FψeL2(IR3) then by Theorem 3 and a Sobolev inequality, ψeL6

when p^3/2. In Sect. Ill it will be shown that there is a positive solution to (1.10)
for 3/2<p<2, and this solution indeed has VψeL2^3). However, the methods of
Sect. Ill are not applicable for p = 2.

Proof. Let ψ satisfy (1.10) with the stated properties. By Theorem 1, ψ is

continuous and ψ(x)>09 all x.IfgeC$9 then - J — \g\2S $\Vg\2. (This fact, which

was used in [3], follows by integrating by parts and using the Cauchy-Schwarz
inequality.) Thus, for any real

Lψ(g) = j IVg\2 + J Wψ(x)\g(x)\2dx^O, (2.10)

where Wψ(x)= — \x\~1+ψ(x)2p~2. Let /„ be a sequence of spherically symmetric
CQ functions with the properties: (i) 0 <£ fn(x) = 1 (ii) fn(x) = 1 for 2/n < \x\ < n (iii)
fn(x) = 0 for 0 ^ | x | ^ l / n and |x |=2rc; (iv) ]\Vff^Λ for some fixed A. Such a
sequence is easy to construct. Let gn(x) = fn(x)ψ{x) gn

e(^o by Theorem 1. j \Vgn\
2

= -lPnΨΛψΛ-\ψ2\Vfn\
2. Thus, L v t o l i ) = J V

2 | F / J 2 = Γll. Let χπ(χ) = 0 if 2/π
^ | x | ^ ^ and χB(x) = l otherwise. Then Tn= $χnψ

2\Vfn\
2S\\χnψ\\2

6\Wfn\\l Since
χn->0 pointwise and ψeL6, Tn-+0 as π-^oo.

Now let ψ1 and φ 2 be two different solutions to (1.10) with the stated
properties. Denote the corresponding two functionals in (2.10) by Lx and L2 and
the corresponding sequences by g\ =fnψ1 and g2=fnψ2- Then 0 = L 1 ( ^ ) + L2(^1)
= L 1 ^) + L2te^)» J(vfp-2-^p-2)(V?-Vl)/B

2 Since L^J) and L 2(^H0, the
right side of this inequality is negative for large niϊ ψίφ\p2. •

Remark. If φ = 0 is unique then ψ is obviously spherically symmetric. Therefore the
following theorem is applicable if 3/2Sp<2.

Theorem 6. // ψ;_0 satisfies (1.10), the bound of Theorem 3, and if ψ is spherically
symmetric, then ψ(r) is a strictly decreasing function of r.

Proof. Λxp^O so ψ is superharmonic. Therefore the minimum of ψ(x) in the set
\x\SR must occur at R. If ψ(r) = ψ(R), r<R, then ψ(x) is a constant for r ̂  |x| = K,
but this does not satisfy (1.10). Π



Analysis of the TFW Equation 21

III. Existence of a Positive Solution of Eq. (1.10) for 3/2<p<2

In Sect. II it was shown that any positive distributional solution to (1.10) with
ψeM has certain nice properties, especially when p ^ 3/2. If 3/2 ̂ p < 2 the solution
is unique. In this section it will always be assumed that 3/2<p<2 (note the
inequality p > 3/2). A positive solution will be shown to exist on IR3 under this
condition.

An interesting open question is whether (1.10) has solutions, positive or
otherwise, when p ^ 3/2 or p ^ 2. The method given here sheds no light on this
question.

Consider the functional Fp given by (1.8), (1.11) and the class of measurable
functions

Gp={ψ\VψeL2,Fp(ψ)<(X)}. (3.1)

Gp is not empty because

is in Gp for 3/2<p<2. We also define

Wp(φ)=Skp(ψ(x),x)dx^0, (3.3)

Ep = inϊ{Fp(ψ)\ψεGp}. (3.4)

Remark. The condition 3/2<p<2 results from the requirement that Gp be non-
empty. Note that kp(ψ,x) has the form \x\~pl{p~1]hp{\ψ\\x\ll{2p~2)) and that
hp(a) = 0 if and only if α = l . Suppose p ^ 2 . If kp(ψ(x),x) is to be integrable at
infinity then ψ(x)~\x\~1/(2p~2\ But then \Vψ\2 is not integrable at infinity. If
p^3/2 then, for a similar reason, ψ(x)~\x\~ll{2p~2) near x = 0, but then \Vψ\2 is
not integrable.

Theorem7. Let 3/2<p<2. There exists ψeGp such that (i) Fp(ψ) = Ep; (ii)
)^0; (iii) ψ satisfies (1.10) in the sense of distributions.

Proof. Let ψn be a minimizing sequence for Fp(ψ). Wp(\ψ\)=Wp(ψ) and j
ί so we can assume ψn(x)^0, all x. Let b=-(2p-2)~1. For

M p l x Γ ^ φ - W 6 ] 2 with C p >0. Therefore, if φeG p then [x\~1/2ψ
- |x | *- 1 / 2 eL 2 . But I x Γ ^ e L ^ so M - ^ ^ G L ^ ^ φ e L ^ ^ φ G ^ 1 ' 2 ^ ) for any
bounded ball, B. Since Fp(ψn)^Ep, Vψn is bounded in L2(IR3) and t/;π is bounded in
WU2{B). By the Rellich-Kondrachov theorem [1], a bounded set in WU\B) is
compactly imbedded in L2{B). By passing to a subsequence we can assume ψn has
a limit, ψ9 in L2(5). By taking a further subsequence, we can assume ψn^ψ
pointwise. This can be done for every B, so we can assume ψn^ψ pointwise in IR3.
By passing to a further subsequence we can assume, using the Banach-Alaoglu
theorem, that Vψn-+f weakly in L2(IR3). Clearly, f = ψ. Therefore liminf j | F φ π | 2

g JIFΐ/ l2 and, by Fatou's lemma, liminfJ/cp(ipn(x),x)^ \kp(ψ(x),x). Thus
Fp(ψ)-^Ep, so ψ minimizes.

Now kp(ψ(x),x)eL1. By the above |x|~1φ2 eAoc= >l ; x ;Γ : lV ; eAoc s i n c e

kp(ψ(x\x)eL\ ψ2peLloc, and thus ψ2p~1eLloc. Hence, the right side of (1.10) is a
distribution.
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Let ηeC™ and replace ψ by ψt = ψ + tη. Let E(t) = Ep(ψt), whence dE/dt = O at
ί = 0. jIFt/ J 2 is differentiable with derivative 2\V\p-Vη at ί = 0. By dominated
convergence, Wp(ψt) can be differentiated under the integral sign, whence
0=$Vη'Vψ+$η{\ψ\2p-2-\x\-1}ψ. This is Eq. (1.10) in the sense of
distributions. •

The ψ given by Theorem 7 is unique (Theorem 5). ψ satisfies two sum rules, one
of which arises from the fact that ψ minimizes Fp. Let us define the following
integrals:

x, (3.5)

= ί {\x\~p/ip~1}- Ψ(x)2p} dx, (3.6)

" 1 / ( 1 > " 1 ) - v W 2 } ^ (3 7 )

Iλ is finite since ψeGp. I2 and I3 are finite (and positive) since \x\~ll{2p~2)>ιp(x)

| x | )~ 1 / ( 2 p " 2 ) , Theorems 3 and 4, and since I x Γ ^ ' ^ e L ^ . Clearly,

The physical interpretation of these integrals is the following: It is the gradient
contribution to the kinetic energy. Ijp is the decrease in the "fermionic" part of
the kinetic energy relative to the TF value. I3 is the increase in the electron-nucleus
potential energy relative to the TF value.

Theorem 8. Let ψ be the minimizing ψ of Theorem 7. Then

Iι:I2:I3 = 2(2-p)(p-l):p(3-p):p2-3p + 4.

In particular, for p = 5/3,

/ 1 : / 2 : / 3 = l : 5 : 4 .

Proof. If (1.10) is multiplied by ψ and integrated, we find 72 = / 1 + / 3 . Next,
consider xpt{x) = tll{2p~1]ψ{tx) for £>0. Since g(ή = Fp(ιpt) has its minimum at ί = l ,
dg(t)/dt = O at t=l. But l^^) = t~lIv 12{ψ^t{άt~ 2p)l{p~ ι)12

 a n ( * h(Ψt)
= t(4-2p)Kp- i)j^ τ h e r e s t i s a ig e b r a > Q

Remark. When p = 5/3, Theorem 8 implies the virίal theorem. The change in kinetic
energy is δT = Iι—p~ίI2. The change in potential energy is δV=I3. Therefore
-2δT = δV, as usual.

IV. Asymptotic Expansion for Large r (3/2 < p < 2)

We shall be concerned here with the unique, positive solution to (1.10) for
3/2<p<2. By Theorems 3 and 4, ψ(r) = rb + O(rb~1) with r = \x\ and
b= — l/(2p —2). This suggests an asymptotic expansion of the form
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The coefficients cij are determined as follows. If (4.1) is inserted into the right
side of (1.10) and then expanded, the coefficient of rb~1 is zero and the coefficient of
r b ~ j ~ 1 (/^ 1 ) i s of the form

Pj(Aj_1) + (2p-2)aj, (4.2)

where Aj = (av ...,dj) and P ; is a polynomial (with P1=0). The coefficient of
γb-j-i o n foQ ieft s j j e j s z e r o for 7 = 0 and is

)α</_1 (4.3)

for 7 ^ 1 , with α0 = 1. Equating (4.2) and (4.3),

aj = (2p-2y1l(b-j + 2)(b-j+l)aj_1-Pj(Aj_ί)l. (4.4)

Thus, aj is determined recursively by av ...,aj_ί. The first three terms of ψ are thus

ψ(r) = rb{l-r-\2p-3)(2p-2)-3-\r-2(2p-3)(2p-l)2(2p-2)-6 + O(r~3)}.

(4.5)

The correctness of (4.1), with the rule (4.4), will be proved here. The chief
difficulty is that A is a singular perturbation: The term ajr

b~j in ψ generates a term
rb~j~x on the right side of (1.10), but it generates rb~j~2 on the left. While Aψ thus
appears to be relatively small, it is not really small because its coefficients (4.3)
grow asj 2 . For this reason the series (4.1) is probably not convergent. In the proof
of Theorem 9, Aψ is controlled by combining it with the leading term in (4.2),
namely (2p — 2)r~1ψ.

Theorem 9. The asymptotic expansion (4.1) and (4.4) is correct, i.e. for any J,

/J (4.6)

as r->oo.

Proof. The proof is by induction. Theorems 3 and 4 assert that (4.6) is true for
J = 0. Assuming (4.6) holds for some J ^ O , we will prove that (4.6) holds for J + 1 .

ί J - )
Write \p = φ + g with φ(r) = rb < 1 + ^ α/ j>. For any ε > 0 there is an Rε such that

for all r>Rε: (i) φ(r)>0, (ii) g(r)/φ(r)<ε, (iii) [#•) + ̂ ( r ) ] 2 ^ 1 - φ(r)2p~1 = E/(r)g(r)
with | l / ( r ) - ( 2 p - l ) r " 1 | < e r " 1 .

Equation (1.10) reads

IA + W(r)]g(r) = h(r)9 (4.7)

withh = φ2p~1-r~1φ-Aφ and W^r(r) = r " 1 - l / ( r ) . Let us examine (4.7) for r>,Rε.
As r-+oo, ^(r) = K r b ~ J " 2 + o(rb~ J~2) since α l 5 . . . , % satisfy (4.4). Moreover,
K= -{2p-2)-[right side of (4.4) with7 = J + l ] . We also know that ^ ^ o ^ " 7 )
by the induction hypothesis. Finally, \W(r) + (2p — 2)r~ 1 |<εr~ 1 by (iii) above. The
point of writing (1.10) as (4.7) is that we now regard W as a fixed function that is
close to — (2p — 2)r" 1 . It is true that W "depends on g", but that information is
suppressed.
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Lemma 10 will imply that g(r)= -K(2p-2)" 1 r & " J ~ 1 +o{rb~J~1\ which is the
desired result. To see this, let z>0 and define i;z(r) = exp[ — 2(zr)1/2]. Let
Wz(r)=-z/r. Then (A + Wz)vz = -fz1/2r"3/2ι;z. Without loss, assume X^O
[otherwise replace g by — g in (4.7)]. Let zo = 2p —2.

Lower Bound for g. Pick 0<ε<z o and let z = zo — ε. For r>Rε, W(r)^—z/r
= Wz(r). Pick (S>0 and A^O and let /(r)= -4i>a(r)-CK: + <5)z~"'V""jr-1 <0. Then

For any fixed ε, (5 > 0 we can choose A ̂ 0 such that (i) (A + Wz)f^ h = (A + W)g for
r > £ ε , (ii) g(Rε)^f(Rε). By Lemma 10 [with £ = {r|r>Λβ}, ^ =g, g2 = f, Wx = W,
W2 = WZ9 and the facts that g{r) and /(r)->0 as r-^oo and /(r)<0], g(r)^f(r) for
r>JRε. This implies liminfr~b + J + 1#(r)^ — (X + (5)/z. Since (5 and ε are arbitrary,

r > o o

Bound for g. This is similar to the preceding. For r > Rε, — z/r ̂  W(r)
^—q/r with ^ = zo + ε and z = zo — ε. Let G(r) = g(r) — Avz(r) — δrb~J~ί. Then

(A + WO G(r) = h(r) + f Az1/2r~ 3/2vz(r) - A{W(r) + zr " x ) ϋz(r)

- ^ - ^ ( f o - J - l ) ^ - 7 " 3

Let F ( r ) = - ^ - 1 r l ' - j r - 1 ^ 0 , whence

For any fixed ε,<5>0we can choose ,4^0 such that (i) (A + W)G^(A + W )̂F for
r>Kε, (ii) F(Rε)^G(Rε). By Lemma 10 fe^F, g2 = G, Wx = Wφ W2 = W),
F(r)^G(r). As before this implies limsupr~b+J+1g(r)<,-K/z0.

r-+ oo

These two bounds yield the desired result. •

Lemma 10. Let BCJR3 be an open set, let gt, i= 1,2, be two functions on IR3 which
are continuous on some neighborhood of B, the closure of B, and let Wt be two
functions in L{OC(B). Suppose that \_A + W1~\g1 ^ \_A + W2~\g2 as distributions on B. In
addition suppose that (i) gγ ^g2 on the boundary of B, (ii) if B is unbounded, then for
every ε>0 there exists an Rε such that gί(x) — g2(,x)t: —ε on {x\xeB, \x\^Rε}, (iii)
0^W2{x)^W1{x)9 all xeB, (iv) g^x)^ whenever g1{x)<g2{x). Then g^x^g^x)
for allxeB.

Proof. Let φ = gί—g2. Let D = {x\xeB, φ(x)<0}, which is open. Then Aφ^W2g2

-Wxqγ, and thus Aφ^O on D by (iii) and (iv). Let Uε = {x\\x\<Rε}. φ is
superharmonic on DnUε, but φ = 0 on dD and φ^—s on dUε. Thus φ^—ε on
Dn Uε. Since ε is arbitrary and Rε can be chosen to tend to infinity as ε->0, φ ̂ 0 on
D, so D is empty. •
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