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Abstract. We present a global approach to the final aperiodic regime in maps of
the interval displaying a simple pattern with similarities to the Feigenbaum
scheme.

1. Introduction

It is well known that complex dynamical behaviour can be generated by maps of
the interval into itself. In particular the mechanism of period doubling bifurcation
by functional iteration provides a procedure to achieve, starting with simple
periodic systems, aperiodic regimes. For functions fμ(x) belonging to C 2 [— 1,1],
even and convex, depending on a parameter μ in [0,1] such that (for every x)
fo(x) = 1, /^O) = — 1 and fμ(± 1) = 1, numerical and analytic studies have revealed
remarkable properties in the approach of the aperiodic regime by period doubling
bifurcation. Let us briefly summarize here these properties [1]:

i) Each orbit of period 2" has in μ a region In of stability above which it ceases
to be stable originating (by bifurcation) an orbit of period 2"+ 1.

ii) The sequence (μw), n = 0,1,2,..., where μn is the value of μ for which the
orbit of period 2" is super-stable, is strictly increasing with limit μ^ < 1.

iii) As n-> oo the sequence (μn — μn_i) converges geometrically, i.e.,

iv) The Feigenbaunm ratio δ only depends on the behaviour of fμ(x) at the
critical point x = 0 (universality).

v) The iterated functions f2

μ

n

n{x) and / ^ ' M are similar and related by a
scaling transformation which determines a second Feigenbaum ratio α.

In the present paper we consider the approach to aperiodic behaviour from a
more global point of view. After the first Feigenbaum window in μ, [ 0 ^ ^ ] , other
windows of periods JV2", N = 3,..., n = 0,1,..., as well as regions of aperiodicity
follow. The final aperiodic limit is achieved for μ-»l. The various regions of
stability for the different periods, and the aperiodic regions are all mixed up in a

0010-3616/82/0084/0251/$01.20



252 J. Dias de Deus and J. T. Duarte

very complicated "chaotic" manner. However it is possible to show that a regular
pattern, bearing close analogy to the Feigenbaum pattern i) to v) above, emerges
in the approach of the final aperiodic limit as μ -•1. More precisely we prove that 1 :

i') The region of μ in [0,1], where the orbit of period fc, k = 1,2,3,..., definitely
ceases to be stable appears before the similar region for the orbit of period fc + 1
and, for the super-stable points,

ii') The sequence (μk) is strictly increasing with limit 1.
iii') As k-+ oo the sequence (μk — μk_1) geometricaly converges

iv') The ratio A only depends on the behaviour of f(x) at x = 1 (universality)
and

v') The iterated functions fk(0) = g(k,μ) in the /c-> oo limit scale

g(Kμ) -> h(X), X = A\l-μ).
k^oo

In particular, for (1 — μ) = Δ(l — μ), one has

k->oo

Clearly, the statements i') to v') to be proven in the next section closely resemble
the statements i) to v) valid in Feigenbaum scheme. There are, at the same time,
essential differences. While Feigenbaum locally explores the development of
aperiodicity by period doubling, within a given window we explore the whole
range of μ, [0,1], and look for the final establishment of aperiodic regime by
successive and definite disappearance of stable orbits of increasing periodicity. For
n = 1 the super-stable Feigenbaum point is the final super-stable point for orbits
of period 2, but the super-stable Feigenbaum for n = 2 is not the ultimate
super-stable point of period 4 and is then not included in our sequence μk. In
general the super-stable points associated to the harmonics do not belong to the
sequence μk.

The numbers μk divide the interval [0,1] in a particular way [2]. In each
interval {μk,μk + 1) the kneading sequences have in common the first fc+ 1 terms
and this is enough to characterize the dynamics in that interval as being
topologically not equivalent to the dynamics in any other interval. To each interval
we can associate a finite sequence Sfc. The point μk corresponds to the transition
from Sk to Sk + 1. The approach to the final aperiodic regime corresponds to the
limit of Sk as k-+ oo. This is discussed in Sect. 3.

Finally we would like to mention that the sequence μk has been previously
noticed, in a different context and for a specific example, by Guckenheimer [3].

1 The proof of iii')-v') is formal rather than completely rigorous
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2. The Approach to the Final Aperiodic Limit: The Sequence of (μk)

Consider / = [— 1,1] and let Co be the set of functions / : / - + / belonging to C3(/)
such that

ii) / has a single local minimum at x = 0; / is strictly decreasing on [—1,0]
and strictly increasing on [0,1].

iii) For every xe/, f"{x) > 0.
Let us take a parameter space J = [0,1] and define a map J-+Co defined by
μ->/μ. We can then prove the following:

Theorem 1. Let μ-*fμbe differentiable and

b) The induced map f{ί):J-+I defined by /(1)(μ) = /μ(0) = /(μ,0) is strictly
decreasing:

Then if we consider μk = sup{μeJ\fk

μ(0) = 0}, the sequence (μk) is strictly
increasing.

Proof We introduce the following notation. Define / ( k ) : J->/ by /(k)(μ) = /*(0).
Then observe that for each k> 1 we have /(/c)(l) = 1. As f{k)(μi) = 0 we must have

μk7zμv By computing the derivative f[k)(μι) we get /('k)(μi) = -τ—(μi,0)<0. So

there must be a zero of f {k) in (μ1? 1) which means that μk> μι. Then by assumption

b) we have f{1){μk)<f{1)(μ1). But

/° (π \ = f ( f ( π \\ = f (Q\ =r f (π \ <̂  0

There must be μe(μk, 1) such that f{k+ 1}(μ) = 0. This implies that μk+ x ^ μ > μk as
we wanted to prove.

This sequence (μk) is the basis of our claim of introducing a regularity pattern
to the complicated behaviour of functions f{k).

Proposition 2. Let μ-*fμ be a map verifying the assumptions of Theorem! and
moreover, for each xel fμ(x) = μP(x) +Q(x)for any μeJ. Then for every k> 1 and
any μe(μk, 1) we have f[k){μ) ^ 0.

Proof. This result will be proved by induction. Remark that f'^iμi) ^ 0 for
otherwise μ2 would not be the last zero of / ( 2 ). We can write, making use of a),
/μ(x) = μP(x) + 1 with P(0)= - 2 and P ( ± l ) = 0. Hence there comes f"2){μ) =
-4P ' (1 -2μ) + 4μP"(l - 2μ). As μ1=^, if we take μ > μ2 > μί we have P'

(1 — 2μ)<0 and this enables us to conclude that /("2)(μ) > 0. By mean value
theorem on the interval (μ2,1) we may assert that /J2)(μ) > f'^iμi) > 0. By
induction it is now easy to prove using the same arguments that /('k + 1}(μ) > 0 for any

Remark. With the assumption of Proposition 2 we may assert that/ ( k ) restricted to
the interval (uk_1,l) has only one root and a more general family fμ(x) = g(μ) P(x)
+ 1 could be used.

We next prove a lemma which will be useful in subsequent computations.
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Lemma. Let μ—• fμ be a map satisfying properties as stated in Proposition 2. Then
the sequence (μk) converges to μL = 1.

Proof. Reasoning by contradiction we assume that μL, which exists since (μk) is
monotone and bounded, is less than one. As μL > μp for any p we claim that
(/fc(μL))k>i, is a strictly decreasing sequence converging to zero.

i)(iuL)) + ^ w e n ° t i c e by taking limits as /c->oo that

0 = μL P(0) + l, i.e., P(0) = . As μL>\ this contradicts the fact that

P(0) = — 2. Then we must have μL = 1.

Theorem 2. Let μ-+fμbe a map as stated before. Assume now in addition that fμ

is an analytic function. Then Ak= — kjz^- is a convergent sequence and

Proof, For each k ̂  2 and any μe[0,1] we have

/ W M = /μ(/,*-i)(Aθ)

Then as / μ ( l )= 1 for any μe[O,1] we can write

which implies /('k)(l) = oc1 Δ
k for some constant

We expand now at μ = 1 the function /(k),

and estimate the asymptotic behaviour of the derivatives f\k](l) when fc-> oo. As
a consequence of /μ(l) = 1 and f{k){\) = oc1 A

k, A > 1, we shall see, that

/j j α ) - ^ (fc-oo), (*)

where απ is a constant (αw = 0 for some n > 2 is possible but not relevant for the
asymptotic behaviour). Omitting lower order terms in A we have

(>v ..,>gejπ

n

where Jn = {(rl9..., rn)eNn\ ^ /rf = n) and, for each (r l 9 . . . , r j , fl^...^ is constant.
i = 1

The estimate (*) is then obtained by induction on n.
Taking as variable X = Δk(l— μ), it is clear that f{k) can be asymptotically

represented by a scaling function h(X)2 which implies that lim Ak(l — μk) = Xoj=0.
k

It is then obvious that lim μ k ~ μ k ' 1 =A= / i ( l ) .
fc^oo Hk+ 1 ~~ Mk
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3. How the Sequence(μk) Organizes the Approach to the Final Aperiodic Regime

To a differentiable one-dimensional map / :/->/ with just one critical point at
x = 0, which is a minimum, can be associated a sequence y(f)=(an)n^0 on a set
E = {c,lo,lx}, called the kneading sequence of / and defined in the following way:

Γc if/"(0) = 0,

ao = c and an= Ji o i f/"(0)<0,

(/1if/"(0)>0.

We consider the family / of Sect. 2 and call Jk the open interval (μk,μk+ι) for

fc^l and J o = [0,/ι1].

Theorem 3. Let μeJk and y(fμ) = {an)n>0 be the kneading sequence of fμ. Then

{
c for n = 0,

I0forne{l,k + l},

Ix for\<n^k.

ϋ) If k = 0 then an = It for all n> 1 and a0 = c.

Proof. 1. If fc = 0 and μe(0, μx), we infer /μ(0) > 0 and as fμ is increasing on (0,1)
we conclude that for all fc ^ 1 fk

μ(0) > 0.
2. If fc £ 1 we know that /μ(0) < 0 and fk

μ

+ '(0) = f{k+ί)(μ) < 0 for μe(μk, μk + 1).
The fact that μ > μk > μh _ λ > ... > μ2 implies that we have /^(0),..., fk

μ{0) all
greater than zero.

We observe that the kneading sequences associated to fμk are

0 1 1 )
This observation has a consequence.

Corollary. // μeJk and μeJι then fμ is not topologically equivalent to f~.
The proof is obvious once we remark that two topological equivalent maps

must have the same kneading sequences. The kneading sequences associated to
fμ for μeJk for some fc may be very different but they all share the same (fc + 1)
first terms. In this sense we characterize by this finite sequence Sk the interval Jk.
The transition from Sk to Sk + ί is done by replacing the last 70 by a Iγ and adding
a final 70.

Now if we look at the final aperiodic regime, which corresponds to μ = 1, it
has the kneading sequence S^ =(CJ0,IίJί,...). The sequence S^ appears as a
"limit" of the finite sequences Sk as fc —• oo.
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2 This step is formal rather than completely rigorous because the existence of the limits of the Taylor

coefficients of a function does not imply the existence of the limit of the function. We believe however

that the conclusion of our argument is correct
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Note added in proof. Recently T. Geisel and J. Nierwetberg (Phys. Rev. Lett. 47, 975, 1981) presented

results which agree with the ones proved in the present paper. They generalize the procedure to sequences

q2k, k fixed, take the limit k —• oo, and find interesting universal behaviour. The curves in their Fig. 1 are

examples satisfying, in the q —• oo limit, our scaling h(x) and coincide with each other if plotted as

functions of χ = Δq (1 — μ).




