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On the Massive Sine-Gordon Equation
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Abstract. We study the ultraviolet stability problem for the two-dimensional
Yukawa interaction λ J : cos uφξ : dξ in the region 4π < α2 < α2, where
6π < α2 < 8π. The results have a natural Coulomb gas interpretation, because the
counterterms do not depend on the field.

1. Introduction

The cosine potential

:cosaφξ:dξ9 ΛcR2 (1.1)
Λ

for the quantized 2-dimensional vibrating string has been widely studied for α2 < 4π
[1], as a perturbation of the elastic string, described in the euclidean formalism by a
gaussian random field on ^'(R2) with covariance Kernel

-yϊ> (L2)

This theory is equivalent to the classical statistical mechanical problem for the
2-dimensional Yukawa gas treated in the grand canonical ensemble, the activity of
the ±e-charges being λ and the inverse temperature β being such that a2 = βe2.
Since the Yukawa potential Cxy imitates [see Eq. (1.2)] the Coulomb potential at
short distances, the theory in some sense describes the "ultraviolet" part of the
Coulomb system. The condition α2 < 4π is equivalent to the condition that the naive
Mayer expansion has finite coefficients. For α2 > 4π (i.e. low temperature) it is no
longer clear that the classical Coulomb system does not collapse. One expects that in
fact the gas collapses but that the collapse takes place in a nontrivial and gradual
way, while α2 varies between 4π and 8π.

A very qualitative and not obviously convincing argument might be the
following. Assume that the gas is formed by neutral clusters of 2n particles with
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diameter equal to the value £N of the ultraviolet cutoff (so that in this situation one
would have collapse as ̂ ->0). Then our gas will be formed by independent particles
of species n = 1, 2, . . . , each with activity

(1.3)

ne
C0^=-—log^1 (1.4)

(2n}\ v 7

where U(N} is the cluster energy

fτw= C2 2 n(n~V n(n~
2 2

and (^}2n~1 is the phase space of (2n— 1) particles around the one which defines the
cluster's position. The cluster picture will be consistent only if the cluster's activity
does not vanish as ΛΓ-»oo, i.e. if

lim KN Ί ^2>0 (1-5)

So we see that, if α2e8π - , - - , the maximum cluster size is 2n. Hence, if
L 2n

α2 < 6π, the only possible clusters are made of pairs if α2 < the possible clusters

are made with four particles, etc. At α2 = 8π one should have "full collapse." Since
neutral pairs or clusters with infinite activity and zero diameter also represent a
collapsed situation, one may think that for α2 < 8π one has only partial collapse: at

the temperatures βn = —^ —— n = 1,2 ?..., there should be phase transitions where

the nature of the "infinite density background" of clusters changes type. This
sequence of tresholds was discovered in [1] (Frδhlich).

The above considerations show the interest of the cosine interaction's theory for
α2 > 4π and why it is a theory of the 2 dimensional collapse. In the following sections
we shall prove that the above heuristic picture is correct, as far as the stability
problem is concerned, at least for α2 < α2, with

α 2<α 2 = 2π(]/Ϊ7-l)<α2, (1.6)

20π

T
particles and six-particles neutral clusters [see Eq. (1.5)]. The value that we find for
α2 has probably no special meaning and it may be an artifact of our estimate
techniques, see comment after (B.I2).

2. Nonperturbative Renormalization

The cutoff field φf\ ξεR2 will be defined, as in [2], as the gaussian field with
covariance

D)-1, (2.1)

where α2. = 6π and o^ = — — denote the thresholds for the appearance of the four-
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where D is the Laplace operator in R2 and y > 1 is a constant which will be chosen
later suitably close to 1. φ(^} can be represented as a sum of independent, identically
distributed up to scale factors, gaussian fields

, (2.2)

where, by definition, φ(k] is the gaussian field with covariance:

^L , u, -^ -*- c Ί i ^ίn M\ / -*- -*-
(2 1}
( J

We call the "field of frequency k" the field φ(k\ Pk and Pk ($k and Sk) will denote the
measures (expectations) corresponding to the fields φ(k} and φ(k\ respectively.

Observe the scaling relation

Ck(ξ-η) = C0(ykξ-ykη) (2.4)

which implies, in particular, that the fields

7(fc) _ Λ(fc) n o
Zξ — Ψy-hξ \Z"D)

are identically and independently distributed with covariance C0(ξ — η). If / is a cube
centered at the origin, we define : 1

V(

0

N]

I = 2λ\ :co$aφ(

ξ

N):dξ. (2.6)
/

As a function of zf\ V^N\ can be written in the following way [using (2.5)]

V^ = 2λN J cosα«^>+z<»V£, (2.7)
yNI

where

will be called "effective coupling constant" for the frequency N. From Eq. (2.8)
follows that the theory is exponentially asymptotically free if α2 < 8π. For these
values of α2 we can then hope that the renormalization group analysis used in [2]
for the Φg theory works. However for α2^4π the theory with interaction V^\ is
divergent in the limit N-+ oo and we need to add some counter-terms in order to
regularize it. Call FJN) the renormalized interaction and define

ι
_%τ

n ,βh

(2'9)

where ^( n) is the truncated expectation of order n2 with respect to the measure
Ph and [£n cnA

n]t is the truncation to order t of the polynomial ]ΓΠ cn/ίn. Suppose now

-<^2>
1 As usual, if x is a random variable: cos.x: =e2 cosx.

2 If /j, ...,/„ are random variables we define

where 6" denotes the expectation. If /1 =/2= ... =/„ = /, we put also £T(f,n) = £>T(fJ, ...,/)
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that it is possible to choose the counterterms so that Vf } as a function of z(h\ is a
polynomial in λh with coefficients weakly dependent on h, at least for a set of values
of φ(h~ υ of large probability. Then simple heuristic considerations suggest that, in
some sense :

(2.10)
with

K?'~λί+V*|/|. (2.11)

This implies that we can hope to estimate the partition function

ZN(I) = gN(evn (2.12)

by successively integrating over z(N\ z(jv~1}, ...,z(0) only if the right hand side of
Eq. (2.11) is summable in h that is only if [see Eq. (2.8)]

. (2.13)
4π

These considerations also suggest that we need counterterms of order at most

[2 / 2 — — I . It turns out that, if α2 < α2 [see Eq. (1.6)], we can satisfy the conditions
/ \ 4π/J

on V^h) by adding to V^] only constant counterterms associated in the Coulomb gas
interpretation at the collapsing clusters. This is very important since the presence of
counterterms depending on the field would destroy the relation between the
renormalized theory and the Coulomb gas problem.

The idea of the possibility of a complete renormalization by the use of constant
counterterms only is not new : we learned it from Frόhlich. For the massless case see
[5].

We conjecture that it is possible to renormalize the cosine interaction by adding
only constant counterterms for all α2 < 8π. However we could not prove that much,
for reasons which will become clear in the following and which seem essentially
technical. We therefore assume the condition on α2 :

(2.14)

In this case we can choose in Eq. (2.9) ί = 4 and we define

). (us)

We are interested in proving the existence of the limit.

lim ^(exp(Ff > + φm(f))) = Z,(/) (2.16)

for feD(R2), <?<">(/) = f φf > f(ξ) dξ .
The main part of the proof will be the following theorem.

Theorem 1. There exist two constants E+(λ), E_(λ) such that, uniformly in N :

(2.17)
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where \I\ is the volume and

Furthermore, W>0:

391

(2.19)

(2.20)

Observe that FJN) differs from V$N) by a constant finite in the limit N->oo.
The proof that Z7(/) exists will easily follow from the proof of Theorem 1, which

will be given in the following sections.

3. The Structure of Vf>

In this section we shall collect the properties of Ff) that will be important in the
following.

Vf] has the following structure [if t = 4 in Eq. (2.9)], as we show in Appendix A :

(3

where, for F,GCR2 and Jc# arbitrary bounded sets3:

}= J
F X

'- f— J

\2( i-ε)

(3.3)

ί <
F X G

(3.5,

(3.6)

3 In the following expressions one sees terms, like (3.5) and (3.8) or (3.6) and (3.9), which look the same:
however they arise in a different way and they must be bounded through different estimates (see
Appendix A)
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)_ r J£M(4.5^a
- J "5WN (£) / h\κ K \\2(1- ε)

u lss~ $4\)F X G

P&£h)= ί dξu% 7 h)(t

4

Λ ( Λ ) _ v V ln f /
A/ ~ Ln L 4 J C

2 E f = ± l J X . . . X J

\ 1

4

(3.12)

Cf=Σn^ ί rf^.-^c^!,--.,^). (3.13)
2 J x ... x J

If ε<2(l — a2/8π) (see Appendix A), there exist two positive constants A and /c,
independent of JV, such that, for all Δ19 ...,An belonging to a pavement Qh of R2

made of cubic tesserae with side size y~h:

j dξ, ...dξn\u^h\ξ)\^AQχp{-κγhd(A^ ...,4)} (3.14)

for n = 2,3,4 and any !(w<v

2'1 Λ) = w<v

2>'1)) and

J dξ1...dξn\a^' '*»\ξ)\^Aexp{-κγhd(A1,...,An)}, (3.15)

...,4)}, (3.16)

where d(^l5 ...,An) is the length of the shortest path connecting all the tesserae
Jι>-'4 .

There is also a positivity property, which will be very important in the proof of
the upper bound :

(3.17)

Equation (3.17) will be used together with the following bounds:

i=l,2, (3.18)

i Φ 2 , (3.19)

i = 2,3,4,5, (3.20)
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where J C R and F C R2 are arbitrary sets and A is a suitable constant, independent of
JV, h. Let us now define:

^ = |(^,ξ2)e/x/

and Blh
H\ξί-ξ2\)1-ε^δ\, (3.21)

where

J^Bίl + ft^logίe + r1). (3.22)

J5 and δ < 1 will be chosen later.
The definition of Q)h is suggested by the following considerations. If we define, for

J C I :

2 5

-L^V W^4'1'^J^Ah Li yyj2\@

> (3 23)

then from Eqs. (3.2)-(3.16) it immediately follows that

\Vf\^(λh + λΐ)B2

hΆ(y2h\J\) (3.24)

for some constant A independent of h and N.
After understanding Appendix A the reader will observe that the bound (3.24)

would be true also if we defined

+«44;'!W+^4 Σ w$ M (3-25)
ie{6,7}

However the iterative procedure that we shall use in the proof of the upper bound of
Eq. (2.17) suggests the definition (3.23).

The proof of Theorem 1 will be based on the estimate of J dPh exp(Ff }). However
Vf^ is not a simple function of φ(h} as it depends on φ(h} through the set @>h. Therefore,
following the ideas developed in [2], we introduce another function which, as a
function of φ(h\ has essentially the same structure as Vf\ thought of as a function of
φ(h\ We put, for Jcl

2 5
fj(h)_V(h) ;2τΛv(2,h) . Q 3 V w(3,i,Λ) , 04 y w(4,i, h)
ttj - yo,J-Ah

 yyj2\gh_ί+Λh ^ί yyj2\^h_ίxj^Ah Li yVJ2\^h-ιXJ2\^h-ί

1 3

x J Z + λί^^5U.1 + λ*L^;^χ^
(3.26)
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It is possible to see that H(f\ thought of as a function of φ(h} at fixed φ(h υ, has the
following structure:

4 2

I Z-fW

2 1

V '
•Σnt

. α „,.. α
Sm

(3.27)

with the functions v^ξ) satisfying the following estimate, for all Δ^ . . . ,Λ n eQ h :

J dξί...dξn\vi(ξ)\^ίϊhQXp { — κyhd(Av ..., An)}, (3.28)

where, for a suitable constant H:

(3.29)

3.30)

Let us now consider the PΛ-measurable event

sup|^f}

ξεΔ

where zl e βΛ and b > 0. We shall denote by χb

A the characteristic function of Eb

A and
by χb

A = l — χb

A the characteristic function of its complement. If $ = (A1,Δ2,...)

denotes a subsets of Qh, which will be identified with (J Zl, ^c will be its

complement and we shall define:

y& = FT Ύb Ύb = FT Ύb

(3.31)

H(j} has an important property, which is expressed by the following lemma :

Lemma 1. Let y be fixed close enough to 1 and 0<ε< 1. For any integer ί^O there
exist constants b*9 G, ρ, ρ' depending only on ε, ί, and K such that, ifb > 6* and & is a
subset of Qh

ί < exp (H$>#) ^ exp [δ(b, Hh}y2h\I\ + 5'(fe,

fc!
(3.32)
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where

δ(b, Hh) =
(3.33)

Furthermore, ifb>b*

I dPhχ
b

Qh exp (H™) έ exp { - J2h\l\δ(b, Hh)}

. 0.34)
1

Thanks to the scaling property (2.4) of the fields φ(h\ it is sufficient to prove this
lemma in the case h = 0. The proof can be done exactly as the proof of Lemma 1 in
[2], using the support properties of φ(0) proven in [3] and some stronger results
discussed in Appendix C, where the proof is sketched. In Appendix C the following
proposition, needed later, is also proven.

Proposition 1. Vε>0 there exist b, e l5 e2 such that, ifb^b

g Π ^p{eι-e2b
2(ί+d(AJ))} (3.35)

for any

4. The Lover Bound

The lower bound in Eq. (2.17) is obtained by recursively applying Lemma 1. We
start from the inequality :

l i f t XftV
A))]exPfΓ Π dPh^\^pV^dPN, (4.1)

where χ%(φ(h)) is the characteristic function of the event:

sup|φ*|+ sun -M^j^^Bh(ί + y"d(A,I)), V/leβJ, (4.2)

and Bh is defined as in Eq.(3.22). From Eqs.(2.2), (3.30), (3.31), and (4.2) it follows
that

^-1(<P(A"I))^V))^^-1(^-1))^, h^ί, (4.3)

where

bh = ̂ -(i+h2}\og(e + λ-ί}. (4.4)

D

Then we have, by Eqs.(3.26), (3.34), and (4.3), iί->b*:

ί Π χfcV
fc))(eχpfίfc)) Π

Λ = 0 f t = 0

* exp {- γ2kδ(bk, Hk)\I\} j exp , (̂̂ ' „) Π tf(φ<»VΛ-,, (4.5)
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and δ(b,Hk) is defined as in Eq.(3.33) with t = 4. Furthermore, by noticing that in
Eq. (3.28) the real bound is of order λn

h for terms of order λn (see Appendix A), it is
easy to see that [see Eq. (2.9)]4:

4 1\/(k~i)_y J_c (4.6)

Finally from the definition (2.9) it immediately follows that

1τ/(- 1) & /Ί/(N)\ j_ β>T(Λ/(N} . γ\ (Λ η\
VΊ — & N( VQ ι) + — 0 N( VQ r , J) . (4. / )

3!

The lower bound in Eq. (2.17) follows Eqs. (4.6) and (4.7), putting

00

0

By Eqs. (3.29) and (3.33) £_(λ) is finite for all α2 <^π and satisfy Eq. (2.19). Then,

as regards the lower bound, there is no necessity of restricting α2 to the values less
than α2 <^π. Furthermore, by increasing the value of ί in Eq. (2.9) and doing the
algebra needed in order to prove the bound (3.28), it is also possible to obtain the
lower bound for all values of α2 < 8π. The proof of the lower bound can be
extended to Z7(/) [see Eq. (2.16)] without any real difference, since exp φ(N\f)

N

= [] expφ(A)(/) and

Φ(h\f}= Σy~2Ίh z f } f ( y - h ξ ) d ξ . (4.9)

Proceeding as before, it is easy to see that

k k-ί

ί Π tf(ψ(h})exp(fyk} + φ(k}(f))dPk^$ Π XΪ(V(h))exp(Vιk~" + <P(k~l)(f) ^-i
h=0 h=0

I/ID- (4-10)

which solves the problem.

5. The Upper Bound

Also the proof of the upper bound in Eq. (2.17) is reduced to Lemma 1. Now,
however, there is a problem which does not appear in the lower bound. In fact, in
order to prove that is possible to neglect in the "effective interaction" FjΛ) the
regions 2h, where the field is rough, we need some not obvious positivity
properties. An analogous problem was present in φ\ theory (see [2]), where the
solution was much simpler. In this case we could extend the method used in [2]

4 In the following δ(b,Hk) and δ'(b,Hk) will denote the expressions (3.33) with a suitable value of G,
in general larger than in Lemma 1
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until α2 = ά2, which is a not trivial result, since α2>6π, the threshold for the
appearance of four-particle clusters.

Let us define :

) = {A e βJ3ξ, ηε A such that | s in-(φf } — ™

or 3ξ<= A such that \φf\

(5.1)
J

where

(5.2)

and B will be chosen later.
If we define Fjh) and H^ as in Sect. 3, we can summarize the properties of the

effective interaction that we need, in the following Lemma :

Lemma 2. 7/α2<_ά2, there exist positive^ constants C, ρ, δ0, σ, B0 and an integer
valued function h(B, λ) such that, ifh ^ h(B, λ\ δ ̂  δ0, B ̂  B0 and B = σB (δ and B are
the constants entering in the definition (3.21) o/^h), V J C ί :

ii) V®> ̂  ΆλhB
2

hy
2h\@hnJ\ + H^A , (5.4)

where $h = {Aε Qh\yhd(A, ®h(φ(h})} ̂  B3

h} is identified with (J Δ ,

(5.5)

• T 47Γ 1with τ<^Γ — j,
az

iv) h(B,λ) = 0 if λ is small enough (but this property does not hold uniformly in
B).

Proof. Equation (5.3) is an immediate consequence of Eqs. (3.17)-(3.20) and the fact
that for h large enough, the second order term —λ%Wj2>h} dominates the other
ones. In order to prove the bound (5.4), observe that it is possible to choose δ0 < 1
and σ > 1 so that, if δ ̂  δQ and B = σB:

a) (5.6)

with

Bh = B(lΛ-h^)\og(e + λ-1), B>0, (5.7)

b) ^WiC^x^ (5.8)

Equations (5.6) and (5.8) are immediate consequences of the definitions (3.21) and
(5.1).
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Using Eq. (3.24), we can write :

Furthermore, by Eq. (5.6) and Eqs. (3.17)-(3.20), we can prove that there exist
h(B, λ\ such that, if h^h(B,λ)

But Eq.(5.8) and the definition of H^ imply that

)=H^h. (5.11)

Equations (5.9)-(5.11) imply Eq.(5.4).
In order to prove Eq. (5.5) we first observe that, by the same argument used in

the lower bound [see Eq. (4.6)] :

h)\I\ (5-12)

Then it is sufficient to show that there exists B0 such that

(5.13)
n'

The bound (5.13) is at the origin of the restriction (2.14) on α2. In fact ρ-»0 if
α2->ά2, so that the "error" in the right hand side of (5.13) is not summable in h any
more. Equation (5. 13), depends on the detailed structure of Vf} and will be proven
in Appendix B.

We can now prove the upper bound on the partition function. First observe
that the integration of φ(N} can be easily done, since F7

(jV) = H(^} is bounded. By
Eqs. (3.32) and (5.12), we have (see footnote 4):

£ Σ

ίl2. (5.14)

The sum in (5.14) can be easily estimated using Eq. (3.27), which gives

rgexp

/ / - Cl C2 ~2 N

P^ N> N 2 2 N

c3e
S'CBN'SN)+C-ϊ-^"}γ2N\I\. (5.15)
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The effect of this sum is then simply to modify the constant G in the definition of
δ(BN,HN) and we can write, using also Eq. (5.3)

^y^l/l]. (5.16)

In the same way, using Eqs. (5.4) and (5.5), we can prove that, if h ̂  h(B, λ) :

fdήexp^^expί^*-1^ (5.17)

From Eqs. (5.16) and (5.17) the upper bound immediately follows with:

sup (I/Γ1^*-1*). (5.18)

Equation (2.20) is at this point obvious. Also the extension to Zj(f) is easy.

Acknowledgements. We are indebted to R. Seiler for suggesting the problem and to J. Frόhlich, R.
Seiler, and K. Schrader for useful discussions and comments.

Appendix A

In this appendix we shall give some details about the structure of V$h\ defined by
Eqs.(2.9) and (2.15). Given the n "vertices" { ξ ί 9 ...,£„}, we define

where ε = +1, i=l , ...,n. Furthermore, if X={il9 ...,ir} is a subset of {1,...,n}, we
put

ξx =(ζ1,..., ζi2\ φ^χ—(φ^ξl> ''>φ(ξi\ ^χ—(^ ^i) (A.2)
If { X 1 9 ...,XS} is a partition of {1,...,n}, we define:

k

In the sequel we shall use the following relations, which are simple consequences of
the Wick product's definition:

We recall also a well-known property of the truncated expectation :

#IΛ, -.,/,)= Σ (

where (̂1, ...,r) is the set of partitions of {1, ..., r} and |D| denotes the number of
elements in D.
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Using Eqs. (A.4)-(A.6), it is easy to show that, given a partition {X^ ..., Xs} of

,..., ί , ...,Xs\ε):έ"&h~"\, (A.7)
o .

where

^- Wίe- V *,(£)]τ, (A.8)

(._i)H>l-i( |D|_i)i f e-2^,--' •*,, (A.9)

Equation (A. 7) allows us to obtain very easily the expression of Vj f t ) for any ί. For
simplicity we shall give the result for t = 4 :

*" Σ ί
A + l 2 1 ε ι , . . . , f i u = ±1 / x . . . χ /

2
4 m M 1 4- Γ _ I V

0 2 1 ^ ει,...,ε u = ± 1 J x . . . x /

where m2 = 1, m3 = 2, m4 = 5, and

Σ ί dξl...dξuG^,ε), (A.10)

^^ ε^,^), (A. 16)

(A. 17)

i+1 J+l

In Eqs. (A. 13) and (A.15)-(A.18) is understood that the left hand side is zero if the
right hand side is meaningless. The expression (3.1) of F/Λ) is obtained by singling

n

out the terms depending on φ(h) of "total charge" β = Σίεί = 0 and the terms
i
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containing the function F(J)(r, s;ε(r s)) with εr + εs = 0, which give rise to the W(u'l'h}

terms. The other terms are collected in A(f} and C(f\ We have:

Λ + l

Σ ^ ϋ i ( + >- ' )ΣG (

3 '!2(£ + -ε), (A.20)
ε= ±1 Λ + l

£ = ± 1 A + l

Σ,

(A.22)

• Σ.
h+1

^^2i4, + - + -)], (A.23)

\yh\ξl-ξ2\)1-°(yh\ξ3-ξ4\)1-* (A.24)

• [all four order terms with Q = 0] ,

_A4(7^i_^|)2(i-£)4 £Gω3(_^ + _ + _), (A.25)

«3(ξ, + - + -) + 4G«4(ξ, + - + -)
h+1

W5(£, + - + -) + 2G^5(ξ^2^3, + - + -)], (A.26)

* Σ ^2t/ί°^ 4 ( +- ε ε )Σ. [4G«3^ + -^)
ε= + 1 fι+ 1

^, + - εε) + 2G&& + - εε)] , ( A.27)

1-ί2l)
1" Σ (-εK2yί°-.^->

(ί, + -εε)].(A.28)
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The bounds (3.14)-(3.16) are a straightforward consequence of some properties of
the covariance C0(x) defined in Eq. (2.3). The first property is that there exist
al9a2,κ>0 such that, VxeK 2

fl^-'M ^ C0(x)^a2e'κlx{ . (A.29)

Furthermore, given η>Q, there exists α>0 such that, Vξίξ2ξ2ξ4eR2

ξ2\2~η> (A.30)

Equations (A.3), (A.9), (A.29), and (A.30) are sufficient to show that there exist
positive constants α3, α4, An, such that

Π Π Πd + ̂ -^N, (A.33)
Kυ ίeXu jeXv J

where Q = Σiεί> Qi= Σ εj and d(|xl5 •• ?Jxs) is the length of the shortest graph

connecting the sets of points ξXί, ...,ξXs. The bound (A.33) can be improved, using
Eq. (A.31), if, for some i, \Xt\ = 2 and Qt = 0 for example, if Xί = {1,2} and Q1 = 0, we
have:

1 , 1±1 f i Λ ( Q 2 _ f f Q 2 ) _

Π Π Π(i+*3l^-£rt (A.34)

where F(+\F(®) is obtained from F(h} by symmetrizing (antisymmetrizing) in the
exchange ξ^ξ^

Finally, using Eq. (A.32), we can prove that

Π Π (l + fl3l^-^lβ4)]^~κyhd(ξ(1 2 ) >" f ξ ( 3 4 ) )

9 (A.35)
=(1,2) je(3,4) J

where F(+} is obtained from F(h} by symmetrizing in the exchange £1<->£2:
The bounds (3.14)-(3.16) are obtained very simply from Eqs. (A.29)-(A.35). In

fact, for the functions u(^'2>h) and u(^'Ί'h\ Equation (3.14) should be true also if we
define them without the factor (yh\ξ1 — ξ2\)ί~ε. This is linked to the fact that the
corresponding terms in F7

(Λ) have total charge Q φO and all the terms with Q Φθ are
bounded for any value of the field φ(h\ This explains the observation following
Eq. (3.24).

The positive property (3.17) immediately follows from Eq. (A. 19), while the
bounds (3.18)-(3.20) are again a straightforward consequence of Eqs. (A.29)-
(A.35).
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Appendix B

In this appendix we shall prove the bound (5.13). Let us define:

-*f (B.I)
l (4)

From Eqs. (3.23), (3.26), and (A.10)-(A.28) it follows that

Aw = _ w?\@h}+W?\@h} + C(h\@h) + Σt 7/h)W , (B.2)
i

where

ξ1ξ2; + ,-):[! -cosα«-<>)]: (B.3)

3, 4){ : [1 - cos α(φ<") - φg

(B.4)

1'^ + - + -) (B.5)

1, ξ3, ξ2, ξ 4 ) + 2G^5 U(ξlt ξ3, ξ2, ξ4, + - + -)], (B.6)

(B.7)

j ^(1, 2)^(3,4)
h x ^ h

1^, + - + -J + θG^1^. + - + -)

(B.
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Using Eqs. (A.29)-(A.35), it is easy to show that there exists A>0 such that

4

1

Furthermore, if B is large enough, V f o ^ O :

Wf\2^Q. (B.ll)

Equations (B.10) and (B_.ll) imply that there exist h(B,λ) and B0 such that, if
B ̂  B0 (recall that B = σB) and h ̂  h(B, λ):

The point now is that W^h)(^h) and C(h\@h) do not satisfy a bound like (B.10)
uniformly in N. Then it is not clear if Δ(j} is negative for any choice of &)h, or not.
We did not solve this problem; however we can prove that Δ(j} is bounded by
something which is summable in fe, at least for α2 small enough (but larger than
6π). Of course, if Δ(j} were negative, the proof of Lemma 2 would be finished
without any restriction on α2.

Let us define

It is easy to show that there exists c> 0 such that

» (B. 1 6)

From these bounds and Eq. (B.12), it follows that, if

α<^J, >/<ΐf, (B.18)
or α

there exists h(B, λ)^h(B, λ) such that, if ft>/i(β,λ)

where

(B.20)
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and h(B, λ) —-—»0. Since we want ρ > 0, we have to impose on α the condition

2

α> (B.21)
A
4

which is compatible with (B.I8) only if

α2<2π(]/Ϊ7-l). (B.22)

Appendix C

In this appendix we show how it is possible to reduce the proof of Lemma 1 to the
proof of Lemma 1 in [2], which the reader is supposed to be familiar with.

Let <21? Q2, ζ)3 be three pavements of R with cubic tesserae with side size 1. We
suppose that the centers of the tesserae of such pavements are on the step — 1
lattices of R2 with origin, respectively, at the points

ks=1'2'3 (C.I)

and with edges parallel to the coordinate axes of R2. After constructing such
pavements we turn each tessera into a smooth region by some deformations, so
that different tesserae are separated by a corridor and the intersections between
the boundaries are smooth. The exact definition of the deformed tesserae can
immediately be deduced by the analogous definition in Sect. 5 of [2], where the
three-dimensional case is treated. We call β1 Λ Q2 ,̂ Q3 ^ the sets of deformed
tesserae, scaled by a homothety factor £. On each Π e 6^ i ~ 1, 2,3, we introduce a
covering of dQ with regular line-elements, regularly spaced as ^->oo (see
Appendix A of [2], Definition 3), which will be denoted σ1,σ2,.... To each line
element we associate its local system of coordinates (see Appendix A of [2],
Definition 3 and Fig. 1). If / is a distribution in ^'(δΠ) and if ασι,α<T2, ..., is a
partition of unity on δQ associated with the regular, regularly spaced covering, we
consider the distribution aσf with support on σ and call cζ/ its representative in
the local system of coordinates associated with σ: ασfe@(R2)

Fig. 1

6D
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The following norms will be used, VseR, Vεe(0, 1):

(C.2)

(C3)

sup e ^ ~ GεRd. (Q4)
x<=G x,yeG

We shall need the following proposition

Proposition C.I. I/0<ε<s<l, there exists a constant cs^ε such that, for any
UE^(/\R)

Hc(*>(σ)^JWllnε)(*)' (C 5)

where
α = s-e. (C.6)

Proo/ If ue^<ε)(#), there is a function zeC°%R) such that

(c.7)

where Na(x — y) is the Kernel of (1 — d2)~α/2. NΛ(x) has the following properties:

i) NΛ(x) = \xΓ '/(x2) + J(x2) M ̂  1 , (C.8)

|x|^l, (C.9)

where /(x2), J(x2) are smooth functions and κ>0 is a suitable constant. (C.5) is an
easy consequence of (C.8), (C.9) and the estimate :

J dy^-yΓ^-lx.-yΓ^^clx.-x^ (CIO)

valid for any χ l5 x2e[— 1/2, 1/2] and a suitable c>0. If ασ belongs to the partition
of unity on <?Π defined before, we call ασ an extension of ασ to a C00 function on R2

with support within distance 1 from σ, chosen in a "canonical" way (see [4,
Sect. 2]). Then, if ue^'(R2} we define:

ClJ)(x, ί) - αff(x, ί + y(x)) (3(J)t/) (x, ί + y(x)) , J - 0, 1 , (C. 1 1)

where t = y(x) describes the surface element σ in the local coordinates (see Fig. 1)
and δ(J) denotes the normal derivative of order J. We put also

t), .7 = 0,1 (C.12)

for any seR and εe(0, 1). Then we define (see [4, Sect. 2]), for G = R2 or

G = Q E (J Qf , and G' = ̂ 2 or R x [0, oo) respectively :

i l ^)(G,σ f)' (C14)

where, in Eq. (C.14), the supremum is taken on all the surface elements of δΠ
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We shall need the following proposition

Proposition C.2. 7/0<ε<s<l, there exists two constants Γε s and δ such that, //Ύ0

is large enough, for any Π e (J (J Q{ e
<?^o i

Hw|lc(*-)(SD)^Γε,sl |w|l^ |)(D,δD)' (C15)

where

Proof. By the "canonical" definition of the functions ασ (see [4, Sect. 2]), it is
possible to choose δ, at least for / large enough, so that, if ξe5D, aσ(ξ)^c for a
suitable σCδQ, with c independent of σ. Then the proof of Proposition 2 easily
follows from the following lemma (the independence of Γε s on / is a simple
consequence of the exact definition of ασ).

Lemma 3. Let u(x,t) be a function defined on the half-plane ί^O, such that

where dtu denotes the derivative in the sense of the distributions and

0 < α < l , ε^O. (C.19)

Then there exists a constant c, such that

i

l l^l lc(-)(Rx[0,oo))^ C Σili^Hc(^x[0,oo)) (C 2°)
0

Proof. By Prop. C.I and Eq. (C.16), V x l 9 x 2 6 ^ :

for a suitable c, uniformly in t ̂  0. Then it is sufficient to show that u(x, t) is Holder
continuous in t of order α, uniformly in xe,R. Let χ(x) be a C°° function such that

suρρχ = [-l,l], χ^O, and Jχ(χ)dx=l. If μ = t2-t1>09 we define χμ(x) = - χ ί-j

then we can write :

M(X, ί2)- M(X, ί j L ) = J χμ(δ)dδ[u(x} t2)-u(x + δ, t2J]

δ,ί1)]

(C22)
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By Eqs. (C.21) and (C.17), we have

|φ, ί2)-φ, ίjl̂ dlflo1| lδ*χμ(δ)dδ
α-l

+μli01liμ*|(i-3*)~ (C.23)

Then it is sufficient to show that:

(α-D l-α

ϊ 2

Equation (C.24) can be easily proven by standard calculations. Π
Let us now consider the elliptic operator

(C.24)

-/>), (C.25)

where D is the Laplacian on R2. In the theory of A a "canonical regularity"
parameter, <9(y), appears which tends to 0 as y-»l (see [4, Sect. 2]). We shall
therefore choose the value of y, so far arbitrary, so close to 1 that all the tesserae

Π £ (J Qi £ are conically regular with respect to the cones with opening Θ(y). We

are interested in the Dirichlet problem:

Au = 0 in Π

= z(J) on an, J = 0,l.

It is convenient to introduce the "space of boundary data"

where we used the definition :

If z = (z(0),z(1))ee(

s

ε)(c>α), we put also

^Σ
0

(C.26)

(C.27)

(C.28)

(C.29)

The following proposition contains what we need to solve the problem (C.26)

Proposition C.4. There exist positive constants /0, /c, cs ε such that, z/Y^/0 and
ze(£^ε)(δΠX the problem (C.26) has a unique solution with the following properties:

(i) Vse#, Vεe(0,1), ifs'<s,

(C.30)
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•for a suitable constant cs s / > ε ,
(ii) ifQ<ε<s<l, V Λ C Π , Δ open, V σ CδD

(iii) z/σ^eΠ', ^CD, Vse#, Vβe(0,l),

where du = (d(Q}u, δ(1)w) denotes the traces of u and d(l}u on δΠ'

Proo/ The points (i) and^iii) immediately follow from Prop. 1 of [4], where it is
also proven that

Since u(Q is a C°° function for ίeΠ^π, Prop. 2 and Eq. (C.33) imply
Eq.(C31). Π

Let now P be the gaussian process on ^'(R2) whose covariance operator is
A~ 1 [cf. Eq. (2.3)]. There is a support property for P, which plays an essential role
in the proof of Lemma 1. Call Z ^i = 1, 2, 3 the family of surface elements of 3Q €

3

and call Σ^= [JiΣi £. Given a square / centered at the origin, let:
i

EB

σ'
s^={ze^\R2)\\\dz\\^(σ}<Bσ}, (C.34)

where σeΣ,, Bσ = B(l + d\σJ)) and δz-(δ(0)z, δ(1)z) denotes the traces of z and δ(1)z
on σ.

Let χf's'^ be the characteristic function of E^' s' η' f , which we shall abbreviate
-*,syor-*,sor-* τhen.

Proposition C.5. Fix //e(0,1/2) and s<l, η<s. There exist constants ct:i=l, ...,6
that, ift^ti

c^e'C2B2\I\}. (C.35)

(ii) IfScΣf, V5σ^c 3+c 4log/, σεS

$P(dz)Yl(l-χ»>s)^Y\exp(c5-c6B
2

σ). (C.36)

(iii) Let χB

Δ be the characteristic function of the event

where AeQ^ the pavement made of square tesserae of size 1. Then, if

$P(dz)( Π dVΓUσ) ^expί-c^-^52!/!), (C.38)

(C.39)
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(iv) The estimates (C.36) and (C.39) hold also if P is replaced by the probability
measure Pp, associated with the operator A considered with zero boundary
conditions on δΠ

Proof. Proposition C.5 is essentially a particular case of Propositions 3 and 4 of
[4]. The only difference is in the estimates (C.38) and (C.39), which were proven in
[4] with η instead of s — η in the definition (C.37) of EB

Δ.
lis — η>η, the stronger result of Proposition C.5 follows from Proposition C.4

(where the stronger bound (C.31) replaces the bound (C.33) used in [4]) and from
the following simple property of the covariance C0 = A ~1:

|C0M-C0(0)|:gcεM
2-2ε (C.40)

for any ε>0 and a suitable constant cε. Equation (C.40) implies in fact that P and
PP have support on the functions, which are Holder-continuous of order 1 — ε.
Then the proof goes exactly like in Sects. 5-7 of [4], choosing ε so that s — η = 1 — ε.

Remark. The conditions on 5 and η allow us to make s — η = 1 — ε with ε arbitrary
small. This result does not follow from [4], which would allow us to prove
Lemma 1 only for ε > 1/2. At this point the proof of Lemma 1 can be continued
repeating word by word, with some obvious changes, the arguments of [2] which,
there, follow Proposition 2 in Sect. 5.

References

1. Frohlich, J.: Commun. Math. Phys. 47, 233 (1976)
Albeverio, S., H0egh-Krohn, R.: Commun. Math. Phys. 30, 171 (1973)
Edwards, S., Lenard, A.: J. Math. Phys. 3, 778 (1962)
Thacker, H.B.: Rev. Mod. Phys. 53, 253-286 1981

2. Benfatto, G., Cassandro, M., Gallavotti, G., Nicolό, F., Olivieri, E., Presutti, E., Scacciatelli, E.
Commun. Math. Phys. 71, 95 (1980)

3. Gallavotti, G.: Mem. Accad. Lincei 15, 23 (1978)
Gallavotti, G.: Ann. Mat. Pura Appl. 70, 1 (1979)
Benfatto, G., Cassandro, M., Gallavotti, G., Nicolό, F., Olivieri, E., Presutti, E., Scacciatelli, E.:
Commun. Math. Phys. 59, 143 (1978)

4. Benfatto, G, Gallavotti, G, Nicolό, F.: J. Funct. Anal. 36, 343 (1980)
5. Sklyapin, L.D., Taktadian, L.A, Faddeev, L.D.: Teor. Mat. Fiz. 40, 194-220 (1979)

Communicated by K. Osterwalder

Received June 18, 1981




