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Abstract. The Renormalization Group is used to study the correlation
functions of a nonlocal hierarchical model mimicking the λ(Vφ}4 model, dipole
gas and the like. It is shown that the infrared behaviour of the correlations is
that of the massless gaussian ^c(λ)(Vφ)2.

1. Introduction

In [1] a nonlocal hierarchical model was introduced to mimic the long distance
behaviour of the lattice model with Hamiltonian

A renormalization group (RG) transformation was defined in finite volume and
contractive properties were proved for it uniformly in volume. With the assump-
tion of existence of the thermodynamical limit, the RG was shown to drive the
model to a fixed point mimicking the massless lattice field. In this paper we extend
the analysis to correlation functions. Using the RG we prove detailed estimates of
the long distance behaviour of correlations, showing that in the infrared the model
behaves as a massless gaussian lattice field. We also establish the existence of the
thermodynamical limit of all correlations and thereby complete the analysis of [1].
In the thermodynamic limit the correlation functions will satisfy convergent
(inductive) cluster expansions, generalizations of those working in the massive case
now to a massless model. The present paper is selfcontained provided certain
results of [1] are taken as given.

Let us briefly recall the model (for motivation, see [1]). We divide the periodic
lattice ΛN = TLA

L* of volume LN (LeN, odd ̂  3) to blocks bk

y of volume Lkd l^k^N
centered at yLk, yeΛN_k and associate a random variable Zk

y to the block bk+1. Let
^ be a function supported on ftj with mean zero, j/(0)Φθ and nonconstant in

}. Denoting

L- l y ] (1)
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([x] is the integer part of x), we will consider the following random fields on AN

N- 1 _dkL
i V~~l j 'J k /^\

Φx= Σ L 2ή.L-ι*r (2)

As explained in [1], φ plays the role of the gradient of a massless scalar field.

We define also blockspin fields φk

x, xeAN_k

which satisfy
_d_

φk

x = L 2 φkL-\x} + zk

x. (4)

The free model is specified by giving a family of kernels U = { U2m(x1,..., x2w)}m = i
with Xj(=Zd, satisfying the following properties:

i
1 ^Ϊ2m

Y III, (x)\eAL{^\ ^fc, (5)

U2m(xi9 . . ., x2m) = U2m(x1 + d, . . ., *2m + J) - t/2m(xπ(1), . ., xπ(2m)) , (6)

I72m(x,x,...,x) = 0. (7)

Throughout the paper we denote by 3c the sequence (x l5 ...,x2wl) and by x the set
{xl5 ...,x2m}. L(x) is the length of the shortest tree on x and possibly other

d
(continuum) points. We measure lengths in the metric |x| = £ xμ| on the torus A.

u= 1

Given U we define a potential UN~k~l(Zk)

Σ E/^-^^.-.Z^, (8)
m = l

where t/^*5"1!^) is defined as the periodization oϊ U to AN_k_ί.
The free expectation < — )Q in volume /l^ is defined as

<->? = ̂ -1f(-)Nff'ίvt(Z*), (9)
fc = 0

with

^), (10)

where X is an even probability measure on R with compact support. It is easy to
see that (8) is well defined provided K is small enough. In [1] we called the case
U = 0 the local case.

To describe the interacting case, let F={F2m(x)}*=1 satisfy (6) and

\V\Λ^η, (11)

V2(x,x) = Q, (12)
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and again denote by V{m the periodized kernel on (A^)2m. The interaction potential
is

VN(φ) = V»(φ)+VN(φ)9 (13)

where

Vc(Φ)=~ Σ Φl, (14)
^ xeΛN

and

v"(Φ)= Σ Σ vLWΦv (15)
m = 1 xeΛ^f*1

We denote

2m

Now the interacting expectation is defined as

In [1] the case 17 = 0, VN(φ) = ̂ v(φx) was called the local model Finally, we
JC

defined the RG transformation Tx in finite volume using (4) to integrate out Z° :

Ή7") (<£')=- log fexp -

+ logJexp[-F(z°)]Jv0(Z0), (18)

and the next RG transformations Tk in an analogous way. The main result of [1]
was the following (we denote by \VN\A (5) also when the sum is restricted to AN and
L(x) a tree on ΛN, we also drop the subscript in T since Tk's differ only by the
volume).

Proposition 1. Let Vk be of the form (13) wiί/i \Vk\A<η. For A large enough, K and η
small enough, uniformly in fc, TVk can be written as

TVk=VkΓl + TVk~l (19)

with

δ<l (20)

and

\C-C\£*η. (21)

δ and α do not depend on C.

Remark. The Vk in Proposition 1 does not have to be a periodization of any V, only
VNis.
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Let us now turn to the results of the present paper. The first result deals with
the thermodynamical limit.

Theorem 1. Let \V\A<η and let A, η and K be as in Proposition 1. Let V=(c, V).

(A) There is an infinite volume state < — >F such that

<Φ*>v»^^+<Φ*yv (22)

for each x = (xl9 ...,xs).

(B) T 'extends to the thermo dynamic limit, i.e. there is a TV(cf, TV} such that for
allx

<Φ*>ϊv»-+<Φs>τv, (23)

\TV\A^δη, \c'-c\^aη. (24)

(C) Let \V(n)-V\A-+0, cn^c as n-+ao. Then

<-WX->F, V = (^V] (25)

in the sense of uniform convergence of correlations, that is, for all m

uniformly in {xjf=1.

Thus the RG drives our interacting model to the line of fixed points.
The following result deals with the long distance behaviour of two point

function showing that it agrees with that of the free model.

Theorem!. Let Vbe as in Theorem ί. Then

(A) Σ <ΦxlΦX2>ϊ» = OίoτsΆN,
X2GΛN

(B) \<ΦXίΦXl>r\£cίl+\Xl-x2\Td,

(C) Σ I<<M«>I = °°-
x2eZd

Remark. (C) shows that (B) is the best polynomial bound. Recall that φ is the
analogue of Vφ, φ a scalar field. (A)-(B) are the properties of (VφxJ7φxι) in
massless free theory.

Finally, we show how the RG can be used to study general truncated
expectations. We derive convergent inductive expansions for them, which could be
used to study their long distance behaviour. Since this behaviour is not particular-
ly illuminating even in the free case we will not tackle that problem here.

2. The Free Model

Let us first show why our results are true in the free case. For this we need the
following result proven in [1] using a high temperature cluster expansion. For
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later use, we state it in the interacting case. Let | Vk\A < η and define the expectation

(i)

Then

Proposition 2. Let D, A be large enough and K, η small enough. Then uniformly in k

J = l

;...;"„)], (2)

where Mr are the numbers of the sequences w l 5 ...,wp equal up to permutations and

L(ul ... w1) ί/z<? /eπgrί/i 0/ίΛe shortest graph on the points of (J w;. ami possibly other

points connected with respect to the groups ur

 J

To establish the thermodynamic limit of the free model we use (2) to write

m \ N [N/2] _d_

Π/,)O=BI Σ=QL~Ί

i = l / O

= Σ (3)

The thermodynamic limit for the Jz^'Jv 's is standard, given the cluster
expansion of [1]. Moreover

<c m for allu.
i = l / 0

uniformly in N. Hence the existence of the JV—>oo limit follows by the dominated
convergence theorem, since ΛN->0.

For Theorem 2 note that since

N-l

<ΦXίΦX2>o= Σ L"kd^(lL~k^^-LlL~k~lxJ)

part A follows because j/ has zero mean. For part B we use Proposition 2 to get

so that

\<φxlφX2>\^c

κ-χ2ιr
d (6)

To prove part C for the free model, consider first the local case, i.e. U = 0. Then
Γ y ]

φ —. Thus, letting N be such that x1ebQi and x2 such that<zχ>=θif|-
JL/
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x2φbo' we get from (4)

Z), (7)

where j is the smallest integer such that x2

ε^o and x = [L~(j~1)x2] Since #0 by
definition is nonconstant in fej with j/(0)φO and zero mean

Σ l(£d - IM*) + ^(0)1 ̂  ε\s/(0)\ . (8)

p

Take now L~NI2 < -, whence

Σ
~~ L j = Nl

N/2

z'dxίz). (9)
= Nl + 2

Upon taking N to infinity we get C.
For the nonlocal case, (7ΦO, we get instead of (7)

Now, since 3/t Ξ[L~/I~1x1]φ[L~'/ ί^1x2]Ξy2 for O^fe^j— 2, we get

Zk

yι; Uk(Zk»N

0ιλ, (11)
0

where on the right hand side we replace Uk in (1.10) by λUk. Using Proposition 2
and (1.5) we easily bound (11) by

\<Zk

yίZ
k

y2y»\ ^ CK exp [ - ε\yι -y2\], (12)

and thus the first term A on the right hand side of (10) is bounded by

j-ί)d

9 (13)

since \x — x l^ϋ (L^ —L )^ L^ if / "
Similarly one shows that uniformly in k

Thus combining (10), (13), and (14) we get for K small enough (9) with ε replaced by
p

- (say) and Theorem 2 is proved in the free case.

We will now proceed with establishing the renormalization group transfor-
mation properties of the correlation functions.
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3. RG Transformations for Correlation Functions

Let F be a function of φ. We define the first RG-transformation of F, S1F by
computing

VN\ \ N - 1 I//0-VN\ \ N - 1
0

\N-I
/ -V»\ \

'W
/ 0 /

where

(S1F)(φ')=— vN(L-iφ, —' (2)

and we denoted

The successive transformations Sk are defined similarly by replacing N in (2) by
JV-/C+1, φ1 by (/>* and z° by zk~l. So

<F>*N = <Sk ... S^F)*-* T l K. (4)

4. The Local Model

As a motivation to the general case we will establish Theorem 2 in a local model
defined by U = 0 and

VN(Φ)= Σ v(Φx} (i)
x<=ΛN

From (1.1), (1.10), and (3.2) we see that T± preserves locality

(TVN}(φ')= Σ tv(φ'x)9 (2)

with

ί "I }
XE&l

+ log j exp [ - Σ v(^(x)Z)] dx(Z). (3)

Since φ is bounded we will consider t as a transformation on C*( — β, β\ where e
stands for even and β is large enough. Let us write

(4)

tv(φ) = ±cfφ2 + v'(φ), (5)

with
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An analogue of Proposition 1, proven in a simple manner in [1] is

Proposition 3. There are 0<δ<l and α>0 such that for 0<η small enough

d4v .

implies that

dφ4

d4v'

and

\cf — c\^oίη .

Let us consider S^ first on a localized F:

(7)

(8)

(9)

Let yn = [L""y]. Then, from (2) Sn ...S^F is localized at yn:

and

(10)

(11)

where vn = tnv. We often suppress the j -dependence of s£ below.
We will consider sv, given by (11), as a transformation on C4( — β,β). We deal

separately with the even and odd functions, C4, Cj. Let /e CQ. We write

= μφ+f(φ), ^(0) =

For even g,

*(0) = 0, ίc = 0,l,2,3.

We need

Lemma 1. (a) Let fεC^ v<=C4 be such that for k = 3,4

(12)

(13)

dkf
dφ1

d4ϋ

dφ'
(14)

There exist ε>0, ??0>0 such that for 0<η<η0

(15)
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where

for some 0<δ<l.

(b) Let g,υeC4

e with

dkf'

dφk = 3,4

d4v

dφ

There are ε>0,η0>0 such that for η<η0

where

with

and

exp - -

dφA

Proof, (a) From (11) we get

^ = τ ~ 2μφ+\μ.stf(y)Z + f(L 2

where < — >φ is in yΓ 1 exp —

Hence

and

d( fc- l )
~

dx(z).

~ Σ
= 0

477

(16)

(17)

(18)

(19)

(20)

(21)

(22)

for fe = 3,4, where Φ] = L d/2φ + £/(Xj)Z and {Ij} run through the partitions of

{1, ...,/c}, with J j possibly empty. Since/((/>) = ̂  J-—-3 (ψ)(ψ — Φ)2dιp, thep=l term
Odφ
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gives η by (14), the p = 29 7\ =0 gives Q(ηε), and the rest of the terms are 0(η2). Thus

d

dφk

d(fc-l )

= L (24)

for ε, 77 small, fc = 3,4. The claim for μ follows similarly,

(b) We get from (11)

(25)

Noting that <Z2>^ = 0 = J Z2rfχ + 0(ε?/), we can proceed as in (a) Π

Consider now the two point function (φxιφx >. If F = fίf2 with fl localized at
ht< Γ*J

then

SJ = s?fls?f2. (26)

In fact, we may iterate (26). Let bj

0 be the smallest block containing χί and x2.
Then

(φxφx >-<//_ 1 Λ 2 _ 1 >, (27)

where

(28)

and we suppressed the

Let v now satisfy the assumptions of Lemma 1. Taking δ<ί suitably we can
apply Proposition 3 and Lemma 1 to obtain

d,.

where

dkf

dφ"

(29)

(30)

(31)

Next we compute, denoting [L 7'+1xί] by yt:

(32)
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Similarly as in Lemma 1 we get

xc, (33)

β=l+0(η), (34)

74 —

9

dφ'
(35)

Now, since -— ̂  ̂ εδjη, we can apply Lemma 1 and Proposition 3 to iterate (32).
dφ

Let xίebjQ~1 so that yί=0. Then we get

[l + Ofa)]fZ2ώc

where

\βn-l\^cη for all n. (37)

Now (36) yields |<0X1ΦX2>| ̂  CL~dj' ̂  C'[l + (1*1 - *2|)] "d which is B of Theorem 2.
(36) is up to 0(η) terms (7) and we can proceed as there to establish the claim C of
Theorem 2. Π

5. The Nonlocal Model - Localized Expectations

As in the local case we will start with localized F :s, when studying S^F of (3.2). For
this purpose let F be given by its Taylor series at φ = Q:

F(Φ)= Σ Σ FJ*)^, (1)
m = 0 "ίl 3ceΛm

where

^mV^l' > ' X ;m)~^mV ; ) Cπ(l)' φ ' '> ^π(m)) (^)

We say that F is localized at point s, with constants α, D if for all m.

^exp — AL(sux)
x i-L

(3)
3c l-^

Let now SVF be the RG transform of F:

d

S"F{Φ>- / i ί ' ' <4)

\ e x p - F l L 2Φ[L-ι.]
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where for generality we drop all the indices, i.e. N is general as is k (in Sk), and v is a
measure involving U satifying (1.5)-(1.7). As an analogue of Lemma 1 in the local
case we prove

Lemma 2. Let F satisfy (3) and let \V\A<η. There exist A0, OL0(A) such that for
A^AQ, α5^α0(yl) and η^u

Σ\SvFm(x)\exp\-~
x L ^

- ~ \T 2^~ 1, m= 1

for some 0<δ<i. Moreover,

_dL

(6)

and if η < α2, then

Sv(Cφz

s + F) = CL-a(φ[L. ίs])
2 + F" , (7)

where F', F" satisfy (5).

Proof. Differentiating (4) with respect to φ we obtain

dm m-|/o |

(SvF)m(x) = L~ 2 Σ Σ (-1)"
7oC{l,...,m} fc = 0

/^F^^F^ ^
' ''"' '

where £' is the sum over partitions of {1, . . ., m}\/0 into sets Ijm The set /0 may be
W

empty. (50^ = ]̂ J δφy. and <( — >Γ is the truncated expectation in
ieJ

<^-y = ̂ -1\-e~V(z}dv(z). (9)

Now

^ | Io lFTT— U)= Σ (K-l/ol)!)-1 Σ FJy^v)^ (10)

and similarly for K Using (1.1) we write

mo-|/o| m 0 - |/ol

z»= Π *(vt-Luj Π ZΏι = s/(v,U)Z,, (11)
ί= 1 i= 1

where

M^CL-S]- (12)
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Inserting to (8) we obtain

481

Σ (- Σ Σ
{mj} y : [ L ~ 1 y ] = x

m j ^ \ I j \ + l

(3̂ ) Π v^ϋj)
j = l

Σ
i = 0

Fmo(y, v) <z,> =

] = x v

(13)

The reader is invited to compare (13) with (5.18) of [1]. The estimation proceeds
now analogously as there. Consider first the second term F(^\ Let

fc<s ] _

r]υx F%\x) (and H(v respectively) and Hm(x)

Fm(x).

Then using Proposition 2

Some straightforward tree estimates (see Lemma 2 in [1]) bound

— L

(14)

(15)

Thus by assumption (3)

md co d_ \m oo lw\-\-

/ +
\ m

_ _

= D(L 2 α

For the first term in (13) we get by Proposition 2

k

Σ Σ Σ Σ lHmo(p/0,«50)l Π

(16)

md
2

k

)̂1 Π
7 = 0

exp L([L- ̂ 1 u «,) - y Σ ̂

where we denoted by W(x) = eL ~ V(x). Now, it was shown in [1] (Lemmas 2-4)
that one can obtain from the last two terms in the exponent in (17) enough decay
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to control the y, v sums in (17) in terms of the estimates (2) and \V\A<η:

Σ Σ I ffmo&o. *o)l Π W(*ιf vj) Π M, ! exp[ . . .]
y {vj} j=ι

k k

)αmom0! f] ηmjmjl(k+l)leCAk

9 (18)
j = o

and thus, since η^a:

_mά_ m-|/o|

" 2 Σ Σ
/o fc=l

Σ (*o- Σ
1 1 nj
1

Σ ( « C Γ ' " J . (19)

Using

Eq. (19) gives

n0,k {nj} j \mj>nj \ n j

-"'M=(l-CαΓ"'-1-lgCα1/2e°'lI/:'B', (20)

no,k

__ d \m / d \m

I == ' \ / ^ '

for <x,0(A) sufficiently small. Equations (16) and (21) yield (5). For (6) and (7) note
that F'(F"} involve k ̂  1 terms in (8) and the extra η's can be used to compensate
for the lack of α in Cφ(Cφφ). D

6. The Nonlocal Model, Two-Point Function

Consider now the two-point function (φXiφx^N. Use the notation

/ \ = / _ \ # - f c Π Ί
\ ~~ /ώ k — \ /τkvN> U;

(2)
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and

F?(φ°) = φXi. (4)

Then

f2>z<V* . (5)
^=0

where

Fn

i=<F?-1yzn = SnF
n-1=Sv"~nFn-ί. (6)

By Lemma 2

Fl=L~ϊφlL-lχΔ + Fl(φ^, (7)

with

Σlfi(3e)klLω^D'Γ'«! (8)
Λ:

Since IF^"1!^^^?/, we can iterate

"), (9)

with

where C is independent on n. Let X 1 ebo~ 1 ^x 2 e6o. Hence [L~%]=0.

Then

(10)

(11)

where

Tm! (12)
L^

Indeed, consider e.g.

V^1^2)m( X ) = ̂ m(X)= L ^ l l/ i \(XlJ^2\Ij\(^I^' (13)
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Then

Σlcm(*)|JL(su^ Σ Σ Πlfl?ιΛ()l
X Iί,l2 Xlί *I2 ί = 1

Ά 1 m !Ά 1
Ύ(L(sux}-L(suxIι}-L(s^xl2)}\^C
L \

•exp

L-"d(ηδ"~ T«ι !«2 \^CL~nά(2ηδn~- l)mml, (14)

where f?1/2^α^α0(^). The other 2 terms have similar bounds.
Since <f» ;F"2>ΦB = <FΪF-2>Φ. we may iterate (5)

;Fl>z,V+I (15)
/ = 0

For the first term we apply (7) of Lemma 2. Denoting

SM S^F^ΞG",
we get

GM(^) = L-Md02 + Gw(0), (16)

with (m^2)

M, (17)
5c

where C is uniform in M. Thus

Gw(0)=cYL-MMo)2<(zM)2>M+ Σ' ΣΣ((^)ir1G^m(χ)^yM, (is)
M = n M = n m= 1 Λ:

where

7 = 3 \7=1 If

Using Proposition 2, (18) and proceeding as in Sect. 5 one gets

N-ί

GN(ty= Σ L-Md^(0)2($Z2dx + 0(η)). (20)
M = n

For the second term in (15) we compute again, denoting

f

2yze by K^+ί):

_md_ m + 2- |/ι |- |/ 2 |

=L" 2 Σ Σ Σ Σ
J ι , / 2 C { l , . . . , m } f e =

IιnI2 = 0

• Σ Σ EL
-
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As in Lemma 1, we convert the Fs to /f s and Fs to Ws and gain an exponential

(22)

Let m > 0. As explained in the proof of Lemma 2, we may extract from (22) an
exp{ — εA\[L~*x±] — [L~'fx2]\}eACk factor, together with enough tree structure to
bound the y ana ΰj sums:

md f~*m , — I / j I

Z-ί 11 / I T |\ I

k

ι !m 2 ! f]
7 = 3

(23)

where we used (9) and (10). We may now proceed as in Lemma 2. Noticing that if
ml==m2 = l, k must be ^3 since m>0, there is always an ηί/4 factor to kill eAC. We
get

M(m-2)/2

Xl^x^C^^L-^expC-^L-^.-xJ]^-. (24)

Let m = 0. Then

mιm2 > 0 y, f 2

= L-«<Z$/l;O? + KO, (25)

where we used (9) and denoted Xsί = lL~*xi~]. KQ involves terms of 0(η) and will
easily be shown to satisfy Xo^θ71/4ZΓ^exp[ — £AL~^\x1 — x2\~]. For the first term
we have

«, 4ny J = ̂ (x,! - Lx,+ ! ̂ ^(x^ - Lx,+ ! 2)<Zί ,+ u Zί ,+ 12> J . (26)

For f<n-\

\<Ze

Xe+ιι; Zί/t 12>J| ̂ OWe-^-^ -X 2I , (27)

and for / = H— 1 x^+ l ί = sand

<Zr1;ZΓ1>n

Γ-1 = ίZ2dx + 0(i7). (28)

Combining (21)-(28) we obtain

(29)
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Combining (15), (20), and (29) we finally get

<</>^2> = L-^) + ̂
N-l

+ Σ L-ids/(Q)2[$Z2dx + Q(η)']. (30)
j=n

We may now proceed as in Sect. 2 to establish the claim. Π

7. The Thermodynamic Limit

We will now use Lemma 2 to establish Theorem 1. Let {F?}?=1 be a family of
functionals of φ localized at points zj respectively. Using the notation (6.1) and (6.2)
it is easy to establish that

T s

= Σ Σ
k=l i/j}?=i j = l iejj

\ j = l

where we defined

The basic idea will be to show that the F^'s are localized whence we can use
induction in s and the properties of Sv established in Lemma 2 to iterate (1). Thus
we start with

Lemma 3. Let {Fj}^ l satisfy

Σ\F J

m (x)\ exp [y L(z^x}\ ^DpTml (3)
x IΛ J

and let \V\A^η^a. Then the function

i f \ T

satisfies

Σ |Fm(x)| ̂ L([L" ίZj]U-] ^ C(^ A] Π Dfn !am. (5)
x J

for all j. C(/, A) is independent of {ZjYj=l.

Proof. As before we compute

md »t-Σ|/ι| 1

F (χ\=τ 2 γ V v y y rr ί
mV ^/ -*- £^ L-i LJ L^ / - i l l /,„„ I r IM

(/!,...,//) Λ = 0 {/jllΐί^ {m.

t + k

M/^ ) K-K'^XΠ^)7". (6)
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where Ip j = 1.../ may be empty. As in Lemma 2
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md

=L'Ύ Σ Σ

Π, .,,„
J ^ j ' j'' '

A <
• exP - T Σ L(zjvynvv

L ^ = l

YlHJ

mj(yIj9ϋj)Y[W(yIj9ϋj)

A '+*
(7)

where

(8)

Denoting [yL *] by x, {L lυ] by M, [_L lz~\ by w and using Lemma 2 of [1] to
estimate the trees we get

A(ί + ε')

As^
2L

/jo'
(9)

ί= 1

where / denotes a sequence jV-.j^ l^ j f^mf —|/ f | . Now

f| Mr I exp[ •] ̂  Σ Π ^"s eχp[right hand side of (9)] ,

where ΛΓS are the multiplicities of thej/s. Let /^ =0'u ---JV) anc^ <
Then

(10)

'=OV' •••jJV+k)-

(ii)



K. Gawedzki and A. Kupiainen

and by Lemma 3 of [1]

Aε"

-Aε[Lτ(Uf,)+ Σ \Uj.-\Vi\

Using

and

we get finally

Using the assumption (3) for F7 and \
estimated, see [1], giving

(12)

τ running through trees on £/
1 and no other points. But

ΠjVJ = ;Q(ΛΓ+Λr s

2)!^Π^ (13)

Combining (9)-(13) we obtain

ΠMr!exp[...]
/ ^ \τ

(14)

(15)

(16)

Σ e-Aa^W. (17)
T $̂

the y, ϋj sums in (7) are now easily

md
~~2~

j-\Ij\

(18)

Now,

,

v = y v π
\ m-q

y

where by definition ^ = 0, z = p + l,...,/. Since

y ίcαr^-"^mj'-α-
(

(19)

(20)
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we get as in Lemma 2
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md

(21)

c* whence
~

(22)

and the claim follows, for α small.
Let m>/. Since for p^q

\ P / V P /

We get

and

Σ

Σ p \
(23)

thus giving the claim for m>£. Π

Remark. From (16) it is not hard to see that we may replace Cy,A) by

This would be useful if we studied the infrared behaviour of n-point functions in
more detail.

Now we turn to the study of the thermodynamical limit of our model and the
RG-transformation in this limit, that is, Theorem 1. We start from Part (A), i.e. the
thermodynamic limit of correlation functions.

We consider first one-point functions. The idea is then to proceed inductively
in s using (1). Since we will compute the correlations by iterating the RG, let us
start with general localized "one-point functions." Let for each N FN(x,φ) be
localized at x with constants D, α, given by translation invariant kernels
F^(x,x)xeA^ and such that F%(x, x) N^ > Fm(x, 3c) for each x,x,m.

An example of such FN(x, φ) is φn

x. We now want to show that the limit of
<FN(x,φ)>^ as JV-^oo exists.

Denoting Sn...SίF
N by FN Λ, we get

(24)
1 = 0
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where <Z^>, is taken in ^-e-VN~£(z£}dv(Z') and
Jv

GO Λ

*$*) = Σ-τΣ^XM<4>, (25)
m = i rtϊ . 3.

By Lemma 2

(26)

Hence, to establish the limit N-^GO for <F>(^v it suffices to show that for each /
«^tf(x) converges as JV-»oo. This we prove inductively in /. Recall the recursion
formulae (5.13) and ([1], (5.12)):

fc, {/,}, {mj}5?,{^-} j \mj

*> ?/,> «ι) Π ^Γ'GV 5j) Π Zv.- , (27)

(28)
•7=1

Assume inductively that for each m, x, y, F% \y, x) and V£~*(x) converge to
some limits Ff

m(y, x), V^(x). Since the sums in (27), (28) converge absolutely and are
uniformly bounded in N (this was the content of Lemma 2 and an analogous one
in [1]!), the induction step follows, provided the correlations {Z^)^ have N->co
limit for each x. But this is standard, given the cluster expansions for <— >^,
established in [1].

To start the induction, let ^ = 0. From (25) we see that «^(x) converges since
F^'° does by definition. V£(x) converges too, since it is the periodization of Vm

which satisfies |F|^^?/. Hence the thermodynamic limit of <FN(x, </>)>^ΛΓ exists, in
particular that of <(0J">^ does.

Now consider a general expectation

GN(y) = <( F^(φ) ... F^(φJ) £kN, (29)

where the Ff are as above. We proceed by induction in s, iterating the expansion
(1) (we drop the subscripts from s.):

/ S \ T , N - 1 s-1 / k \T,N-1

GN(y)=(ΣSF?) N ί +

[N/2] s-1 I k \ T,N-t

t=l k=ί {Ij} \ j = l

(30)_
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By the recursion formula (6) the various kernels of(S*~1F)I have JV—»oo limit
and thus by induction the sum on the right hand side has, since it is uniformly
bounded in N (as follows from Lemma 3). The second term satisfies

(31)
\i"ι V*-[f]

as follows from Lemma 2. Thus lim GN(y) exists. Finally, a general correlation is a

linear combination of products of truncated ones and Theorem 1 (A) follows.
Next, we turn to Part B of Theorem 1. We have already shown that

lim (TVN)m(x) = lim V^\x)
JV^oo N->oo

exist for all m,x. Call this limit (TV)m(x). We have \TV\A^δη. Indeed, TFis given
by the JV-> oo limit of (28) with ^ = 0, where V% will then be replaced by Vmj. But we
assumed that [F^rgf/. Thus the same proof which showed that

A T ί^-\

(32)

(where we denoted explicitly by p that the distance is taken on the torus AN_^ can
now be repeated to show

A

Σ\TVn(x)\eL ~ ^m\(δηΓ (33)
X

(we also need Proposition 2 in the JV-»oo limit, but this is straightforward given
the cluster expansion of [1]). Thus there is a state < — >ΓF and ^(φ^)τv is given by
the N-+CO limit of the expansions (27), (28), and (30) (as applied to <Π^;)τF to

start with), i.e. it is uniquely determined by the kernels (TV)m. But so is
lim ^φ^v^1 whose existence follows as that of lim (φ^yN proved above.

JV^oo JV->oo

Part B is thus proved.
To prove Part C we proceed similarly. First we write the infinite volume

versions of (24), (27), (28), and (30) :

00 00 -j

<F(x,0)>κ = F0(x)+Σ Σ- Σ&VJLL-ix},*)^, (34)
ι=o m=ι mi x

md

(Se+1F)m(\.L-e-1x],5c) = L~ Σ Σ

(35)

(36)
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Of course <— >^ is taken in the thermodynamic limit given by the cluster
expansion of [1]. Since \Vn\A^2η for n^n0 and Cn are uniformly bounded, the
sums converge absolutely, uniformly in n, when written for V=Vn. Since the
individual terms converge, we may proceed by induction to show that

For generalized π-point functions (F^x^φ); . . . Fs(xs, φ)> £ we write the infinite
volume limits of (30) and (6) :

s \ Γ oo s- 1 / k \ Γ

Πf.) =Σ Σ Σ(U(sf-1F)I\ , (37)
ί=l IV t=l fc=l {Ij} \ j = l / r<V

(38)

Again, by Lemmas 2 and 3, the sums are absolutely convergent uniformly in n.
Hence the convergence when n-+oo follows by induction in s. Specializing to
Fi(xi,φ) = φx. we get the claim of Theorem 1, Part C, the convergence being
uniform in (xj since our bounds are. Π

Notice that (34)-(38) together with the cluster expansion for <— >J provide a
sort of inductive infinite volume expansion for our model.
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