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Abstract. The reduction of the super symmetric graded — σ-model is

S(U2 x U-jj

discussed. If no extra constraint is imposed, one gets a set of two coupled
equations (involving two scalar superfields) which generalizes the super-
symmetric sine-Gordon equation. It is shown that these equations, which can be
derived by a supersymmetric Lagrangian, reproduce in the bosonic limit the
reduced version of the 0(4) σ-model (Pohlmeyer, Lund Regge, Getmanov
model). Moreover the associate linear set and an infinite set of local conservation
laws for this new supersymmetric model are exhibited. It turns out that, beyond
the spinorial charge which generates the supersymmetry transformations,
another unexpected spinorial charge is conserved; then the model appears to be
invariant under N = 2 extended supersymmetry.

1. Introduction

A supersymmetric generalization of the sine-Gordon equation was proposed some
years ago by Di Vecchia, Ferrara and Witten [1]. Later an infinite set of local
conservation laws were found for this model [2] it was shown that they survive
also at the quantum level [3] and the iS-matrix was calculated [4]. The proof of
the classical conservation laws was given [5,6] by introducing a "Lax set" of linear
equations associated to the super sine-Gordon equation.

An interesting (purely bosonic) generalization of the sine-Gordon equation was
independently proposed by Pohlmeyer, Lund and Regge [7] who showed its
relationship with the 0(4) σ-model, and by Getmanov [8] this model was named
the Complex sine-Gordon by Getmanov, but we will call it the GLRP model in
order to avoid confusion with a different complexification of the sine-Gordon
equation (Complex sine-Gordon II) which was found later [9,10]. It is very easy to
write a supersymmetric generalization of the GLRP model; however for the most
obvious supersymmetrization no associate linear set has been found (actually the
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attempts to find a supersymmetric extension of the linear set associated to the GLRP
led to the discovery of a new model, whose bosonic limit is the Complex sine-
Gordon model II [10]).

In [10] and [11] a general scheme to build supersymmetric models endowed
with an associate linear set was proposed; it was then possible to write [11] the
linear set associated to a new supersymmetric model related to the GLRP model.
This model involves 3 coupled scalar superfields, and in the purely bosonic limit
gives two sets of decoupled equations: one set reproduces the 2 coupled equations
of the GLRP model, the other one is simply the sine-Gordon equation. The
sine-Gordon field and the GLRP fields interact through their fermionic counter-
parts and then the supersymmetric equations cannot be decoupled.

By looking at the GLRP model as a special form of the principal chiral
SU(2) model [12], in the present paper we succeed to give a new supersymmetric
version, which does not involve any extra field and which is endowed of an associate
linear set and of an infinite set of local conservation laws. Interestingly enough,
the model shows a larger supersymmetry than the one built in at the beginning:
the model is described by superfields of simple supersymmetry, but two spinorial
charges appear to be conserved, generating then an extended supersymmetry.

In Sect. 2 we present the Lagrangian and the equations of motion of this model
in terms of superfields. In Sects. 3 and 4 we explain how the equations of motion
were obtained: after reviewing (Sect. 3) the general method of refs. [10] and [11],
in Sect. 4 we apply it to the reduction of the supersymmetric graded SU(2\1)
σ-model and we get the linear set associate to our model. In Sect. 5 we write the
recursive formula for the infinite set of local conservation laws and briefly discuss
the new unexpected supersymmetry. Finally in the Appendix the Lagrangian and
the equations of motion are written in terms of ordinary fields.

2. The Lagrangian and the Equations of Motion

The model we wish to discuss is described by the following action1.

D0CΦ + cot2ΦD«HDaH)- V(Φ,H)i (2.1)UDΦ

where

V(Φ, H) = mcos Φcos H, (2.2)

and Φ and H stand for real superfields:

, θ) = φ{x) + iθ«ψa(x) + l-θaθaF{x\ (2.3a)

H(x, θ) = h(x) + tfαχα(x) + l^θfi{x). (2.3b)

The corresponding equations of motion are:

1 We use the notation Uθ inside the Berezin integrals [13] in order to avoid any confusion with the
differentials dθ which will come into play in the next sections
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1 i COS Φ
~DaDjD + --^-r-DaHDaH + msin Φ cosH = 0, (2.4a)
2 2sm 3Φ

1 i sin2 Φ
~D«DaH — : DaΦDaH + m sin H = 0. (2.4b)
2 sin Φcos Φ cos Φ

Of course, for H = 0, the set (2.4) collapses into the super sine-Gordon equation
D1D2Φ = imsinΦ.

We postpone to the Appendix the expression of the Lagrangian and of the
field equations in terms of component fields. Here we only discuss the bosonic
limit obtained by sending to zero the fermionic fields \j/a and χα in Eqs. (2.3), in
order to exhibit the role of the auxiliary fields F and G.

By substituting into the action (2.1) the superfields (2.3) with ψ = χ = 0, and
after integration on the θ variables, one gets:

Sb = \d2x{ - \[_dμφdμφ - F 2 + cot2 φ(dμhdμh - G2)]

+ m(F sin φ cos h + G cos φ sin h)}. (2.5)

The corresponding equations of motion now read:

F = — msin φ cos h, (2.6a)

S 1 ^ (2.6b)
COSφ

• Φ + -τ-r-(dμhdnh - G2) + m(Fcos φcos h - Gsin φsinh) = 0, (2.7a)
sin-3 φ μ

4
Dh- -r~^—dμφdah + mtan2 (p(Gcos ωcos Λ - Fsin φsin h) = 0. (2.7b)

sm φ μ

By inserting Eqs. (2.6) into Eqs. (2.7) and (2.5) one finally gets the equations for
the propagating fields φ and h:

) 0 , (2.8a)

^w 0 ' (2 8b)

and the corresponding action

Sb = - i jd 2x(3μφdμφ + cot2 φδμhdμh + m2sin2 φ). (2.9)

One easily realizes that Eqs. (2.8) reproduce the equations of motion of the
Getmanov, Pohlmeyer, Lund-Regge model [7,8]. It is worthwhile to observe that
the supersymmetric generalization of this model described by Eqs. (2.1) and (2.4)
is not unique at all: for instance, the insertion of the potential K(Φ) = mcosΦ
(instead of (2.2)) into the action (2.1), would lead to the same bosonic limit. However
the supersymmetrization (2.1) of GLRP has the advantage that its equations of
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motion can be interpreted as integrability conditions of a linear set, as we shall
prove in Sect. 4. As a consequence, the model admits an infinite set of local
conservation laws.

Moreover, we recall that a different model, still endowed with an associate

cos2Φ
linear set, can be derived from the action (2.1) with the potential V(Φ) = m—-—.

But, as shown in ref. [10] where this model is introduced, the presence of 2Φ
instead of Φ is enough to radically change the underlying group theoretical
structure. Its bosonic limit no longer gives the GLRP equations, but another model
(complex sine-Gordon II, [9,10]) associated with the SU(3)/O{3) symmetric space
[11,14].

3. Exterior Calculus on Superspace and Associate Linear Set

In this section we briefly review the formalism outlined in refs. [10,11] in order
to get the linear set associated to the equations of motion (2.4).

A linear set of first order differential equations can be elegantly written by
means of the formalism of differential forms

dV=ωV, (3.1)

where V is a column of 0-forms, ω is a matrix of 1-forms and d means exterior
derivative.

The integrability condition of the linear set (3.1) is

R = 09 (3.2)

where R is the following 2-form (the "curvature"):

def

R = dω — ω A ω. (3.3)

The Eqs. (3.1) and (3.2) can be written on any manifold irrespective of its
dimensionality. Obviously two-dimensional space time has the interesting peculia-
rity that Eq. (3.2) reduces to a single matrix equation, as any 2-form is proportional
to dx° A dx1. However, in order to build two-dimensional supersymmetric models,
Eqs. (3.1) and (3.2) must be written on the superspace parametrized by the ordinary
variables xμ(μ =0,1) and by the Grassmann variables θa(oί = 1,2).

At first sight one has to deal with much more components of Eq. (3.2) than in
the ordinary two-dimensional space; in fact a 2-form on (2 + 2) superspace has
components along 8 independent directions2:

dθ{a
 A dθβ}

dθ" A dxμ

dx[μ
 A dxv\ (3.4)

2 The brackets { } and [ ] mean symmetrization and antisymmetrization respectively, and recall the

commutation properties of the wedge product among the differentials dθa and dxμ
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Actually it happens that only 3 out of the 8 equations contained in Eq. (3.2) are
independent; even more, a single equation gives the most relevant information
[10]. To prove this property it is convenient to use the contravariant basis:

Ea = dθ«

e" = dx» - idθ%yμθ)a (3.5)

of left invariant forms under rigid supersymmetry transformations

x^xμ-m\yμθ\\ (3.6)

let us remark that the basis (3.5) is dual to the basis

of tangent vectors (or supersymmetric co variant derivatives). By inserting the 2-form

R = E« A EβRaβ + E" A e»Raμ + e" A evRμv (3.8)

into the Bianchi identity

Ul\ = CO Λ iv — i \ Λ CO, yJ.y)

and by using the Maurer Cartan equation for the graded translation group

deμ = iEa(yμE)a, (3.10)

(which directly follows from the definition (3.5)) one easily gets [15] that the
equation

RΛβ = 0 (3.H)

implies the equations

Rμa = 0, (3.12a)

ivμv = 0, (3.12b)

In other words, in the basis (3.5), the necessary and sufficient condition that the
2-form R vanish is the vanishing of its components along the directions dθ{a A dθβ].

It is useful to write Eq. (3.11) in terms of the components ί2α,ωμ of the 1-form
Ω:

ω = EaΩa + eμωμ; (3.13)

to this aim it is convenient to use the notations of ref. [10] and introduce the
truncated 1-form (ίl-form)

Ω = E«Ωa = dθ«Ωa, (3.14)
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and the truncated exterior derivative

D = EaDa = dθaDa. (3.15)

In this language, the definitions (3.3), (3.8), (3.13) and Eq. (3.10) give:

E* Λ EβRaβ = iEa(γμE)aωμ + DΩ - Ω Λ Ω. (3.16)

Moreover, by inserting the definition

def

DΩ-ΩΛΩ=P = E«Λ Eβpaβ (3.17)

in Eq. (3.16), Eq. (3.11) becomes:

Pi2=0, (3.18)

(3.19)

where light cone coordinates

x- = — - — , ω ± = α ) 1 i ω 0

have been used.
Then the most convenient way to discuss the linear set (3.1) in the super-

symmetric case is to start from the truncated linear set

DV=ΩV, (3.20)

whose integrability condition is the single matrix equation (3.18); following ref.
[10], it can be written in the form:

UΩ-Ω ΛΩ±0, (3.18')

where the symbol = 0 means that the coefficient of dθ1 A dθ2 in the left hand side
must vanish. The Eq. (3.18) does not involve the coefficients of dθ1 A dθ1 and of
dθ2 Adθ2; however the calculation of these coefficients is very useful, because
Eqs. (3.19) can be used to define ωμ in terms of Ωa.

Then the truncated linear set (3.20) can be completed by adding the equations

dμV=ωμV, (3.21)

with the usual consistency conditions:

3 μ ω v - 3 v ω μ - [ ω μ , ω v ] = 0 . (3.22)

Let us remark again that Eq. (3.22), which coincides with Eq. (3.12b), is not a new
one but is implied by Eq. (3.18) on Ωa and by the definition (3.19) of ωμ.

As we will see in our specific example, the θ independent part of Eq. (3.22) is
very useful to give the equations of motion in terms of ordinary fields, while
Eq. (3.18) gives the same equations in terms of superfields.

In order to build supersymmetric models, two possibilities are envisaged in
ref. [11]:
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i) The ίl-form Ω (as the complete 1-form ω) takes values on an algebra (5 graded

according to a Z 2 grading

S^oθS, (3.23)

with the (anti) commutation relations

AaAb - ( - )abAbAae($>a+bimoά2), Aae®a, (3.24)

and Ω is chosen to be

Ω = a+K, (3.25)

where αe(δ 0 is a matrix of bosonic ίl-forms and Ke®1 of fermionic ones;
ii) Again Ώe(S, but now a Z 4 grading is considered3

(3.26)

with the (anti) commutation relations:

AaAb - ( - )abAbAae®a+b{mod4y (3.27)

The ίl-form Ω is decomposed in the following way:

Ω=a + dθ1K1 + dΘ2K2, (3.28)

where αe(5 0 is a matrix of bosonic forms, and K1e0ΰ1, K 2 e © 3

 a r e matrices of
bosonic superfields (hence dθ1Kλ and dθ2K2 are fermionic ίl-forms)4.

Actually in [11] only the case ii) is discussed in detail, as the aim of that work
is to build supersymmetric generalizations of bosonic models related to G/H
Riemannian symmetric spaces. (G is the group generated by the even subalgebra
(5 0 ®(δ 2 , and H is the subgroup generated by (So.) In particular the super
sine-Gordon equation is obtained by choosing (§ = <SU[2\1),G = S(U 2 x Uλ) and
H = 50(2); the relevant symmetric space in the bosonic limit is SU(2)/SO(2) and
the corresponding model is the sine-Gordon one. The most natural extension
comes from the choice <& = ®U(3|1), G = S(U3 x l^), H = S0(3\ and in the bosonic
limit gives the complex sine-Gordon model II [9,10] associated with the symmetric
space SU(3)/SO{3) [14].

According to the scheme ii), a supersymmetric generalization of the GLRP
model can be found by exploiting its relationship with the symmetric space
SO(4)/SO(3); then one chooses (§ =OSφ(4 |2) , G = SO(4) x Sp(2,r) a n d i / =
SO(3) x 50(2). The bosonic limit of this supersymmetric model [11] is the "direct
sum" of two decoupled sets of equations: one (the GLRP model) is related to the
symmetric space 5O(4)/5O(3), the other (the sine-Gordon model) is related to the
symmetric space Sp(2,r)SO(2).

On the contrary in the present paper we will show that the case i), with the
simplest nontrivial choice (5= SU(2|1), (δ0 = &{U2®Vίί), reproduces the super-
symmetric model described by the action (2.1).

3 We thank J. Lukierski for a useful comment on this point (see also [16])

4 Note the 0 has vanishing projection on (5 2 ; however one can see, by Eqs. (3.19) and (3.27) that ω

does have non-vanishing components along © 2
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4. The Reduced SUCHiySίU^UJ Mode!

In order to build the linear set associated to the model proposed in Sect. 2 we
will apply the formalism of Sect. 3 to the supersymmetric graded SU(2\1)/S{U2 x (7X)
σ-model [17]. Sending the reader to ref. [17] for a more detailed treatment of
supersymmetric graded σ-models, in the present paper we write our model already
in the form most suitable for the reduction.

In the linear set (3.20), with

Vλ

V — I V2 I (V2, V3 are bosonic superfields and Vι is a fermionic one),

the ίl-form Ω is chosen to take values in the fundamental representation of the
graded Lie algebra SU(2|1):

A T

"̂  J, ge
(4.1)

where ΆeU{2) is a 2 x 2 antihermitian matrix of bosonic ίl-forms

A = dθ1A1+dθ2A2i (4.2)

(Aί and A2 are matrices of fermionic superfields), and k is a column of fermionic
ίl-forms

k = dθ1k1 + dθ2k2 (4.3)

(kί and k2 are columns of bosonic superfields).
The integrability conditions (3.18) (or (3.18')) of the linear set (3.20) (or

equivalently the Maurer Cartan equation for the graded group SU(2\1)) are:

(Dι + α1)fe2 + φ 2 + a1)k1 - (Aιk2 + A2k,) = 0 (4.4a)

D,A2 + Ό2Aγ - {Ax, A2} ~ k,k\ - k2k\ = 0. (4.4b)

In the language of Eq. (4.1), the equations of motion of the SC/(2|l)/S(C72xt/1)
σ-model read [17]:

(D, + aγ)k2 - (D2 + a1)k1 - (A,k2 - A2k,) = 0. (4.5)

Combining Eqs. (4.4a) and (4.5) one gets

{D1+a1)k2 = Aίk2,

(D2 + a2)k1=A2kί9 (4.6)

and then

D2{k\k1)^D1{klk2) = 0. (4.7)

By exploiting local supersymmetry and conformal invariance of the σ-model, one
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can impose:

k\kt = k\k2 = m = constant. (4.8)

In this way we have performed the reduction of the σ-model and from now on
we can follow the scheme outlined in ref. [11].

By using the gauge freedom

0->0' =ΓιUf-Γιΰί V/eS(l/2 x l/x) (4.9)

of Eqs. (4.4) and (4.5), we can choose the following parametrization:

ίHcosΦ \ /—/1\

} ^{} {4 10)

where Φ,α and H are 3 real superfields. In this gauge Eq. (4.4b) reads

-2cosΦsinH -ie- i ( f l + α ) s inΦ\

0 j ;
then, consistent with Eq. (4.11), one can choose {A2)22=§ and solve Eqs. (4.6)
to express A2 in terms of Φ, α, H and of their derivatives. Inserting the result in
Eq. (4.1), one gets:

0 /Γ 1 / 2e-

Ωί=iy/ml λ~1/2eiHcosΦ 0 0

\ 0 0

f \ j III'

s in 2 Φ
I cos2Φ

Jλm i , , D2H-iD2(x e~m{-D2Φ + ίcotΦD2H)]

siir Φ

\ 0 eίa(D2Φ
\

The arbitrary real constant λ that appears in Eq. (4.12) is introduced by a Lorentz
transformation5:

in such a way both Eqs. (4.4) and (4.5) can be interpreted as integrability conditions
of the linear set (3.20), once that Lorentz in variance (λ independence) is required.

Substitution of (4.12) into the matrix equation (3.18) (or (3.18')) gives the
following equations of motion:

= 0, (4.13a)

5 We remark that the differentials dθ* have the same dimensions and the same transformation

properties under the Lorentz group as the Grassmann variables θa (while, of course, the opposite holds

for the covariant derivatives Da)
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if 1 \ sin2Φ
),D2H -sinΦίλα£ 2 Φ+- D,ΦD2H + m sinϋ = 0,

cos Φ\ sin Φ / cos Φ
(4.13b)

iD1D2u+-
si

cos2ΦD1aD2Φ -m—— = 0.
cosΦ

f cos2ΦD1aD2Φ + -τ-^—D^D 2sinΦcosΦ\ sinrΦ )
(4.13c)

Eqs. (4.13) can be simplified by noting that they imply the following equation:

D2(D1H +sin 2

whose simplest solution is

-^Γ-DιH.
sin2 Φ

(4.14)

(4.15)

Eq. (4.15) allows us to get rid of Dxa from Eqs. (4.13) and to reproduce the equations
of motion (2.4).

To eliminate the superfield a also from the matrix Ω, it is convenient to perform
the gauge transformation (4.9) with

0 0 N

~ia Q

/ = I o
0 0 1

By using Eq. (4.15) Ωγ 2 become:

1 _ __ Im _.„
—e ιticosΦ
A

(4.16)

Imr Λ

sin Φ

0

0

0

(4.17)

\

Ω,=
λm

\ o

.cos2Φ

sin2 Φ 2

D2Φ + icotΦD2H

We have then succeeded in proving that the Lagrangian (2.1), with the potential
(2.2), gives a set of equations of motion (2.4) which can also be interpreted as an
integrability condition of the linear set (3.20), with Ω given by Eqs. (3.14) and (4.17).
In the next section we will use the "Lax set" (3.20) to find an infinite set of constants
of motion of the model (2.1).

We wish to end this section recalling that the 1-form ω (Eq. (3.13)) can be
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completed by calculating ωμ by Eqs. (3.19); the results are written in the Appendix.
Here we only write the matrices ωμ of the linear set associated to the bosonic limit of
the model; they are obtained by taking the θ independent part of ωμ (Eq. A.6) and
sending to zero the fermionic fields φ and χ. We get:

ω , =

\

m

sin 2 φ iλ

0

0

0 0
\

_ J+h m m
sin φ iλ

m .
—smφcosφ
iλ

smφcosφ
l
m . 2
— s m z

(4.18)

.cos2φ
ί—r—5—o_n + i/lm

0

0

cos2ω
1 o_h -f ϊΛm

d _φ + icotφd_h

— d_φ -f icotφd_h

0

with φ and /z already introduced in the (2.3).
As expected, one easily checks that the consistency conditions (3.22) give back

the GLRP equations (2.8). The most usual representation [7] of the linear set
associate to the GLRP model

m

ω+ = - i
. / 2sin2 φ 2λ

m .
- s i n 2φ

-sin2φ
d+h

2sin2 (

/ 2sm z φ 2
= = : i ' Λ '

iδ_φ + cot φd_h

cos 2<p Am

2 s m 2 φ 2

is obtained by adding to ωμ (Eq. (4.18)) the diagonal matrices6 aμ with:

/m/ d + h \ ( . #cos2φ \

sin2 φ / \ sm2 φ /

(4.18')

- I ί

6 The equations of motion are not affected by this treatment as the diagonal matrices aμ commute

with the ωμ's and the equation dμav — dvaμ = 0 reproduces Eq. (2.8b)
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5. The Conservation Laws

We wish to conclude this work by deriving an infinite set of conservation laws
associated to the supersymmetric model (2.1). We follow the scheme of ref. [5]:
having in mind the linear system

o,y.a,y v-l l)
D2V = Ω2V \V3/ <5 l b )

with Ωa given by (4.17), we introduce the new bosonic superfields U and YB and
the fermionic superfield YF as follows:

U = \nV3, YB = - 9 YF=—. (5.2)

Eqs. (5.1b) then become:

^/λYB=-D2YF-FYFYB + F' YF9 (5.3a)

J~λYF= - F* + D2YB + FYBYB- FΎB, (5.3b)

D2U=FYB, (5.3c)

where we have put m = 1, and the fermionic quantities F and F' are given'by

F = D2Φ + icot ΦD2H, F* = - D2Φ + icotΦD2H,

, = .COS2ΦD

sm2 Φ

moreover the last of Eqs. (5.1a) takes the form:

D1U = ~ e ί H s i n Φ YF. (5.5)
/ A

Eqs. (5.3c) and (5.5), whose consistency is guaranteed by the equations of motion
(2.4), imply:

β β J α = 0, (5.6)
where

J2=-FYB, J^-^sinΦY^, (5.7)

and YB(λ), YF(λ) are defined through the Riccati like equations (5.3a, b).
Equation (5.6) is the supersymmetric way of writing a (λ depending) set of local

conservation laws in fact by expanding the spinorial superfield Jα(χ, θ) in powers
of 0:

Ja(x9 θ) = σa + i(y»θ)Jμ + ίl(A + y5B)θ\ + ̂ θβpa, (5.8)

one can easily check that Eq. (5.6) implies

d%(x) = 0. (5.6')
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Eqs. (5.6), (5.7) can be put in a simpler form by eliminating YB through Eq. (5.3a);
one gets:

J2(λ) = jF

r(D2YF-FΎF), Ji(λ)=-^=eiH sin ΦYF (5.7')

and

^ d _ Y F + {D2F' + FF*)YF]+\(D2F-FF')YF D2Yp (5.9)
1 λ A

We can solve Eq. (5.9) in a recursive way by expanding YF in power series of λ~ί

] CO

Γ (α)-»y(» + i/2); (5.10)

by inserting Eq. (5.10) in Eq. (5.9) and equating the terms of the same power in
/Γ 1, one gets:

yd/2) = -iF*=iD2Φ+cotΦD2H, (5.11)21

n- 1

= {d_+i(D2F'

Then Eqs. (5.6) and (5.7) become

D V i n + 1 / 2 ) = 0 , (5.12)

where the fermionic supersymmetric current Jα is

(«+1/2) = pίj) y(w-l/2)

(5.13)

These expressions reproduce of course the results of the supersymmetric sine-
Gordon model once H is vanishing.

Before commenting on Eqs. (5.12) and (5.13) we explicitly remark that another
set of conservation laws, which complete the bidimensional representations of the
Lorentz group, can be obtained by choosing a different gauge in Eq. (4.10) (A2 = 0
instead of Ax = 0 and kx -+k2).

It is interesting to observe as the (complex) conservation laws (5.12) work at
least for the simplest case: the first conserved current J^/2) (that is the multiplet
to which the energy momentum tensor belongs) reads:

+ icosΦD2H) = D2(eiHcos Φ),
(5.14)

j(2

3/2)= -id _ΦD2Φ + cot2 Φd_HD2H

+ icotΦ(δ_ΦD2H - d_HD2Φ)~\.
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The real and the imaginary part of Eq. (5.14) are:

The current la _ defined in Eq. (5.15a), together with its counterpart

d + ΦD^- cot2 Φd

gives the supersymmetric generalization of the energy momentum tensor

hμ = - LSΦyμDΦ + cot2 ΦγμDH - yμD(cos Φcos H)\. (5.17)

The supercurrent Iaμ is related also to the generators of supersymmetry Qa; in fact
it satisfies, beyond Eq. (5.12), the additional conservation

(5.18)

then the θ independent part of Iaμ is a conserved spinor current.
Of course the presence of this spinorial charge is not a surprise, as our model

contains only superfields (Φ and H) and their supersymmetric covariant derivatives;
then its invariance under the supersymmetry transformations (3.6) is built in from
the very beginning. However something unexpected can be learnt by looking to
Eq. (5.15b); in fact the real part of the supersymmetrically conserved current
J^3/2) is a total covariant derivative. This suggests also that the bosonic
supercurrent

Z 1 = c o s Φ s i n H , (5.19)

X2= -icotΦD2ΦD2H

is conserved; this is indeed the case and the new conservation law

DaXa = 0 (5.20)

holds.

The Lorentz multiplet can be completed by defining

(icoXΦD^ΦD^H cosΦsinH

VcosΦsiniϊ -icotΦD2ΦD2H

which satisfies

=0. (5.20')

By expanding the bosonic supercurrent Xaβ in powers of θ (analogously to Eq. (5.8))
one gets that Eq. (5.20') implies

3 % α = 0 , (5.21)

where τuα(x) is a new conserved spinorial current.
Further comments and investigations on the new supersymmetry invariance



Lagrangian with Infinitely Many Constants of Motion 185

related to this current are left to a forthcoming paper; here we wish only to note

that the spinorial charge

a — )dxτ^ (5.22)

generates supersymmetry transformations which mix the component fields of Φ(x, θ)
and H(x,θ). Then the action (2.1) actually describes a model invariant under
extended supersymmetry.

Appendix

In terms of component fields the Lagrangian (2.1) reads:

h— — \\ dμφdμφ + iφa{δφ)a + cot

1 _ . \ - cot 2 φψaψΆχ
βχβ~] + m 2 s in 2 φ

+ imcos φ[ — ̂ cos h(φaφ α — cot2 φχaχa) — cot φsin/ίi/^χj, (A.I)

where the auxiliary fields have already been eliminated. The corresponding
equations of motion are:

ίm sin φ [^cos h(ψaψa - cot2 φχαχα) + cot φsin Λ^αχJ
— m2sin φcos φ = 0, (A.2)

[dμφdμh + ϊcot
sm φcos φ

im [ — ̂ sin h(φa\j/a — cot 2 φχαχα) + cot φcos hφaχa] = 0 ,
COS (ΰ

(A.3)

M - h c o t φ f -^—-Ί—δh + mcosφύnh ) χ
^ s π r φ /

+ cos ω ( / . , χαχa 4- mcos Λ | φ = 0, (A.4)
\ sm φ y

smφcosφ sm

βh

m C 0 S ^ C 0 S Λ

— msinφsin/i yφ = 0. (A.5)

vsmφcosφ /

One can directly check that they are the consistency conditions of the associate

linear set:
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where ω{°] is the θ independent part of the superfield matrix ωμ given by Eq. (3.19);
ω^0) is a 3 x 3 antihermitian matrix whose elements are:

iφί - cotφχj,
sin φ iλ

sπrφ

• ίcotφd_h

(ω<°>)22 =(ω<°>)n -^s in 2 φ,(ω ( °>)33 = 5 χ s i n 2 φ ,

^ (A.6a)

icos2φd_h) + Urn, (ω(°>)12 = 0,

(A.6b)
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