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Abstract. The structure of the commutant of Laplace operators in the
enveloping and "Poisson algebra" of certain generalized "αx + b" groups leads
(in this article) to a determination of classical and quantum mechanical first
integrals to generalized periodic and non-periodic Toda lattices. Certain new
Hamiltonian systems of Toda lattice type are also shown to fit in this
framework. Finite dimensional Lax forms for the (periodic) Toda lattices are
given generalizing results of Flaschke.
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0. Introduction

In this paper we study the Laplace operator and its commutant on a class of
generalized "αx + b" Lie groups. This analysis is carried out both in the universal
enveloping algebra of the Lie algebra and in the "Poisson algebra". The problem in
the Poisson algebra amounts to finding first integrals for certain Hamiltonian
systems (which generalize both the periodic and non-periodic Toda lattices). The
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problem in the enveloping algebra amounts to finding quantum mechanical first
integrals for the quantized versions of these Hamiltonian systems. For the
generalized non-periodic Toda lattices (as studied most profoundly by Kostant
[12]) and all but four of the generalized periodic Toda lattices (Adler and van
Moerbeke [2]), we show that the two problems are essentially identical. Also in
the Poisson algebra case we show that there is an infinite sequence of new
integrable Hamiltonian systems that do not correspond to completed Dynkin
diagrams in the sense of Bourbaki [6]. (They do however correspond to Coxeter
diagrams of finite groups generated by reflections.)

The four generalized periodic Toda lattices that do not fit into our uniform
quantum and classical mechanical techniques are handled in this article using Lax
forms. We derive in particular a finite-dimensional Lax form (generalizing that of
Flaschka [7] for the periodic Toda lattice) for all first integrals of all the periodic
Toda lattices associated with completed Dynkin diagrams. In the case of non-
periodic Toda lattices this Lax form immediately shows that the full system of first
integrals can be linearized in terms of the action of A on G/MAN for G the
corresponding real, split, semi-simple Lie group and MAN a minimal parabolic
subgroup. In the case of the periodic Toda lattice this is also true, with G replaced
by a certain infinite-dimensional Lie group. These results will be the topic of the
second paper in this series. Also in a forthcoming paper will be another infinite
family of integrable Hamiltonian systems associated with certain "non-generic"
orbits of A on G/MAN.

The joint spectral decomposition of the quantum first integrals of the
quantized Toda lattices will be the subject of a later paper in this series. In the case
of the non-periodic Toda lattices this is intimately connected with the work of
Kostant [11] and Goodman and Wallach [8] on Whittaker vectors. For the
general case the existence of the joint spectral decomposition is guaranteed by the
results of this paper (commutativity of the centralizer of the Laplacian in the
enveloping algebra) and a theorem of Nelson and Stinespring [15].

To describe our results and motivation in more detail, consider the class of
solvable Lie algebras over IR of the form

b-α®u, (0.1)

where α and u are commutative subalgebras, with u an ideal. Assume that there is
an inner product <•,•> on b so that (0.1) is an orthogonal decomposition and

ad(tf), He a, is self-adjoint. Let Ω=ΣHf + Σxί where {#J and (Xj) are

orthonormal bases for α and u, respectively. Thus Ω is an elliptic operator in the
enveloping algebra C/(b), which we shall call the Laplacian of b. The principal
objects studied in this paper are the centralizers of Ω in U(b) and S(b) (the
symmetric tensor algebra with its canonical Poisson algebra structure).

Let g (respectively G) be a semi-simple Lie algebra (respectively Lie group) over
R, and g = ϊ®α©n (respectively G = KAN) an Iwasawa decomposition. Our
original motivation comes from the case when b = αθπ/[n, n], with < , > induced
by projecting the Killing form, B, from ϊ1 onto α0n. In this case, letting U(ctf
denote the centralizer of ϊ in l/(g), we construct in Sect. 1 a canonical
homomorphism
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so that if C is the Casimir operator of g defined by B, then γ(C) = Ω + const. Since C
is central in £/(g), it is clear that

(0.2)

where U(b)Ω is the centralizer of Ω. In Sect. 4 we prove that when G is split, one has
equality in (0.2), and U(V)Ω is isomorphic to a polynomial algebra in dim(α)
generators.

The differential equations satisfied by Whittaker functions on A associated
with the spherical principal series πv (Kostant [11] and Goodman and Wallach
[8]), are given as

*(y(u))f=xMf, (0.3)
where π is a fixed representation of b on C°°(α) (see below), and χv is the character
of l/(g)f associated with v. In light of (0.3), the results of Sect. 4 amount to an
algorithm for describing explicitly the differential equations satisfied by Whittaker
functions on G. The application of this analysis will appear in a later paper.

Return to the case of a general algebra b as above, with corresponding simply-
connected Lie group B. Using the standard Kirillov-Kostant-Souriau symplectic
structure on b*, one finds that Ω corresponds on generic orbits of B on b* to a
Hamiltonian system on α x α* with Hamiltonian

(Here p. are orthogonal coordinates on α*, C y Φ O depend on the orbit, and {α,.} is
the set of roots of α on u.) These systems contain as special cases all of the
"generalized Toda lattices" (non-periodic and periodic). The elements of U(b)Ω

then define first integrals of H via symmetrization from U(b) to S(b).
We define a representation π of b on C°°(α) by

(i) n(Hi)f(x)=^f(x~tHi)\t = 0,

(ii) π(X)f(x) = icje-«^f(x)

for /eC°°(α), where theXj satisfy the commutation relations [Y,Xj] = ocj(Y)Xj for
7eα. Then

m

π(Ω) = Δ- £ cle'2** (0.5)
J = l

with Δ the Laplacian on α associated with < , } |α X α Formula (0.5) is the usual
quantization of (0.4), and in this case the elements π(T), TG l/(b)Ω, now become
quantum first integrals of H.

Let μ:b->α be the projection corresponding to the decomposition b = α0u,
and extend μ to a homomorphism of U(b) to U(a}. Let W be the group of
orthogonal transformations of o generated by the reflections about the hyper-
planes αy = 0. [One knows that the ring of invariants U(a)w is a polynomial algebra
in ^ = dim(α) generators precisely when W is a finite group.] Our main results in
this paper are the following :
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(I) μ(U(b)Ω)gU(a)w (Theorem 2.6).
(II) If α l 5 ...,αn are linearly independent, then μ: U(fyΩ-+U(a)w is injective. In

particular, U(b)Ω is commutative in this case (Theorem 2.5).
Note that combining (I) and (II) with the Chevalley restriction theorem gives

equality in (0.2) for the non-periodic generalized Toda lattices treated, e.g. by
Kostant [12], and hence establishes their complete integrability, in the generic
sense, Sect. 4. (Kostant's results, however, are more precise concerning the
independence of the basic invariants at every point of a generic coadjoint orbit in
b*.)

(III) Suppose the set of roots α 1 ? . . . , αm forms a completed Dynkin diagram (in
the sense of Bourbaki [6]), or corresponds to the diagram Q in Fig. 5.1 (m = /-j-1).
With the possible exception of the systems associated with £7, £8, G2, or F4, one
has μ(U(b))Ω = U(a)w (Theorem 5.2).

(IV) With α l 5 ...,αm as in (III), U(bf is a polynomial algebra in t+1
commuting generators (Theorem 5.2).

The analogues of (I)-(IV) are also true in the Poisson algebra S(b) (Sect. 6 the
diagram β^ from Fig. 5.1 is also allowed now). The proofs of (III) and (IV) give an
explicit inductive procedure for constructing generators of £/(b)Ω, starting with
generators for U(a)w.

The results just cited establish the equivalence between the classical and
quantum mechanical integrability of the systems (0.4) and (0.5).

The exceptional completed Dynkin diagrams excluded in (III) and (IV), for the
case of the Poisson algebra, are treated in Sects. 8 and 9 via Lax forms. It should be
noted that the existence of "Lax forms" for first integrals of H is not sufficient to
establish Poisson commutativity of these functions. For this we also need the
results of Sects. 3 and 6.

For references to the extensive literature on "generalized Toda Lattices", see
Adler [1], Adler and van Moerbeke [2], Kostant [12], Moser [13], and
Olshanetsky and Perelomov [16]. General Hamiltonians of the form (0.4) seem to
have been first considered by Bogoyavlensky [5], who points out the connection
between the finiteness of the group W and the existence of a complete set of
invariants of motion of the system. Our formulas for the basic invariants, in the
case of the original "Toda Lattice", are related to the calculations of Henon [10].
In our approach, the surjectivity of the Harish-Chandra homomorphism and the
Chevalley restriction theorem for the invariant differential operators on a
symmetric space [9] serve as the underlying existence theorems for complete
integrability (in both the quantum and classical mechanical sense). The role of the
additional invariant [a generator for the center of C/(b)], which occurs in the study
of the periodic systems, was also noted by Bogoyavlensky [5] and Adler and van
Moerbeke [2].

The calculation of the symplectic structure and coadjoint orbits in Sect. 7 is
standard. The formula (7.9) for the Hamiltonian vector field corresponding to a
left-invariant function on the cotangent bundle of a Lie group appears first in
ArnoΓd [3] (Miscenko-Fomenko [14]). This gives the link between the enveloping
algebra-Poisson algebra calculations of Sects. 2-6 and the Lax forms in Sect. 8.
The complete integrability of the generalized periodic Toda Lattice has also been
obtained by Adler and van Moerbeke, [2], using Kac-Moody Lie algebras (Ratiu
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[17]). Our proof, on the other hand, stays entirely within the category of finite-
dimensional Lie groups, and also applies to the quantized systems (ignoring four
exceptional diagrams).

1. Factorization of the Harish-Chandra Homomorphism

Let G be a real, connected semi-simple Lie group with finite center, and fix an
Iwasawa decomposition G = NAK (N nilpotent, ^^IR^, K maximal compact
subgroup). Let g, n, α, ϊ denote the Lie algebras of the corresponding groups. Then
g = n + α + f (vector space direct sum). Set

Then & is a solvable subalgebra of g, and by the Poincare-Birkhoff-Witt (PBW.)
theorem, one has a direct sum decomposition

E/(9)=ϊ/(s)θ{E7(s)ϊ}. (1.1)

Let

be the projection defined by (1.1).

Lemma 1.1. // xet/(g) and ye U(cff9 then p(xy) = p(x)p(y). In particular, the
restriction of p to ί/(g)! is a homomorphism.

Proof. Clearly χy = p(χ)y mod [/(cj) ϊ, since y commutes with ϊ, while
p(x)y = p(x)p(y) mod[/(g)f, since l/(g)ϊ is a left ideal in t/(g). Combining these two
observations gives the lemma.

The derived algebra [n, n] of n is an ideal in s. We set b = s/[n, n] and let

be the canonical quotient homomorphism. Writing u = n/[n, n], we have b = α + u.
If A+ Cα* is the set of roots for the action of ad(α) on n, and {αl5 ...,α ί f}C/l+ is the
set of simple roots, then

f
u= y tL ,/ j α^ 5

i = l

where uΛ = {Xεu:[H,X~\=u{H)X for Heα}. Thus the only nontrivial com-
mutation relations in b are

(1.2)

for //eα,JTeuα ί, \<>i^L
The isomorphism α = b/u induces a homomorphism
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Set q = μ0πop, so that the diagram

1
' μ

Ί/(α)
is commutative. From Lemma 1.1 one has

q(χy)=(i(χ)q(y)9XE U(Q), ye c/(g)!.
Define as usual

ρ(fl) = (l/2)tr(ad(H)|n), for He a,

and let τ : l/(α)-»l/(α) be the automorphism such that

We may extend τ to an automorphism τ of C7(b) by setting

τ(#+X) = τ(//)+X, for #eα,Xeu.

Define y = τ°q and y = τ°π°p. Since μ°τ = τ, we have the commutative diagram

t/(α). (1.3)

The restriction of γ to (/(g)1 is the celebrated "Harish-Chandra homomor-
phism" [9, Chap. X, Sect. 6.3]. Let W be the Weyl group of (g, α). One knows that

is surjective.

Lemma 1.2. μ maps

Proo/ Immediate by (1.3).

Let θ be the Cartan involution on g associated with ϊ, and

the Cartan decomposition. Define σ(X) = (X — ΘX)/2, so that

is the projection onto p. The Cartan-Killing form B is positive-definite on p. Since
the restriction of σ to s is bijective, we obtain a positive-definite inner product on s
by setting

for X, Fes.
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Lemma 1.3. The decomposition

* = *® Σ "α
α>0

is orthogonal relative to < - , - > . / / one writes X=Xa+X + , whereXaea andX+en,
then for X, Ye s,

) . (1.4)

Proof. Straightforward calculation.

We continue to denote by < , > the quotient inner product on b induced by the
inner product on s. Note that by Lemma 1.3, the orthogonal complement of [n, n]
in s is

which is thus isomorphic to b as a Euclidean vector space.

Proposition 1.4. Let C be the Casimir operator in £/(g), defined via the Cartan-
Killing form. Suppose {/z } is an orthonormal basis for α and t^7 }ι^7 ̂ m f is an
orthonormal basis for uαι. Then

£ € mi

y(C)= Σhf+Σ Σ*υ-<<?'β> (L5)
ι = l i = l ./=!

Proo/ Let υ = θn be the opposed algebra to n, and let m be the centralizer of α in I.
Then g = n0α©m©t). Enumerate A+ as {α l 5...,αd}. For l^i^d pick a basis

{zij}ι*j*mi for n«,' such that π(Zy)=Xy when Igi^^ and
5(Z/<7 , ΘZmr)= —2δimδjn. [This is the correct normalization of Zfj., by formula (1.4).]
Then setting Ytj= —(ί/2)ΘZij9 one has

£ d mτ

c = Σ h f + Σ Σ(zlJγlJ+γlJz^+cm,
ί= 1 ί= 1 j= 1

where CmeC7(τn).
Now [Xij9Yij^=HΛi9 where B(Ha,H) = a(H) for all #eα. Since

d

^ = (l/2)Xί7.modI, and 2ρ= ̂  m fα ί } this gives
ί= 1

if d mi

C= Σhf+ Σ ΣXf}-Wβ
i = l ί = l j = l

mod l/(g)I. Projecting onto l/(b) and applying the automorphism τ, we obtain (1.5).

2. Centralizers of Laplacians

With the results of Sect. 1 as a model, we consider a finite-dimensional real Lie
algebra b, equipped with a positive-definite inner product < , ), such that

(i) b = α0u (orthogonal direct sum), with [α, u] £ u and both α and u abelian
(ii) for He a, ad (if) is symmetric, relative to <•,•>.
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By (i) and (ii) we may simultaneously diagonalize the action of α on u. Let
X19 ...,Xm be an orthonormal basis for u such that

tH,Xi]=aί(H)Xi, Hea. (2.1)

Here o^ea*, and (2.1) is the only non-trivial commutation relation in b. We shall
refer to {α l5 ...,αm} as the roots of α on u.

Let { W^ be any basis for b. If c^ = (Wί9 W^) and [cu] is the matrix inverse to
[c/7 ], then the element

of U(b) is independent of the choice of {P^}, and will be called the Laplacian of b
(relative to the given inner product <•,•)). In particular, with {X.} as in (2.1) and
{/z } any orthonormal basis for α, we have

0= Σ Λ ? + Σ X f . (2.2)
i= 1 i= 1

Remarks. The essential data for constructing b and Ω consist of the restriction of
the inner product to α x α and the set {αj of roots. Indeed, given this information
we can construct b using the commutation relations (2.1), and define an inner
product on b extending the given inner product on α by making {ZJ orthonormal.
Note that (IRx)m acts on b as automorphisms, via t-H = H, for He a, and
t Xί^tjXi, where ί = (ίl5 ..., tm). Relative to this action, all the inner products on b
constructed this way are equivalent, and the corresponding Laplacians are
likewise transformed.

In this section we shall study elements of [/(b) in terms of their commutation
properties with Ω, with the goal of determining the structure of the commutant
U(b)Ω. For this, fix the bases {/?•} and {X.} as above. If αeα* then HΛea is defined
by

<#α,H>=α(H), He a.

We note that the present set-up admits the following inductive scheme :
For any subset P£ {1, . . ., m}, let up = span {X^iφP}, and set bp = α0up, with the

inner product on bp being the restriction of <•,•>. The orthogonal projection

is a Lie algebra homomorphism, which we extend to a homomorphism of
enveloping algebras. Then ΩP = μP(Ω) is the Laplacian on bp. (Note that the
subscript P will consistently mean that the indices ίeP are to be omitted.)

If P, Q are subsets of {1, . . ., m}, then the homomorphisms μp, μQ are coherent,
in the sense that

μPuQ(Z\ Zet/(b).

When P={1, ...,m}, then we write μp = μ, so that μ: U(b)^>U(a). When P = {/}5 we
write μp = μj.

We now turn to some explicit calculations of commutation relations with Ω.

Lemma 2.1. Suppose ZeU(u\ αeα*, and [H,Z] = α(ff)Z for all He a. Then
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Proof. Since Ze U(n\ one has

[Ω, Z] =

But (hi9hjy=δij9 so that Σ<x(hi)hί = H* and Σα(^ )2:=<α>α>

Lemma 2.2. Leί we t/(b), and suppose that

[Ω,M] + /w + cw = 0, (2.3)

where ceIR and foe a. Assume that for all n^

Thenu = Q. i=1

Proof. By induction on dim (it). When dim(ιι) = 0, condition (2.3) becomes
(/ιH-c)w = 0, with the hypothesis /zφO. Thus w = 0 in this case.

Now assume the lemma is true when dim(u)^m — 1, and consider the case
dim(tι) = m. Applying the homomorphism μm to (2.3), we obtain by the induction
hypothesis that μm(u) = 0. Hence u=Xmui for some M1eί/(b). By Lemma 2.1

/αmWl + <αm? αm> MI + [Ω,

But by (2.3) one also has

lΩ,Xmuί]=-hXmuί-cXmu1

Hence uί satisfies

where hl=h + 2Ham and cί =c + αm(/z) + <αm,αm>. Since /^ satisfies the same
hypothesis as h, we may repeat this argument, to obtain elements wke U(b) such
that w =Xk

muk for fc = 1, 2, 3, . . . . Hence M = 0.

Lemma 2.3. Lei we [/(b) satisfy

[Ω,u~] + hu + cu = Q

for some fteα and ceIR. Assume that for some j^m and all n feN, ^z + 2 Σ ^i^ai^^

ueXjU(b).

Proof. Apply Lemma 2.2 to μ^w) to conclude that weKer(μJ.)=.Xr

J.ϊy(b).
Let σ^ b-^b be the orthogonal reflection defined by σt(H) = H for Heα and

Then σ is clearly an automorphism of b, and so extends to an automorphism of
l/(b). Define
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In terms of a PBW basis {J^V. /elNΓ, JeN'} for [/(b), °l/(b) is the subspace
spanned by {jrV:/e(2N)m, Je]N^}.

Here X1 =X^ . . X^ and hj = h{1 . . .fy.

Lemma 2.4. Let Pc{l, ...,m}, we E7(b), and suppose μk(u) = 0 for keP. Then

u= ίγ\Xk\υ for some veU(b). If also ue°[/(b), then u= (Y\X%\v' for some
\keP / \keP )

ι/e°C7(b).

Proof. Use the PBW basis {X*hJ} for I7(b) and the commutativity of {Xt}.

Theorem 2.5. Assume that the set of roots {α1? ...,αm} is linearly independent. Then

(1) μ:U(bf-^U(a) is injective;
(2) degμ(T) - deg T, for Te U(bf
(3) U(b)Ω is commutative
(4)

Proof. The independence of the roots implies that there is a basis {Hj} for α such
that oL^H^δij. One has lHi9XJ^ = δijKj and

(2 4)

where α0. = <α/,α</.>.
Fix the basis {HJ and define linear maps At: U(a)-+U(a) by

AJ(Hl9...9H,) = f(H19...9Ht + 29 ...9H,)-f(H19 ...9Hi9...,H,)9

for 1 ̂  z ̂  /, where / is any polynomial in f variables. One verifies by induction on
deg(w) that

faXf^XfΔfr uGl7(α).

Also one has

{HflfX*\ =Xκ(kίHj + kjHt + k{kj) ,

for any multi-exponent K = (fc1, ...,fem)6Nm.
Suppose Γe C/(b). Then Γ may be written uniquely as a finite sum

%, uκeU(a). (2.5)

By (2.4) and (2.5) the equation [β, T] =0 is equivalent to

K^K> (2.6)
K ί,K

where

If we introduce the notation

α£~ Σ^iαϊ> f°r ^ = (kί, " ,km),
ί
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then α xφO for KΦO, and we have

In particular, deg(gκ)= 1 for any KφO, and Eq. (2.6) is equivalent to the following
recursion for {uκ} :

m

Uκ9κ= Σ Aίuκ-2sr (2 7)
i= 1

for K φ 0. Here ε = (0, . . ., 1, . . ., 0) (1 in zth place), and we set Uj = 0 if any coordinate
of J is negative.

The assertions of the theorem now follow from (2.7). Note that
dQg(Aiu) ^ deg(w) — 1, while deg(ugκ) = deg u + 1, if u φ 0. Hence by induction we see
that deg ux :g degt/0 — \K\, so that deg T= deg w0. But u0 = μ(T), which proves (1) and
(2). Since μ is a homomorphism, (3) follows from (1), and (4) is clear inductively
from (2.7). Q.E.D.

Given αeα*, αΦO, denote by sα:α-»α the orthogonal reflection through the
hyperplane α = 0; thus

Extend sa to an automorphism of U(ά).

Theorem 2.6. Assume that αΦO is a root of a on u. If ve U(b)Ω then saμ(v) = μ(v).

Proof. Assume α = αί5 and let P be the set {!,... ,m} with i omitted. Then
μ(v) = μ(μp(v)), and dim(up) = l. Thus it suffices to treat the case dimu = l, since

We now assume dimtι = l. Since ocΦO, we may assume that the orthonormal
basis {hj} for α is taken such that oί(hj) = 0 for j ^2. Set α1=sρan{/z2, ...,/ι^}, and
write 3f=U(ai). Then [X1?JΓ] = 0, 5^=1, and U(a) = JfT[hJ. We shall prove
that

(2.8)

This will yield the theorem, since

sΛ(hi)=-hl and μ(Ω) = h\ mod JΓ .

To prove (2.8), write H = h1,X=X1, c = u(h1\ and note that the only non-trivial
commutation relation in b is

[H,X]=cX'.

Define Δf(H) = f(H + 2c)-f(H), if /eJf[JΪ]. Let Γe t/(b)°, and write, by
Theorem 2.5,

where fk(H)ε 3f\JΓ\. Equation (2.7) can be written in this case as

4kfk(H) (cH + fc<«, α» = Δ f k _ 1 ( H ) . (2.9)
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In particular, for k = d+ 1, one has Afd(H) = 0. Since cφO and fd is a polynomial,
this implies that fd(H) = uQej^. But then T-uQΩd(= U(b)Ω and has degree in X less
than d. Thus (2.8) follows by induction on d.

3. Inversion of the Symbol Map

Motivated by the example of the "periodic Toda lattice" (Sect. 5), for which the
roots are not independent, we next construct a (partial) right inverse to the symbol
map

under the following hypotheses on the set of roots π = {α1? . . . ,α m }Cα*:

For all z, α {φO, and

π^{αj is linearly independent.

Let We Aut(α) be the group generated by the reflections {sα. 1 ̂  i^m}. (Write
W= Wπ if necessary to indicate the dependence on π.) By Theorem 2.6,
μ(U(b)Ω)gU(a)w. For any non-empty subset PC{1, ...,m}, condition (3.1) and
Theorem 2.5 give the injectivity of

Define
p). (3.2)

Then given weί/(α)^ and a non-empty subset Pc{l, ...,m), there is a unique
element wp(u)e U(bP)

Ωp such that

Furthermore, degwp(w)-degw and wp(w)6°t/(b). Via the natural inclusion
U(bp) C C/(b), we may view the map u^>wp(u) as an injective degree-preserving
algebra homomorphism

Now define a /m^r map \v': L/(α)^->°ί7(b) by

X«) (3-3)

(sum over all non-empty subsets P of {1, . . .,m}). This map gives a "first approxima-
tion" to the desired right inverse for μ; under suitable conditions on π and deg(w)
we will show that w'(u)e C/(b)Ω.

To obtain some basic properties of the map w/, recall that for every subset
P £{!,... ,m} there is a homomorphism

Lemma 3.1. // \P\ ̂  1 and ue U(a)%, then

μp(wf(u)) = wp(u). (3.4)
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Proof. Suppose P = {i} and 0=t=βί {!,...,m}. By the injectivity of μ on U(bP)
Ωp, one

has

Hence by (3.2),

- ιw (M) (3.5)

(sum over non-empty subsets g of {1, . . .,m}). Writing g = {i}uQ0, with iφQ0, in the
first summand in (3.5), one obtains cancellation with a corresponding term in the
second summand, except for the term with Q = {ί}. This proves (3.4) when |P| = 1.

Suppose now P = βu{z'}5 where ίφQ. Then μp = μQ°μ., so μp(w'(uj) = μQ(w{i](u)).
But μ°μQ = μ, so wp(u) and μp(w'(u)) both project onto w. Hence they are equal, by
Theorem 2.5, Q.E.D.

Next we measure the extent to which W'(M) fails to commute with Ω.

Lemma 3.2. TTzere is a linear map w": (7(α)^->°ί7(b) such that

lΩ^'(u)-]=Xl.X2

mw"(u). (3.6)

Furthermore, degw"(u)^dQg(u)-\-l—2m, so that wff(u) = Q if deg(w)^2m — 2.

Proof. For l g z r g m , one has μi(Ω) = Ωi. Hence by Lemma 3.1,

Since W'(M), ί2e°ί7(b) and °C7(b) is a subalgebra, we have [Ω, w;(w)] e ° C7(b), so (3.6)
follows from Lemma 2.4. Since degw'(w)^deg(w)5 the estimate for degw"(w) is
immediate.

Lemma 3.3. Let ue t/(α)Jf, Re U(b\ and set

T=w'(u)

Then T commutes with Ω iff R satisfies

»-0, (3.8)

where y = α 1+... + αm .

Proof. By Lemma 2.1, for any RE [/(b),

[Ω, JΓ J . . Jφί] -X? . . X2

m(4Hy + 4<y, y»,R +X2, . . XftΩ, K] .

Thus by (3.6) it is clear that [i;Ω] = 0 is equivalent to (3.8).

Theorem 3.4. Assume the set of roots {α1...αm} is linearly independent, and let
ueU(a)% be given. Then there exists TeU(bf such that μ(T) = u iff
T=w'(u)+Xl..X^R, where Re°U(b) and satisfies equation (3.8).

Remark. Since Hy satisfies the hypotheses of Lemma 2.3 (for h) when {αj is
independent, a solution # to (3.8) is uniquely determined by u.
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Proof of Theorem 3.4. The map

is injective, by Theorem 2.5. Suppose there exists TeU(b)Ω with μ(T) = u. Then
Te°£/(b)and

by Lemma 3.1. But w'(w)e ° L7(b), so that T- w'(w) =X\ . . Jί^R for some Re ° C7(b), by
Lemma 2.4. Now apply Lemma 3.3 to complete the proof.

We now turn to the situation that arises in the periodic Toda lattice and its
generalizations. Namely, we assume that dimα = ̂ , dim(u) = /+l, and that the
relation among the roots is of the form

€

«*+ι+ Σ "A = 0, (3.9)
i= 1

where nt ̂  1 are integers. Set

ξ=Xΐ..X!<X,+ ί . (3.10)

Note that [H,ξ] = 0, so ξ is in the center of C7(b).

Lemma 3.5. Let TeU(b)Ω and suppose μ(T) = 0. Then TeξU(b)Ω.

Proof. For 1 ̂  i g ̂  + 1 one has

But μ(μί(Γ)) = μ(Γ) = 0, so by condition (3.1) and Theorem 2.5, ̂ (T) = 0. Hence
T=XI..XS+IV for some ι;eC7(b), by Lemma 2.4.

If all nf = l, we are done. If not, assume the roots αf are numbered so that
nl^n2^...^n^. Set

<?+! i?

7= Σ α/= Σ (i-wM-
i = l i = l

Then by Lemma 2.1,

which gives (2Hy + <y, y»t; + [Ω, ι;] = 0.
But n1>l and {α^.l^i^/} is linearly independent, so that y^spanία^ φ 1}.

Hence by Lemma 2.29v=Xίv'. We may repeat this argument until we getυ=Xn

ί

lvί.
Now use (2.5) again, to get

e
where β= Σ(l~" w /) α i ^ w 2 >l, then ^span{α^.;;φ2}, so by Lemma 2.2,

i = 2

u1=X2t;/

1. Repeat to get v1=Xnfv29 etc. Finally, we have T=ξv. Now [i;Ω] = 0
implies [t;,Ω]=0, so that TeξU(b)Ω.
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Lemma 3.6. Let σ = σ / + 1e Aut(b) be the reflection sending X^+1 to —Xf+ί (cf.
Sect. 2). Suppose Te U(b)Ω.

(i) // σ(T)= - T9 then TeξU(b)Ω.
(ii) // μ(T) = 0 and σ(T)=T,then Teξ2U(b)Ω.

Proof, (i) Since μ°σ = identity, we have TeKerμ, so Lemma 3.5 applies.
(ii) By Lemma 3.5, T=ξΓ for some TfεU(b)Ω. Since σ(ξ)=-ξ, one has

σ(Γ)=-r, so Γ = ξΓ' by (i).

Theorem 3.7. Assume that dim(u) = /+l, and that the roots {α1,...,αίf+1} satisfy
(3.1) and (3.9). Define ξ by (3.10).

(a) // U(a)% is generated by elements uv...,unof degrees rg2/, then U(b)Ω is
generated by ξ and w'(u^, . . ., w'(un).

(b) // 2degξ^ max(degι/l. + degt/7 ), with {ut} as in (a), then U(b)Ω is

commutative.

Proof, (a) Since m = /+l in Lemma 3.2, we have w"(u^ = Q, so that w'(wf)e U(b)Ω.
Given Te U(b)Ω, we can thus construct T in the algebra generated by {w(ut)} with
μ(T') = μ(T) and degT^degT' [since μ(T) is a polynomial in {wj, and
degw'(ι//) = deg(wί)]. Hence T^T' + ^z; for some VG U(b)Ω, by Lemma 3.5. Since
deg(ι;)<degl^ we obtain the result by induction on deg(T).

(b) Note that [w'(u^ w'(uj)']EKQr(μ)r^0U(b)Ω, and has degree at most r-1,

where r= max(deg(w ) + deg(uj )). But this commutator is divisible by ξ2, by

Lemma 3.6(ii), and deg£2^r, by assumption. Hence w'^) and w'(Uj) must
commute. Since ξ is central in U(b\ part (b) follows from (a) in this case.

4. Structure of U(b)Ω for Dynkin Diagrams

We shall say that a subset π = {αls ...,o^}Cα* defines a Dynkin diagram if it is a set
of simple positive roots for a reduced root system Rπ C a*. This is equivalent to the
following conditions :

(DΪ) π is a basis for α*
(DΠ) the group W generated by the reflections {sα.} is finite;
(Dm) the numbers 0ίJ = 2<α ί JαJ >/<α /,α / > are integers 5^0, for zφy.
(For these and other properties of root systems cited below, Bourbaki [6].) The

matrix [α^ ] is called the Carton matrix of π.

Theorem 4.1. Let b = α©u as in Sect. 2. Assume that dima = dimu and the set π of
roots of a on u defines a Dynkin diagram. Then

is an algebra isomorphism.

Remark. The condition that π define a Dynkin diagram depends on the inner
product on α*, dual to the given inner product on α. Given any base πC α* defining
a Dynkin diagram, we can construct b, an inner product <•,•>, and Laplacian Ω,
as remarked in Sect. 2.
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Corollary 4.2. Let ul9...9u^ be a set of homogeneous, algebraically independent
generators for U(ά)w. Then there are unique elements T1?...,7}e U(fyΩ such that

) = U and

Furthermore, if deg(t/; )^2/ — 2, then TJ = W'(UJ), where the map w' is defined by (3.3).

Remarks. 1. For the irreducible classical Dynkin diagrams of type Ae or D^ ^^3,
the basic invariants {Uj} all have degrees ^ 2/ — 2. Also, starting with a diagram of
type Af or De and applying the inductive construction of Sect. 3 for the map w', one
obtains subdiagrams which are direct sums of types Ar and/or Dr. Thus all the
elements Tj can be constructed inductively via w' in cases Af and D£. [For A2, it
follows easily by Theorem 3.4 that w'(w2)e t/(b)Ω, where u2 is a basic invariant of
order 3.]

2. For the diagrams of type B^ or C/? all but one basic invariant have degrees
^2/ — 2, so Corollary 4.2 applies to these. For an invariant uf of degree 2*f, we
note that in Lemma 3.2, degw"(ι^):gl. Using Theorem 3.4, we find that
Tj = μ~1(uj) is given by the formula

.*?, (4.11, . . ,

where γ = oc1 + . . . -f α, and

β:C7(b)->]R

is the augmentation homomorphism [ε(Γ) = constant term of Γ]. Thus for all
diagrams of classical type there is an explicit inductive algorithm to determine
T1?..., 7} from w l 5...,t^.

Proo/ o/ Theorem 4.1. There exists a real semi-simple Lie algebra g, with Iwasawa
decomposition g = n + α + ϊ, as in Sect. 1, such that π is the set of simple roots for
the action of ad(α) on n, and < , •> restricted to α x α is the Cartan-Killing form.
Thus b = α®(n/[n,n]), and as previously noted we may assume that the inner
product on b is consistent with formula (1.4), since rescaling the inner product on u
can be done via an automorphism of b which is trivial on o.

With these normalizations we may apply Proposition 1.4 to conclude that

where C is the Casimir operator in U(Q) (notation as in Sect. 1). Thus

γ(U(β)%U(b)Ω

9

and it follows by Lemma 1.2 and Theorem 2.6 that

is surjective. The injectivity of μ is immediate from the linear independence of the
roots and Theorem 2.5.

Proof of Corollary 4.2. The existence of the generators w l 5 . . .,M, follows from
Chevalley's theorem. Applying Theorem 4.1 to the subalgebras bp, we conclude
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that

E7«=l/(αΓ

[Eq. (3.2)]. Now apply Theorem 3.7, noting that n = £ in this case.

5. Structure of U(b)Ω for Extended Dynkin Diagrams

Assume that π = {α l9 ...,α^} defines a Dynkin diagram, in the sense of Sect. 4. Let
R = Rπ be the associated reduced root system. We shall assume throughout this
section that R is irreducible. Let βeR, and write α^+1 = — β.

Definition 5.1. The set π/s = {α1,...,α l f+1} defines an extended Dynkin diagram if
every subset obtained by deleting one element from πβ gives a Dynkin diagram.

Proposition 5.1. The set πβ defines an extended Dynkin diagram iff β is dominant:

<jMf>^0 for l ^ i g Λ (5.1)

FFfem (5.1) holds, then

£

β=Σni<*i> ™ith Λ ̂ 1 for all i. (5.2)
i- 1

Proo/ We first prove that (5.1) implies (5.2). Let {col5...,o^} be the fundamental
weights relative to π, defined by <αί5 a)jy = (l/2)Sij(ui, α >. Then by (5.1), /?= Σmiωi
with m, >0. But one also has ω,.= Yc ί f α f with c;ί>0. Hence the coefficients n, in

i — t z—/ ij J 1J — t

(5.2) are non-negative. Set J = (/:n7. = 0}. Since <α ί5αj)^0 for zφj, we have

Σ^<°^α7>=0 for all jeJ. But by (5.1), this forces <αί,α</> = 0 when iφjjej. The

irreducibility of R then implies that J is empty, proving (5.2).
Suppose now βeR. If πβ defines an extended Dynkin diagram, then by

condition Dm of Sect. 4, <^β,aίy= — <α< f + 1,α ί>^0for l^i^/. Conversely, suppose
(5.1) holds. Then from (5.2) we see that any proper subset of πβ is linearly
independent. Since βeR, the reflection sβ is in the Weyl group of π, and
2<j8,α/>/<αί, α f> is a non-negative integer. Hence conditions (Dj)-(DΠI) of Sect. 4
hold for the sets π^^{α }, l^/^/. This proves that π^ is an extended Dynkin
diagram in the sense of Definition 5.1.

Example. Let β = α be the largest root of the system .R, relative to the ordering
given by the base π. Then β satisfies condition (5.1). The set πβ is the completed
Dynkin diagram corresponding to the root system R, in Bourbaki's terminology.

The classification of extended Dynkin diagrams follows easily from the
classification of Dynkin diagrams, Proposition 5.1, and the following properties of
root systems:

(A) R has elements of at most two lengths.
(B) The group W operates transitively on the roots of a given length, and for

ae#, the orbit W-oc contains exactly one dominant root.
For the diagrams A£, D^ E6, E7, Es, for which all roots have the same length,

the only choice for β is the largest root α. When R has roots of two lengths, there is
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also a unique short dominant root β. Hence the diagrams B^ Q, F4, G2 each give
rise-to two extended Dynkin diagrams (see Fig. 5.1).

Btf>2): 0=

O- =0

α

= a1+ 2α2 + 3α3 + 2α4

α, α,IΛ3 (Λί ^2

Fig. 5.1. Extended Dynkin diagrams determined by β = short dominant root (α,+ 1 = — /

Let π^ be an extended Dynkin diagram, and form the Lie algebra b = α©u as in
Sect. 2, with {α1?...,α^+1} the roots of ad(α) on u, and the inner product < , } |α X α

being the one associated with the root system [see remarks after formula (2.2)].
Let Ω be the Laplace operator for b. We are thus in the situation of Sect. 3, since

e
α^+ι+ Σ ^αi=°?

with {«.} as in (5.2). Set \β\ = £ ni9 so that the element ξe C/(b) defined by (3.10) has
i = l

degree |/?| + 1. Let {uί9...9u^}CU(a)w be a set of homogeneous, algebraically
independent generators.

Theorem 5.2. Assume that π ί s a Dynkin diagram of classical type or E69 and that b
and Ω are defined from the extended Dynkin diagram πβ. Then

(a) U(b)Ω is generated by ξ and w'^J, ...,w'(ι^);
(b) U(b)Ω is commutative if β = a is the largest positive root, or if π = Cj and

β = short dominant root.

Remark. For the diagram B^ with β the short dominant root, we prove a weaker
version of (b) in Sect. 6.

Proof. We use Theorem 3.7. The diagrams A^ B^ C^ D^ and E6 are exactly those
for which all basic invariants in U(ά)w have degree ^2/. By Theorem 4.1 we know
that U(a)%=U(a)w, so part (a) follows from Theorem 3.7.

For (b), we note that when β = α, then deg ξ = \β\ + l = h, the Coxeter number of
W. But one also has /z = max(deg(w )), for any Weyl group. Thus part (b) of
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Theorem 3.7 applies. When π is the diagram Q, and β is the short dominant root,
then j3 = ε 1+ε 2 = α1 + 2(α2+...+ α^_ 1) + α,, in the notation of Bourbaki (loc. cit),

so that \β\ = 2S-2. But degw i = 2i, so max (degMf + deg 1̂  = 4^- 2 = 2 degξ. Again

part (b) of Theorem 3.7 applies.

6. Centralizer of the Laplacian in the Poisson Algebra

If g is a Lie algebra (over a field of characteristic zero), recall [12, 18] that the
symmetric tensor algebra S(g) carries the structure of a Poisson algebra there is a
Lie algebra multiplication {/, g} on 5(9) such that

(i) {X,Y} = [X,Y]9 for X,7eg;
(ii) {fg9h} = {f,h}g+f{g,h} for f,g9heS(e\.
The bracket operation {/, g} can be defined via I/(g) as follows (in Sect. 7 we

give an equivalent differential-geometric definition) : Let {Un(g)}n^0 be the canoni-
cal filtration on t/(g), and let SΠ(g) be the subspace of S(g) of homogeneous
elements of degree n. Let

be the canonical isomorphisms given by the Poincare-Birkhoff-Witt theorem. If
Pe Un(o) and βe t/m(g), then one defines

(Since [lΓm, f/J £ Um+n_ 1? it is clear that the right side of (6.1) depends only on P
modUn_1 and Q mod Um_ί.) Property (i) of {•,•} is immediate, and (ii) is easily
verified. Note that

{SI"(9),S»(s)}gSm+"-1(9). (6.2)

The elements /,0eS(cj) will be said to Poisson- commute if {/,0} = 0. If f=j(P)
ana g =j(Q), with /, ̂  homogeneous of degrees m, n respectively, then the Poisson-
commutativity of f , g is equivalent to the condition [P, β]e(7m+n_2(g). In
particular, if P and Q commute in l/(g), then j(P) and j(Q) Poisson-commute in

s(a)
We return to the general context of Sect. 2. Let Ω be the Laplacian defined

there, and define

Since j(Ω)eS2(b), we see by (6.2) that S(b)j(Ω} is a graded Poisson subalgebra of S(b).
Also

is an injective linear map. Corresponding to the decomposition b = αφn there is a
projection map v:S(b)-»S(α), and of course j:S(α)=U(α). One checks that the



374 R. Goodman and N. R. Wallach

diagram

(6.3)

is commutative.
In this section, we adapt the arguments of Sect. 2 to study the Poisson-

commutant S(b)J'(Ω). We show that it is Lίe-isomorphic to the enveloping algebra
commutant U(b)Ω, when b and Ω are defined by Dynkin diagrams or certain
extended Dynkin diagrams.

Define

so that the elements of °S(b) only contain even powers of the basis {X.} for u. We
then have the following Poisson-algebra analogue of Theorem 2.5 :

Theorem 6.1. Assume that the set of roots {α1?...,αm} is linearly independent. Then

(1)
(2)
(3) S(b)j(Ω) is Poisson-commutative
(4)

Proof. Since S(b)J'(β) is graded, it suffices to consider only homogeneous elements in
S(b); for these we can calculate Poisson brackets using (6.1). This amounts to
taking only the top-order terms in the calculations of Sect. 2. We sketch the
resulting modifications in the proof of Theorem 2.5 to obtain Theorem 6.1.

Fix the basis {if J for α as in that proof. Then for a homogeneous polynomial /
of degree m,

modUm_1(ά). Thus if Tel/m(b) is given by (2.5), then by (2.6) the Poisson
commutativity equation [Ω, T] =0 mod Um(b) is equivalent to

ΣXKUKH^ Σxfxκ4r(uκ) (6.4)
K i,K Cί:ii

mod t/m(b). It follows that the analogue of Eq. (2.7) for Poisson commutativity of a
homogeneous element Q=^XκuκGSm(b) is

[Here wxeSm~ |x |(a) and the product Xκuκ is in S(b).]
Assertions (1), (2), and (4) of Theorem 6.1 now follow from (6.5), just as the

analogous statements in Theorem 2.5 followed from Eq. (2.7). For Poisson-
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commutativity, note that

so the map v annihilates all Poisson brackets. Hence the injectivity of v on S(b)j(Ω}

implies assertion (3), finishing the proof.

Theorem 6.2. Assume that α φ 0 is a root of α on u. // QE S(b)j(Ω\ then sΛv(Q) = v(Q).

Proof. The same reduction to the case dimu= 1 as in the proof of Theorem 2.6
applies here. Let the notation be as in that proof, and suppose that

T= ΣX
k^d

where fk(H) is a polynomial of degree ^2(d — k) in H with coefficients in Jf\ Note
that Eq. (2.9) can be written as

2kHfk(H) = (dldH}fk_,(H] , (6.6)

modU2d_ 1(b). Now transfer Eq. (6.6) to S(b) via the map j, and argue by induction
on d that S(b)j(Ω} = Jf [/(Ω)], as in the proof of Theorem 2.6. [Here we identify
Jf = U(aί) with SίαJCSfb).] We leave the details to the reader.

Corollary 6.3. Assume that dim(u) = dim(α) = / and the roots {α1,...,α(f} define a
Dynkίn diagram. Then S(b)j(Ω) is Poisson-commutatίve, and

(6.7)
is a linear isomorphism.

Proof. By Theorem 6.2, v : S(b)j(Ω}^ S(a)w , where W is the Weyl group of the
Dynkin diagram. But by the commutativity of diagram (6.3) and Theorems 4.1 and
6.1, the map v is a linear isomorphism. Hence (6.7) is also bijective, Q.E.D.

Now we assume that π={α l 9 ...,0^} is a reduced, irreducible Dynkin diagram,
and we form an extended Dynkin diagram as in Sect. 5. We then have the
following Poisson algebra analogue of Theorem 5.2 :

Theorem 6.4. Assume that π is a Dynkin diagram of classical type or E6, and that b
and Ω are defined from an extended Dynkin diagram πβ. Then

(a) the canonical map j: U(b)Ω -+ S(b)J(Ω) is bijective;
(b) S(b)j(Ω) is Poisson- commutative.

Remark. Part (b) is immediate from (a) whenever U(b)Ω is known to be com-
mutative. In the case of the diagram Ef with β the short dominant root, which
could not be treated by the methods of Sect. 5, we do not know if U(b)Ω is
commutative. Nonetheless, the Poisson-commutativity (b) does hold.

Proof, (a) First note that an obvious modification of the proof of Lemma 3.5 shows
that

Ker(v)=7(£)S(b), (6.8)

where ξ is defined by (3.10), with the exponents {nj being the coefficients of β in
terms of {α1? ...,α^}.
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Next/given QeSm(b)j(Ω\ we know by Theorem 6.2 that v(Q)εS(a)w, where
W= Wπ. Hence by Theorem 5.2 there is Te Um(b)Ω such that j°μ(T) = v(g). Hence
by (6.3), Q-;(T)eKer(v). Ύhus Q-j(T)=j(ξ)Ql, where Ql Poisson-commutes with
j(Ω) and has degree less than m. By induction on m this proves (a).

(b) By Theorem 5.2 and part (a), the only case to be checked is n — β^ β = short
dominant root. In the notation of [6], )8 = β 1=α 1 +... + α ,̂ so that n = l and
deg£ = / +1 in this case. By part (a) of Theorem 5.2, it will suffice to show that the
elements w'(wf) Poisson-commute in U(b). But one has degw/(wί) = degwί = 2i, a nd
by Lemma 3.6,

[w^w'(W.)>£%, (6.9)

where v^e U(b)Ω. Since deg(vij)^2(i+j — έ) — 3<dGgξ, we know that vtj is a
polynomial in {w'(wfc)}5 by part (a) of Theorem 5.2. In particular, dQg(vtJ) is even.
Hence the left side of (6.9) has degree at most 2z + 2/ — 2, establishing Poisson-
commutativity.

7. Cotangent Bundles and Coadjoint Orbits

In order to relate the enveloping algebra results of the previous sections to the
Hamiltonian systems of "Toda Lattice" type, we now recall some basic symplectic
geometry. We will use standard differential-geometric notation, following [20]
(except for occasional minus signs arising from a choice between right and left
actions). Since the results are mostly known [4, 12, 14], the proofs will be generally
sketched or left to the reader.

Recall that if M is a smooth manifold and T*(M) is the cotangent bundle of M,
then T* (M) has a natural symplectic structure, obtained as follows :

Let π:Γ*(M)-+M be the projection. If ξeT*(M) and υεT(T*(M}ξ\ define
θξ(v) = ξ(dπξ(v)). Set ω = — dθ. Then ω is a closed non-singular 2-form on T*(M). If
φeC£(T*(M)), let the Hamiltonian vector field vφ on T*(M) be defined by
u>(vφ,u) = u(φ) for all smooth vector fields u on T*(M). The Poisson bracket of
φ,ψeC%(T*(M)) is then defined as

{φ, ψ} = vφ(ψ) = ω(vψ, vφ) . (7. 1)

We now specialize to the case M = G, a real Lie group. Let g denote the Lie
algebra of G, which we view as the space of left-invariant real vector fields on G.
For Xe 9 and ge G, one has Xge T(G)g given by

for 0eC°°(G).
We can trivialize the cotangent bundle of G by defining ψ:Gx g*-> T*(G) as

for geG, /eg*, andXeg. Then φ is a vector bundle isomorphism. The left action
of G on T*(G) becomes the action s (g,f) = (sg,f) on G x g* under this isomor-
phism. The right action of G on T*(G) becomes

= (flfs,s-1-/), (7.2)
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where s fQC)=f(Ad(s)~1X) for seG, /eg*, Xeg, with Ad the adjoint repre-
sentation of G. Thus the left G-in variant functions on T*(G) correspond under ψ to
the functions on g*.

If λe g*, /e g*, we define λf€ T(Q*)f to be the directional derivative in g* at / in
the direction λ. If ve T(G x g*)(ί? >/}, then there are elements X(t;)eg and Λ,(υ)eg*
such that

v = (X(v)g,λ(v)f).

If θ is the canonical 1-form on T*(G), one has ιp*(θ)ξ(v)=f(X(v)\ where £ = (#,/).
Using the standard formula dθ(A,B) = Aθ(B)-Bθ(A)-θ(lA,B']\ for A,B vector
fields, one calculates the symplectic structure on G x g* as follows :

Lemma 7.1. For (g,f)e G x g* and v, we T(G x 9*)(^/)5 owe Ίαs

(V>*ω)(βf/)(ι>, w) = /([X(t;),X(w)]) - λ(ι>) (3f(w)) + A(w) (Xty)) . (7.3)

We abuse the notation and henceforth use the symbol ω to denote φ*ω on
G x g * .

Let He C^(g*). Using the canonical identification between (g*)* and g, we may
consider the differential of H as a function from g* to g. Thus for /, λe g*, we have

~

We also look upon H as a function on Gxg*, by setting H(g,f) = H(f), for
, /eg*. Let VH be the corresponding Hamiltonian vector field on G x g*. The

next lemma is proved by the obvious calculation, using (7.3), and is left to the
reader. [For X, Γeg, /eg*, write (Y /)(Y)= -/([X, Y]).]

Lemma 7.2. // #eCl(g*), #eG, /eg*, then

(%)(,,/) ̂  (dH(f)β, - (dH(f) •/),) . (7.4)

Furthermore, if Hί9 H2eC^(Q*\ then

{H^H2}(gJ} =f(ίdH1(f)9 dH2(m . (7.5)

In particular, i fXeg, thenX defines a function Hx on g* by Hx(λ) = λ(X). The
corresponding Hamiltonian vector field is

(^x)<9,/> = (*9> -(*•/)/)• (7-6)

Comparing (7.6) and (7.2), we see that vHχ is in fact the vector field on G x g *
corresponding to X under the differential of the right action of G. By (7.5) we have

{HX9HY}=HlXtY}, (7.7)

for X, Γeg, so the right G-action on T*(G) is Hamiltonian [4]. Furthermore, the
map X-*Hχ extends to an algebra isomorphism between S'(g) and the real- valued
polynomial functions on g*, and (7.7) shows that the Poisson bracket on S(g)
defined via (7(g) in Sect. 6 agrees with the Poisson bracket coming from T*(G) (cf.
[12]).

Given /e g*, let (9 = (9f = G f be the coadjoint orbit of / and Gf the stabilizer
o f / If Xeg, then QC f)feT(Φ)f, and we let ω& be the symplectic form on 0 such
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that

ω * $ K . f ) f 9 ( Y . f ) f ) = f ( l Y 9 X ] ) 9 (7.8)

f o r X , 7eg. If #eC£(g*), let H& = H\&, and denote byX^ the Hamiltonian vector
field on (9 corresponding to H® via ω&.

Lemma 7.3. One has

&

f = - . f( X &

H ) f = - ( d H ( f ) . f ) f . (7.9)

IfHl9H2eC%(Q*)9then

{H&

1,H
U

2} = {H1,H2}
&. (7.10)

Proof. Let Ye g. Then

\ Y]).

Comparing with (7.8), we get formula (7.9). By (7.1) and (7.9), we have

= -(dH1(f)-f)(dH2(f))

Thus (7.10) follows from (7.5)

Remark. Let τ:G x Θ-^Φ be the projection. Then

(Λ*(ω*) = ω| G X 0,

as one calculates easily using Lemma 7.1. Also for fίeC^g*), one has

T0Λ, \ _ γ 0
T*l%/-Af/5

so the Hamiltonian flow on {P generated by H& is the projection onto (9 of the flow
on T*(G) generated by H.

We now turn to the case g = b = α®tι, as in Sect. 2, with {αl5 ...,αm}Cα* the
roots of α on u and {Z1? ...,Xm}Cu an orthonormal basis of root vectors
(LH,χ:]=ai(H)Xi for He a). It is immediate that

Center (b) = α0θu0,

where

m

α 0= fl Ker(α ), u0 -span {A^iα^O} .
ί=l

Thus replacing b by b/(α0@u0), we shall assume that:

α i Φ O j l ^ / ^ m , and {α l9 ...,αm} spans α*. (7.11)

Let {X^, . . .,X*} C b* be the dual basis to {Xly . . .,Xm}9 extended to be zero on α,
and consider {α1? ...,αm} as elements of b* which are zero on u. One easily
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calculates that the coadjoint action of b on b* is given by

tf •**=-«///)**, ί/.α,=0,
Xί X* = δίjaj,Xί.aj = (). ( >

Let B be the connected and simply-connected Lie group with Lie algebra b.
The map

is a global diffeomorphism from α x u onto B. Suppose /= Σcr^? Then by (7.12),

m m

exp(H)exp(X) /= £ cf-^Xf + £ cX*(X}^. (7.13)
i = l ί = l

Assume that / is generic, i.e. dirndl is maximal. By (7.11) and (7.13) one has
C ΦO for all i in this case, and the isotopy group

and χCίX

•/) 00 = 0, all

By (7.11), dimα /=dimα, so we see that dimβ^dimu — dimα. Thus
dim Θf = dim B — dim Bf = 2 dim α.

We shall assume the αt are numbered so that {αl5 . . ., αj is linearly independent
(/ = dimα). Define

and let 5X be the corresponding subgroup of B. Then it is clear from (7.13) that B1

acts simply-transitively on (9f. We may use this observation to obtain canonical
symplectic coordinates on (9f as follows :

Let {if 1? . . ., Hj} be the basis for α dual to {α1? . . ., α^}. Define a diffeomorphism
ψ:JRfxJRf-+@( = ΰ f ) by

ιp(p,q) = exp qflAQXp Σ
\ i = l / \ i = l

If we express the remaining roots α^+ 1? . . ., αm in terms of α1? . . ., α^ by

ai= Σ dΛ '
7=1

and define

fc= Σ diflj9 i>(9 (7.14)
7=1

then

e m

ψ(p?(i)= Σ Pΐαi+ Σ cje~qjxj - C7 i5)
i = l 7 = 1
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Viewing p. and qj as functions on 0, it is immediate from (7.15) that

He

H=Pί,H
β

Xj = Cje-<". (7.16)

Since [Hi,Xj]=dijXp the corresponding Poisson bracket relation is thus

{A >έΓ"} = V~β j>

by (7.16) and Lemma 7.3. Hence

[Recall that if / and g are real functions on a symplectic manifold, and φ is a
smooth function defined on an open set containing the range of g, then
{/, <£(0)} = Φ'(9) {/> 0}-] Similarly, one has {pf, p.} - 0 and {qi9 qj = 0. Thus ql9...9q,9

pί9 ...9ps is a set of canonical symplectic coordinates on 0.
With {Ht} as above, the Laplacian of b is

Ω= Σ <αί,αj>HίHj+ Jx*.
U=ι 7=1

It follows from (7.16) that the corresponding Hamiltonian function j(Ω) on Θ is

ΣΦ~2 β J (7.17)
i ,7=l 7=1

Note that the choice of G determines the magnitude of the coefficients cf in the
"potential energy" term, while the geometry of the set of roots (relative to the given
inner product on α) determines the "kinetic energy" term.

By means of a canonical transformation we can put all the geometry of the
system into the potential energy term. Let {εj be an orthonormal basis for α*, and
assume that

e
aί= Σ bijεp ί^ i^m.

7=1

Make the canonical coordinate transformation

e £
χj= Σ bijp^yi= Σ fr%>

i = l 7 = 1

where [fru]ι^,j^is the inverse matrix to \bij\ι^ij^t Then x1? ...,x^, y1? ...,^are
global sympΓectic coordinates on Θ, and

j(Ωf= £ x?+ Σ c,2exp(-2 Σ bijy\. (7.18)
i = l i=l \ j=l /

In these coordinates one sees that j(Ω) is a Hamiltonian of "generalized Toda
Lattice" type. (For more explicit formulas, cf. [12] for the case of Dynkin
diagrams, and [2, 5] for completed Dynkin diagrams.)

8. Lax Forms

Let G be a linear, connected semi-simple Lie group, with Lie algebra g and
Iwasawa decomposition G = KAN, (g = ! + α + n) as in Sect. 1. We assume that G is
split over IR, and has rank /> 1. Let $:g— >g be the Cartan involution associated
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with ί, and put n = θ(n). Since g is split, one has g = n + α + n. If XEQ, write
X=X++Xa+X_9whereX+en9X_eή9a,τLdXaea. Let p = {Xe$:ΘX= -X}. Then
Xep if and only if θ(X+)=-X_.

Let Δ+ be the set of roots of α on n. Let π = {αl9...,α,} be the simple roots in
A +, and let J + = {α1? . . ., αd}, with α1 < α2 < . . . < ad relative to a lexicographic order
on α*.

Let Z E nαι be such that - 5(Zi5 ΘZf) = (50, Put X. = Zt - ΘZi9 Yi = Zt + ΘZt. Then

ι=

(B the Cartan-Killing form).
The set {α1? ...,α^, — αd} corresponds to a completed Dynkin diagram in

Bourbaki's terminology [6], and is an extended Dynkin diagram, in the sense of
Definition 5.1. We are assuming £> 1, so that ad is rcof a simple root. Let b = α0tι
be the corresponding generalized "<zx 4- fo" algebra, as in Sect. 2. Here we label a
basis for u as Z1? ..., ZΛZd, with the only non-trivial commutation relations in b
being

[H,Zί]=αί(/OZi, IgW (8.1)

for Heo. On b we put the inner product, < , >, defined by

(8.2)

Give b* the inner product dual to the inner product on b. For /e b*, define
/ " e b b y

Thus for /lf /2eb*, one has /J -/2eb* given by /J •/2(Y)=/2(pf,/ϊ]), Xeb. For
Xeb define Jί*eb* byZ*(Y) = <X, Y>, Yeb.

In this section we show that every K-invariant smooth function on p defines a
function on b* which Poisson-commutes with the Laplacian of b. To do this, we
generalize Flaschka's construction of Lax forms [7], as follows (van Moerbeke
[19]):

Define the subspace

ί= 1

of p. For example, when g = s/(n,lR), n^3, and p is taken as the trace zero
symmetric matrices, then pl consists of all "periodic Jacobi matrices" of trace zero :

\

0

βn

aι

b2

a2

0

α2

b,

«„-
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Let Zf, for 1 ̂ ϊ^/ and i = d, be the linear functional on b defined by

c Z ) = c, for HE a.

Introduce a linear map F:p->b* by

Σ c^ί) =H*+ Σ ctz*+cdz*.
ί=l / i = l

Since <Zf,Z?> = 2<5ί , it is clear that F|P1 is an isometry.
Denote by CR(P) the Ad (K)-in variant smooth real-valued functions on p. For

a real C1 function 0 on p, let Vφ denote the gradient of φ, relative to the inner
product given by the Car tan- Killing form. Let sd:p-»p be the reflection about the
hyperplane (Xd)'L. That is,

sd(X)=X-B(X,Xd)Xd.

Lemma 8.1. // <£eC£(p)*, then [7φ&),X]=Q forXεp.

Proof. Since Ad(7c) acts orthogonally on p, for any keK, one has

φ(Aά(k)X) = Ad(fc) (FφpO) .

But Ad(&) is also a Lie algebra automorphism, so

[Vφ(Aά(k}X\ Ad(/c)Z] = Ad(fc) [Vφ(X\X] .

Thus to prove the lemma, it suffices to take Xeα, since p = Ad(K)α.
We may assume, by continuity, that X is regular, so that

In this case, one has

Indeed, if Zep and Zl[^X]for all 7eϊ, then 0 = S(Z, [^X])-5([Z,Z], 7). Since
[X,Z]eϊ, it follows that [Z,Z] =0, and hence Zeα. Reversing the argument gives
the opposite inclusion and proves (*).

Now take Z = Vφ(X}. Since φ is constant on K orbits, Z is orthogonal to the K
orbit through X, and hence Zeα, by (8.3), Q.E.D.

Lemma 8.2. LetXep1 and Yep. Then

Y_,sdXla-sdtYa,X+-X^). (8.3)

Proof. Assume that Z-Zα+ Σ^ and Y=yα+Σc^ where bt = ® for
Then by (8.2),

Formulas (7.12) for the coadjoint action of b imply that

- (8-4)
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On the other hand, AΓ+ —X_ = £X^, and for He a one has

Thus \_Ya,X+ -X_] = Σ&AtFJX,, so that

f(sd[Tβ,A + -*_]) = ΣbΛ(Ya)Z?-bdad(Ya)Z*. (8.6)
i = l

Furthermore, for Heα, one has

B(H, [Yi,X$ = -B(lH,Xj], yf) = -2aJ(H)B(Yj, Q

by (8.5), so that [Y,,̂ ]̂ ^/ ,̂ It follows that

jC W. = 2ΣVί#«, and thus

) = 2 bf/t, - 2V A . (8.7)
ί=l

Using (8.6) and (8.7) in (8.4), we obtain (8.3), Q.E.D.
To obtain the Lax forms from the two preceding lemmas, we need the

following calculation, which uses the maximality of the root ad for the first time :

Lemma 8.3. Suppose Xεpί9 Yεp, and [_X, Y]=0. Then

[y+ - y.,̂ ]- = -LYa,x+ -^-]- . (8.8)
Proof. It suffices to calculate all commutators mods. Write X=X' + cXd, where

l^/}. Then [y+9X']es, so that

(8.9)

mod(s). Furthermore [y_,ΘZJ=0 and [y_,Zj£S, since αd is maximal. Thus

[y-^]^[y-,^]-[^,^] (8.10)

mod(s).
Now to verify (8.8), note that -[ye,-Y+-A r_] = [ye,A'

mod(s). But [ίX]=0 implies that

Hence by (8.9) and (8.10),

mod(s), Q.E.D.

Lemma 8.4. Suppose Xeφl9 Yep, and [X9Y]=0. Then [Γ+ - y_,Z]Ep1?

Proof. This follows immediately from Lemmas 8.2 and 8.3, since [Ya,X + — X~]a = 0
and [yα,X+ -X_]+ =[y+ - y_,s,X]+ by (8.8).

We come now to the main result of this section. If φ is a function on p, define a
function w^ on b* by

, XePl. (8.11)
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Define a vector field Lφ on p by

] , (8.12)

for Xep.

Theorem 8.5. Suppose φeC^(p)κ. Then forXepl9

(8.13)

Remarks. Recalling the results of Sect. 7 concerning left-invariant Hamiltonian
vector fields on T*(B) (B the simply-connected Lie group with Lie algebra b), we
see that Lφ is a "Lax form" for the field with Hamiltonian wφ. For the case

) = (X,Xy and G = SL(n,IR), Eq. (8.13) was first observed by Flaschka [7].

Proof. Since the map F is linear and isometric on p1? one has

Let_ σ be the automorphism of b which fixes α and Zί5 1 ̂  i ̂  /, and sends Zd to
-Zd. Then F(sdY) = σ*(F(Y)), and σ*(Z /) = (σZ) σ*/ for Zeb, /efe*. Thus

By Lemmas 8.1 and 8.4, this gives

Corollary 8.6. Suppose φ,ψeC^(p)κ. Set ψ"=ψ°sd. Then wφ and wψ- Poίsson-
commute on b*. In particular, wφ Poisson-commutes with the Laplacian of b.

Proof. Since wψ-°F = ψ and F|P1 is a linear isomorphism onto b*, it suffices by
Lemma 7.3 and Theorem 8.5 to show that L$(ψ) = Q for Xeγ>1. Now if we set

) = ad(Fφ(sdX)+ - 7φ(SdX)_\ then

since A(X)eaά(t).
The Laplacian on b corresponds to the Hamiltonian wv, where

on p. Since \p°sd = ιp in this case, it follows that {wφ, w^}=0, Q.E.D.

9. Complete Integrability via Lax Forms

We continue the hypotheses and notation of Sect. 8. Let Ω be the Laplacian of b,
7: ί/(b)->S(b) the symmetrization map. Then viewed as a function on b*,7'(Ω) = wv,
where

Theorem 9.1. Lei φl9 ...,φj be a set of algebraically independent generators for
S(p*}κ. Let

Ξ = Z?...Z?Zd, (9.1)



Systems of Toda Lattice Type 385

£

where {ZJ satisfy (8.1) and ad = Σ niai- Then S(b)7(β) is a polynomial ring, and is
i=l

generated by the elements wφl, . . ., w^ and Ξ, which mutually Poisson- commute on b*.
In particular, {w^, wv}=0 for all K-invariant polynomials φ and \p on p.

Remark. To compare this result with Theorem 6.4, recall that we are here allowing
any completed Dynkin diagram for the set of roots of b. In particular, this includes
the completed diagrams of type G2, F4, EΊ, and £8, which were excluded in
Theorem 6.4. For these exceptional diagrams, however, we do not know if the
corresponding result holds in the enveloping algebra (Theorem 5.2). Also, we
cannot treat the extended diagrams defined by a short dominant root using Lax
forms.

Before proving Theorem 9.1, we need the Poisson algebra version of some
results from Sect. 3. Let σe Aut(b) be the reflection sending Zd to — Zd and fixing
(Zd)

x. From the definition of the "Flaschka map" F:p->b* it is clear that

σw, = ιv, for φeS(p*). (9.2)

Here we have extended σ to an automorphism of S(b). Note that since σ is a Lie-
algebra automorphism of b, its extension to S(b) is a Poisson-algebra automor-
phism. Since σΩ = Ω, it follows that

Lemma 9.2. // φεS(ιp*)κ, then σwφ — wφ is divisible by ξ.

Proof. Let v: S(b)j(Ω) -+ S(a) be the map as in diagram (6.3). Since v°σ = v, one has
σwφ — WφeKer(v). Now use the same argument as in Lemma 3.5, but with Lie
brackets replaced by Poisson brackets. The details are left to the reader.

Lemma 9.3. Let h be the Coxeter number of the Dynkin diagram π, and let
φ,ψeS(p*)κ.

(i) // degφ</ί, then σwφ = wφ.
(ii) // dQgφ = h, then σwφ = wφ + cΞ for some

(iii) // degφ^/z and degφ^/i, then {w^,wv}=

Proof. As before, we use the fact that h = 1 + Σ nι = deβ^> and Ξ Poisson
ί = l

commutes with any function on b*. Thus (i) and (ii) follow immediately from
Lemma 9.2. As for (iii), note that {w0, w^} = {w^, wr} by (i), (ii) and (9.2). But this
bracket vanishes, by Corollary 8.6.

Proof of Theorem 9.1. The existence of generators φl9 ...,φj for S(p*)κ is given by
Chevalley's theorem [9], which also asserts that the restriction mapping to α is an
isomorphism onto S(a*)w. Thus w^, ...,wφ9Ξ are algebraically independent.

One knows that the Coxeter number /7 = max(degφ7.), so by Lemma 9.3
wφ l 5 ...,w^,Ξ mutually Poisson-commute. The proof that they generate S(b)j(Ω) is
then identical to the proof of Theorem 6.4, part (a), since by Chevalley's theorem
viIR^w^, . .., \Vφ ']->S(a)w is surjective. This proves the theorem.

Corollary 9.4. Suppose φeS(p*)κ and degφ ^/i, the Coxeter number of the Dynkin
diagram π. Then for /eb*,
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Proof. By Lemma 9.3, dWφ~ = dWφ + cdΞ. But Ξ is constant on jβ-orbits in b*, so
dΞ(f) f=0, which yields the result.

Remarks on "Complete Integr ability" '. Let $Cb* be a generic orbit. From Sect. 7 we
know that dim & = 2/. The function Ξ is constant on 0, since Ξ =j(ξ) with ξ in the
center of (7(b). The remaining generators wφl, . . ., wφ£ of S(b)j(Ω) are easily seen to be
functionally independent at "generic" points of Θ. Indeed, if ψ :JRf x JRf-*Θ is the
map in (7.15), and we set

H(p)= ΣPiH»X(q) = Σw~qtXi>
ί=l i=l

then ψ(p,q) = F(H(p)+X(q)) (notation as in Sect. 8). Hence for φeC^(p\ one has

Now X(q)-*Q if qt-+ + oo for all z, and the basic invariants φί9 . . ., φ£ are known to
be functionally independent at regular points of α [6, p. 113]. It follows then from
(9.3) that d(wφί, »,wφ)/d(pl9 ...,p^) has rank £ on a non-empty open subset of (9,
giving generic functional independence.
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Note added in proof. B. Kostant has informed us that he has also obtained a finite dimensional Lax
form for generalized periodic Toda lattices ["Poisson Commutativity and the Generalized Periodic
Toda Lattice" (preprint)].




