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Abstract. Let »=det,,(1+K,) be the renormalized Matthews-Salam de-
terminant of (QED),, where K, =ieSA,, S= (3.7,0,+m)~ ! is euclidean fermion
propagator of one of the following boundary conditions : (1) free, (2) periodic at
oA, A=[—L/2;L/2]?, (3) anti-periodic at 04, and A JX)= » 7,4,(x)g(x). Here
g(x)=1if xe Ag=[—r/2,7/2]*CA and 0 otherwise. Then we show

(i) veLP(du(A)), p>0. Further we prove a new determinant inequality
which holds for the QED, QCD-type models containing fermions. This enables
us to prove:

(i) Z(Ap) =j vdu(A)=exp[c|l4,l]. Similar volume dependence is shown for
the Schwinger functions.

1. Introduction

Several years ago, the author tried to construct (QED), taking a basis on a
Hamiltonian formalism of QED, where an indefinite metric is explicitly used to
ensure the renormalizability. Because of the indefinite matric, however, there are
difficulties: for example it is difficult to prove the existence of the vacuum vector
[2].

Recently Weingarten [10] proved the integrability of the renormalized
Matthews-Salam determinant e=det, (1+K ), where K, =ieSA4,
S=(} y,0,+m) " the euclidean fermion propagator which satisfies anti-periodic
boundary conditions at 84, A=[—L/2,L/2]*, A(x)=) 7,4,(x) and {4,(x)} are
the euclidean vector fields which satisfy the periodic boundary conditions at 0A.
The anti-periodic boundary condition of S comes from the use of the transfer
matrix to prove the diamagnetic inequality. In this work we show the integrability
of + for any one of the following boundary conditions of S and 4,,:

S; free, periodic, anti-periodic boundary conditions,

A, ; free, periodic, anti-periodic, boundary conditions.
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Moreover we obtain a new determinant inequality by applying Holder’s
inequality to the transfer matrices, which clarifies the volume dependence of the
Schwinger functions.

Let du(A) be a Gaussian probability measure with mean zero and covariance

Ch(x,):
2
JAX)AMdu(A)=C,(x—y)= | {2—177)112— ePETI (S, + gauge + term)

5 -
(1.1
Here 1>0 denotes the mass and the gauge term takes a form —c(k*)k k, with

lc|<const|k*|"!. Let A=[—L/2,L/2]* and let A,=[—r/2,7/2]*> with r<L.
Further let

p*+u

A4, ,(x)=4,(x)g(x),

where g(x) =0 and suppg(x) C 4, are assumed. We take g=y,, or as ge Cg(4,) for
convenience. Let

Ay={alng,ny);n,=—N,—N+1,..,N—1},

L
= —: lattice width,
TN

~ 2
AN:{é(n09n1);5=fn,n#=_N7 _N+155N—1}3
and let

A= {f(x),xeAN; T 1f(x)|2}.

xedAn

Any fe # = L*(A:d*x) can be mapped into H#y by the Q-identification [1]:
al2 a2
[)=N(x)=a"? [ [ f(x+nd’n, xedy. (1.2)

—a/2 a/2

Further J#, can be embedded in # via Q*:

(Q@*f)W=1[x), ye

a a
XO—E,XO'FE)@

a a
X = 3%+ 5). (1.3)

Let
f)=[fix)e™d*x, ke,
A

flky=a> Y e*f(x), kedy

xeAn
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Then
fk)=nlak)f(k), (1.4)
where
_ sin1/2x,
9= 11=T7y

Now we define

Aﬂ’g,a(x)E(QAu,g) (x), xeAy=Ay+1/2e,,

eo=(a0), e =(0,a), (1.3)
and let [9,11]
By(x,y)=Q2a">+ma=?)5, ,—a"y(x,y), (6)
Ly(x, y)=—a " [U(x,y) = 1]y(x, y),
where x, ye Ay,
yx,y)=1/2(1+y,) y=xirfzu, w7
0 otherwise,
U(x, y)=exp[tiead, , (xt1/2e)] y=xte,, (1.8)

0 otherwise,

and {yy=7,},-0,, are two dimensional euclidean Dirac matrices:

{Yu’ ’yv} :25;4\!12 .

Thus one formally finds:

(ByN)(x)=a® ), By(x, »)f ()@ +m)f(x),

yedAn

()=a® Y Lx, ) () —ied(x)f(x),

yedn

for suitable f(x)e #>* as N— oo or as a—0. We may apply the same approxima-
tion for

(9. [8+m+ied,]"'h),

where
g he #_,,(R*,d*x)@C?.
Let
Sy=(By)"'=P{Uy,
Py>0, Ujx=Uy", (19)
and let

Ky=PyUyIyPy. (1.10)
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As usual we are to consider:

St o ofmiGis o GuiPys - hy)
=Zy' [dulTA(f)-det}"[(g,[By+ 1" 'h)]-det, 1+ Ky), (L.11)

ZN=ZN(g)=fdet,en(1 +Ky)du(A4), (1.12)
det, (1 +Ky)=det (1 + Ky exp[ —: Ty :], (1.13)
where
s (—K)
dety; , ,(1+K)=det|(1+K)exp| ”
n=1
T =Tr[ - Ky +3(Ky)* = %Ky)’1,
and

TN =Ty — [ TYdu(A).

2. Convergences of K, and det, (1+Ky)

Let
K,=iePUAP, 2.1

where S=P2U, P>0, U*=U"", and S=(#+m) ' is the euclidean fermion
Green’s function which satisfies periodic or anti-periodic boundary conditions at
04 and or free boundary conditions. Our By and I} in Sect. 1 correspond to the
periodic boundary conditions at 0 since we identify the points {a(— N,n,)} with
the points {a(N,n,)} and the points {a(n,, —N)} with the points {a(n,, N)},
respectively. The anti-periodic By and I are obtained from periodic By and I by
a slight modification which does not change our estimates at all. Thus we will not
discuss anti-periodic cases (see Sect. 4).

In the case of periodic S, we sometimes assume that the width of the rectangle

L - .
A, namely L, depends on N so that A/ R? and a= ,’—)_7\7\0 sufficiently rapidly as

N—c0. One possible choice is
L=Ly=L,N"?. (2.2)

Then a=ay=L,/2N"?. Then it is necessary to clarify the L-dependence in our
estimates. (We <choose L=1 or N 1is sufficiently large so that

suppg C [ —Ly/2, Ly/2]%)

Theorem 1. Let S, be the euclidean fermion propagator which satisfies periodic or
anti-periodic boundary conditions at 0A. Then

lim K,=Kin C, (2.3)

A1R2
a.e. with respect to du(A), where K=K,
K =ieP U APy, (2.4
Cp={xeﬂ(%):l|x|lp=(Trlx|")1“’< o0} . (2.5)
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Lemma I-1. Let A'=[—L'/2, L'/2]?, L' Z L. Then there exists a polynomial Q of A, ,
of order 4 such that

IK,~K4 130, [Qdu(A)=dL™",
where d and ¢>0 are independent of L(=1).

Lemma I-2 (Hypercontractive Inequality [8, 9]). Let Q be a polynomial of {A,(x)}
of order p and let [|Q|*du=<c?. Then

f1o1P"du<(2n—1)"g*".

Lemma I-3 [9]. Let {Qy =0} be a sequence of polynomials of {A,} of order p and let
[ Ondu(A)<dN~* (d, >0 independent of N). Then

{4, ;limQy(4,)+0}=0.
Then Theorem 1 obviously follows from Lemma I-1:
Proof of Lemma I-1. Let
P(x,y)=P(x—y)=(=0; +m?)~"*(x,y)
and
(PU)(x, y)=(PU) (x = y)=(—= @, +m) (=03 +m?)>*(x,y)

be the Green’s functions which satisfy free boundary conditions. Then the periodic
Green’s functions are given by

Px—y)= ) P(x—y+L,),

neZ?

(P,U)(x=y)= ) (PU)(x~y+L,),

neZ?
where L,=(ng,n,)L, and the anti-periodic ones are obtained by replacing ) by
Y (=1)*™,  Then if yed,=suppg and A is large enough so nthat
dist(Ay, 04)2 cL(c>0),
A (X)P (X, ) = 1 4(X) P 4(x. V)| = K exp[ —mo L — it} x — ]
<KL e ">l

where the positive constants my, i, k,, K, and ¢ are independent of L, L, x, and y.
This follows from the exponential decay property of P. The same upper bound
again holds for PU:

o uP U 1) (%, )= 24(P AU ) (x, )} SK L e~

where i, j=1, 2 (spinor indices). These also hold for the anti-periodic ones.
Then using the fact that suppgC AL A,

K=Kl Zlelll(xaPalUys— 24P s UA)AQPA'XA’
FHAP AU ALt P atar = AaP st )l
Slel(@* + 03 =20el(Q, + 014,



542

where
0,1=(xaPsU—x4P4 UA)‘AgPA’UA’”i
=P AF, AP 43,
Q,=1lx4P4 UAAg(XA’PA/XA’ —xaP a3
=P A,F A,P,l3,
are polynomials of {4} of order 4. Here
(Fy);= {xaPaUlixa— XAPAU;’;XA[Z}U:
(Fz)ijz{|XA'PA'XA'_XAPAXA|2}U
are dominated by KL e~ " (K, & > 0).
Then
[Qd(A)<constL™%. [J
2.1 IimKy=K, or K,
We may assume that the size of box A depends on N:

L=Ly=L,N°, 0<e<l1.

K. R. Tto

(2.6)

The key point is that the lattice spacing a= L/2N tends to zero like N ~%(§>0) as

N— 0.
Theorem II. Let A be chosen as
(1) [=L/2,L/2]? L fixed, or as
(2) [—Ly/2, Ly/2)?, L=Ly=L,N"?,

and let suppg = A, CA. Then there exists a polynomial Q of A, of order 8 such that

IK,~Kyl3=0Q, de,uédN",

where positive constants d and ¢ may depend on g but not on N(z1) and L(=1).

If L=LyN"'?, since

”KM*KN”4§ “KA’_KAH4+ ”KA'—KM”4+ “KA_KN”4

with L'=L,M"?=L=L,N"?, one has:
Theorem II'. If L is fixed,

limKy=K in C, a.e. with respect to du.
If L=L,N'?, then
limKy=K, in C, a.e. with respect to du.

Remarks (2). Theorem II was essentially proved in [9]. But the main different

points are:

(i) We must show the L-dependence explicitly, for example, as

Ly .

T2
L kedAn

Then this is uniformly bounded in L(=1) if f is a bounded L' function.
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(i) Let
Cnalls K)=C,py o b K)=[ 4, , (KA, , (—K)dp
=n(akn(ak’)C,,(k. k), 2.7
where
Coulk,kK)=C,, (k. K)=[ A, (KA, (—K)du, (2.8)

k, k’ele, and suppgC4A is assumed. Since Cuv is not diagonalized, a_slightly
complicated calculation may be required. The following bounds for C,, , are
sufficient for our estimates (see Appendix):

I,y (ks K S K [ J(ko, ko) (K, Ky, (2.92)
Jx, »)=InQ2+|x)In2+[y) In(2+|x—y|)
1 1 1
Tyl <1+|x| - 1+Iyl>’ 29%)
IC,, (kK< T (2.9¢)

where the constants K, and K, may depend on g (=y,, or eCg(4,)) but are
independent of L or N(=1).

Let
Ly=T+IPr, (2.10a)
and let
KV =P U VP, (2.10b)
K@ =P U Py, (2.10c)
where

e 1—y
F(l)(x y)_ - TZ{ g, ax+1/2ey) ) ”5y,x+eu
u

—A

u,y,a(

1
x—1/2e,) ;V“ 5y’x_e”}, 2.11)

and I\*" denotes the remaining term. It is convenient to consider the problem in
momentum space. Let

- 1 2 1 —-1/4
Py(k)= Km+ 5(2— Zcosaku)) + a—228in2ak#} , (2.12a)

Up(k)= {m - é(z— Y cosak,)+ éZyu sinaku} P3(k). (2.12b)

Then
Pyk,K)=(a?)? Y. ™ kP (x,y)

x,yedAn

=125,  Py(k)1,, (2.13a)
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and similarly one has
Unlk, k) =L28, . Uplk), (2.13b)
Ok, K)=ieY A, , (k—K)Ty (k+K), (2.13¢)
u

us,g9,a

where

a

5K (2.13d)

~ a .
Iy (K)=7, COSEKu+iSln

~ ~ ~ 47N
k,k'e Ay and we have assumed 4, , (p)=4, , (q) if p=gmod RT Further define

P (k)=[m?+k*]~ 1/, (2.14a)
U (k)= (m+if)/(m> + k>)"/2, (2.14b)
Tk k)=ieY y,A, (k—K), (2.14c)

which correspond to the continuum limit. Let yy be the projection operator from
Hy=L*A;d*x) onto Hy={fe #,;{(k)=0,k¢ Ay} which commutes with P, and
U, and let:

Py=xxPaxy+0Py, Uy=xyUixy+06Uy,
LV =iexy A qn+O0I".
Now:
1K= Kylla S 1K = K@+ I1KS"
SIK — ieXNPAUA‘AgPAXN“4 + ”(Sngl)Nzt + |‘K§\%)’r)|4,

where

5K§VU:K§\})—I'3XNPAUAA_¢]PAXN'
Lemma II-1. There exist polynomials QV’, QF, and Q) of A, of order 4 such that

”KA“ieXNPAUAAgPAXN”i§Q(N“,

ISKPIE=08,  IKP" 1308,
where

[QWdu<d,N~%, i=1,23,

and {d, e;>0} are independent of L(=1) or N(Z1).

Theorem II follows from this lemma. We sketch the proof, with our
Remarks (2) in mind. As for Q{, since U, is unitary,

”KA—XNKAXN”i:|e|4HPAAgPA_XNPAAgPAXN”i
=3%el*l(1 = xw)P A P 5= 0.
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Except for the trivial constant, QY is proportional to:

1 ~ ~
oy k; PASky)s s Ak ) Tilk g, by k3)
i=1,2.3
where ? is a sum of ;1”1’ Sk .. X,ZM k) with their coefficients +2 or 0,
k,=—Y k,and
1
1 ~ ~ ~ ~
Ty= 12 Z PZ(P)PZ(P—k1)P2(P_k1_kz)Pz(P'kl“kz“ks)~
peA\Ay

p—ky—ked\Ay

Since P(p)<constN~%(p®+m?)~# with a>0, 0<f<1/2, whenever pe A\A,,
Holder’s inequality together with (p* +m?) ((p +k)* + m?) = m?(m? + 1/4k?) shows:
Ty < CN™H(k2 4+ m2) ~B3((Je, + k)2 +m2) “F3((J, + ky + k)2 +m?)H13,

where C, a, ff are independent of L(=1) or N(=1). Therefore Eq. (2.9a), (2.9b) show
(0P du<constN~*

again by repeating usage of Holder’s inequality.
Q% arises from the terms which contain at least one of {6Py, 6U , SI}3"}. Since

SPy(k)=C, P(k),
8Py £ C,P(K) flak),  f(x)<Ix],
6T N(k), S Csf(ak),  fx)SIxl,
SNk, K)=iC, Y g (ak,ak) A, (k—K)

lg, e I =Ix+y1,

whenever k, k'e A, where {C;} are constants independent of L(=1) and N(=1),
one finds

[OPdu=constN™*
again by the same method.

As for the QF), use the following facts:

1 e
I (x, x +e,)] é;ezA,iM (x + 5“) ,

0§ = | K@ 2 < IKGH |3 S Te PRI PRI

i - 2 -1/4
Let Ry be defined by Ry(k)= [m2+ ;(2—Zcosaku)] . Then [9]
Ry(x,y)20 and |PyRy'll, <t (independent of L=1 and N=1). Thus
OF <t*a?e* TrRR AL RRAL,,

which shows

fORdu<constN~*. [
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(1+Ky)

We have just proved K, converges to K, or to K, in C, ae as N—co.
After rewriting det(1+Ky) as det (1 + Ky)exp([— Ty ], where
Ty=Tr{—Ky+1/2K%—1/3K3}, one therefore finds det 4, (1+Ky) converges to
det,)(1+ K ,) or to det,,(1+ K, ) which are a.e. finite.

2.2. Convergence of det

ren

Theorem IIL. Let Ty be as above, and let Cy = | Tydu(A). Then Ty — Cy converges to
:T:e LP(dw), pz 1 a.e. as N— o0 and |Cy| < cIn(2+ N), where ¢ >0 is independent of
L(=1) and N(=1) and

()Z ARV, (A, (k).

Here

~ k,k,

= (%— 2 ) (k). (2.152)

4m? k

—————Tanh™! <—)
kl/4m?+ k> 1/ 4m? +k*
|E, (k)| < const(1+k?) ™ *log(2+k?),
|EL(k)<C(p)L™?, for any p>0.

+E,(k), (2.15b)
(2.15¢)

2 2
Remarks 3. (1) If Ly=L depends on N like L,N'/?, then E(k)=0 and (—g) Y

ked

should be replaced by | d?k. (2) Ly=L can depend on N highly arbitrarily as far as
a=Ly/2N tends to zero as N— co.

This is also essentially proved in [9]. We sketch the proof since it is much
simplified compared to [9].
Proof. (Step ). Let

Ky=K{+ K@’

as before, and let

=LV + P+ P+ 1P,
corresponding to the expansion of Iy in terms of a4, , , Thus

Tr(Ky)® =Tr(KY)> + Tr[3KP(KG"")? + (K K" +(KF")1,
Tr(Ky)? =Tr(KP)? + Tr[2KPK@ + (K@),
TrKy=TrSy[ LV + L2 + I + LY.
Note that ysIyys=I¥ and ysByys=B% where Iy=I, or I’ and
ys=yi=y;'=iyoy;- Then Tr(K{))" and TrSy[’ are real. Since

e LA(—ie)=(—1)'I{(ie) and there exists a complex conjugacy operator C such that
CyuC 7,» one finds:

Tr(K) =Tr Sy =TrSy[{ =0.
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As for other terms containing K@, use Holder’s inequality and a trivial
inequality (A, = (4], (p=p'), to show each of them is dominated by a factor of
the form Q) where r=1 or 1/2 and Qy is a polynomial of 4, such that

fOydu<ceN~,  ¢>0.
Then these terms converge to zero a.e. with respect to du. For example:
On=ITr(KPP KPS IKPIZIKS |,
SIKPUZIER 2,

where

1)1 ~
KIS Clog 14+ o)L 3 14, 07

keAn
[C: independent of L(=1) and N7, and use Lemma 11-1 (see the proof to replace
[ Il by [l [I,) tosee that | K" ||5 is dominated by a polynomial of 4, , of order 4
which converges to zero rather rapidly. Holder’s and the hypercontractive
inequality mean
[ QR <[ I K ISIKG | 3dp
< {J KR 13du} ([ IKP | 5dpy 2
ScN™*

As for TrSyIx"", one explicitly finds:

ITrSyTP @)Y Y 1Syte— )y I T (0, %),

ij x,yednN

1 4
S@)? ), ) ISue.) et F(aAu,a,a<x+ %))

ij,n xeAN

4

e
<conste*(a®)* ) A,, a<x+ —“) ,
xedn s 2

where const is independent of L(=1) and N(=1), and we have used

2 .
e — (H—ix— % — éx3> <x*

and

1 5 1
ISN(eu)ijl§Z3 Y P2(k)<const-.
kedAn a

H,g,a

. 1 .
Since | A} | (x)du(A) < const(g,(x))*log? (2+ —), this converges to zero.
ap

(Step 2). It remains to consider

1 ~ ~ ~
Tr[—~SNI"I$2)—i—1/2(K§V”)2]=e2P z Ay . d0A, , (=T, (k). (2.16)

keAn
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The gauge invariance requires [1,9]

Zsinf’—ﬁ T.(k)=0,
m
which means
ak, ak,
. sin —2— Sin D) .
Yisin?

Then
T(k)= z T,m(m

Z Y sin*aq,—(2— ) cosaq,) (D cosaq,)+am} cosaq,

=1L

L* . a’A(q)
1 1
iy
P X% Fir gig)

2 . . . .
-{a—; [sinagq, sina(k +q), —sinagq, sina(k + g),]

. cosza(k+ g)o—cosza(k-k g—)l

Y sin? a(k-!— )u

a [Zsmaqusma(k+q ]
+[m+1/ay (1—cosa(k+q),)] . [Z sinaq,, sina(2k+q),1
+[m+1/a ) (1—cosagq,)] % [Y sina(k+q),sina(2k+q),]

+2[m+1/a}y (1—cosaq,)][m+1/ay (1—cosalk+q)) [} cosa(2k+q)u]}
) 2.18)
4m

L2 qZ‘N Ak +q)4(g)

LZ Z { [Zsm aq,—(2— Y cosag,) (Y cosagq,)]

=—12—

1
— {D[si 3 k+ s . k4
+ a4A(q)A(k+q){ [sinag, sina(k +g), —sinaq, sina(k+ g), ]

sin2 4} _ 52 4
sin a(k+2)o sin a(k—i—z)l

Y'sin?a (k + %)J

+2[) sinag, sina(k+g),]




Lattice (QED), 549

+2[Y (1—cosa(k+q),)]1[Y sinag, sina(2k +q),]
+2[) (1 —cosaq,)][) sinag, -sina2k+g),]

+2[) (1 —cosag,)1[Y. (1 —cosa(k+q),)1[Y. cosa(2k+ q)#]}}

+C, (2.19)

uniformly in L>1 as am—0, and A(k)=P (k).

1
where |C|] = constam log l2 + —
am

The first term is written as:
_m [d%q i
212 [(k+q)* +m?*] [q* +m?]

m? | 4n? 1
moen (g2
275{[42 Zzz J q] [(k+q)* +m*][q* +m*]

2n
qe

m? | 4n? 1
3T X o
2n°| L* A3, Alk+q)4(q)

s 1
L? [(k+q)*+m*][q* +m*]

2n 5
qeLZ

L A Tanh™! (——k )
27 1/ 4m? + k* 1/ 4m? + k*

+E (k) + Cy(k)

in this order. Obviously

|E, (k)| < constlog[2+k] (1+k?)*

uniformly in L =1, and E;(k)<const L™ (p>0) uniformly in k and L=1. P can be
chosen arbitrarily large [9]. Further

|Cn(k)| S consta’(1+ k)¢

I

with some positive constants ¢ and &, uniformly in L=1.

As for the second term, let x,=aq,€ {%nﬂ;nﬂ-—— —N,—N+1,...N— 1} and
1 2 . .
note that a*/L*= 4—nz<%) . Thus this converges to a k-independent constant

. . . 1
which can be calculated by a contour integral (see also [9]), and is equal to o

The remaining statements of the theorem are now rather trivial. []

3. Transfer Matrix and Determinant Inequalities

3.1. Transfer Matrix and Diamagnetic Inequality
Let
R{(A4,)=BL+TI%,
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where Bf and I'% are given -in (1.6) and “p” means periodic. Let
R{(A,)=R{(A,+64,), where

Y
84,(x)=

for all xe A4. Thus Ry=By+ 'y with

By(x,y)=(ma™*+2a" )3, ,—a"*y(x,y) V(x, ), 1)

Fg(x’y): ‘a_S[U(X»Y)_ 1] '))(X,y) V(X, ,V),
where
exp| i =x*
Pl=aN] 775 5%
Vix,y)= (3.2)
0 otherwise,
and we define
Sy=(By) ' =(Py)* Uy, Ky=UxPyI'yPx (3.3)

with P§20, Uy =Us""' as before. Though this changes the periodic boundary
conditions into the anti-periodic ones, this does not change our previous theorems
and lemmas at all. In fact Pg(k)= P4(k—9), I'y(k,k')=TI%(k— 8,k — 5), etc., with

Y
5= Z(1, 1) (3.4)

mean our Feynman diagram estimates do not change at all, and one can easily
confirm that the Furry theorem again holds for this boundary condition.

This choice of boundary condition is indispensible for the introduction of the
transfer matrix [4, 10] or for proving the OS positivity [1].

Theorem IV [4, 10].
det[Ry(A)]=TrT_yU_y...Ty_;Uy_1» (3.5)

where {T,,U,} are operators on a 2* dimensional Hilbert space spanned by
operating the fermion creation operators {a*(n),b"(n)}N-1y on a cyclic vacuum
vector £2, and satisfy :

(1) T, depends only on {A, , [af,a(n+)PN_1y and T,>0 if ecR. T, is
analytic in e in a neighbourhood of e=0.

(2) Uf=U;"if ecR,

1

N
U,= exp{iae Y, Ag,Lan+3),allla* (n) a(n)— b (n) b(n)]}.

n=-—N

See [4, 10] for the proof. It is sufficient to replace 4, by A, and A, by 4, to
introduce the transfer matrix for u=1 direction.



Laitice (QED), 551

Theorem V.
(1) O<det[1+Knl<1. (3.6a)
(2) Let m>0. Then
0<det[1+KR]<C, (3.6b)
uniformly in L(=1) and N(=1).

Proof. Since K% (respectively K3) is unitarily equivalent to K%* (respectively Ki*)
with the unitary y Uy (respectively ysUx), the determmants are real. Thus the
positivity of the determinants follows from (— oo,0]nspec(Ry)=0 [9]. Applying
the Holder inequality to (3.5) and the unitary of U,, one has:

N-1

det[Rﬁ(Au)]g [T (Tr(T,)* 12N,

/=-N
namely all A, are set at zero in the right hand side. Next apply the same discussion
for each Tr(T,)?" after introducing the transfer matrix for the u=1 direction. This
means

det[ Ry (4,)]=det[Ry (A, =0)], (3.7

and then (3.6a) follows.
Finally since Ry(4,)=R% MA,+04,),
det[R§(4,)] det[R 20)]

det(1+Kf)= o RY, 207 S det[R o] =% (3.8)

Then R=1 by the definition and

Py(k)* A(a;k+0)
R= N = —_— 7
kQNPN(k—5)4 k!_/i[N Alask)

1 21 .
Aa; k)= m+ ;Z(l—cosaku) +a—2—Zsm2aku,
The upperbound for R follows from next lemma. [

Lemma V-1. Let {=((0,¢,), I4,] g% be given, and let

Ala;k+0)
R= — 3.9
N dar ()
with L=1 and N =1. Then
0<c,SRSc, <o (3.10)

uniformly in L=1 and N = 1.
Proof. Note that

R= H I+ fit ot f3+0)),

keAn
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where

fi= {Lz Y sinal, sin2ak }

fo= { Y sinal, cos ak}

1/2 . 1
f3= Z(;Zsina@-smaku) (m—l— EZ(I —cosakﬂ)),
and 6f is the remaining term which is defined in the obvious way. Use
jsinal, | <lal,| a7,
L
(k*+m?)/A(a; k)< C

uniformly in ke A, and a=0 to show

Z 16/ (k)l=C,

kedAn

uniformly in Z(=1) and N(=1).
Next use k<« —k symmetry of A, to see

R=T(+ i+ fot f5+0) (1= fi+ o= f3+0])
k
=[[a+2f,— f2+5f),
k
where 8 f =6f(—k) and 8" is defined in the obvious way. It is not difficult to see

Y BfI=C,

keAn

uniformly in Z(=1) and N(=1) just by the same method.
As for g=2f,— f2, rewrite this as

g1+92+5g3
where
1
g,= ey — (sin®ak, —sin?ak,) (sin*al, —sin®al,),
2 . . . .
9=~ 3 lesm2aC0 sin2a(, sin2ak sin2ak, ,

and dg is the remaining term. It is easy to see

Llogl=Cy
k
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uniformly in L(=1) and N(=1). As for g,,g,, use a symmetry (kq, k)= (—ky, ko)
which changes the signs of {g;}, ,. Then letting ég' =g+ /",
R*= H (1+g,+9,+69)(1—g,—9g,+67)
kedAn

= H (1—(g, +gz)2+5g”)»

keAn

where 0§'(ky, k) =03g'(—k,, ko) and dg” is defined in the obvious way. Obviously
Z (9, +gz)2§C4,

kedAn

2 16g"1=Cs,

kedAn

uniformly in L(=1) and N(=1).
Finally use [[ [(1+2z)|Sexp[) |z{]. As for the lower bound, remember

Ak +10)
A(k)

for all ke /iN and a 20, provided m > 0. Then use exp[ —|logo/«| Z lzl1=[]1(1+z)
ifl4+z,20>0, 120 O

Corollary V-1. Let L=Ly=L,N° (0=5<1) and let Ky=Ky or K%. Then
0<det,.,(1+Ky)<exp[d, +d,logN], (3.11)
where {d;} are independent of N(=1) and L=1.

0<Ce<

3.2. Determinant Inequalities

In order to study the volume dependence (A, or g-dependence) of the Schwinger
functions, we need a determinant inequality which decomposes the Matthews-
Salam determinant. For this purpose, for the moment, assume

L=2n,n fixed positive integer,
N =2nM, M positive integers,
g=%Xa

for simplicity. Thus a=L/2N=1/2M is the lattice width which tends to zero as
M =N/2n— 0. Now

det [Ry(A]=Tr{T_yU_y... T_yiop-1U-nsom- 3 AT yronU—nsan -
T '{TN—ZMUN~2M"‘TN—1UN—1}
S{THT WUy Toyion— 1 Uo7
oo {Tr| TN——ZMUN—ZM"'TN—lUN—-llz}l/zn
S{TrU* yiomr 1 Tonvonr—1 - USNT_NT_yU_y ...

‘T—N+2M—1U—N+2M—1}1/2
AT U Ty, U oy T o T—ang - Tye 1 Un— 13172, (3.12)



554 K. R. Ito

by Holder’s inequality and by a trivial inequality || A],, <[ 4l, (n=1). We repeat
the same discussion for each of the terms in the right hand side after introducing
the transfer matrix to the other direction to find

det[Ry(4)] = "1:.[1 det!/* [RZM(B(i))] ,

where i=(iy, ;) and R,,,(B?) is the Ry, function defined by the region A=[—1,1]%,

. . L 2 . . ;
lattice width A== and the lattice gauge fields {B{ ((an,,an,)+%e,);

—2M <n,S2M—1}:
M
Ba[n,+ 1], an,)=A%(a[ny,+ 1], an,), if 0=<n,<2M—2,0<n,<2M -1,
0, if ny=2M—1,
B(ang, aln, + 31)= AP(ang, aln, +31), if 0=<ny<2M—1,0=n, <2M -2,
0, if n,=2M—1,

1y
B a[ —ny— 11, an,)= — Ao(alny—31,an,), if 1=n,<2M—1,0<n,<2M -1,
0, if ny=0,
BY(—ang,aln, +31)=APalno—11,an, +3), if 1=n,<2M,0=n, <2M -1,
0, if n,=2M—1, (3.14)

and so on, where AL(x)=A#(x—i) and we have omitted the subscripts g and a.
Approximately

BY (xq,x,)=sgn(x,) AD (Ixol, Ix,]). (3.14)
In fact one finds:

Egl)(ko, k)= —Eg)(_ko’kl)e—iako: _;lo(_ko’kl)e—iako’

BW(ko, ky)=BY(— ko, ky)e 0 = A, (— ko, k;)e ™, ete. (1)
Now let
En;N)= —d‘:';; Eﬁ;zggﬂ (3.16)
Then
det[1+ Ky(A)] = E(n; N) [ det[1+ Koy, (BN, (3.17)

where we have omitted 4 for simplicity.
Lemma VI-1. There exist constants o, and o, uniformly in M =1 and n such that

exp[o,n*] £ E(n; N)<exp[a,n?]. (3.18)
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Proof. One can replace R,,, and Ry by the periodic ones by the proof of
Theorem V(2). Thus consider

[T 4@a;l”

ke;lZM

[T Aa;k)

kedn

—-
o =
—

~ ~ 2
where A(a;k)=Py(k)™* Now A, = {Tn(/’o,jl); —2M<j,<2M — 1}. Thwn let

1
{ (orJ1)s [ }_ju_[n; }—1}.
Then |Q|=n? [{ /<% if (eQ and

= 11 A(a;k+§).

{eQ kelanr A(a; k)

Thus the lemma follows from Lemma V-1. [

Lemma VI-2. Let
= [ Tr[— Ky(4)+ § Ky(4) = § Ky(4)*Tdp(A),
CO=2Tr[— K,y (B)+ 3 K, (B)? — 5§ K, (B)* T du(A).
There exists a constant C uniformly in M =1 such that
ICy— 2 CRI=C2n)*=Cl4]. (3.19)
Proof. 1t is sufficient to consider
Cy= [ Tr[ =Sy P(A)+ 1 (SyTP(A)*] du(A),
=4I Tr[ =S, BB+ 5(S LSBT di(A).
First consider the contributions from I and I’ (22134

TSP = (S T 47,40

" xEAN
iTrSZMr(ZM( % 22 ; Buga
B XEAZM
:vZM(aZZ > Apgale— (z»)
u xedSnr

where 4=[0,1)* and the forms of vy and v,,, are essentially given in the proof of
Theorem III. [The first term in (2.18) with g replaced by ¢+ 46.] Thus

{ lTrS WP (4)— 4 ZTrSZMF(ZZXI(B‘)‘ du(A)

1
Slyy—voul(2n)°K, log(2 + ;ﬁ) +boundary term (3.20)
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uniformly as a—0. Since [vy —v,,,| Sconsta’, >0, as N =4nM — oo, this difference
uniformly tends to zero as a—0. [Boundary term <const(2n)?a".]
in
i ATl
2N }

In order to consider the other terms, let yu(i)=yf:’(i)= 3@y, £1)exp

and let
I (x, y) =Tr {p,(+) Sy(x +e,, y) 1,(+) Sy(y +e,, x)
<+ 7=) Sylx, )7, (+) Sy(y +e x +e,)
+7.+) Sylx+e, y+e,)y, (=) Sy, x)
+ =) Snlx, y+e,) p(—) Sy x +e,)} - (3.21)
Then

e e,
TrSy['W(A) Sy[P(A)=—e*a* Y, Y, {A#,g’a(x-i— f‘) Av,g,a(y+ ?> x II) (x, y)}

n,v xeAn
yeAn

Cu

—=ea' T3 T o g Ao+ g)emin )

iy ox,yed{®

—EHYY Y ), (3.22)

i+j pv xeAI(‘j[),yeA;d’)

where AP =iy, i,+ 1)®[i,,i, +1). One also has

LY TS, T (BO) S50, TU(BY)

~ 4T I{E 3 |0 [x 2B ) me ]|
i op,v Uy x,yeAg‘Jl)
—fera*y Zi > > [ ]}, (3.23)

iopv | j¥k ;EEAAi):J;R)
Where ]5k=(— 1’ - 1)9 (_ 130)’ (Oa - 1)9 (O’O)

Let S,(x) be the euclidean free fermion propagator on aZ?. Then one finds

IS(xI=K exp [ —mq(lxol +1x,0)] (3.24)

————
a+I[xol+ x|

with positive constants K, m, uniformly in a<1. Since

Sy(x)= Z (—1)°‘°+""Sa(x+2Na~oc), (3.24a)
acZ?

S,ux)= Y (—1)°*“S (x+4Ma-0) (3.24b)
aeZ?

(note that 2Na=L=2n, 4Ma=2), the contributions from the second terms in
Egs. (3.22) and (3.23) are dominated by const(2n)* uniformly in M =1 after
integrating by du(A).
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Thus we consider

SHESS S B[+ %), (o+ ) mnf . 629

u,v o j o x,yedp

Since I1,,, is translationally invariant, set I12)(x — y)=1I7Y(x, y). As is easily seen
by the proof of Theorem III, one approx1mately has [hke Eq. (3.14)]

H,uu(xO’xl)=Huu(_xO’ _xl)——'_ Huu( Xos X ) HW‘(XO, ),
Hﬂv(xo’xl): _Hﬂv(_xoixl): —Huv(x05 _x1)=Huv(—x07 —x1)7

if u=v (this also holds for anti-periodic conditions). In fact analysis due to Fourier
transform shows that (3.25) equals

I{a“Z > X An,g,a(w%“)Av ga(y+ 2)H2M(x y)}du (A)+ C(a), (3.25)

i ox,yed(d

where |C(a)| £ const(2n)%. Then it suffices to estimate

f{a4zz ) A(x+—e2—>A( )[H 06 )= 1T (x,y)]}dum).
i uv x,yed)
¥ (3.26)

Since [y}(+)—72¥(4)| <consta and because of the bound (3.24) and expressions
(3.24a) and (3.24b), one finds:

1
H H <K -
T 06) =~ T 00l = aezz“z |x+ 20| +a
lel=2
with constant K uniformly in a< 1, whenever xeaZ?, Ix,|=2. This completes the

proof. [
Therefore

Theorem V1.
det,..(1+Ky(4))=exp[K]|4,]] ﬂ det /(14 K ,,,(BD)) (3.27)

ren

with some constant K uniformly in a<1.

Remark 4. In this theorem, we have assumed the length of box L is fixed. However
it may be possible to extend this for L=Ly=L,N''?, provided that supp A, =4, is
bounded, rectangular.

3.3. Volume Dependence of the Schwinger Functions

Theorem VII (Weingarten [10]).

(1) Let Ky(A)=Ki(A) or K&(A), and let L=Ly=LyN°® with 0<5<1. Then vy
=det,,,(1 + Ky(A)) converges to v(A)=det ., (1+ K(A)) in L(du), p>0. +>0 a.e.
with respect to du(A).

(2) Let Ky(B)=K#%(B), L be fixed, and let B, be defined as before. Then
wy=det,.,(14+ K,(B)) converges to w(B)=det (1 + K(B)) in L?(du), p>0.

ren
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Theorem VII (1) is proved by showing prob[«=x] <exp[ —ax®] with «,¢>0.
Since

prob[« = x]=prob[log((v/vy)vy) Zlogx]
<prob[log(¢/vy)=logx—clog(N+1)],

with N arbitrary, by Corollary V-1, it suffices to show that there exists a
polynomial Qy of 4, of order p<oo such that

Oy zlog(v/vy),
[ION?dus<CN7F,  e>0.

See [10] for the detail. Our previous estimations are now used to prove this with
rather trivial modifications. The part (2) is also similar. [Convergence of K (B) to
K(B), etc. are almost trivial though the covariance of {B,} is slightly singular
compared to that of {4,}.]

Now let

Zy(Ag)= IUN(A) du(A) (3.28)

and let Z(A4,)= lim Zy(A,). By applying the checkerboard estimate (Theorem III-
N—-w
2 of [8]) for Theorem VI, one finds:

ZN(Ao) =exp K|A0| n {f WzM(Bi)ﬂz/4 dﬂ(A)} 1162

—exp (K + FKZ_) |A01}, (3.29)
where f=2(1—e ") 71, and
expr = [ W, (BY** du(A). (3.30)
Theorem VIIL. There exists constant K such that
Z(Ag)=exp[K|4,l]. (3.31)

This theorem can be extended to the Schwinger functions. Let
fie#_,, suppf,CA* for some acZ?,
and let g, h,e #@C2. Let |
(Z(A)S)(f1 s fwiGr -5 Gni Py -5 hy)

= [du(A4) [f[ A, fi)} det’, [(7, [§ +m+ied ] 'h)]det,,(1+K,). (3.32)

Theorem IX. There exist constants C, and C, such that

m

|1ZS|<exp[C,|Al+(m+n) C,T [ DY T 1Al -y fl lg;ll A1, (3.33)

aeZ? i=1

where n,= 4 {i;supp f;C4*}.
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The proof is essentially equal to that in [5] except || | _,,, is replaced by | |
here. The reason is that we have used a rather trivial inequality [9]

@ rmtied) )<L,
m

As is investigated in [5-7], it may be possible to replace || || by || ||, but this
may be possible only when we succeed in the study of the kernal K.

One may be able to obtain a lower bound for Z(A,). But the discussion in [5]
cannot be applied directly since an indefinite metric appears when one considers
the Hamiltonian and its counterterms [2]. This problem together with the
problem of the thermodynamic limit will be considered in a forthcoming paper.

Appendix

Proof of the Bounds (2.9b), (2.9¢c). First we show the bound for g=y,,. It suffices to
show the bound for

@<"”")=W"(D (b, F k) (0 + K0

Since [sinx/x| £2(1+|x])"* and (p>*+ 1) ' <K, x (1 +|p,|)~ ! with some constant
K,, one finds:

sinr(p, +k,)sinr(p, + k;)) 1
pr+1

IC,| S K J(ko, kiy) J(ky, KY),
with some constant K,, where

1
(I+Ip+k)A+Ip+KD(A+Ip)

An easy estimation after the direct integral shows (2.7b).
When k=K', note (1+|x|)"2<(1+x%)~ 1. Then

1 1 1
p1+p§ 14+p3 (p—k3*+1°

Let Ry={p:lp—kI<|kl/2}, and let R, = R*\R,. Without loss of generality, assume
ko=k, 20. If peR, then [(p—k)*+1] '<[1k*+1]7", and if peR, then

J(k, k)= [dp

IC, )< [a?

N2 -t
(I4+py) 2= 1+<[22—1) kz] . Then (2.9¢) is proved. If geCg, then |G(k)|

fIA

since ge <. Since
1+ k7] g

C,(k, k)= [ d*piilk+p) 50k +p) C(p)
the bounds are obvious for ge Cy. [

Proof of the Bound (3.24). Remember

m+ %Z(l—cos@i)—i— éZyisin(?i
[am+2— ) cosf]%+ Y sin?6,

1 K9 T
S)=—5 [ J a8

exp[in,0, +in,0,],
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where (xy=an,, x, =an,)eaZ?* and assume n,,n, > 1. Since it suffices to consider
L . i,
the term which is proportional to —sind,, let
a

eln191

Ty R
f SN0y T340, cos0, 01

m202

=50,
where
B(0)=2+(am+2)2—2(am+2)cos€>2,

AO)= —— B(H) —(am+2—cosO)=1—{(0)< 4,
{0)= 23(0) [a®m?+2(1 4+ am)(1—cosH)]>0.
This is also written as
1 0 ein292
m1 1 0
jB(e ) a Lsin, e d (1—2A(61)cos62 40,

Contour integrals give

Uiging,— " _gp[ =" 1( )
a "1—2A4cosb, TaA 1+2]/§(1_
2n
é—l CI/Z}
a ]/E

2n
< 7t3>(p|:—K1aWzn1 —-K,|0,|n,],

gin2f2 l on

24 "2
do,| =
j1—2Acos(92 |/1—44% (1—!—2 I/ C(l—())
2 Vn C1/z}_nz
Y

exp[ — K, amn, —K,|0,|n,]

2

(3]

m
43
with positive constants K, and K,, where we have used 24 <1, { <} and a bound

Kiam+ K501 =(V%0),  K;>0,

=

which holds whenever |0] <7, am = 1. Since [sin 6/ [/ZI =const, B>2, one finally has

K
|S’| <min e~ Kiamm,
4 an;+a i=1.2

2
K % exp[—K, b ‘
[xol+x;[+2a expl =K 2ol +xiyml. [

IIA
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Note added in proof. Another method to obtain approximative equations below Eq. (3.25) is to
operate y4...7; ' (=0, 1 or 5) to the inside of the trace in Eq. (3.21). For example y5y,75 ' = —7, (=0
or 1). Then 75Sy(x)ys ' =Sy(—x) (for periodic and anti-periodic boundary conditions), 757,(+)y5 "
= —7,(F) (for periodic ones) and y57,(+ )75 T= —y »(F)* (for anti-periodic ones). Therefore (remarking
that I7,, is real) one finds:

Iy (x)=M)(—x+e,~e),

for the both boundary conditions. The other relations are obtained in the same way. Especially it is
easy to find: ITN(xq, x,) =TI} (Ixol, |x,]) if u=v.








