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Abstract. An analysis of Feynman-Kac formulae reveals that, typically, the
unperturbed semigroup is expressed as the expectation of a random unitary
evolution and the perturbed semigroup is the expectation of a perturbation of
this evolution in which the latter perturbation is effected by a cocycle with
certain covariance properties with respect to the group of translations and
reflections of the line. We consider generalisations of the classical commutative
formalism in which the probabilistic properties are described in terms of non-
commutative probability theory based on von Neumann algebras. Examples of
this type are generated, by means of second quantisation, from a unitary
dilation of a given self-adjoint contraction semigroup, called the time ortho-
gonal unitary dilation, whose key feature is that the dilation operators
corresponding to disjoint time intervals act nontrivially only in mutually
orthogonal supplementary Hubert spaces.

1. Introduction

For any positive-self-adjoint operator H in a Hubert space ^0 we construct a time-
orthogonal unitary dilation {£/M,s^ί} of the contraction semigroup {e~tH, £Ξ>0} in
the Hubert space ^00L2(1R,^0) which exhibits the following properties:

(1) the family {Us>t,s^t} is a strongly continuous unitary evolution in the
sense that Ur sUst= Urt for all r^s^ί;

(2) it is time-orthogonal in the sense that Us>t acts nontrivially only in the
subspace ^0Θ^]s $ where ̂ ]s f] CL2(lR,^f0) is the subspace of functions with support
contained in ]s, ί]

(3) it is covariant under time translations and time reversal. This dilation is
somewhat different from the classical dilations [14] of a one parameter con-
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traction semigroup into a one parameter group, examples of which may be found
in [10, 4, 5].

Using the unitary evolution induced by second quantisation of the above
dilation in the Fock space Γ(^f00L2(lR,^0)) and contracting a suitable per-
turbation of this new evolution to the smaller Fock space Γ(ά0) we obtain a
noncommutative version of the Feynman-Kac formula for the semigroup
exp{-t(dΓ(H)+V)} where Vis a bounded operator in Γ(jί0) and exp { - 1 dΓ(H)}
= Γ(exp( — ίH)), Γ being the second quantisation map. For an alternative version
of a Feynman-Kac formula based on classical dilations and completely positive
maps in the theory of quantum stochastic processes the reader may refer to
Accardi [1],

n

We use the following conventions. A product f] Aj of noncommuting
j = ι

elements is taken in the order AnAn_l . . . Av A canonical pair is a pair (p, q) of self-
adjoint operators satisfying the Weyl relation

We shall say that von Neumann algebras N19N2, - ;Nn in a Hubert space ^ are
independent (in the state Ω) if Ω is a unit vector in A for which

j = ι

If £0 is a second Hubert space then the conditional expectation of
B(40) is the element E[,4|B( 0̂)]eB( 0̂) for which

The following theorem is almost obvious [8].

Theorem 1.1. Let JV1 ? JV2, ...,Nn be independent von Neumann algebras and set

Then, for arbitrary AU)eN(j\ j = 1,..., n,

(1.1)
j=ι -1 j = ι

2. Evolutions and Perturbations

Let ^ be a separable Hubert space and let (I7M:s^ί) be a family of bounded
operators on & satisfying the conditions

a) Us t is strongly continuous in s for fixed t and in ί for fixed s.
b) l/ s

f

s = I for a
c) Ur'fSUStt=Urt

Such a family (C/M) is called an evolution. If each [7S f is unitary (respectively
self-adjoint, a contraction) then the evolution is said to be unitary (respectively
self-adjoint, contractive). IfUst=Us_t depends only on the difference s — t then the
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evolution is a semigroup. Every (strongly continuous) self-adjoint semigroup is of
the form C7 s_ f = exp{ — (s— t)H} where H is a not necessarily bounded self-adjoint
operator called its infinitesimal generator.

A family (Ms>t\s^t) of bounded operators in A, strongly continuous in s and t
separately and satisfying Ms S = I for all selR is said to be a cocycle for the
evolution (Us>t:s^t) if, for r Ξ ^ s Ξ > f ,

Mrtt = Mrt8UrtSMattU-}. (2.1)

It is easy to see that if (Ms t) is a cocycle for the unitary evolution (Us t) and if, for

then ((7M,s^ί) is also an evolution; indeed (2.1) is equivalent to the defining
condition c) and continuity follows from the strong continuity of operator
multiplication when one of the factors is uniformly bounded. We call the
evolution ( U S t t ) the perturbation o f ( U s t ) by the cocycle (Ms>ί).

The following theorem can be proved using the Picard method of successive
approximations to approximate Mf,t in operator-bound norm by M ,̂ defined
inductively by M^ = /,

(2.2)

See also [12].

Theorem 2.1. Let (Us>t) be an unitary evolution in the separable Hilbert space a and
let B be a bounded operator in A. Then there exists a unique cocycle (MB

t:s^ t) such
that MB

st is strongly differ entiable in t and

. (2.3)

Moreover if the family (UstBU~t

ί:s^.t) is commutative, then the strong operator
s

valued integral J Us τBU~^dτ exists and, for s^ί,

(2.4)
I t }

We shall call (Mf$ί) the cocycle determined by B and the corresponding
evolution (UB

S^ with

the perturbed evolution determined by B.

3. Reduced Evolutions and Semigroups

Let a be a separable Hilbert space. A doubly filtered von Neumann algebra in A is a
pair (JV,(N S t t ' s^t)) comprising a von Neumann algebra N and a system (Ns>t:s^ί)
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of von Neumann subalgebras which generate AT as a von Neumann algebra and
which satisfy the condition

Ns>tCNa>b whenever ]s,ί]£]0,b].

A covariant system is a triple (N,(NS}t:s^t),(yt:tεWf) consisting of a doubly
filtered von Neumann algebra ( N 9 ( N S ) t : s ^ t ) ) and a one-parameter group (γt) of
normal automorphisms of N satisfying

A reflective coυarΐant system is a quadruple (N, (Ns t)9 (yt\ ρ] consisting of a
covariant system (N,(Ns>t)9(yt)) together with a normal automorphism ρ of N
satisfying, for relR and s^ί,

Let ^0 be a second Hubert space. A reducing map for a doubly filtered von
Neumann algebra (N, (Ns>t)) is a strongly continuous linear map; from N to B(ά0)
such that, for all AεN,

j(A)*=j(A*)

and for AεNa>b, BεNCίd with ]α,b]n]c,d]=0,

(3.1)

A covariant reducing map for a covariant system (JV, (NM), (yt)) is a reducing map)
for (N, (Ns t)) for which j °yr=j for all relR, and a reflective covariant reducing map
for a reflective covariant system (N, (NSί f), (yt), ρ) is a covariant reducing map for
(JV, (JVSf f), (yf)) for which °ρ - ρ.

An evolution (L7S t) in ^ is said to be adapted to the doubly filtered von
Neumann algebra (N,(NSft)) if

UattεN8tt (3.2)

for all s^ί, covαriαntly adapted for the covariant system (N,(NStt),(yt)) if, in
addition to (3.2), for all relR and s^t

yr(US}t)=Ur+s>r+t, (3.3)

and reflectively covariantly adapted for the reflective covariant system
(N,(NSttl(yt)9ρ) if, in addition to (3.2) and (3.3),

Q(U*,t)=U_t>_s. (3.4)

It is clear from (3.1) that iϊ(Us t) is an adapted evolution andj is a reducing map

defines an evolution (U^\:s*£ t) in $0 called the reduced evolution corresponding to

j



Noncommutative Feynman-Kac Formulae 265

Theorem 3.1. (a) The reduced evolution of a covariantly adapted evolution corre-
sponding to a covariant reducing map is a semigroup.

(b) The reduced evolution of a reflectively covariantly adapted evolution corre-
sponding to a reflective covariant reducing map is a self-adjoint semigroup.

Proof, (a) If (l/M) is covariantly adapted and; is a covariant reducing map then, for

ττ(j) —i(TJ }
^ r + s,r + t J \ u r + s, r + ί/

=Πr(UJ

=J(USιt)

showing that U(ft depends only on the difference s— t and hence that the reduced
evolution is a semigroup.

(b) If in addition (Us t) is reflectively covariantly adapted and j is a reflective
covariant reducing map then, for s ̂  t,

=7°C(C/_ ί f_ s)

Thus, using the semigroup property, U*ft is self-adjoint. Π
Now we examine the reduction of perturbed evolutions.

Theorem 3.2. (a) Let (N,(Ns>t)) be a doubly filtered von Neumann algebra and let B

be an element of P) Ns t. Then, if(UStt) is an adapted evolution then the perturbed
s^ί

evolution (l/f> f) is adapted.
(b) I fin addition (N,(NSft), (γt)) is a covariant system, (Us>t) is covariantly adapted

and B is invariant under each yt, then the perturbed evolution (l/f t) is covariantly
adapted.

(c) // in addition (N,(NS)t),(yt),ρ) is a reflective covariant system, (UStt) is
reflectively covariantly adapted, and B is self adjoint, then the semigroup reduced
evolution obtained from (U^t) from a reflective covariant reducing map j is self-
adjoint with infinitesimal generator

where H is the infinitesimal generator of the reduced unperturbed evolution.

Proof, (a) To prove that (C/f>f) is adapted we must show that, for s^t, Mf s ίe JVS t.
Recalling from Theorem 2.1 that M^t was the uniform limit of operators M^t

defined by (2.2), it is sufficient to show that each M(^teNSJ. Since for t^τ^s,
NSίτζNSίt and Us^τ, BeNs>τ, the required conclusion follows by induction.
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(b) To prove that (l/f t) is covariantly adapted we must show that, for relR,

It is sufficient to prove the corresponding property for the approximations
<>,

yP(M<->) = M<"i s>r+t, n=0,l,2,..,s£ί. (3.5)

The case n = Q is clear since each M(®] = I\ assuming (3.5) for n = k—l we have,
using (2.2),

TT
τu r

-M(k}

~1VIr + s,r + t

and the result follows by induction.
(c) By (b) and Theorem 3.1 (a) we know that the reduced evolution ((Uf,tt)

j) is a
semigroup so that we can write

(UB V = T\u s,t) Is-ί'

If / is in the domain D(H) of H we have, for t > 0,

Since j is strongly continuous and feD(H) we can pass to the limit as £->0,
using (2.3), to conclude that

]imΓl(Tt-I)f=-j(B)f-Hf.
no

But this means that (Tt is the one-parameter semigroup of which the self-adjoint
operator j(B) + H is the infinitesimal generator in particular the reduced semi-
group is self-adjoint. Π

We may summarise Theorem 3.2 (c) by the statement

whenever (Us t) is a reflectively covariantly adapted evolution, j is a reflective
covariant reducing map, and

e-(s-t)H =
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4. The Classical Case Generalised to Imprimitivity Systems

Let G be a complete, separable metric group acting on a Borel space (X, £$} and let
^o be a separable Hubert space. Suppose that g^Ug is a strongly continuous
unitary representation of G in A§ and A^E(A) is a spectral measure on £& relative
to ^o satisfying

UgE(A)U~ί=E(gA) for all #eG, ,4e^. (4.1)

Such a pair (17, £) is called an imprimitίvity system.
Consider a strongly continuous, separable and measurable G- valued stochastic

process {ω(f), ίelR} defined on a probability space (Ω,F,μ) and satisfying the
following conditions : (1) ω(0) = e with probability one (2) ω(t) ana ω(t)~ ί have the
same distribution for all ί; (3) for disjoint intervals ]£;,£/] the random variables
ω(sj)ω(tj)~1 are independent; (4) the distribution of ω(r + s)ω(r + 1) ~ 1 does not
depend on r whenever s ̂  t are fixed. Such a process is called a symmetric G-vαlued
process with stationary independent increments. We denote by Fs t the smallest
σ-algebra with respect to which all the random variables ω(a)ω(b)~1, t^a^b^s
are measurable.

Regarding the existence of a large class of such processes with independent
increments the reader may refer to [9, 11].

Let A = L2(μ, ά0) be the Hubert space of all ^0-valued μ-square integrable maps.
We denote by N and Ns t respectively the von Neumann algebras of all bounded
operators which are multiplications by F- and Fs ^-measurable ^-operator valued
functions. For any ωeΩ and ίelR define ώ and α/eΩ by putting ώ(s) = ω(s)~1;
ωt(s) = ω(s + t)ω(t)~1 for all seR Define the automorphisms γt, ίelR and ρ of N by
putting

(γt(A)f) (ω) = A(ω')f(ω) (ρ(A)f) (ω) = A(ω)f(ω)

for every AeN. Define the map j:N->B(ά0) by the Bochner integral

Let { Us t,s^t} be the operators on A defined by

(t7Stί/)(ω)=t7ω(s)ω(trl/(ω),

Then (N,(NStt\yt9ρ) is a reflective covariant system, j is a reflective co variant
reducing map and (Us t) is a reflectively covariantly adapted evolution.

Suppose V is a bounded Borel function on (X, 3$) and B is the operator of
multiplication by the constant ^-operator valued function j V(x)E(dx). Then an
easy computation using (4.1) shows that

It follows from Theorem 2.1 that the cocycle determined by B is given by

/(ω).(Mf.,/)(ω)= Jexp - J V(ω(τ)ω(sΓ1x)dτ\E(dX)
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Since jCB) = J V(x)E(dx\ Theorem 3.2 (c) implies that

(4.2)

e-(s-f)(H0 + SV(x)E(dx)) f

= j jexp - j V(ω(τ)ω(sΓίx)dτ \E(dx) (4.3)

for all ξeά0 where integration with respect to μ is in the Bochner sense. When
X = G = 1R, ω(t) is standard Brownian motion, f->l/ t is the translation repre-
sentation in L2(1R) and E(A) is multiplication by χ^, Eq. (4.2) and (4.3) describe the
classical Feynman-Kac formula with H0 =p2/2 and J V(x)E(dx) = V(q).

5. Time Orthogonal Unitary Dilations

To begin with we consider the case of a strongly continuous self-adjoint
contraction semigroup (At,t^0) with a bounded positive self-adjoint infinitesimal
generator H in a Hubert space AQ. Let >4 = L2(IR,^0) be the Hubert space of all
/Ί0-valued square integrable maps on HI and let the shifts {St9 ίeR} and reflection S
be defined on A by

(Stf)(s) = f ( s - t ) ; (S/) (5) = /(- ίeR. (5.1)

For any Borel set AζlR. we write AA for the subspace of A comprising of functions
with support in A. Consider the Hubert space Al=AQ@A and denote by J the

/n
imbedding ζ-Mn) from ^0 into A. Define the operators {l/ s > ί,sΞ>£} in A± by

where AStt, Bs t, Cst, and Ds t are operators from ̂ 0 into /£„, f̂ into ̂ 0, ̂ 0 into ̂  and
^ into ^0 respectively determined by the equations

(5.3)

(5.4)

s](Dβ> t/) (x) = - 2 j χ]t_ s]

Lemma 5.1. For r Ξ; s 5: ί,

Ur.,Uaιt=Uftt.

(x)HAx _ yf(y)dy .

Proof. It is immediate from the definitions (5.3) that ArtSASft = Arit and
5r,5CM = 5r, A,f = A f5

CM = 0 Siπce ^1/2 and ^M commute for all s^ί we have
from a routine computation
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We shall now complete the proof by showing that

CrtSBaft + Dr9S + D8tt + DrtSDStt = Drtt. (5.5)

To this end we observe that the last term on the left hand side of the above
equation is 0 and the kernels of the first three operator terms are given by

K&, y)=- 2 χ ] s > r ] ( x ) χ ] S ί t ] ( y ) H A x _ y ,

K2(x,y)=- 2χ]s> r](y)χ]y> r](x)HAx _ y ,

respectively. A decomposition of the triangular region {{x,y):t<y^x<r} into a
square and two triangular regions shows that

Xlt, r]yX]yt r] = X]s, r] X]s, i] + X]s, r ] 3 > ] y , r]X + X]t, s

and hence

Σ K{x, y)=- 2χ](, ̂ (y)*,,. r](x)H^ _ y ,
ί = l

which is also the kernel of Dr t. This proves (5.4). Π

Lemma 5.2. For all r ̂  s ̂  t

ό > .(ί ;.)--.-
/ To prove (5.6) we first observe that As^t = As_t and for any fεά we have by a

change of variables

2 f χ]t,s](x)As_J(x + r)dx

Similarly we have

SrCϊpt = C r + s > r + r . (5.9)

Further for any xelR we have

= - 2 J χ]f f s](j;)^ s](χ -

= - 2 j χ]fpS]0; - ήχ]y_rjx - r)HAx_yf(y)dy

= -2$χ]r + tίΓ + s](y)χ]y> s + r](x)HAx _ yf(y)dy

. (5.10)

Now (5.6) follows from (5.8)-(5.10).
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To prove (5.7) we have to only observe that the adjoints of the operators AStt,Bs,t> cSfί,
 and D5,t

 are

l = As. (B*tζ)(x)= -χ]ί

(5.11)

lJ)(x) = - 2 j χ]tiS

respectively and follow a procedure similar to the proof of (5.6). Π

Lemma 5.3. Us t is unitary.

Proof. Since H1/2 and At commute we have for ζe40, using (5.11)

(4*A,t+cs*tcs,()ζ

= A2(s _ ,,ζ + 2H J χ]tιS[(x

= ̂ 2(s-r)C- ίl]ί,s[W^

Also, for any

,/W^ + (2H)1/2

_ J χ]t,s](y)%]v,s

The right hand side of the last equation is identically zero in view of the identity

2HA2x_t_y= - —A2x_t_y. Thus

Next we observe that D*tDst is an integral operator in a — L2(1R, /I0) with kernel

K(x, y) = 4 j χ]f j5](x)^>s](z)H^lz _ xχ]t(S]( ]̂),>s](z)H t̂ _ ydz

= lXM(x)xM(y)H[_Alx_yrA2s_x_y-]. (5.14)

The kernel of the integral operator BftBs t is

(2ίί)1/2χ](;S](xMs _ x(2H)1'2χM(y)As_y = 2χ]t,s](x)χ]t>s](x)χ]t>s](y)HA2s

(5.15)

The kernel of D*( + D s t is

2χ](, s](x)X]x, s](y)HAy _ x + 2χ]t> s](y)χ]yt s](x)Ax _ y

= 2χ]tJx)χM(y)HAlx_yl. (5.16)

From (5.14)-(5.16) we conclude that

,.t = 0 (5-17)
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Equations (5.12), (5.13), and (5.17) imply that t/* f fl/M = /. We use (5.7) to observe
that

7
P

Lemma 5.4. In the decomposition Av =(^0©^]ί s])®^ s] where A^t s] is the orthogo-
nal complement of ̂  s] in A^ the operator Us t assumes the form

where FM is a unitary operator in ά0®ά]tiS].

Proof. Let E be the projector onto ά]s>t] in A. Since

we can write

/O 0

" l o I-E

and hence the lemma is proved. Π

Theorem 5.5. Let H be a positive self-adjoint operator in a Hilbert space /I0. Let
(ζ\

^ = L2(1R,40), άί=!%Q®A and let J:ζ-> be the natural imbedding of ά0 in ^x.

Then there exists a strongly continuous unitary evolution {Us>t,s^t} in A satisfying
the following : (a) J*USftJ = e(t~s}H (b) in the decomposition

where ^]ίj5] is ίfoe subspace of A consisting of functions with support ]£, s] and ̂ >s] is
ί/iβ orthogonal complement o f ά ] t t S ] in A, Us>t = Vs>t®I where Vs>t is a unitary operator
in ά0@ά]t>s] (c) (I@Sr)UStt(I®SrΓ

 l = Ur'+s>r+t' where I®Sr is the direct sum of the
identity in£0 and Sr is the shift defined by (5.1) in A (d) (70S)C7*f(/0S)~ 1 = U_t> _ s

where 70S is the direct sum of the identity in A$ and S, the reflection dejined by
( 5 Λ ) i n ά .

Proof. First of all we observe that we may assume without loss of generality that
00

the operator 77 is bounded. For if not, we may write AQ as a direct sum @ A(n} such
n= 1

that 77 is bounded in each A(n\ construct the evolutions U(£ in ^(

0"
)0L2(1R,^(

0"
)) and

put the pieces together without any difficulty. When H is bounded we construct
US)t by putting As>t = e(t~s}H and using (5.2) and (5.3). Then we conclude from
Lemmas 5.1-5.4 that U S f t is a unitary evolution satisfying properties (l)-(4) of the
theorem. Thus only strong continuity remains to be established. Because of
unitarity this is equivalent to establishing the weak continuity of USίt and hence
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the weak continuity of the operators As>t9 Bst, CM, and Dst defined by (5.3). By
assumption As t is strongly, hence weakly continuous. If Ce^0, f9geά we have

<ζ, BSpf/> = - 21/2 j χ]M](x)<

Since the right hand side is continuous in the variables t and s, the weak continuity
of Bs t follows. A similar argument holds for the remaining operators. Π

In view of the properties (l)-(4) of the evolution {Us>t,s^t} we call it a time-
orthogonal unitary dilation of the semigroup {e~tH,t^.Q}, and we note that it is
reflective and covariant under time inversion and translations. It may be remarked
that the dilation of Theorem 5.5 is different from the classical dilations of one
parameter contraction semigroups of operators in a Hubert space into one
parameter groups of unitary operators in a larger Hubert space (see [14, 4, 10]).
The replacement of invariance under time translation by covariance and the time
orthogonality property in Theorem 5.5(b) are the essential features of the new
construction.

6. Second Quantisation

Let A be a Hubert space. The (symmetric) Fock space [6] over A is the direct sum

where ̂ (0) = (C and for n ̂  1 the n-partide space A(n} is the symmetric component of
the n-fold tensor product of A with itself. The exponential vectors, [6]

form a total set in Γ(β) the vacuum, denoted by Ω or Ω(ά)9 is the vector

40) = (1,0,0,...).

If >l = 410 ... ®ώn is a direct sum then there is a Hubert space isomorphism,
which we use to identify the two spaces, from Γ($) to Γ(^f1)® ... ®Γ(άn) under
which each exponential vector e ( f l 9 . . . 9 f n ) is mapped to the product vector

*(/i)® •••&*(/„)•
Let C be a contraction from A to a second Hubert space A. The second

quantisation Γ(C) [5] is a contraction from Γ(ά) to Γ($} whose action on
exponential vectors is

Γ(C)e(f) = e(Cf). (6.1)

The map C\-+Γ(C) is continuous for the strong operator topologies in B(/!,*f') and
), Γ(ά ')). Second quantisation satisfies the functorial rules

= I , (6.2)

= Γ(C1)Γ(C2), (6.3)

Γ(C*) = Γ(O*. (6.4)
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From (6.1) it is clear that, if C = C X © ... ®Cn is a direct sum, then

Γ(C) = Γ(C1)®...®Γ(Cn). (6.5)

Let J be the inclusion injection from A into a larger space a'. Then, for AeB(Γ(ά')),
Γ(J)*AΓ(J) is the vacuum conditional expectation of A given B(Γ(^)), that is, the
unique operator in B(Γ(4)) such that, for arbitrary ψ,χeΓ(ά\

where /I1 is the orthogonal complement of A in A' and we have used the
identifications

The Fock representation of the canonical commutation relations (RCCR) over
A is the family of unitary Weyl operators (W(f)\feA) in Γ(A\ whose actions on
exponential vectors are

The map f^>W(f) is continuous in the norm topology of A and the strong
operator topology of B(Γ(^)), the Weyl relation

(6.6)

holds and the vacuum expectation functional is

The Fock representation is irreducible [6]. If U is a unitary operator in A then, for

Γ(U)W(f)Γ(UΓ1 = W(Uf). (6.7)

If A is a direct sum, 4 = ̂ Θ ... Θ^n, then, for f = (fl9 ...,fn)eά

W(f}=W(fl}®...®W(fn}.

Now let ^Q be a Hubert space, let /l = L2(IR,*f0) be the Hubert space of
/f0-valued square-integrable measurable vector-valued functions and let
^i =^0©^ Let N be the von Neumann algebra 6(7 )̂) and, for sΞ>f, let NS}t be
the von Neumann algebra generated by the operators W(ζ9f)9 Ce/l0,/e^]s t], where
>f]M] is the subspace of ̂  comprising functions vanishing outside ]ί,s].

Next let St, t ̂  0 and 5 be the shift operators and reflection in A and define
automorphisms yt, ί^O, and ρ of JV by

Then using (6.5), (6.7) and the fact that B(Γ(άJ) is generated by the irreducible
family of Weyl operators, it can be seen that (ΛΓ, (ΛΓM), (yt), ρ) is a reflective
covariant system.

Next let J be the embedding £->(£,()) of ̂ 0 in ̂  and define j:N-*B(Γ(ά0)) by
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thus j(A) is the conditional expectation of A given B(Γ(^0)). Finally let (Us t) be the
time orthogonal unitary dilation of a strongly continuous self-adjoint contraction
semigroup acting in /I0 as in Theorem 5.5.

Theorem 6.1. j is a reflective covariant reducing map and (Γ(l/s>f),s^ί) is a
reflectively covariantly adapted evolution for (N,(NStt),(γt),ρ).

Proof. Ύhatj(A*)=j(A)* is clear from (6.4). To prove that j satisfies (3.1) we make
the natural identifications

and similarly

Since the von Neumann algebras B(Γ(*ί]flfb]))®/®/ and /®B(Γ(j|]Cfd]))®/ are
independent in the vacuum state

Ω(̂ ) = ̂ ]βiW)®Ω(^]Cfd])^

(3.1) now follows from Theorem 1.1. Thus j is a reducing map. By second
quantising the relations

and using (6.3), we have

Γ(IφStΓ *Γ(J) = Γ(/ΘS) - 1Γ(J) = Γ(J) , (6.8)

and hence, taking adjoints,

Γ(J)*Γ(I®St) = Γ(J)*Γ(/ΘS) - Γ(J)* . (6.9)

From (6.8) and (6.9) it is clear thatj°γr=j°ρ=j so that) is reflective covariant.
Finally, it is clear from (6.2), (6.3) and the continuity of second quantisation

that (Γ(17M),s^ί) is an evolution; second quantising (5.2) using (6.5) gives

so the evolution is adapted. That the adaptation is reflective and covariant follows
from the second quantisations of (5.3) and (5.4). Π

The reduced evolution corresponding to the reducing map j of the evolution
(Γ(L7Sjf))is easily found by second quantising the relation As_t = J*UstJ to be the
second quantisation (Γ(At) : t ̂  0) of the original semigroup (At). We write

Let us now consider perturbations.
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It is now clear that elements B of (°) NStt are precisely those of form V®I with

^0), and such elements are automatically invariant under the γt. From
Theorem 3.2 (c) we may thus write, for self-adjoint FeB(/f0)5

(6.10)

where (M£t) is the cocycle for Γ(Ust) determined by B— V®1.
We investigate conditions under which the family of operators

Γ([7ϊ>t)7®/Γ(ί7Sι()-1

is commutative, so that, according to Theorem 2.1, the cocycle can be expressed in
integral form

(6.11)

Let K0 be a conjugation in >f 0, that is a conjugate linear isometric map from $0

to itself whose square is the identity, such that

Then if K is the conjugation in ^ = L2(1R,^0) given by

(Kf)(x) = K0(f(xf)

and K1=KQ®K, we have

K^J — J -tvQ

and, for arbitrary s*£t,

Let JV0, Nί be the von Neumann algebras generated by the operators

respectively. Then, using (6.6), it is easily seen that N0 and N1 are commutative.
Also, since by (6.7),

and if K0ζ = ζ, then

we see that conjugation by Γ ( U s t ) maps NQ®I into the commutative algebra Nv It
follows that, for ^belonging to N0, the operators Γ(US t)V®IΓ(Us t)

-1 commute
so that by Theorem 2.1 the cocycle can be written in integral form so that (6.10)
becomes

exp - Γ(UJV®IΓ(UStτΓ
 ldτ Γ(U J\B(Γ(ά)). (6.12)
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A conjugation K0 in A0 effects a separation of the set of fields r((), Ce40, that is
the self-adjoint operators defined by

into "coordinate" fields, for which K0ζ = ζ and "momentum" fields, for which
KQζ = — ζ. Thus we may say that the integral form (6.12) of Feynman-Kac formula
is valid provided the perturbation Fis a function of the coordinate fields alone, in
the sense of being an element of the von Neumann algebra generated by the
spectral projectors of these fields alone.

7. An Example

We consider the case [8] of the semigroup At = e~l acting in the Hubert space
AS = C, with complex conjugation as the conjugation K0. The second quantisation
(Γ(At)) is then the semigroup in Γ(<L} — 12 whose infinitesimal generator is the
number operator

αfα(z0, z l 9 z2, . . .) = (0, z l 5 2z2, . . .) ,

or equivalently the renormalised harmonic oscillator Hamiltonian -|(p2 + q2 — 1),
where p and q are the canonical pair defined by

e

ίtq=W(t), ίelR

and

We shall show that the operator Γ(US t) can be expressed formally as a product
integral

ΓW^fle^***-****, (7.1)
t

where (P, Q) is essentially the (Fock) canonical Wiener process of [3] of minimal
variance <τ2 = l. We recall that for ί^O the operators P(i), Q(f) of the process are
defined in Γ(L2(R)) by

eίxp(t} = W(ίxχ^t]) , e**™ = W(xχ^t]) (xε R)

for ί<0 we define P(t\ Q(t) by

eixp(t} = W(

so that, for arbitrary s>t,

where (ps>t,qs>t) is the canonical pair defined by

eίxp^=W(ix(s-tΓ1/2χ]t,s]) , e***-* = W(x(s-tΓ1/2χ]t>s]) (X6R) .
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To give meaning to the product integral (7.1) we first consider the formal
"Riemann product" for a partition A = {t = t0<tί< ... <tn = s},

TΛ= Π
7=1

= Π exp{iθjtp<8>qj-q®pj)},'
7=1

where

and (pj, qj) is the canonical pair

Recognising p®qj — q®pj as an angular momentum, we may define
Qxp{ίθj(p®qj — q®pj)} rigorously as the second quantisation Γ(Rj) of the rotation
R which acts in

where

Ύ —(t —t )~1 / 2

£j~\li li-v ^

as

#/Z,/MZO,/
where

/o = sin θjzχj + (cos θ . - 1) <χ7,/>χ7 +/.

Hence

where

Zl = Π cos θ z - <χ,/> sin ̂ . ] (cos θ,)
\ j = l / j = l fc = j + l

Λ = Σ sin 0j ( Π Λ sin θ» - Έ Λ sin 0t Π (cos 0,)
f c = l k = l l = f c + l

7=1

From this it can be seen that, for sufficiently smooth /

7=1
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where

f'(x) = l2e^χ-%Jx)z-2$χ]t

and the limit is as the mesh \Λ\= max (tj — tj_-l) decreases to zero. But this is
n

precisely UStt(z,f). Since C/S j t is unitary the product |~] Rj converges strongly to
j = ι

US)t. Using the strong continuity of second quantisation it follows that Γ(Ust) is
n

indeed given by the limit of the Riemann products TΛ = Y[ Γ(Rj).
j = ι

The algebra N0 in this case is clearly the von Neumann algebra generated by
the operators eίxq, xeIR, thus a self-adjoint element of N0 takes the form V(q) for
some real, bounded measurable function V. Since, by (6.7)

= W(V,ιt(x,0))

= W(e~(s~t]x,xf],

where

/(τ)=l/2χ]M](φ-<'-«, (7.2)

we have

Γ(USίt)V(q)®IΓ(Uj-l = V(qs

t), (7.3)

where qs

t is defined formally as

s

ί

using the stochastic integral notation [3] for field operators associated with the
canonical Wiener process qs

t is rigorously defined by

eixq'=W(e~(s~t}x9xf)9

with /given by (7.2). Thus, from (6.12) we obtain the formula [7]

(7.5)

As was brought to our attention by a comment of L. van Hemmen, the
Feynman-Kac formula (7.5) is essentially the "oscillator process" formula of [13,
p. 52]. To see this, note first that, because of their relationship (7.4) to the
q-component of the canonical Wiener process, in the state Ω0®£2(L2(1R)) where Ω0

is the oscillator ground state, the vacuum in Γ(C), the commuting family of
operators q(t) = qti0, t^O, constitute a realisation of the Ornstein-Uhlenbeck
velocity process.
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Moreover, for vectors in I2 — Γ((C) expressed in the form/(g)Ω0, g(q)Ω0 we have,
from (7.4) with ]ί,s] replaced by ]0, ί],

0, exp { -

= (/(β)00)®0,exp -

= ( f(q®I)Ω0®Ω,exp - J
\ I o

= /(4(0)Ω0)<8>Ω,exp -
\ I o J o /

using (7.3),

= //te(0))Ω0® Ω, exp { - ί n«(τ))dτl ff(«(ί))Ω0 ® Ω\ ,
\ I s J /

using the in variance of the vacuum Ω0®Ω under the second quantisation

- ί V(q(τ))dτ\Ω0®Ω
o

where the expectation is over the Ornstein-Uhlenbeck velocity process (g(f)). Thus,
as in [13],

<f(q)Ω0, exp {- t£(p2 + g2

From the viewpoint of noncommutative probability theory, it is natural to
regard the operators

as the g-component of the canonical Ornstein-Uhlenbeck velocity process
(p(t\q(t\t^\ where

Because p(ί) and ςf(ί) constitute a canonical pair for all t ̂ 0, the process ((p(ί), q(f)J)
is essentially a noncommutative W*-stochastic process in the sense of [2], insofar
as the von Neumann uniqueness theorem gives rise to a family of von Neumann
algebra isomorphisms j(t), ί^O from the von Neumann algebra generated by the
spectral projectors of p(t) and q(t) to that generated by those of the fixed canonical
pair (p, q\
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The perturbation cocycle (M*0) corresponding to an element B of B(/2) not in
JV0 can be expressed formally as the continuous product

0

here B(p(τ), q(τ)) is the pre-image of B under j(τ).
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