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Abstract. We prove for a general class of Gibbsian Random Field on Zv that
the set of tempered Gibbs states is compact. This class contains the Euclidean
random fields. Moreover if the interaction is attractive, there is a unique
minimal and maximal Gibbs state μ_ and μ+.μ± are unique translation invari-
ant and have the global Markov property. We also prove that uniqueness of
the tempered Gibbs state is equivalent to the magnetizations m± = μ±(qx)
being equal which is true if the pressure is differentiable.

Introduction

It is well known in statistical mechanics, that any statistical mechanical system
with a compact state space has a compact set of Gibbs states. We prove in this
paper, by utilizing a criterion that goes back to Dobrushin [11], that also for
statistical mechanical systems with a non-compact state space the set of Gibbs
states is compact provided the interaction satisfies certain conditions, and we
consider as Gibbs states only the tempered Gibbs states. In fact we prove that the
set of tempered Gibbs states form a Choquet simplex. This holds especially for the
Euclidean lattice fields, and also for a much wider class of lattice interactions given
by one and two-body forces.

The compactness of the Gibbs states gives us the existence of the maximal μ+

and minimal μ_ Gibbs state in the case of an attractive interaction. Let us point
out that the Euclidean lattice fields have attractive interaction. In the case of
compact state space and attractive interactions μ+ and μ_ were introduced by
Preston [40] which also proved that they were pure. Later Fόlmer [19]
pointed out that they also have the global Markov property if the corresponding
interaction is Markov. Using the compactness for the tempered Gibbs states in
the case of non-compact fiber, we are able to prove not only that the maximal
and minimal Gibbs states exists, but also that they are pure, translation invariant
and have the global Markov property. Moreover the set of tempered Gibbs
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states reduces to one point if and only if μ+ = μ_, i.e. uniqueness is equivalent to
μ+ = μ_ . Since for any translation invariant interaction μ+ and μ_ are translation
invariant, we have that the magnetizations m± = μ±(qx) do not depend on the
position x and of course m_ ^ra+. Using the technique of the Wasershtein
distance we also prove that m_ = m+ implies uniqueness of the tempered Gibbs
states. We also prove the existence of the pressure and the result that differenti-
ability of the pressure implies the uniqueness of the Gibbs state.

Among the main motives for writing this paper was the quest for pure Gibbs
state with the global Markov properties. Fόlmer and Preston had pointed out in
the case of compact state space the unique advantages of the maximal and minimal
Gibbs states. However, in the Euclidean lattice field theories the state space is
not compact, moreover the uniqueness and global Markov properties are especially
important in these models. Of course in the case of the continuous Euclidean
quantum fields the question of uniqueness and global Markov property is even
more important. It turns out that many of the techniques developed in this paper
extend to the continuous case. This is the topic of a forthcoming paper by the same
two authors.

It is only fair to mention here that much of the inspiration for extending the
known results from the compact state space to the non-compact state space was
provided by non-standard analysis. For a treatment of these problems by non-
standard analysis we refer the interested reader to [52].

I. Definitions and Notations

Let R be a denumerable subset of Zv. For x, y, belonging to R we denote by d(x, y)
their distance in Zv

<Kχ,y)=Σ \\-y.\- (i i)
α = 1

A slowly increasing sequence q = (qx)xeR is an element of R" such that

3N>0,suprf(0,x)- i V | 9J<+ 00. (1.2)
xeR

£f'R will denote the set of such sequences. In much the same way &'R will denote
the set of fastly decreasing sequences.

Giving a matrix r = (r(x, y))(JCfj0eR2, we shall put

| |r| | -sup Σ|φc,y)|, a)
xeR yeR

(1.3)
IHU = s«pΣIK*,j')|[i + ̂ (χ,y)]w. b)

xeR yeR

I.3.a).b). define algebraic norms on the algebra stf R of fastly decreasing matrices:

rej/κosup Σ\r(x,y)\d(x,yf < + ooVNeN. (1.4)
xeR yeR

At each site xeR we define a random variable σ with values in R. The configura-
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tion space for the process σR = (σχ)xeR can be taken as the product ΩR = UR with
the product Borel structure. ΩR is a polish space for the product topology since
R is denumerable.

Let $(R) be the set of finite subsets of R and $(R) the set of every subset of
R. For Λ<=$(R\ let &Λ be the σ-algebra generated by the subprocess σΛ = (σx)xeA.
If we identify ΩR with ΩΛ x ΩΛC (where Λc = R\Λ), a ^-measurable function is
nothing but a function depending only on ΩΛ. At last, ^(Ω^ will denote the set
of probability measures on ΩR.

In order to describe the thermodynamical behaviour of a system, we use the
Gibbansatz:

for each finite region Λ e$(R) and each configuration qΛC in ΩΛC, the probability
distribution of σΛ conditionned by σΛC = qΛC is given by

EydqJ = ZΛ(qΓ' Π (dqx exp( - V(«S)))Π Π exP( ~ W

x,y(<lx ~ 9,)λ
xe/1 xevl yeΛ

where ZA(q) is a normalisation factor.
In order to be precise we shall investigate the following special examples:

A) The Ws are a #* positive convex function with strictly increasing, unbound-
ed, absolutely continuous first derivative. Moreover, there are Je^/κ and n > 1

Al) W χ y ( q ) £ J ( x 9 y ) ( l + \q\γ
or

A2) W™(q)^J(x,y) for almost all q.
B) V is a ^2 positive function and there is M0 > 0, α > Max(n — 2, 0) (or

α ̂  0 if A2 holds), A > 0 such that

Note that A2)=>A1).
From Al) it follows immediately that I.5a is defined provided qe£f'R, and is

continuous with respect to q. We shall put

Since ^'R is a Borel subset of Ω, it follows that I5a-I.5b) defines a Borel function
of qeίλ

Examples: i) The free field with mass m: R = ZV.

±m2q2 W^(q} = ±q2 if d(x9y)=l

and W =0 otherwise.x,y

ii) The P(φ) lattice field: as before but

where P is a polynomial bounded from below.

iii) W(q) = a\q\σl <σ ^2 satisfies Al.

The main property of the family (EAC)Ae<S(R) = ̂  is that it is a local specification
in the following sense [18, 40, 41].
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Definition LI. Let f+(Ω) be the set of positive, possibly infinite, Borel function on
Ω.

A local specification is a family $ = (EΛC)Λe%(R) where for each A, EAC maps f+(Ω)
into itself and satisfies :

51) Normalisation: EΛC(i) = 1.
52) σ-addίtivity: If (FM)Π>0 is a sequence in/+(Ω), then

53) Locality: If Fe/+(Ω), EΛC(F) isJ^-measurable, and if F is J^c-measurable
£κβ(F) = F.

54) Compatibility: If /L1 c Λ 2 then

F F — F F — F
^A^ΛC

2 - ^A\^A\ ~ ^ΛC

2'

The central problem in statistical mechanics is to find the global properties
of the process σR from the knowledge of the local specification /.

In particular the distribution of σR can be represented by a probability measure
μ on Ω, whose conditional probabilities Eμ(-\3&ΛC) coincide μ-almost surely with

Definition 1.2. Let $ be a local specification. The set $($} of Gibbs states of
is the set of probability measures μ on ΩR such that for any

E( 1 3SΛC) = EΛC( ) μ-almost surely.μ

As it is well-known, &($) can contain more than one point [11]; this pheno-
mena is connected with the notion of phase transition. However, in the case of
unbounded spin we are investigating, many Gibbs states have no physical re-
levance.

For instance, for the free field on a lattice, Guerra, Rosen and Simon [27]
have shown an example of such an irrelevant Gibbs state.

One way to avoid such examples is to constrain σR to a growth condition at
infinity, as suggested by euclidean field theories :

Definition 1.3. A tempered measure is a probability measure μ on ΩR such that
(μ( I σχ I )χeR is in &"R. The set of tempered measures will be denoted by SOΪ^Ω^).
The set 9Jtr exp(ΩR) will denote the set of probability measures on ΩR such that

(μ(exp(α σ»'|))Ue^.
In the Appendix, we study the space Wlt and give a characterization of compact

sets of 9Jϊt. Moreover we prove that £f'R has μ-measure one for any μeSPtt, and
I.5b is irrelevant.

It is easy to verify that μe^(^) if and only if μEAc = μ for any Ae^(R). On the
other hand if EΛc(\σχ\) < + oo, and μe9Jlf then μEΛee3Jlt.

The first problem is to prove that ^f(<f) = 9Wf n^) is not empty. Actually
we shall prove that it is a compact set with the help of a criteria first established
by Dobrushin [14].

Then we will use the technics of the FKG order [20] as developed by Preston
[40] to prove the existence of states with " + " or " — " boundary condition. If
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$ is translation covariant, locally Markov and reflection positive, then μ+ are
translation invariant, globally Markov and reflection positive. Moreover (̂<ί)
is reduced to one point if and only if μ+ = μ_. The differentiability of the pressure
with respect to the external magnetic field is sufficient to insure this condition.

II. Existence and Compactness

We first remark that any limit point of the family (μEΛc)Λe%(R) where μeSDt, is a
tempered Gibbs state. Conversely if μe<&t(S) then μ = μE^Λe^R) and it is
such a limit point. We get a way of describing ^t(S\ In the examples 1.5 if the
hypothesis A1-A2 holds, we shall prove that &t($) is moreover compact. This
justifies the following definition. (See Appendix for the definition of 'W.F. Topo-
logies)

Definition ILL A local specification S is compact (respectively 2Γ compact)
if it satisfies the following conditions:

(i) Vμe9Jl ί? (μEAe)Λem} is a compact family in (9K,, iΓ) (respectively (9Kf, 3~}\
(ii) The set &t($) is i^-compact (respectively ^"-compact). It follows from

this definition that *&t($) is not empty if $ is compact.

Proposition II.2 [44]. If g is a compact local specification then &t(£) is a Choquet
simplex.

Proof. We recall that a Choquet simplex is a metrizable compact convex set
such that any element can be decomposed in a unique way into an integral over the
set of its extreme points [9].

Since SRf is a polish space, the ^Γ-compactness of S implies that t̂(<?) is compact
and metrizable. Moreover μe^(^) if and only if

μEAe = μ VΛegOR). (IΠ)

From this it follows that <&t(S) is convex.
Now let &^ = P| &AC be the σ-algebra at infinity, and μ1, μ2 be two tempered

Λe$(R)
Gibbs states. Then, if μ = ^(μ1 + μ2) we get

μi = Fiμ F^Ll(ΩR9aR,μ\ (112}

Since μ. satisfies II. 1, μ is again a Gibbs state, and F. is $^-measurable. Then both
Fl Λ F2 and Fΐ v F2 are &^-measurable, and therefore μ t Λ μ 2 , μ 1 v μ2 are
tempered bounded positive measures satisfying ILL This is precisely the definition
of a Choquet Simplex [9a), 9b)]. We recall that μe^(^) is extremal if and only
if every & ̂  -measurable set has measure zero or one [40].

The interest of the Definition II. 1 comes from the following criteria first des-
cribed by Dobrushin [7,14].

Theorem Π.3. Let $ be a local specification. The following is sufficient for $ to
be i^-compact.

£w(kl)^+ΣK*,y)K|, (Π.3)
yeR
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where A - (Ax)xeRe&"R9 and r(x, y) ̂  0,

| | r | | < l | | r | | I ί f N < o o V N , ι ί > 0 . (II.4)

Remark.
1) The matrix r describes the sensitive dependence of E{x)c with respect to

the boundary conditions.
2) The proof of this theorem does not depend on the real character of σχ. It

can take values in any complete metric space (X, p\ and | σx \ has to be replaced
by p(ξ, σx) where ξeX, and p is the metric. [14]

Proof. From the appendix, a closed subset K in Wlt is i^-compact if there is a
positive sequence cχe&"R such that

(11.5)

First let us prove that &t(g) is ^-compact. If μe<$t(δ ), we get from II. 3

M k J ) = M£WC( k I )) £ 4, + Σ K*, y)μ( K I ). (II.6)
yefl

Let m be the sequence m = (μ( \ σχ \ ) )χeR , II.6 can be written as :

Since r has positive matrix element, II.7 can be solved by:

provided the Neuman series in the right hand side converges. But A is slowly
increasing. Let N be such that (for some K > 0).

d(Q,x)f. (11.9)

Since || r || < 1 and || r \\η^N < + GO, ηQ can be chosen so small that

0 < ι f < ι f o = > | | r | | , f J V < l . (11.10)

This is sufficient to insure the convergence of the Neuman series for (H — r)"1.
Moreover

(1 - rΓ'AW a [1 -

(11.11)
for some K' > 0.

Then, (H - r)~ XA is in &"R, which proves the ̂ -compactness of &t(<£).
Let us prove now that for μeSOl,, the family (μEΛe)AdS(R) is compact in 9Wr

Let yd be a finite subset of R and, Kη, N such that

(Π.12)
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If xφA μ(E Ac(\σ χ\)) = μ(| σj), whereas if xeΛ the estimate II.3 gives:

mx = μ(EΛc \σx\)£Ax+Σ r(x9 y)my + K £ K*, y) [1 + ηd(Q, y)Y
yeΛ y$Λ

^ A

X + K I I r ||nfN[l + ηd(Q, x)Y + τΛm(x), (11.13)

where rA(x, y) = r(x, y ) i ϊ xeΛ9yeΛ, and rΛ(x, y) = 0 otherwise. In much the same
way, the right hand side of 11.13 defines a sequence \'e&"R such that

(l-Γ^m^A', (11.14)

which gives xεΛ.

m(x) ̂  (1 - rj- '̂(x) ̂  (1 - r)~ 1 A'(x) (11.15)

for r"A(x, y) £ rn(x, y) if x, yeR, n ̂  1. If x^Λ

m(x) - μ£Λc(kJ) = μ(|σj) g ̂  g(1 - r)~ ̂ '(x), (11.16

and we have proven the proposition.

Remark. If Ax ^ A V x in II.3, then : there is A' > 0 such that

μ( |σJ)^v4 / VxeR,μe^) (11.17)

as can be seen easily from this proof.

III. Compactness: Exponential Bound

In the examples 1.5 we shall prove more than the Dobrushin estimate: every tem-
pered Gibbs state is in 3Jlt exp. The following result is the main step in this context:

Proposition III.l (Exponential Bound). Let S'bea local specification. Let us assume
the existence of constants A > 0, B > 0, C and of a positive matrix r = (r(x, y))χ yeR2

such that

4α2 + Ba + a X r(x, y)\σy\ + C]l
Z yeR J

(III.l)
yeR

with

Then, $ is ZΓ -compact, and every tempered Gibbs state μ satisfies for some A' > 0,
B'>0, C'^0:

A \

α2 + ffa + C VxeR, μ€«f(rf). (III.3)

Clearly III.l implies II.3, and ^ is a Ί^-compact local specification.
Let q be an element of &"R and let m^ be the sequence:
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From 54, III. 1 we get:

m«(x) = Log E«ΛC(E{χ}c(ea^)) ^a2 + Ba + Log £%(exp(a£r(x, y)\σy\)) + C.

(III.5)

Since £/(x, 3;) < 1, we can use the Holder estimate to find:
y

which implies as in Sect II (using r(x, 3;) ̂  0 || r || < 1)

^A'— + ffa + C' + aΣ ?TΓ~(*> z) \ q* \' (IIL7)
Z z£yl U Γ

Since qe ̂  , the last term in the right hand side goes to zero as A goes to R, which
means

lim supE*c(exp(α|σJ)) g exp ( A'~ + B'a + C ). (III.8)
Λ f * \ 2 /

Now let μ be a tempered Gibbs state. We know that ̂  has μ-measure one.
Therefore, giving L > 0, the dominated convergence theorem implies:

μ (min (exp (a σχ \ ), L) ) - μ EΛC (mm (exp (α | σ J ), L) )ΛC

ΛC^ μ(lim sup EΛC (min (exp (α | σχ \ ), L)))

C'Y (IΠ.9)

By Fatou's Lemma it follows that if L f+ oo

f a 2 λ
μ(exp(α|σχ |)) ̂  exp( A'— + B'a + C j. (III. 10)

The compactness with respect to 9~ comes from the remark A 7 in the appendix.

Theorem III.2 Let us consider the local specification $ defined in L5, where V and
(Wx y)χ yeR satisfy A-B. Then, $ is έF -compact and the exponential bound III.l holds.

Proof. In order to estimate exp (a \ σχ \ ) it is sufficient to estimate exp (aσχ) with
αe R. But the estimate is the same for a > 0 and a < 0. Thus let us assume a > 0.

First of all; «5^^3q->£^}c(exp(aax))3R is increasing (the ordering on y"R is
the product ordering in ίRR). Indeed:

- qy))
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Since qeR -» exp(αg) and qeU -» W(ί}(q - qy) are increasing functions (by A), the
right hand side is positive (FKG inequality, see sect. IV).

Thus we can choose q0e«S^ big enough and assume q ̂  q0 to get an upper
bound.

Now let pQ be a positive real. We get immediately :

£("χ)c(exp(ασx)) ̂

with

Sdqexp(-V(q)-Wx(q;<ύ)

(111.12)

yeR

We shall estimate the last term in III. 12. We note the following result

Lemma III.3. Under the hypothesis A, we have

ii)
and

',q] is V1 for

9q

Proof. We have for q > 1,

Therefore, since ty(1) is increasing

From this one gets for some K > 0

\q\ ^ 1

yeR

(111.15)

(111.16)

(III. 17)

(III. 18)

- 1)) ̂  2»~

and it is proved.
The same estimate suffices to prove ii).

\q J-\ (III. 19)

D

Now to find a bound for III. 12, we shall expand the integral around the mini-
mum of the exponent. Since it is ̂  1 with respect to q, the absolute minimum qc is
the solution of

(III. 20)
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Lemma III.4. (i) There is 0 ̂  q0

E^κ suc^ tnat tf^ = %' ̂ e e(luat^on ΠI-20 has a
unique solution qc(q).

(ii) For q ̂  q0 , qc is an increasing unbounded function of q.

Proof. Let M be a positive real, and J(M) be the set of qe£9
c?

R, such that III. 20
has at least one solution qc greater than M. We claim that J(M) is not empty.

III. 20 always has solutions because F(1) is asymptotically strictly increasing
dW

and unbounded, and -̂  is a strictly increasing function of q. On the other hand,
dq

if every solution of III. 20 is bounded by M, for every qe<9^, V(1\qc) would remain

bounded, whereas if q -» ±00, W(

χ

1}

y(qc — qy) goes to ± oo, contradicting III. 20.
Now let Mj ^ M0 (see Sect. I-B.) such that:

sup 7(1)(ή[)=7(1)(M1). (III. 21)

Ml exists by the assumption B because if \q\ ^ M0, F
(1)(g) is strictly increasing.

Therefore if

a = sup V(1\q), (III. 22)
q^Mo

it is sufficient to choose M1 > M0 such that F(1)(M1) > β.
Now if qe J(M^), Eq. III. 20 has only one solution qc ̂  Ml because

0, oo] => F(1>(^) + (« q) (ΠI. 23)

is strictly increasing. On the other hand, if q < M, we have: (due to III. 21)

V(1\q) + ~W(q;q)< V(i\qc) + -j- W(qc q) = 0. (III. 24)

Thus, if qEj(M1\ III. 20 has exactly one solution (greater than MJ.
Clearly gc is increasing in q indeed : let q7 ^> q, q; =£ q, then :

q) - 0. (III. 25)
uq ' uq

and if

q _> + oo V(1\q) + ̂ - Wfa, q') -> + oo. (III. 26)

Therefore, there is qf

c > qc such that

) - 0. (III. 27)

Picking q0 in J(M1\ we have proved our lemma. Π

Lemma III.5. Let q0 be as in the previous lemma. For q ̂  q0, qe^, we have for
some Kl ^0.
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/(q) = ̂  ^ K, exp -x + aqc). (III. 28)

<lc

Proof. Let F be a function on (R and define
00

IF = (111.29)

We claim that if F 1 ?F 0 are two functions such that F1 — F0 is increasing on
Oc, GO], then

/F l^V (IΠ. 30)

For if Fα — αFt + (1 — α)F0, we find (with obvious notations)

2 ̂  = - ~ ? dq e~F«(q) ] dp Q~F'[_^ - e"'] [(F, - F0)(^) - (F, - F0)(p)].
(«) «c «c

(III. 31)

Since both ςf -» e"4 and F t — F0 are increasing on [qc, oo], the integrand is positive,
and the claim is proven.

Let us apply this remark to our case:

W2(q;(ύ, a)
(III. 32)

Indeed, by definition of qc we have :

^qc, (III. 33)
9c

Because V(2\ύ) ^ ̂ |w|α by (β) for u > qc > Ml and

W^(q β) - W^(qc q) ^ 0 β ̂  qc. (III. 34)

Thus F1 — F0 is increasing on [gc, oo]. Now, replacing Fx by F0, and putting

<Z = «c + ̂ > (ΠI.35)

we get (with Z(qc) a normalization factor)

/(q) ̂  ̂ r J dx exp( - A^\dθ(\ -θ)(l+ -^Y + α-j) III. 36)
Mffc/ 0 \ 0 \ ^c / ^c /
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By the dominated convergence theorem, the normalization factor Z(qc) con-
verges to:

oo f - Ax2\
lim Z(q) = J dx exp I —-— 1 =^/2πA, (III. 37)
4c-»oo o \ 2 J

whereas the numerator is dominated by:

oo / _ A 2 \ ( \

J dx exp ——- + ax/q*c'
2 ) = exp a2/2Aq« III. 38)

o V 2 / \ J

and the lemma is proved. D
Due to III. 12 with p0 = qc and III. 28, Theorem III. 2 will be proved once the

following holds:

Lemma III.6. The following estimate holds ifqeJ(M1)

qc£B+Σr(X,y)\qy\, (III. 39)
yeR

where B > 0 and r is such that || r || < 1, || r \\^N < + oo V A T ^ 0.

Proof. Let us assume α > n — 2. Then qc minimizes the function q -> V(q) -f

"*" Σ ^c y(# ~ ̂ y) Thus one gets
yeR

V(qc) g F(gc) + ̂ (gc q) g F(0) + Σ ̂ ( - qy). (111.40)
y

Using Al — A2 one concludes

g + A J (gc - φαdu ̂  F(0) -

(111.41)

Changing eventually A into — , we then can find a constant B^ such that:

Thus, there are constants B2 , A2 such that

qc^B2 + ̂ 2£j(x,y)1/(il+2>[l + |^|]"«^2». (111.43)
y

Since

rc < α + 2(1 + |^|)π/(α+2) ̂  a(ε) + ε(l + |«J), Vβ > 0, (IIL44)

and thus 111.39 is proved.
Let us assume A2 to hold. Then from 111.20 we get

- q). (111.45)
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From A2 - B (taking α = 0) we get:

d<2c ^ J(x,y) , s /m Λ*\^_£ <g — rfa yj (111.46)

y

from which III.39 follows with

and

., .. l l τ l l
-< + oo. Π

IV. The FKG Order

The configuration space ΩR is ordered by

(IV.l)

We denote 3f +(ΩR) (respectively Jf _(ΩR)) the set of bounded increasing respect-
ively decreasing) measurable functions on ΩR- Jf +(ΩR) is a convex cone; it deter-
mines the order in the following sense

Moreover, if μί , μ2 are probability measures on ΩR coinciding on tf +(ΩR\ μl = μ2 ,
for Jf + (ΏR)n ^(ΩR) separates the points of ΩR , contains constants and is invariant
by complex conjugacy. Thus, for every compact set K c ΩR,<^(ΩR)r\ J^ + (ΩR)
generates a dense *-algebra in ^(K). Thus μ1 and μ2 coincide on compact subsets
and this implies μ1 = μ2 .

A dual order can be defined on 50ϊ(ί2κ) by

It will be called the FKG order [40].
The remarkable property of our model comes from the fact that the local

specification $ leaves Jf +(ΩK) invariant (see Prop. IV.2 below). Following Preston
[40] we propose:

Definition IV.l. A local specification δ = (EAC)Λ^(R) is called attractive, if fat any

Λe%(R)

EΛc(JίT+(ΩR))d<r+(ΩR). (IV A)

Proposition IV.2. The local specification 1.5 is attractive, provided (Wxy)xy

satisfies A.

Proof. Indeed, let F be in tf+(ΩR\ and q ̂  q'. We get
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Replacing F(pΛ, qΛC) by F(pA, q'ΛC) inside the integral, gives an upper bound of the
right hand side. On the other hand, the probability measure μ\ has the form:

x,yeΛ

(IV.6)

Since

:- Σ(V(PX.)+ ΣWXΎ(PX, -«,,))- Σ '
x'eΛ y' £Λ χ',y'eΛ

it follows that μj* satisfies the FKG inequalities [43]

μ\(G,G2)^μ\(G,}μl(G2\ G 1 ? G2

In particular if Ge jf+(ΩΛ) :

WXty(σx - qy))}
qy *eΛ

is positive. Thus:

If Gίp^) = F(pΛ, q^) we get the result:

E\C(F) ^ μ\(G) ^ μ«(G) = £J'C(F). (IV.l 1)

D

The main property of local compact attractive specifications is described in the
following:

Theorem IV.3. Let $ be a local, compact attractive specification. Then &t($) has
a unique maximum μ+ and a unique minimum μ_ for the FKG order.

Proof. First we prove the existence of a maximum. Let (μa)ΛeA be a totally ordered
net in Gt($\ Since $ is compact, it has a limit point μ^ in ̂ t(S\ In particular there
is an increasing subnet α(/?) such that

μjF) = lim μa(β}(F\ ^/Fe^ + (QR). (IV.12)

Since j8 -> μα(/J) is increasing in the FKG order we get:

Thus μ^ is unique since it is uniquely defined on Jf +(ΩR\ and is precisely the
supremum of (μα)αeA By the Zorn lemma, ^t(S) has maximal elements.

Let now μl and μ2 be two such maximal elements in ̂ t(S\ In ΩR, the map

(q, q')eΩΛ x ΩΛ -, q v q - (max ( ,̂ qf

x))xeRεΩR
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is measurable. Let p be the image of μ±®μ2 under this map. We claim that:

p(\σχ\) = $dμί(<l)dμ2(p)\qχ v pχ\

j) £ μ^σj) + μ2(|σj). (IV.14)

On the other hand, p 20 μ., i = 1, 2, because:

Fe JΓ +(QΛ) => p(F) - ̂ (qWμ^Fft v p)

£ ίdμf(q)F(q), ί = 1, 2. (IV.15)

Since (f is attractive, it follows that

(IV. 16)

Since d? is compact, (p^Le^) is compact in 90^, and any limit point p^ is a
tempered Gibbs state such that

/^Pαo'^/V (IV 17)

By definition of μχ , μ2 we get

μ 1 -μ 2 -P 0 0 D (IV.18)

The previous theorem is too abstract. The following result gives a rather con-
crete construction of μ + .

Proposition IV.4. With the hypothesis of Theorem 7K3, the maximal state μ+ is
given by:

AΐR

for anyqe&"R such that
i) qχ>0 Vx (IV.20)

ii) 3 N > 0 depending only on $, such that

If moreover $ satisfies the exponential bound III. I, then, ii) can be replaced by

iia) qχ ^BLog \d(0, x ) \ 1 / 2 (IV. 22)

/or 5 ίαr^β enough.

Remark. The estimate IV.22 has already been proposed by J. Lebowitz and E.
Presutti [31].

Proof. For qe<$^, the Dirac measure δq belongs to 9Jlt(ΩR) and E\c ^=δqEΛc.^
being compact, this family of measure has a limit point μ^ .

Now, let F be in JΓ+ (ΩR\ and μ be in <St(δ)\

μ(F)= j dμ(p)£Pc(F)+ f dμ(p)E^(F). (IV. 23)



312 J. Bellissard and R. H0egh-Krohn

Since S is attractive, E%C(F) is an increasing function of p; on the other hand F is
bounded by || F \\ ̂  . Thus :

μ(F) ^ E\C(F) + ||F|| ̂ {peΩa '93xφΛ9px^ qx} . (IV.24)

The last term of the r.h.s. can be estimated by:

xf^ (IV.25)

xφΛ Vx χeΛc Vx

where K > 0, and N ^ 0 depends only on S since ^t(S) is a compact subset of
yjlt(ΩR). By the hypothesis for any sequence An "converging to R, lim sAn = 0.
Choosing a suitable subsequence Λn we get:

ΩR) (IV.26)

which proves that μ^ = μ+.
Now if (f satisfies the exponential bound IV.25 can be replaced by (see eq. IIL3)

Σ inf[μ(exp(ασx)exp(-αgx)]g X exp(~ (^~F ) 2Y (IV.27)
xeΛc a χeΛ< V ZΛ /

Since RaZv the r.h.s. converges provided IV.22 holds with

B'2
— >v (IV.28)

V. The General Properties of μ±

The remarkable states μ± may have inherited properties of the local specification.
In this section we prove that μ± are extremal in ^t(S) and that ^St(S) is reduced
to one point if and only if μ+ = μ_. We prove that μ± are translation invariant
if S is translation covariant. They are reflection positive under suitable properties
of S. At last, we prove that they have the global Markov property if S is locally
Markov. In what follows S is a local compact, attractive specification.

V.a Extremality

Proposition V.I. The states μ+ and μ_ are extremal in ^t(S) and ^t(S) has one
point if and only if μ+ — μ_.

Proof. Assume μ+ = αμ1 + (1 — α)μ2 with 0 < α < 1, μ.e^(^). For F belonging
to Jf+(ΩR)weget

(V.I)

Thus

ΩΛ), (V.2)
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which means

μ+=μι=μ2. (V.3)

If moreover μ+ = μ_ we have by construction:

μ + (F) = μ__(F)^μ(F)^μ + (F) VFetf+(ΩR) Vμe^(<f). (V.4)

That is

μ = μ+=μ_ Vμe^(<f). (V.5)

V.b Covariance. Let τ be a Borel isomorphism of ΩR into itself. For F a measurable
function, we put

F(τ-1q). (V.6)

Definition V.2. $ is said to be τ-co variant if for any /te^W there is
such that

(V.7)

Proposition V.3. Let $ be τ-covariant. Then Ήffl is τ-invariant. Moreover if the
action τ respects the order (i.e. τ±lJf+(ΩR) c jf +(ΩR)) then μ+ and μ_ are τ-
invariant. Ifτ reverses the order (i.e. τ± i ̂ f(ΩR) c= jΓ_(Ωκ)), τ*μ+ = μ_ .

Proof. Let μ be a tempered Gibbs state. Then τ*μ satisfies for every F bounded
and measurable and Λe^(R)

τ*μ(F) = μ(τF) = μ(EΛc(τF)) = μ(τEΛC(F)) = τ*μEΛc(F). (V.8)

Thus

τ*#t(«?) c »t(ί). (V.9)

Since μ+ is maximal we get :

μ _ o c τ * μ + o c μ + μ_ oc τ~ uμ+ oc μ+ . (V.10)

If moreover τ* respects the order we get from V.10:

Fe Jf +(ΩR) => μ+(F) = τ- 1*/ι+(τF) g μ + (τf) = τ*μ+(F) g μ+(F), (V.ll)

which means :

μ + = τ * μ + . (V.12)

If τ* reverses the order, F is decreasing and

Fe Jf + (ΩR) => μ_(F) = τ~ ̂ (τf) ^ μ+(τf) = τ*μ+(F) ̂  μ_(F). (V.13)

Thus

μ _ = τ * μ + . D (V.14)

Examples, (i) Λ = Zv (τ^ = ί;c+α αeZ v . (V.15)
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The local specification in 1.5 is translation invariant

(translation invariant interaction). Then τ respects the order.

ii) τ q = - q (spin flip). (V.I 7)

The local specification is τ-invariant iff it is even, which means

V(-q)=V(q) Wχy(-q)=Wχ>y(q) \/x,yeR. (V.18)

In this case, τ reverses the order.

V.c Reflection Positivity. Let us consider the case R = I.V. Let Π be the hyper-
plane Π = {xe[Rv, X j = f }, and θ be the reflection about Π. θ leaves Zv invariant
and exchanges the half spaces Π+ and Π_ defined by Π in Zv. Let Θ be the cor-
responding action on the bounded measurable function on ΩR :

ΘF(q) = F(θq) with (θq)x = qθx xeZ v . (V.19)

We denote by & + the closed convex cone generated by ΘF F where F is bound-
ed and &π+ -measurable. (We take the closure with respect to the topology induced
by weak topology in Π L°°(i2K, &, μ) for every tempered measure μ).

μeSRt

Definition V.4. $ is reflection positive, if for any finite θ-invariant subset A of
R = ZV, and any ^-invariant configuration q, E^C(F) ^ 0, Fe^+ .

Proposition V.5. IfS is reflection positive, μ+ and μ_ are reflection positive i.e. :

μ±(G)^0 VGe^+. (V.20)

Proof. Let q be in &"R such that θq - q. Then G(q) ^ O V G e ^ + , b y definition
of^+ .
In particular if qx ^ 0 satisfies IV.21, and θq = q, then for G being in 0>+ we have:

Λ D

Example. Let us consider the model 1.5 with the following restrictions:

RP1) WXfy = 0 unless d(x9 y) = 1.

RP2) WΘXtθy=WXty x,yeR.

RP3) exp — Wx (q) is a function of positive type.

Proposition V.6. // the W's obey RP1-3), then the local specification in 1.5 is
reflection positive.

Proof. Let A be a finite subset of Zv ^-invariant and Λ± = ΛπΠ±. We claim
that if xeΛ±, yeZ v are such that d(x, y) = 1, then either yεΠ+, or y = θx. For
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if y$Π+, we have

a

and

Thus

Λc Λc

315

(V.22)

(V.23)

(V.24)

Let dΛ+ (respectively 5/1J be the set of xeΛ+ (respectively Λ_)
such that d(x,θx) = 1; we put A\ =Π+\Λ+ (respectively Λ_ =
Π_\Λ_) Λ + Λ = Λ+dΛ + (respectivelyΛ_ l = Λ_\dΛ_}.

dλ_ dΛ

Then if F is &tπ -measurable and bounded

77

_ v(pθχ) - Wχ θ(χ} (pχ - Pθx))ΘFwFw(pΛ, q^), (V.25)

where dμΛ + z is some measure on ΩΛ + ι, Z(q) a normalization factor, and:

'* .(?„-«.) (γ 26)

(V.27)

- Σ Σ
xeΛ + yeΛ +

c

The numerator in V.25 can be written as:

ί Π dpxdpβx exp( - Wxθx(px - Pθx))F(px, ̂
xedΛ -i

for some F. Since exp ( — Wx βx(q)) is of positive type, we get a function in ̂ + ,
because

Σ MίjΘFiFje^>+ if (M ..)ί7 ̂  0. (V.28)
0 ̂  1 J ̂  TV

The same is true for Z(q). Since q = θq and Fe^+ => F(q) ̂  0, we get the result.

D

Remark. RP3 is verified by any function W7 given by the Levy-Kintchine formula
[51]

eies - 1 - iqs)dv(s) - , (V.29)
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where v is a positive measure with:

j dv(s)+ j s2dv(s)<+oo. (V.30)
|s |^l |s|^l

+ 00

If we want W to satisfy the assumption A, it is enough to assume J s2 dv(s) < + oo,
a ̂  0 and s2dv(s) is a measure of positive type. For example - °°

W(q) = a\q\σ, l < σ ^ 2 (V.31)

satisfies RP3.

V.d: The Markov Property. A measure μ has the Markov property if for every F,
^-measurable, Eμ(F\έ%ΛC) depends only on the "boundary" of/I; we will disting-
uish between the global Markov property for which no constraint is imposed on
A, and the local one for which Ae$(R) is needed. To be more precise we adopt the
following definition [1, 2, 3]:

Definition V.7. 7°) A local specification <? is locally Markov if one can find an
integer r ̂  1, such that for any finite subsets Aί9Λ2 of R, with dist (A1,A2)>r,
and any function F. (z = 1, 2) ̂ .-measurable one has:

2°) A tempered measure is locally Markov if the specification $μ =
(Eμ('\@ΛC))Λem) is locally Markov. It is globally Markov if V.32 holds for <?μ,
for any subset Aί, A2 of R with dist (Al9A2)>r.
The main result of this section is described below.

Theorem V.8. Let $ be a locally Markov, local, compact attractive specification.
Then, if(o satisfies the Dobrushin estimate II.3, μ+ and μ_ have the global Markov
property.

Proof. The main property of $ is given by Lemma V.9 below. Once it is proved,
the theorem follows trivially:

Lemma V.9. Let $ as before, and (9 c jR. Then

ΛsR

for measurable function F, and every Q£^# such that

^ d(09 xf
qχ ^Oxe$, 2^ < + oo for some N.

xeθ $x

Proof. Let p be a slowly increasing sequence on (9°, pe<9^c, and let <? & be the local
specification on Ω& defined by:

& _ (pp \ /Y ^4\
p,0 \Λ^Λc'Λe'^((9) V v J^)

with

' .=™,«, (V.35)
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In other words, the configurations coincide with p outside &. Since the Dobrushin
estimate holds for $ we get

+ ZK^y)k,|. (V.36)
yφ& ye&

P = (Py}ye&c being slowly increasing, || r | < 1, || r ||^ N < oo implies that <fp φ obeys
a Dobrushin estimate with

By virtue of Theorem II.3, d?p ^ is a compact specification. It is also attractive if
$ is, as can be trivially verified from V.35. From Theorem IV.3, there is a maximal
probability measure, say M^φ on ^t(S ^). From Proposition IV.4

Myf) = lim Έ%*(n pe^, (V.38)

,
where qe^, g* ^> 0 and 2] — - - < -h oo for some N depending only on $ and

xe& Qx

p. Thus p -> M+tβ(F) is ^-measurable.
Now let G be a ^.-measurable function and q be in &"R as in Prop. IV.6

μ+(GF) = lim E\C(FG) = lim ̂ c(£(yln

ΛSR ΛSR

= lim £Jβ(G4β.(F)), (V.39)
ΛsR

where σ^fx) = σχ if xe@c. Due to K38 we get

μ + (GF) = μ + (GM^(F)). (V.40)

Since M^^F) is β ĉ measurable, the definition of the conditional expectation
gives :

Examples. If the W's satisfy A with

Wχy = 0 for d(x, y) > r,

then the model has the local Markov property.

VI. The Pressure and Uniqueness Criteria

VI. a The Pressure. Coming back to the model 1.5, we define the pressure with
"free boundary condition" as follows :

Z'Λ = ί Π(^» exp( - F(gJ))exp( - £ £ WXιy(qx - qy)) (VI.l)
xeΛ xeΛ yeΛ

and

p^lim-^logZ^. (VI.2)
ΛsR \Λ\
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Here \Λ\ denotes the number of points in Λ, and the limit A /R is taken in the
van-Hove sense [44].

Proposition VI. 1. // V and W's satisfy A, B then pf exists.

Proof. Without loss of generality we can normalize V(q) such that

Then, since Wxy>Qwe get

Zf

A £

From the Jensen inequality we get

zfΛ ^ exp - Σ [dqdp exp ( - V(p) - V(q))Wχ>y(p - q). (VI.5)
x,yeΛ

Let us put

a = \aqdp exp ( - V(p) - V(q))[l + \p-q\']n. (VL6)

It follows from B that 0 < a < + GO. Thus:

Z^ exp - α £ J(x, y) £ exp - \Λ\ a \\ J || . (VI.7)
x,yeΛ

On the other hand if A l , A2 are disjoint, Wxy^.O implies

Zf

A Λ < Z f

Λ Z f

Λ . (VI.8)
/1 1 u Λ. 2 — Λ\ yl 2 v

This estimate together with VI.4, VI.7, implies the result [46, 47].
Now, let q be in ^'R and we define

zΛi) = f Π <*P, eχp ( - F(P,)) eχp( - Σ Σ »; A - P,))

eχp(-Σ Σ «;>«-«;). (VL9)

Λ(q), (VI. 10)ι Λ ,

and

. (VI.ll)

Proposition VI.2. Let us assume A, B. If μe&t(d>) then pμ exists and coincides with

pf, provided there is ε > 0 such that » M _ £ -^ Q as

Proof. From Wχ ^ 0 we get

By the Jensen inequality we get :

Z^q) έ Z^ exp - Σ Σ < W»>».- «,)>Λ (VI 13)
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with an obvious definition for < >^.
From A, we can estimate the right hand side as follows

Now we claim that there is a constant K3 such (see Lemma VI.3 below)

Assuming this estimate we get

\dμ Σ Σ < WXj(σx - qy))Λ ^K.ΣΣ •/<*, 3>)
xeΛ yφΛ xeΛ yφΛ

because, for μe<&t(δ\μ satisfies the "exponential" bound III.3, thus μ((l + \σy\
n)

is uniformly bounded in yeR.
Now let

Λ1 = {yφΛ', dist (A, y) £ \Λ\£}. (VI.16)

(Here dΛ = {y$Λ; d(Λ, y) ̂  1}.) Then

Σ Σ J(*> y) ̂  IIJ1I \dΛ\ \Λ\ε (vi.I?)
xeΛ yeΛ i

if J\x, y) = J(y, x). On the other hand, (VI. 18)

I I w\\

\~εNΣ Σ d(: "'-W-1'
Thus

1 1 / ^ /Ί \ / 1

- |-̂ τ log Zf

Λ ^ $dμ(q)pΛ(q) ^ - -^ log Zf

Λ + θ( ̂ ^ ) + 0( ̂ ^ ) (VI.20)

and the result follows.
It remains to prove:

Lemma VI.3. The estimate VI. 15 holds.
To prove VI. 15 it is sufficient to prove

< exp (a\σχ\)yΛ g exp ( -^- + B'a 4- C } VΛE%(R)a > 0. (VI.21)

This estimate follows from III.l, where we have put W = 0 unless xeΛ, yeΛ.
Then, the matrix r(x, y) does not depend on Λ.

Vl.b) Uniqueness Criteria

Proposition VI.4. Let <$bea compact, attractive local specification. Then &t(<£) has
one point only, if and only if

μ + (σχ) = μ_(σχ) VxeK. (VI.22)

Remark. Using the Lebowitz inequalities such a result can be proved in example
[32]. However here we follow a rather general argument.
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Proof. By Proposition V.I it is enough to prove that VI.22 implies μ+ = μ _ .
Let f = (fx)xeR be a positive rapidly decreasing sequence on R and

«tf)=Σσ»./; (VI 23)
ceK

Let Rf be the corresponding Wasershtein distance (see the Appendix). We get:

Λ f (μ + ,μ_)= f [̂μ + (χ[soo](σ(f)))-μ_(χ[soo](σ(f)))]. (VI.24)
— CO

Since μ+>μ_ and χ[Sj00](σ(f))e,3f +(ΩR), we can forget the absolute value to
get

») ~ /*-K)) = 0, (VI.25)
xefl

f being arbitrary, μ+ = μ _ . D

Now let fe be a real number, and let p(h) be the pressure corresponding to the
model 1.5 with V replaced by

Vh(q) = V(q) ~ hq. (VI.26)

Clearly p(h) is a concave function of h. We assume moreover that W(x y} depends
only on x - y, on R = Zv (translation invariance). Then we get:

Proposition VI.5. Let us consider the model 1.5, A, B,onR = Zv, with W(χ y} depend-

ing only on (x — y)eZv. Then if p(h) is differentiate at h = hQ9 the set of tempered
Gibbs states corresponding to Vh is reduced to one point.

Proof. p(h) = lim pμ

Λ(h\ (VI.27)Λ
ΛsR

Pμ

Λ(h) = f - p- log Zh

Λ(q)dμ(q). (VI.28)

Thus, pμ

Λ(h) is concave and of class ̂  in ft. A well-known result on the concave
functions [17, 24] allows us to give :

(VI.29).
oh Λ oh

But

^ = - ,lί dμ(q)^( Σ O = " T^i Σ MO (VI.30)
^^ K1! xeyl K1! xeΛ

In particular for μ = μ± , μ±(σjc) = m± Vx, for μ± are translation invariant (Prop
V.3. Example 1). Thus

since μ can be choosen arbitrarily in &t($).
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Using Proposition VI.4 the result is proved. Π

Example. Let us consider the φ4 theory on the lattice:

Wxy(q) = $q2 d(x,y)=l
= 0 otherwise f (VI.32)

The Lee-Yang theorem allows us to prove that p(h) is analytic in h for Re (h) =£ 0
[26,27,49]. In this region we have the uniqueness of the Gibbs state:

Corollary VI.6. For the (λφ4 + bφ2 4- hφ) theory on the lattice, the set of tempered

Gibbs states is reduced to one point provided /z ^= 0.

Remark. In this example, let μh be the unique Gibbs state corresponding to the
case h > 0. Then if μ is a Gibbs state for h = 0, the FKG inequalities give:

μocμ*. (VI.33)

Thus, due to the compactness of δ

limlim μhEΛC = μ+ (VI.34)
fc s.0 ΛsR

If δ is the local specification corresponding to h = 0. This construction was
precisely done by Frόhlich and Simon [21] in the context of field theories to get
the " + " state for the P(φ)2 theory.

Appendix: Tempered Measures

As before ΩR is the space UR with the product topology; &"R is the subset of slowly
increasing sequences in ΩR. &"R is equipped with the topology σ(&"R, £fR), where
£fR is the set of fastly decreasing sequences, by the canonical duality:

qe<5^κ,feyR<q|f > = Σqxfx (A.I)
xeR

Since ¥'R is separable, if Σ is a dense denumerable subspace of &*R, the map

qe^ -»«q|f y\eΣeUΣ = ΩΣ (A.2)

gives an homeomorphism between £f'R and its image Σ g- in the topological space
ΩΣ. It is well-known [48] that the weak topology and the strong topology on ίf'R
coincide, that ίf'R is a polish space, and that a subset B of £f'R is compact if and
only if there are CB > 0 and NBeN such that

Now let Sffl/Ωfl) be the set of tempered measures on ΩR. For f belonging to
£f+ = ί j
^ R I J+ = ;fχ ^ 0 Vx} we put

p f(q)= ΣΛk (A 4)
V ' ;
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Then μ e ^Jlt(ΩR) if and only if μ e W(ΩR) and

μ(pt)<+oo V f e Γ . (A.5)

Let i^ be the weak topology on 90Ϊ, and we equip 351, with the induced topology.

Proposition A.I. [39] For every μe9K(, the subset &"R of ΩR has μ-measure one.

Proof. We get easily, using the Tchebischef inequality

Z±(l+d(0,x)y'} (A.6)

Choosing N big enough and ε as small as we want, we get the result. Π

Proposition A.2. [39] Let C be a positive real number and N be an integer. The set

<E(C, N) = {μeWt(ΩR) μ(\σχ\) ^ C(l + d(0, x)f } (A.7)

is compact in (9Jlί? i^) and

Proo/. Giving ε > 0, C > 0 and JVe N, we define

Λ |«J ^-(1 + d(0, x)f + v + 1 (A.9)

By the Tychonov theorem Jfε is compact in ΩR, and

By the Prokhorov theorem [42], (S(C, N) has a compact closure. But
Φ

^-^(MpjcDJ^R is lower semi-continuous, and therefore <£(C,N) is closed as an

inverse image of a closed set by Φ.

Corollary A.3. (93^, W) is a Suslίn space [8].

Proof. 9JI, is the denumerable union of compact metrizable space, [see [8], Sect.6
n.2, Prop 8] D

Let SK^IR) be the set of probability measures on the real line such that

f dμ(s)\s\< -ί-oo. (A.11)
— OO

On SK^R) the Vasershtein distance can be defined as follows [6, 14, 16, 50]

R(μ, v) =
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where χ[s , is the characteristic function of [s, oo]. It is known that (SR^R), R)
is a complete metric space with a stronger topology than the weak topology.

Giving fe^R we define

xeR

and for μe9Jlr(ΩΛ) let μf be the measure on the R image of μ by σf . Since μe9Jlί?

R). Then we define

Proposition A.4. [39] The family (Rf)fe<?R defines a topology ^ on 9Kt, /or w/wcfc

(50li? "̂) zs # po/zs/2 sp0C£. ̂  is stronger than if.

Proof. We first note that fe<^R ~^Rf is continuous because

Λ f (fr v) ~ Kβ(μ, v)| £ Kf _g(μ, v). (A.15)

For Rf can be defined as:

Rf (μ, v) = inf { J dm(p, q)|σf (p) - σf(q)| me ̂ (μ, v)}, (A. 16)

where VF(μ, v) is the set of probability measures on ΩR x ΩR, the projections of
which are μ and v respectively.

On the other hand

Rf(μ, v) <; μ(|σf I) + v(|σf |) g X \fx\(μ(\σχ\) + v(|σj)). (A. 17)
xetf

It follows that if Σ is denumerable and dense in ̂ Rί the family (Rf)feΣ defines the
same topology 9~ . Thus 9~ is metrizable and complete because (see A. 16)

Moreover if μe^Ω^ and pμ(f) = μ(|σf |) < + oo Vfe5^Λ, then ^μ is a continuous
semi-norm and therefore μe9Jlr

At last "̂ is Hausdorff because jRf(μ, v) = 0 Vf implies μf = vf Vfe^^, which,
by the Kolmogorov theorem is equivalent to μ = v.

The fact that F is stronger than Of is a consequence of the definition of Rf

[[14], theorem 2].

Definition A. 5. A subset H of ̂  is called uniform if for any fe^

lim J dμ|σ f | = 0 (A. 19)

uniformly for μe/ί.
The great interest of this definition comes from the following characterization

of compact subset of

Proposition A.6. A subset H of(Wlt,έ?~), has a compact closure if and only if the
following conditions hold.

(i) H is uniform.

(ii) 3 C> 0, Ne N, H cz <E(C, N).
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Proof. Let us assume H to be ^-compact.
Since Vfe^κμ -» μ(\σϊ j) is continuous, for the y topology the semi-norm

\) (A.20)
μeH

is everywhere defined and lower semi-continuous on &R. Since &"R is a Baire
space, pH is continuous, ( [8] § 5) and we can find C > 0, Ne M such that

Thus H c C(C, N).
Moreover let ε be positive, and fε5^R; then there are μ t, ... ,μn,μeH, such

thatVμeH

(A.22)

Let FΛ be the function on K,

FA = 0|p| g A/2 FA(p) = 2\p\ - A, A/2 ί\P\^A

FA(p) = \p\,\p\*A. (A.23)

Then :\FA(p)-FA(q)\ί2\p-q and

ί|«, I gx^kf I ̂  f dμF>f ) ̂  2Λf(μ, μ.) + f dμ.F>, ). (A.24)

Choosing A(ε f ) such that A g; ^4(s, f ) implies

fdμ/>f)gε/2, ;=l , . . . ,n (A.25)

we get

ί|, fl^^kfl^ε, μeH (A.26)

and // is a uniform set.
Conversely if H satisfies (i) and (ii), H is weakly relatively compact. But since

H is uniform 3~ and i^ coincide on H by the result of Dobrushin [14, Theorem 2].
Then, H is 3~ relatively compact. D

Remark A.I. We note now that in Sect.IΠ, the exponential bound is sufficient to
insure that $ is compact in the sense of the ̂ "-topology. For if χAo(p) = 1 if p ̂  AQ =
0 otherwise

3 C(a) > 0, \σt\χAo(σt) £ A, exp (a(σt - A0))C(a) (A.27)

and

M|σf |̂ 0(σf )) ̂  AQ exp ( - 40α)C(α)/x(exp (aσt)\ μεWl. (A.28)

This estimate proves that if pe$Jlt

Ump£^c(χ>f)|σf|) = 0 (A.29)
A-* oo
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uniformly in Λ, and

limμ(χ>f)|σf|) = 0 (A.30)
A-^ ao

uniformly in μ^t(S\ because S satisfies the exponential bound. G
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