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Abstract. From a Feynman—Kac formula in a Fermion Fock space for the
Schwinger functions of the infinite lattice periodic two-dimensional Ising model,
scaled and scaling limit Schwinger functions are defined and shown to admit an
absolutely convergent series representation. As the critical temperature is
attained, it is shown that the scaled Schwinger functions converge and that the
resulting scaling limit Schwinger functions obey the Osterwalder—Schrader
axioms.

1. Introduction

In [1] the transfer matrix for the two-dimensional finite periodic lattice Ising model
was diagonalized in terms of finite lattice Fermions. In [2], starting from a finite
lattice Feynman—Kac (F-K) formula, series representations for infinite lattice
correlation functions were defined. In [3] we showed that the k-point infinite lattice
correlation functions S, are represented by a F—K formula in a Fermion Fock
space. In this representation two sets of canonical Fermion operators, related by
a proper linear canonical transformation (plct), are utilized (see [4]) and energy-
momentum and spin operators are defined. In [5] a generalization of Wick’s
theorem was proved for plct and used to obtain explicit series representations for
S, We also defined series representations for scaling limit Schwinger functions SF
from above (T™*) and below (T ) the critical temperature T.. The St are natural
candidates for the Schwinger functions of a Wightman field theory.

In this article we show that the S& are the limits of scaled infinite lattice
Schwinger functions and that the SE satisfy the Osterwalder—Schrader (O-S)
axioms [7].

In Sect. I we introduce scaled Schwinger functions S,; = S,(1)/Z,,;, where
A€[0,1] is a scaling parameter that depends on the temperature T;A—0as T— T,
and Z,, is a wave function renormalization. We prove absolute convergence of
the series representation for S, ,, uniform in 4, as well as convergence to the scaling
limit, ie. 'llin(x) S, =Sr. From these results the series for St manifestly
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satisfies Osterwalder—Schrader (O-S) positivity; O-S symmetry also follows.

In Sect. III a factorization theorem for the scaling limit of Fermion matrix
elements of the spin operator is proved and used to obtain strict upper and lower
bounds on S% which imply O-S temperedness. S5 is less singular than R™!/",
for small R, where R is the Euclidean distance. Bounds on S%, k > 2, which imply
O-S temperedness are obtained by combining the existence of the scaling limit
with bounds on S% and using a result of [6]. For T* a clustering property is
proved which implies the uniqueness of the vacuum of the reconstructed Wightman
theory.

Formally, Poincaré invariance of the real time Schwinger functions, the
Wightman distributions, is seen most easily using rapidity variables. In these
variables we give a simple proof of rotational invariance of S% in Sect. IV; for
k > 2 a more technical proof is needed and is given in Appendix D.

A key ingredient in showing the convergence of the series for S, is a
combinatorial lemma for the expansion of Pfaffians which we give in Appendix A.
In Appendix B bounds and limits of various scaling functions that occur in S,,
are obtained. In addition to the results of Appendix A, in order to prove convergence
of the scaled S, , and rotational invariance of Sf, k > 2, we use properties of scaled,
Hilbert transforms and rapidity transforms given in Appendix C.

For other approaches to the scaling limit see [2-11], 8] and [9].

I1. Scaling Limit

We define scaled Schwinger functions, S,,, k=0,1,... 00, 1€[0,1], by

Sk}.(sll’ x/l’ o Sllc’ xl/c) = Sk(sll//l’ xll/l’ RS Sllc//l’ XL/)L,K(/{))/ZM (21)
for 1e(0,1],s},xeR, 1 i<k, sy <s),..., <s;, where K()=JTA) ',J>0, T
the temperature, and K(4)— K, (critical coupling) as A—0 (see Appendix B). S,
are the infinite lattice Schwinger functions given by the Feynman-Kac formula
of [3] extended to the continuous si,x;. For T>T. Z,,=(x;x,)"> ((|]1—
sinh? 2K|?)! /8 /cosh K*)¥, tanh K* = e~ %k, For 1 =0 set S,, = Sk, the scaling limit
Schwinger functions defined in [5]. From the series representation for S, for T> T,
in [5] we have the following representation for S,y,,4€(0,1], in the difference
variables, denoted by {s;, x;}2¥ *:

1

_ 2 . A
Sonz= Z l—[ Tm,“m,(xz+1a51+1,xza51)9m1(x1,51), (22)
{mzk=1}¥odd{m 2+}Yeven I=2N-1
where Tmmmm ,(x2N952vi2N 1:Son-1) =T,y (Xay-1,52y-1) and the linear

operators T}, . (x),5;: X;,8) = T%: X(R™) - L*(R™)and Tj, (x;5,) = T} X(R™) -C,
Ae[0,1], are defmed as

(T f) P)im) =1 T L= P) 1 | () 1)
exp{ —‘ Z z (wl(pl)sk_l_lplxk)}

k=i,jl=

SUP) g m)d™p',j > 0 even, i odd;
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(Ti)vjf)((pi)l,m.‘) = jLi( - pj)l,mj|(l7i)1,m‘»)
.exp{ “% Z Z (WA(P)I‘)Sk + iP?xk)}

k=iji=1

SUP)ym d"’Jp ,j >0 even, i odd;
T f =Lyl 1m)exp{—~ Z (w,(pl)s; + lp,x)}

‘f((pl)lym,)d"hpl’ l Odd
for 2€(0,1]. Also define 6}, (s,, x,) = 0% by

9/11((P)1,m,) = Li(d)l(P)l,ml)eXp{ _% i (w,(p)s; + iplxl)}~

=1
For 4 =0define T}, = T,;, TY = T, and 6] = 0, by using the 1 —0 limit functions of
Appendix B.

In the above w,(p)=e(Ap)/A, coshe(p)=cosh2K* cosh2K — sinh 2K*.
sinh 2K cos p,&(p) = 0,

LHP) 1wl (Pl 1 1.0) = 21) =" (m(n —m) )~ Y2 P f BH(P) 1yl (P4 1.0,
Pf = Pfaffian. B} is the (n + 1) x (n + 1) anti-symmetric matrix with entries

s — AA
Biyy=®hgy =2 n+ LBy = A

Al

i»1=1,j<n, is the n x n anti-symmetric matrix with matrix elements

Al =m"  1Zi<j<m, A}

Zijs m+15i<j=<n,

lj’

A?j:m+ij71 Sismm+15j<n,
mh ;= mi (e, ey, (p, p),
2alkys k) = xa(ky). . xa(ky),
x,(k) the characteristic function of [ — n/A, n/A] and the function

AzyZ,

mi(zl,zz)=z [‘152 (z)P%(z,) + PL(zy)P%(2)],

142 —
where @4 (€)= 1712 @ (677), @, (2) = [(x; — 2% 1) (x, — 27 1) ]2
with x; = ctnh K*ctnh K, x, = ctnh K/ctnh K*,

For A1 =0,S5y is defined to be the series of Theorem II of [5] which is the
same as (2.2) using the 1 — 0 limit functions of Appendix B. The above integrals
over the distributional kernels of T}; are symbolic: the product of the singular
factors — iA(1 — e*Pi=P)) Ly (p)y,(p) of m% ;; being defined as the tensor product
of H,’s, the scaled Hilbert transforms of Appendix C. The above holds for T> T,
and a similar representation holds for T< T, (see [5]).

Concerning the convergence and A — 0 limit (scaling limit) of (2.2) we have

Theorem IL1. a) The series for S, converges absolutely and uniformly for 1€[0,1]
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and all s; bounded away from zero. b) Sg is the scaling limit of S,,, ie.
lim S,, = S§; the limit can be taken term by term, uniformly for all s; bounded
A—=0

away from zero.
From Theorem II.1 follows

Theorem I1.2. S; manifestly satisfies O-S positivity, is invariant under
Euclidean translations and has O—S symmetry.
The proof of Theorem I1.1 will be given in a series of lemmas.

Lemma IL.2. Letc=1+c, + c3,¢, and c, givenby Lemmas B.2 and B.3 respectively
and let p(s) =(1+ ¢, + ¢,)? ¢, given by Lemma B.2 Then
) T | 5 cle/m)™ 772 pls 112 pls 12 0, 1)+ ik, s+ 04
(m!tm; )™ 12 % (m+ 1°%*(m; + 1)>**/k! where m; = min {m,, m },
k=0
b) || T, || < clc/m)™2 p(s)™/2(m,; + 1)+ D (m, 1) =12,
) 107, 1> = (1/cqs, ™ 52m) 7 2m(m, 1) H2m, -+ L+ dcims + 402

with ¢, given in Lemma B.1.
The proof of Lemma I1.2 is given in Appendix A.
Let m;; = min (m;, m),

Fimym) =3 (L/k)[(m, + 1)(m, + 1]

k=0
and G(m, &) = E™(m + )™+ D12 /m|,

c c
L IL.3. Let &, =— —, th
emma [L.3. Let & np(sl)+c0512n’ en

2N-1 2N-1
AEEDY [ 11_11 G(m,, é,)][ znx F(m,,m,+l):|. (2.3)
(ml)le = =

Proof. Follows from Lemmas II.1 and IL.2.
To study the convergence of the series in Eq. (2.3) define

H(mz’ 6) = Z F(mla mZ)G(mh é)
m; =0
Lemma IL4. H(m,, &) < n(&)e’®™2, where
(&) =y,exp (7,87 +7,¢*°) and v(¢) =7,¢*°
for some numerical constants y,,7,,73.

[ee] mi2

Proof. Using the identity } ) = Zz Y. we have

m=0k=0 k=0m;=k

m2 1 o {
H(m,, &)= 3. _t(mz + 1240k, &), I(k, &) = Y ——(m + D)m+1TG20I2,
K=o k! mimmy!
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Using the inequality

e D <l <+ 1) Ve " Ik, E) < i (Ee)™(m + 1)m =1 = G/2mi2
m=k
=(Ee)f i (Eey"(m + k + D)9 [(m + k + 1)™/?

é (ée)" i (ée)"‘e('” +k)/2kk/4e(m+ 1)/4/(m!)1/2 (24)

:81/4(ée3/2)kkk/4 i (637/4)'"/("’!!)1/2.
m=0
From this we conclude, using Schwarz’s inequality, that there are numerical
constants a,,a,,a, such that I(k, &) < a,(x,&)*k¥?exp (a3E2). Therefore,

0

A
Hmy, £) S o, Y, flimy 4+ 14, P04

R
S0, Y Gy ma + 1Mt
k=0 \":

by (2.4). Thus, by Hélder’s inequality, there are constants such that
H(m,, &) < o #3858V 2mat 1)

Finally the convergence of the series of Lemma I1.3 is established in Lemma I11.5
below. Define recursively &;, by &, ;= Eiexpv (&g -0l
2N-1
Lemma IL5. [S,y,| < 1_[1 n€iy. )

J

Proof. Summing over m, in (2.3) and using Lemma I1.4 we have

2N -1 2N -1
IS2nal =n(&y) Z l: 11:13 G(mlséz)][ lI=—[3 F(m, m,+1)]

3N =1

: Z F(m,, m3)G(my, &, 5). (2.5)
my=0
In obtaining (2.5) we have used the fact that G(m,, &,)e" V™2 = G(m,, &,,). By
Lemma IL.4 the sum over m, is bounded by #(¢,,)e*¢12™:. By repeated use of this
process we arrive at

o8}

ISonal S € m(E12) - 11 2n-2) Z Gmyy 1,812, an—1h

MmN -1=0

and from Lemma I1.4 with m, =0

Z Gmyy_ 1,812, an-1) =M(€12.. 2n—1)-

m2N-1=0
Lemma I1.5 completes the proof of Theorem II.1a. We now turn to the proof

of Theorem I1.1b. By the uniform convergence in 4 of the series for S, , (established
in a) it is sufficient to show convergence for 1 —0 of a general term of S,y, of
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Lemma II.1 which follows immediately from the following lemma:

Lemma 11.6. Let - denote convergence in the strong L? operator topology. Then as
A—0.

a) Th - T,

p B TH o T, ¢ 6/—0 inL?
uniformly for all imaginary time difference variables bounded away from zero.
The proof of Lemma I1.6 is given in Appendix A.

II1. O-S Temperedness of S% and Clustering

The following lemma on the factorization of scaling limit Fermion matrix elements
of the spin operator is used to obtain upper bounds on S} sufficient to guarantee
O-S temperedness.

Lemma III.1. Let D be the n+ 1 dimensional anti-symmetric square matrix with
matrix elements A_(p;, p;) = (w(p) — olp)p; + p)0<i<j<n, n odd. Then
Plaffian D=PfD= [] 4_(p,p).

0<i<jsn
Remark. By taking p, — oo we obtain the Pfaffian appropriate for T+ with I’s in
the first line after taking out an overall factor of

[l (p;—im)~** from PfBj.
i=0

Proof. Introduce the rapidity variable 6 by p=msinh20, then 4_{p,p)=
tanh (6, — 0,). By definition the Pfaffian is then
(n—1)/2

D=3 (-1¢» ][] tanh(s, —86,,)
peP k=0
where P is a partition of {0, 1,...,n} into two disjoint classes {p, , Py 1>, Pyu1y2)>
{P20>P21>+++sPan— 12} Such that p,, < p,, and (— 1) is the sign of the permutation

{0.1,.,.,n}—+ {p107p20""’p117p21"'"pl(n—l)/29p2(n—1)/2}‘
Let f; =tanh@,, then

(n—1)/2
D = Z (— l)op 1_1 (fplk _fPZk)/(l —fplkaZk)'
PEP k=0
Multiply D by the symmetric ~ [] (1 —f,f) to obtain
0gi<jsn
(n—1)/2
B=D [[ (U-ff)=% 07" [I (hu—1n) I1 (n—1)
0<i<j<n peP k=0 0Zi<j<n

(171) 7& (plk’ ka)'

For fixed I the degree of f, is one in the first factor and n — 1 in the second factor.
B is an anti-symmetric polynomial of degree n in each variable f,,f},....f, and
B=0if f;=f; for some i. Thus B has the form B=c [] (f;—f)), where c is

0gi<j<n
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a constant so that D=c¢ [] tanh(f,—6,. Taking successively the limits
0Zi<j<n
0y — 0,0, — 0,...,0,— c0 we obtain ¢ = 1.
Concerning Sk we have

Theorem IIL.1. The Si satisfy O-S temperedness. In particular, let Si(s)
S%(0,s),s >0, denote the difference variable 2-point function and Si(s)
1 <]

d
P j e“s“""’(—p), the free particle 2-point Schwinger function for mass m. Then
T o p
0 (S{)n
0<S’2‘- 1< Z 7<€S{ ——Sé—-l for T°,
n=2 *
2 (S)"
S{i<Sh<y —-<esi—1 for TT,
nodd *

and for T* and T~, se(0, 1], S5(s) < c¢/s''™ for some constant c.

Proof. As |4 _(p,q)| =1 for all p,qeR, the upper bound on St follows by using
Lemma IIL.1 to bound the Pfaffians P f By(¢|(p), ,,,) occurring in the series represen-
tation (2.2). By rotational invariance (see Theorem IV.1) the bounds hold in the
s,x plane where s is now to be interpreted as the Euclidean distance.

From the existence of the 1—0 limit (Theorem II.1b), and using the upper
bounds on S% in the inequalities of [6], it follows that S satisfies the O-S
temperedness axiom E — 0’ [7]. In order that the inequalities of [6] apply, the
4—0 limit is taken, with s,x; rational, through a sequence {,} such that
si/Aj, XAy 1 Si<k—1 are integers; by continuity the bounds on SE hold for all
i %5, 8;> 0.

We now give a cluster decomposition property in the space-imaginary time
variables for T" which implies the uniqueness of the vacuum of the reconstructed
Wightman theory (see [10]).

Theorem II1.2. For T, let feC®(R%"),geCT(RA™ with the supports strictly
contained in R2",R*™ where

R¥ ={(x},5};...;x},s})eR*,0<s{ <sp < ...<s;},RE =C.
Then
tlim Sm+n(0” f ®T,9)=S,(07 )S,(9), G.1)
where
07 fOet 85 %0 8,) =S (X — 85005 X4, = 57)
and
Tg(x1, 85 5 %m, o) =g(X1, 81 — 8. ;X S — 1), £>0.

Proof. St is approximated by S; uniformly for all s;—s;_; bounded away from
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zero (by Lemma I1.6) and S,, satisfies pointwise clustering; thus Sf satisfies
pointwise clustering and as S% is uniformly bounded for all s/, , —s! bounded
away from zero (3.1) follows from the Lebesgue bounded convergence theorem.

1V. Rotational Invariance of S~

Writing the series representation for Sk in terms of the rapidity variables
p = msinh 26, w(p) = mcosh 26, we give a simple proof of rotational invariance for
k=2. For k> 2 the same idea is used but the singular Hilbert transform H, in
rapidity variables is regularized using the operator HR of Appendix C and we
give the proof in Appendix D.

Theorem IV.1. Let Sy(x,,8,;...; X4_1,5,_,) denote the Schwinger function in the
difference variables. Then
k-1

Y (x,08F/0s; — 5,0S¢/0x;) =0

i=1
and the derivatives can be calculated term by term in (2.2).

Proof. 2-point function. Let 6, =(6,,...,0,) denote the rapidity variables. Then
S% can be written

Sh(x,5) =) S5 =Y [I,%d,,
where I, =1,(0,) is a function of the difference variables only, since (w(p;,) — w(p;))/
(p; + p;) = tanh(0, — 0,) and dp/w = 2d0, and

K,=K,(s,x,0,)= —ms ) cosh20,+imx ) sinh26,s>0.
i=1

i=1 i
With n=(1,1,...,1) and V,=(3/d0,,...,0/d0,), upon differentiating inside the
infinite sum and integral and integrating by parts, we have

oSy oSt iZ P&
X 3_872 = EZn; {1 (n-V,eXr)do, = — 5% f(n-V,I,)e*do, = 0.
To justify the term by term differentiation and the interchange of derivative and
integral, consider for example 8S,/ds. For b>0, using Taylor’s theorem for
exp< -5y, a)i),w,. = w(p,), we can write
i=1

b~ (S(s + b) — SK(s)) — §j1n<— Y a)i>exp<—s'}n: w; + ix i pi>d"p

i=1
=b—1§§1nexp(i‘x i pi>[h§b(s+b—t)<— i wi>2
n i=1 s i=1
~exp<—t i co,)dt]d"p. 4.1)
i=1
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For 0 <6 <s,ue™™ and u?e”* are bounded by M e “~" for some 0 < M, < oo
so that the series on the left of (4.1) is absolutely convergent since

n

M,;Zjl],Jexp( —(s—98) > wi>d"p is (by Theorem Il.1a); the series on the

i=1
right side is bounded by (b/2)M Z[ll |exp|:—(s—5) Z w; ]d”p and is

absolutely convergent (again by Theorem II.1a) so that the b1 0 lxmxt of (4.1) exists
and is zero. A similar analysis holds for b <0 and 9/0x.

Appendix A

In this appendix we prove Lemmas I1.2 and I1.6. The key to the proof of Lemma 11.2
uses the combinatorial Lemma A.1 below which is an expansion of B} in the
number of singular functions. In bounding T% the singular functions are bounded
by using the norm non-increasing property of the scaled Hilbert transforms of
Appendix C and the non-singular Pfaffians are majorized by Hadamard’s inequal-
ity. In this appendix we abbreviate m% (e, e'?) by mi(p, p,) and let 4, . (p),,
denote the set {p,,p,,...,p,} with p;,...,p; deleted. We have

Lemma A.l. Let n, >0 be even and n, odd. Then

ni2

PIB{(=puml®Din) = X 3 (=1t

m=0 (i1j1)...(lmim)

('— )1nszB(A

vevim

m

.]m lnl 1_[ +(_pi2k7p},()7 (Al)

‘Pf B(4;,
where, with g = p*,q* = — p?,

B (A 1ees (ql) nl)y 1f m is even and orm iS Odd and l=1
B(Akl...k,,,(ql)l,m)={ FLCAPREPU DY }

B(¢l4y, 1, (4);0), if mis even and [=1 or m is odd and /=2

and B,((p),,) (n even) is the n x n anti-symmetric matrix with elements m* (p,, p;)
for 1 <i<j< n. The second summation in (A.1) is over all possible configurations
of m pairs (ij) with 1 £i<n, and 1 j<ny; (— 1)00in)--tnim) s the sign of the
permutation bringing together the pairs (i.j,),. .., (i,j,) starting from the arrangement
{1,2,...,n,,1,2,...,71,} and n,, =min{n,,n,}.

Proof. Group the points (— p?), , into a set A4 and (p'),,, in B. Then, Pf B3
(- pz)l,"zl(p‘)l,m) can be pictured as a sum of graphs involving contractions of
points in 4,B and a point outside 4 and B, call it 0. The contraction function
within 4 or B is m*. The contraction between a point in 4 and one in B is m?*
and the contraction between 0 and a point in A or B is ®*. The proof of the
lemma follows by resummation of all graphs with 0,1,2,...,n,, contractions
between the points of 4 and B.

Proof of Lemma II.2. a) Expanding PfBj of T} according to Lemma A.l1 we
have
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m;;

PIB(=P)im|@him)= X 3 (Desed

k=0 (a1B1)...(axPx)
k
’ I_[ m;—;-(_ pgz,’pzr)‘
r=1
{ PIB4,,. o~ Py ) PSBHGI Ay, 0 ) i i even}

PfBi(¢|4,,. o= P)1m) PB4y, 5 (0")1,m) if k is odd
The k =0 term above is PfB((— p’); . ) PfBi($l(p), ) and the k =m,; term is

PfBi(d)IAﬂl...ﬁmJ(pi)'l,m,) lf mj < mi,
PfBz(d)‘Aalam,(_ pj)l,m_,-) 1f m; < mj‘

Let Tapo-ab(x 5. x;,5,) (abbreviated T}*Px) be defined by

. (A.2)

k
(THP NPy ) = @) ™12 4 )2 T (= ps,, p))
r=1

‘{PfBl(Aalu.ak(— pj)l,mj)PfB)}f(Aﬁl..ﬁk(pi)l,m,-) lf k iS even }
PB4, 0~ P)1m)PS B4y, 501 m) if kis odd

'CXP{—% Y mZ (w08, + ipi‘xk)}f ()1, m)d™p'. (A3)

k=i,jl=1
Then

m,
The Y T tpms (A4)
k=0 (a181)...(a1Pi)

Since clearly ||T4*"x| is independent of the particular sequence (a;f;)..-(of)
we have

ITAHI S YT Y L, (A.5)
k=0 (a1B1)...(aBK)

where T7 is T4*#* for the particular choice o, = f, = I. Noting that

Y U=(1/kYmm—1)...0m— k+ Dmm,—1)...(m,— k+ 1)
(@1B1)...(axPx)

< (1/k !y,
and substituting from (A.6) below in (A.5) gives
I T4 < cle/m)t/Rmtm (s ymil2 p(s,y™ /> (m, m; )~ 112
-kio (1/k1)m, — e+ 1A=+ D e 4 7)Aok

The sum is bounded by

(m; + 1)(1/4)(m.+1)(mj + 1)1/, +1) mz: k)~ l(mi + 1)(3/4)k(mj + 1)k
k=0
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Now from Lemma B.2b,c-

k
HA;I'(S,')H = n I (Df,s exp { —%wlsj} lpoms1+c+ cy),
s=1

k
1B (sl < TT 197 exp { = 5 s} o gy S (1 + ¢4 + €)%
(=1

and letting p(s)'/?> =1 + ¢, + ¢, we have |R¥|| < 2*p(s))*' p(s)"%.
Using Lemma B.3 and Hadamard’s inequality to bound W;“‘ and Lemmas B.2b,
B.3 and Hadamard’s inequality with ¢, = ¢, + ¢; to bound V* we have, for k even,

IS AW TR NV S @r)™m 2 (m; )™ V2200 =B (m; — k)~ 0%
,2k p(sj)k/Zp(Si)k/Z ,(2n)—m,-/2(mi ')—— 1/26‘2"‘ —~k+ l)/Z(mi —k + 1)(m,~ -k+1)/4

For k odd the factor (m;— k)!/*"™ =9 (m, — k + 1)!/*m=¥*D is to be replaced by
(m; + 1 — k)it 1=Ky, — k)1 /#mi=k)_In both cases the factor is majorized by
(m; — k + 1Ak Dy — | 1)HAm =K+ D “and upon letting ¢ =1+ ¢, +c¢3, we
have

I T?;k = C(C/n)u/z)(mi+mi)P(5j)m’/2P(si)m‘/z(mi Im; 1)~ 1z
“(m; — k + 1)(1/4)(m.—k+ ”(m- —k+ 1)(1/4)(m,«~k+1) .
i J

Proof of Lemma I1.6: a) By the expansion of T4 of (A.4) it is sufficient to show
the strong operator convergence of the general term T of Lemma A.2. By the
norm boundedness in A€ [0, 1] of the factors in the decompositions T4 = Wi R

V¥ and RY =Y A} H%B} (see (A.7)) strong convergence of T% follows from the
strong convergence of the factors W4, V} A4}, H% and B}. The multiplication
operators converge strongly by the pointwise convergence of Lemma B.4. Note

that the convergence is uniform in the s; variables bounded away from zero.
k

HY =[] H,;, where H,, is the scaled Hilbert transform H, of Lemma C.1
i=1

acting on the i-th variable. Since |H%| <1 it is enough to show pointwise

convergence for a dense set D which we take as finite linear combinations of

product functions. The strong operator convergence of H, on [*(R) given by

Lemma C.1b implies the pointwise convergence of H% on D which in turn implies

the strong operator convergence of H.

b) follows from the pointwise convergence of the integrand of T,f using
Lemma B.4 and the Lebesgue bounded convergence theorem using B.2b, B.3 and
Hadamard’s inequality and Lemma B.1.

c) follows from Lemma B.4 and using B.2b, B.3 and Hadamard’s inequality
and Lemma B.1.

Appendix B

In this appendix we establish bounds and limits of various scaling functions used
in Sect. II. For completeness we give all pertinent definitions.
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and Lemma I1.2a is proved.

b) follows from Lemma B.1,2b, 3 and Hadamard’s inequality.

¢) follows from Lemma B.2b and B.3 using Hadamard’s inequality and
Lemma B.1.

Lemma A.2. Let T} be given by (A4.3) with o, = p, = l. Then

(m, +my)/2
k ¢ m;j m, -
”T}i I §C<;> P(Sj) /Zp(si) /Z(mi!mj n-Y?

(g — ke 1)K DI g )k D4 (A.6)

where ¢ =1+c, +c¢3,¢, and ¢y given by Lemmas B.2 and B.3 respectively and
p(s) = (1 + ¢, +¢,)? ¢, given by Lemma B.2.

Proof. Assume k even (an analogous argument works if k is odd) and write
T3 = W¥RHVH, where W and V* are multiplication operators by the
functlons

(2m) =" 2(m )" 2P fBi((= Pk 1)

@2m) =™ 2(m;)~ 2P f BY APV 1,m)s
respectively, and R%*:I*(R™)— L*(R™) is given by

and

m;

k
R,*-ik:f((pf)l,mi)eexp{—% 2. (@,(pd)s; +iplx; } T mi(=prp

=1
-exp{ -3 Z (wz(p;)si + ip;xi)}'f((Pi)l,mi)dmiPi,
=1

where the symbolic integral is to be interpreted as in Sect. I1.
Taking into dccount the form of m% we write R as the sum of a product of
operators as

R = ZA*(sj,x YVH" B(s,, x,), (A7)

where v’ = (r\,ry ... 1), ¥ =(ry,...,1), r,=%,r,=F,1<n<k and ) is the sum
over all 2* sequences r. 4,(s;, x;) is the multiplication operator

k ) o 1 m o

l_—[l d’f’s(Pé)exp { - %wx(Pg)sj + lpﬁxj} €Xp { - El—% . (w/l(Pf)Sj + lpij) s

B._(s;,

r\vi

x.) is the multiplication operator

. w 1™ . "
H @) (pt exp { — 30,(p)s; + ipix;} Cxp{—-—z— Y (w,(p)s;+ lplxi)}9
1

I=k+

and H% is the product of k scaled Hilbert transforms H, of Appendix C in the
first k variables. Thus | R} <Z||Ai|| | BX||, where we have used |H%| <1
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Let K(4) be a smooth, monotone decreasing function of 1e[0,1] such that

K(1)>0, inf (—K'(4))>0 and K(0)=K,, where K, is the unique solution of
4€[0.1]

e*’X =cothK. Let K* and g(k) =0 be defined implicity by ¢**" =cothK and

cosh g(k) = cosh 2(K* — K) + sinh 2K*-sinh 2K(1 — cos k). Let m= inf 2(K* —

Ae(0, 1]
K)/A=4 inf (—K’'(1))>0and —4K'(0)=m > 0. All constants appearing in the
2€(0,1]

subsequent lemmas depend only on the choice of the function K(4).

Lemma B.1 Let w,(k) = e(Ak)/A, then

inf inf w,(k)(m*+k?) 1 =c,>0.
26(0,1] |kl En/2

Proof. e(Jk)=log(n +(n* —1)'/?), where n(ik)=cosh2(K* — K) + sinh 2K*,
sinh 2K(1 — cos Ak). Clearly, there is a constant y, such that 1 <5 <y,. Let

p, =inf{x " log(l + x):0 <x < (y? — '3},
then

8(Ak) = p,(n* — )% 2 /27, (sinh 2K (1))"/3(1 — cos k)2,

Therefore,

w,(K) 2 7,/2(sinh 2K(1))?| inf x~'(1 —cos x)!/?|k| = y,|kl(y; > 0).

O<x=m
Since w (k) = m, the proof follows at once. Let
x; = coth K*coth K, x, = tanh K*coth K,

0.(z) =[(1 —xy'z5H)(1 — x5 12" H]F2
and
0(z) = 0,(2)0_(2)
so that

D, (2) = (x;x,)* 1/2‘9;1(2)-

Lemma B.2. a) There are positive constants c,...,cs such that for all
260,10, 1< ¢} S x, (NS ¢y 1S xS chieh 47 () — DS ¢
b) sup sup |AM20ZHe) =¢, < .
2e(0,1] |k| Sm/a )
c) sup sup |A71207 e )exp(—w,(k)s)|=c, < o0 if s> 0.
2€(0,1] |k] Sm/A
Proof. a) follows directly from the definitions, and b) and c) follow from a). We
consider c):
(xl _ ei}Jc)(x2 _ ei;lk) 1/2

M— 1/20; l(ei).k)‘ —
AX X,

x2—1+1—e“"

<(c, +1
Sy +1) f 1

= (2 + D(es + k).
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The proof is completed by using Lemma B.1.
Let

m);(k’ q) — /lei(k+q)}"(€i(k+q)l _ 1)—- 1 ‘9; l(eilk)e— l(eilq) _ 0; l(eilq)ez l(ei).k”.

Lemma B.3. sup sup |m*(k,q)|=c;< .
2e(0,17 k|, |q) <m/A

Proof. Let

e dOTT
nt(k,q) =01 (e™)0 2 €)= 011 (€H)0 21 (€M) = 21 () | = ~(e™)du
—q
e 1403
— 0~ Y- T (ol
0 (e )Jk i (e"*)du.
Now

ae?

T (ei/lu) — %eilugz 1(ei}.u)[xi— 1(1 _ xz—lei).u) + x2— 1(1 . x‘— lei/lu)]_

From Lemma B.2 it follows that there exists a constant «, such that |n* (k, q)| <

eil(k+q) _1
aylk +g|, hence Imi_(k,Q)IS—_%/m

Thus, m* (k,q) < %1 i lk + q|A £n. To handle the region n < Alk + g| £ 2%, note
%)
that n* (k, q) can also be written as

Let a,= inf |(*—1)/x|>0.

0<|x|gn

k 1
nl_ (k, q) =0 l(eilq) -0 l(eilk) + 9 Mq)j" 0 ulu du _ 0: l(eilk)
qdell iAu
{ = (e*)du.

. . . o~ . .
By direct computation, using Lemma B.2, we can show that —d—(e"“‘) is
u

uniformly bounded in A. Therefore, there exists a constant a, such that |m*
(k, )| £ azlk — q|A/|e**+ D — 1. Assume n < Ak + g)<2m and let ¢, = — Ak, &, =
7 — Aq. Since Ak,Ag <, g,=0 (i=1,2). Also, ¢, + ¢, <, hence

Im: (k@) S ozle; — e5l/le ™" 75 — 1] S aa /(€ 7 — 1)/(ey + &5)| S ot3/0t5.

Similar considerations hold for the region — 2 < A(k + q) £ — = and the proof
is complete.

Lemma B.4. Let w(p) = (p? + m?)'/2. Then we have the following pointwise conver-
gence as 4 —0:

a) m*(p,q)—> — (p —im)~"*(g — im)~*(w(p) — w(q))/ip + 9),

b) &% (p) - (m + ip)~ /2,

¢) % (p) - (m — ip)'?,

d) w,(p) - w(p).

Proof. Follows from the definitions.
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Appendix C

The scaled Hilbert transforms, H,, 1[0, 1], used in the proof of Theorem IL.1, are
defined as the closure of the operators associated with the forms

/A P /A '—M
9. f)= | gk)[ ) mf(Q)dQ]dk, 4€(0,1],

—n/A —7n/A

where g, feCZ(R). t, is the form associated with the Hilbert transform H, on
the line. We have

Lemma C.1. Let y; = y(_ 1 2p the characteristic function of [ - %,%} Then

a) |19, N S 1S L2w)lglia(r)s the associated operator, H,, satisfies H, = y,H,x,,
|H,|: . < 1 and extends by continuity to L*(R).
b) H, 2o H, in the strong L? operator sense.

Proof. a) follows by the change of variables u = Aq, v = Ak and the fact that the
norm of the Hilbert transform on [ — =, 7] is one.
b) By a) it is enough to show the result for a dense set. Suppose feCg. Then

|(H, - Ho)f|L2(R) SIH; = Ho) fl + 1 = XA)HOflLZ)

so that the second term goes to zero. Suppose that supp f = {q:|q| <n/4,}, then
for all A < 4,

I(H; — x,Ho) f o) < sup lide? 9 - 1)t —(k—gq)~ 1“flL‘(R)'

‘g <m/Ao kI S m/A.

For A < 4,/2 the sup can be taken over the set Alk —g| <37/2; but

lide — 1)~ 1 — -1|—1f (4 — t)( = x2e)dt)/[(2x sin (1x/2))|
0

<sm (g > / (Ax/2)> <2mi/4 /2

for Alx|<3n/2, since y~'siny > 2\/5/3n for y <3m/4, so that for all 1< ,/2,
I(H; = xaHo) flpe gy = €ALf 11y Thus

=(4/2)

/A

A-0
|(H; — X/IHO)fliz(R) s j ICMflLl(R)lzdk = 02/127c|f|21(R) - 0.

—n/2
For feC&®(R), define the approximate rapidity transform, HX ¢ > 0, by
(HEf)x)=Qni)™" | [(sinh(x —y)+ie)™" +(sinh(x — y) —ie) '] f(»)dy

- o0

and the rapidity transform, HX, by taking the principal value integral in the above.

Lemma C.2. a) For ¢€[0,1), HR extends to a bounded operator on L* and
[HE S (1 =)

b) HX - HE as ¢—-0.
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Proof. a) By contour integration the Fourier transform, HX, of HR is found
to be HR(k)=(1 —¢?)~ Y?sinhk(n/2 —sin~ ' ¢)(cosh(kn/2))"!, &e[0,1). Thus
HE | <(1—2?) 2

b) follows from a) and the pointwise convergence HX(k)— HR(k), as & 0.

Appendix D
We will need the following lemma in the proof of Theorem IV.1:

Lemma D.1 Let 4,Ti(s;,s) = T;(s; + bdy,s; + boy) — Tils;s), k =i, j and D, T}; the
operator defined by taking the derivative 0/0s, inside the integral defining T, of
Sect. I1. Then for 0 <6 <s,;,s; and some M0 < M < oo,

b~ lAiji(sj’ s) = Diji(sj’ s) + Ry,
with
[DiTi(sj, ;| = Mscls; — 640, 5; — 040)
and

IR =(b/2)M;c ﬂ( 6jk6’ S; — 01i0);

J

where c;; is the right side of Lemma 11.2a.

Proof. We give the prooffor k = j, the case k = i being similar. By the decomposition
(Ad) of T} and the decomposition T} =W RV of Lemma A2 it is
sufficient to consider the term R’* given in (A. 3) A typical term of R} can be
written, for 4 = 0 and suppressing the 4 =0 index, b~ '(A4,(s; +b) — A,(s j)) H*B(s,).
Using Taylor’s theorem, with b > 0, we obtain

m; s,+b

b7 Au(s;+0) — Auls) = (=3 ). p))A(s)+b7" [ (s;+b—1)

=1 s,

( ij A (0)dt

For any 6,0 <& <s;, te[s;,s; + b], ue™* and u’e™** are bounded by M e~ =,
0 < M, < 0, so that with u =) «» we have the bound

16~ (A5, + b) — Au(5))] S Myl A, (5, — 3)] + (6/2)M,|A,(s; — O)l.

The case b <0 is treated similarly and the result follows from Lemma A.2 and its
proof.

Proof of Theorem IV.1. We first justify the passage of the derivatives through the
infinite sum and integrals of (2.2). Consider, for example, the derivative 0S%/ds,,

1 <r < 2N, where S5y is given by Lemma II.1. We have, suppressing inessential
arguments in the functions for notational simplicity and abbreviating the sum by -

o)

2

b-l(sgN(s,+b)—S§N(s,))=§ [[ T, . Ab'AT, . AT

mp+ my POy My T MMy — g
I1=2N-1
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+b*‘AT T +T b= AT

romy s gmy Tmem, - mp+ 1My rimem,

1

P n 5 ka+ 1mk0m,(x1’51)7 (DI)
where 4, T, is given by Lemma D.1. Substituting for 4,T,, , ., using Lemma D.1,
we see that the right side of (D.1) is equal to the sum of two absolutely convergent
series. The first series is independent of b and is given by the series for S5, with
DT, ,and D, T, replacing T, ,  and T, . respectively. The absolute
convergence follows from the bounds in Lemma D 1 and Lemma I1.2. The second
series is bounded by b times an absolutely convergent series with bound independent
of b again using Lemma D.1 for the remainder terms and Lemma I1.2. Thus the 6 —» 0
limit of (D.1) exists and is given by the series obtained by differentiating the series for

S, term by term inside the integral.
k—1
We now write the generic term, call it G,, of ) (x,0S5/ds;— s,08,/0x;) in
i=1
terms of rapidity variables and let G, e€[0, 1], denote G, with terms of the form
(w(p;) + CU(Pj))/(Pi —p)= coth (6, — ) replaced by

ni(cosh §;HX(6;,0;)cosh 6, — sinh 6, HX(6,, 0,)sinh 0 ),

where HY(6,, 0,) is the kernel of the operator of Lemma C.2. By following the proof of
Lemma IL6 in Appendix A, boundedness (uniform in &) of G, follows by using

pYj Y

Lemma C.2a. By using HX > HR (by Lemma C.2b) in place of H% > H¥ we have
lim G, = G,. G, can be written in the form

=0
Ge = j‘]n(on)(n Voekn) dam
where

k-1
K, = < Y (=5 Z cosh 26 + ix; Z s1nh20‘”>

i=1 j=1 ji=1

k
V,and nare now the ) n; dimensional vectors of Sect. IV, nis a multi-index and J,,
i=1
isa C* function of tanh (0, — 0;), cosh (6; — 0;) and sinh (6, — 6;), i.e. of the difference
variables. By integrating by parts G, =0 whlch implies G, = 0 and the result follows.
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