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h2 1
Abstract. We study Schrόdinger operators of the form H = A +-x A2x

+ V(x) on Ud, where A2 is a strictly positive symmetric d x d matrix and V(x)
is a continuous real function which is the Fourier transform of a bounded
measure. If λn are the eigenvalues of H we show that the theta function

θ(t) = £ expl — γtλn ) is explicitly expressible in terms of infinite dimensional

oscillatory integrals (Feynman path integrals) over the Hubert space of closed
trajectories. We use these explicit expressions to give the asymptotic behaviour
of θ(t) for small h in terms of classical periodic orbits, thus obtaining a trace
formula for the Schrόdinger operators. This then yields an asymptotic expansion
of the spectrum of H in terms of the periodic orbits of the corresponding classical
mechanical system. These results extend to the physical case the recent work on
Poisson and trace formulae for compact manifolds.

1. Introduction

The study of the relations of quantum mechanics and classical mechanics goes
back to the very origin of quantum physics, i.e. to the years where the "old quantum
theory" of Bohr, Einstein, Sommerfeld was developed and was to lead to what is
now understood as quantum mechanics (Heisenberg, Schrόdinger 1925-1926).
We have discussed before [2], by means of our definition of Feynman path integrals
[3] the way in which the solutions of the quantum equations of motion are
connected to classical motions in the precise sense of asymptotic expansion in
powers of Planck's constant.

In the present paper we are concerned with the relation of the eigenvalue
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spectrum of the quantum mechanical energy operator with the orbits of the
corresponding classical system. The simplest relations of this type were at the very
basis of the "quantization rules" of Bohr and Sommerfeld, see e.g. [31]. For history
and extensive references to other work on topics connected with the present paper
see [5]. We shall discuss the general problem in the present paper using our method
of stationary phase for oscillatory integrals in infinitely many dimensions [1], a
mathematical version thus of the original ideas associated with Feynman path
integrals. We get asymptotic expansions in powers of h for the theta function

— t λ n I associated with the Schrόdinger operator H = Δ

+ -(x,Λ2x)d + V(x),A2 being a symmetric strictly positive matrix in Ud,xeUd

9Δ

the Laplacian in [Rd, V(x) a bounded continuous potential on Ud, λn being the
eigenvalues of//. The expansion is obtained by expressing θ{t) in terms of oscillatory
integrals over a Hubert space of paths and using then our method of stationary
phase for such integrals. We obtain in this way an asymptotic expansion in powers
of h in terms of the periodic orbits of the corresponding classical mechanical
anharmonic oscillator. This representation is a natural extension of the Poisson
formula for the classical theta function. From it we deduce a trace formula for

other associated functions, e.g. the ζ-function C(s) = Σ —

Let us now describe shortly the structure of the paper. In Sect. 2 we give a
representation of the Green's function for the time dependent Schrδdinger
equation in terms of the oscillatory integrals on infinite dimensional spaces studied
in [1]. In Sect. 3 we derive from this the trace formula for the theta function θ(t)
associated with the Schrδdinger operator H. We show that θ(t) is a generalized
function expressed by an oscillatory integral over a Hubert space of closed paths,
starting at time 0 and ending at time t at the same place. In Sect. 4 we derive an
asymptotic expression for small h for the θ-function, by using the trace formula
and the theory of asymptotic expansion of oscillatory integrals we developed in
[1]. In fact we get that θ{t) is given asymptotically for small h as a sum over
contributions coming from closed orbits of the corresponding classical system.

In Sect. 5 we give corresponding asymptotic formulae for small h in terms of

classical closed orbits for different quantities associated with the quantum mechani-

cal Schrόdinger operator. In particular we give formulae for $1 jλh

n 1, where g has

support around -λh

n,λ
h

n being the nth eigenvalue of// and we obtain the proof of the

Bohr-Sommerfeld quantization formula. The above formulae are of the type of
the Poisson formula for the theta function associated with the torus. We also
define the ζ-function associated with the Schrόdinger operator and we get an
asymptotic expression for it for small h in terms of classical closed orbits. These
results give in particular a natural extension of those obtained in the literature
for compact manifolds (see e.g. [9,13,14,17,18,20,21,24,28,30]) to the case of
Schrόdinger operators in Ud. Our results have been announced in [6], [7].
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Note added. After completion of this work we received a preprint by Chazarain
[12] which contains related results obtained by completely different methods.

2. The Green's Function Expressed by Normalized Integrals

Let us first recall the definition of a normalized integral with respect to a given
bounded quadratic form, a particular case of the ones defined in [3] (Sect. 4, esp.
59-64) and [1]. Let J4? be a real separable Hubert space and let B be an everywhere
defined bounded symmetric operator on J?. Assume B~ι is also a bounded
symmetric operator on Jf7. Let S(J^) be the space of functions/on H which are
Fourier transforms of complex measures on &?, i.e.

f(γ) = j eto ΉμJμ)

with (,) the scalar product in .ff and μf a bounded complex measure on tf, with

finite total variation \\μf\\ = J d\μf\(oc). The mapping f-+μf is one-to-one and

continuous, $( j f) being given the norm || / 1 | 0 = || μf \\ ^(Jf7) is a Banach function
algebra, whose elements are going to be the integrable functions with respect to
the following integral /(/). For / e g p f ) define

= ί exP( ~2^B l α ) rμf^

The symbol on the left hand side is defined by the right hand side, which exists
as an integral on J^7. The complex-valued functional / -• /(/) is shown to be linear,

continuous, normalized (1(1) = 1) on the Banach algebra g(Jf), in fact

n

= Π ll/)llo» a n c * i s a n extension to the infinite dimensional case of

ί
•exp ( - ί^sign B j ^ exp (~(γ9By) jf(γ)dγ9

where |Det J5| is the absolute value of the determinant of the matrix B in Ud and
sign B is the signature of the matrix B (i.e. the difference of the number of positive
and negative eigenvalues of B). We also recall the behaviour under translations
of the normalized integral expressed by

j exp ( Uy + α, B(y + α)) )f(y + a)dy = J exp ί Uy9 By) \f(y)dy.

For other properties of the normalized integrals /(/), in particular a Fubini theorem
about iterated integrations, see [3], [4], [1].

We shall now use this normalized integral to express quantities associated with
anharmonic oscillators on Ud. Consider the system (anharmonic oscillator on Ud)
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given by the classical action

St(y) = ±\y2(x)dτ-±\y(τ)Ά2y(τ)dτ-\ V(γ(τ))dτ9 (2.1)
0 0 0

where A2 is a strictly positive symmetric operator on Ud and <y1 y2

 = (y^yi)d *s t n e

scalar product in {Rd, and assume that Feg(ίRd) and real. Consider the operator

h2 1
H= --Δ + -xΆ2x + V{x) (2.2)

in L2(Ud\ with xeUd, where /z is Planck's constant divided by 2π. /f is essentially
self-adjoint on the domain C^(Rd) and its spectrum σ(H) is contained in [inf V,
+ oo) and, by a theorem of Friedrichs, it is discrete. Let φe^(Ud)nL2(Ud) and
consider exρ(- itH/h). For φeD{H) we have that Ψ(t,x) = exp(- itH/h)φ(x) solves
the Schrόdinger equation

ϊ/ί— Ψ(t,x)
ot

with initial condition ^(0, x) = φ(x).
It was proved in [1] Sect. 5 Theorem 5.1 that for all values of t such that cos At

is nonsingular one has

( (2.3)

with

f(γ) = exp (Uβ, Bβ)\xp ( - [\ V(y(τ)+ β(τ))dτ)φ(y(0) + β(0))9 (2.4)

and

|cos At\ ~1/2 = |Det cos At\~ 1/2exp ( i—sign (cos At) j .

Here j f 0 is the real separable Hubert space of absolutely continuous functions y
t

from [0, ί] into Md, such that y(r) = O, with finite kinetic energy ^y2(τ)dτ and
o

t

norm given by |y | 2 = \y2(τ)dτ. B is the bounded symmetric operator defined
o

everywhere on j ^ 0 given by

In this case B ~~1 is bounded symmetric on j^f0. β(τ) is the path such that β' + A2β = 0,
cos /I T 1

]8(ί) = x,j5(O) = O, i.e. β{τ)= -x. We observe (β,Bβ)= --x tgAtAx.
COS /ί X lίl
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Thus we see that expj —γtH \φ is expressed through an oscillatory integral of

the type we considered in [1]. In particular we can apply to it the expansion
theory developed in Sect. 4 of [1]. We remark that (2.3) can be written in an
obviously symbolic notation

1 / 2 [ cxpίl-St(y))φ(y(O))dγ. (2.5)

In this paper we are basically interested in discussing the relation between the
spectrum σ(H) of H and the classical paths, i.e. solutions of the equations of motion
of the classical system with classical aption (2.1). To do this it is convenient to
consider the Green's function K(t, x, y) for the Cauchy problem. We have

expί-^tff J<Λx) = ^K(t,x,y)φ(y)dy. (2.6)

We shall now express K(t9x9y) as a normalized integral. We have the following

Theorem 2.1. The Green's function K(t,x,y) for the Schrόdinger equation

with Ve^(Ud) and A2 a symmetric strictly positive matrix in Ud is given by

K(t,x,y) = K0(t9x9y) J exp\^(y9By)
•XΌ.o

•exp ( - i j V(γ(τ) + a(x, y)(τ) + β(τ))dτ )dy,

where

K0(t,x,y) = Det —
sin At

1 / 2

(2π/h)'dί2Qxp[ i-σ(sin At) exp —(x,i4cotg/4ίx)(

if A \\ / i
< e χ P l —τ\ χ>- y e χ p —(y,

h\ sin At h I \2h

is the corresponding Green's function for the harmonic oscillator and

cosyίτ

with ηz(τ) = [cos^τ - (cotg^ίsin/lτ)]z.

Proof of Theorem 2.1. We first observe that we have the direct splitting J ^ o =
ffl0 0 + J f d9 where direct is with respect to the quadratic form (y,By)9 i.e. any ye J^o

can be written in the form y = y + ηy with yej^0 0 and (η , By) = 0,η ej^d. Here
ηy is the path

ηy = cos Aτy — (cotg At sin y4τ)y.
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Equivalently ηy = B ιyy, with yyeJ^00, where Jf OjO is the orthogonal complement
of J f o,o in J ^ o with respect to the scalar product in J^ o . In this situation we can
use the Fubini theorem about iteration of normalized integrals (Prop. 4.5 in [3])
and we get

= ί

( ) y) (2.7)
Jί"o,o V Z

where we observed that jίfd s lRd by the natural mapping ηy*-*y-
Introducing now (2.4) for / we can rewrite the right hand side of (2.7) in the form

e χ p ( - i< x > ^AtΛx^i) ί e χ p ( i ^ ' Λcot% Λtyϊ*) ί e χ p ( ^ ~
V Z " Z" / \Z

•expί - l-\ V(y(τ) + ηy(τ) + β(τ))dτ\φ(y)(ΰ) + Ίy(0) + β{O))dγ)dy.

(2.8)

We now observe that we have

£ (2.9)

and setting z = y H we can rewrite (2.8) in the form
cos4ί

A
exp I -—(x,tgAtAx)d I exp I - - ( x,- z I I exp I —I x, — : xχ 2h J \ h\ smAt JdJ \2h\ cos/lίsin/4ί j ά

\ exp(^-(z,AcotgAίz)d )( f expiry,By)

. (2.10)

Hence we see that (2.7) multiplied by \cosAt\~112, i.e. (2.3), is equal to

J K(t,x9z)φ(z)dz, (2.11)

with

K(t,x,z) = K0(t9x9z) [ exp (^(y, By)

•exp ( - - j V(y(τ) + η{z_x/cosAt) (τ) + β{τ))dτ )dy9 (2.12)
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where

—(x, Acoig Atx)d lexpί -Ux,—
2/ί / \ h\ sm At

1/2

exp( —(z^cotg/lίz), Det (2π -d/2

The factor Det-

exp i—σ(sinAt) . (2.13)

V 4 /
1 / 2 / π

sin
(2π) d/2exp i—σ(sin/lf) I is actually due to the fact

that the normalized integral over Ud has been expressed in (2.11) by a Lebesgue
integral over Md, by

Idet(AcotgAί)!1/2 / π . \
exp zσ(sin^ί) J .

Note that KQ is the Green's function for the Schrόdinger equation (2.2) with V = 0,
i.e. for the harmonic oscillator in d-dimensions. F r o m (2.3), (2.4), (2.7)—(2.13), we

see that K(t,x,z) is the kernel of the unitary operator expί —ytH I in L2(U\dx).

This proves the theorem. rj

Remark. In terms of the symbolic notation used in (2.5) we can write the formula
for the Green's function in Theorem 2.1 in the form

K{t,x,y)= J exp(-S f (y)W (2.14)
y{t)=_x V^2 /

where

st(y) = 2 ί 72W^τ -\] {y°A2y)ddτ - j 7(y(τ))dτ. (2.15)
0 0 0

3. The Trace Formula

As remarked in the preceding section the spectrum of// as given by (2.2) is discrete.
Let us call λn, n = 0,1,2,..., the eigenvalues of //. Here we take h = \. We have
λ0 = inf σ(H) ^ — ̂ tr^ — inf V(x) and λ0 ^ λγ :g λ2 ^ ..., λn\ oo. We will now give
a meaning to the formal expression

Tre-fr//= £ e~ιtλ\ (3.1)

Although β~IίH is not of trace class we shall see that these expressions are well
defined in the sense of generalized functions, and are expressed by oscillatory
integrals.

We first observe that the distributional kernel of e~itH is given by

p~itHίx λλ—Kίt Y \λ — V p~itλkT (γ\f (λλ
e \χi y) — ^ M ^ χ>y) — 2^ e JiAχ)Jk\y)'

k = 0
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where {/J is a basis of normalized eigenfunctίons in L2(Ud,dx),fk being the
eigenfunction of H corresponding to the eigenvalue λk. On the other hand we have
seen in Theorem 2.1 that K(t,x,y) is expressible by normalized integrals. Intro-
ducing this, which we write for shortness as in (2.14), into (3.1), we get the
distributional equality

e-itH(x,y) = ΣTk(x)e~itλkfk(y)= Γ eiSt{y)dy (3.2)
k γ{t) = χ

y(O) = y

On the other hand

(fk,e-itatt = e-itλ*9 (3.3)

since the fk are normalized eigenfunctions of H, where (,) is the scalar product in
L2(Ud,dx). But by the definition of e"itH(x, y\ the left hand side of (3.3) is equal to

j fk(x)( j e-*H{x,y)fkiy)dy)dx = <<Γ i t H,/ k®Λ>. (3.4)

Integrating the bounded continuous function (3.3) against an integrable φ with
Fourier transform φ continuous with compact support we have, using (3.4)

φ(λk) = j φ(ήe-ίtλ«dt = J φ(ή( j /k(x) J e^\x,y)fk{y)dy)dt

= jφ(tKe<"Jk®fk}dt, (3.5)
OS

hence

Σ ί Λ (3 6)

Using the completeness of the {fk} we get then

Σ Φ(λk) - J φ(t)( j e-*"(x9x)dx)dt. (3.7)

Note that the left hand side is finite by the assumptions on φ, hence j e'itH(x,x)dx

ud

is a well defined generalized function of t. On the other hand from (3.2) we see
that this distribution can be written also in the form

J eiSt™dy, (3.8)
γ(t) = x
(O

where (3.8) is by (2.14) and Theorem 2.1 expressible by a normalized integral over

the Hubert space Jf o,o °f closed paths.
From (3.7), (3.8) and Theorem 2.1 and the fact that φ is the Fourier transform

of φ, we have thus the equality in the sense of generalized functions in t

<c,x)dx= I ( j eiS'wdγ\x
RΊ \ y(l) = x J

' y(6) = >
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= ί K0{t9x9x)\ J exp(^γ,By))gx(γ)dγ]dx9 (3.9)

/ ί \

where ^(y) = exp - i j [F(y(τ) + α(x)(τ) + j8(τ)]dτ and α(x)(τ) Ξ α(x, x)(τ). This
V o /

will now be taken as the definition of Ύΐe~ιtH = θ(t) and we shall call θ(t) the ί/zeία
function for the Schrodinger operator //.

Remark 1. In the integral (3.9) the normalized integral over ^ 0 0 exists as a
continuous function of t and x and it is only after integration over x that the
formula has to be interpreted in the generalized sense.
Let us formulate the above result as

Theorem 3.1. Let H — — \A +\(x, Λ2x)d •+- V{x\ with A2 a symmetric strictly
positive d x d matrix and Ve^(Ud). Let λk be the eigenvalues ofH. Then in the sense
of generalized functions in t we have

y(t) =

θ(t) = Ύve~itH = X e ~ i t λ k = J ( j e ί S t ( y )dy )dx,

where the path integral is defined by

y{t) =

where St(y) is the action along y9 Jf 0 0 is the Hilbert space of paths of finite kinetic
energy beginning and ending at the origin,

K0(ί,x,x) = det-7
sin At

1/2

x, (cos At — l)x
sinAf

exp( i—σ(sin At) )?

l = exp i]
L o

gx{y) = exp I i j V(y(τ) + α(x)(τ) + β(τ))dτ |,

where

ί
α(x)(τ) = [cos v4τ — cotg Atsin Aτ] x —

cos At

Remark. In the case where H is the Laplacian on a torus [Rd/Γ, then θ(t) is the

analytic continuation to τ = it of the classical theta function θ(τ) — ]Γ e" τ m 2

4. The Asymptotic Expansions in Terms of Periodic Orbits

We shall now derive asymptotic expressions for small h of the quantities entering
the trace formula of the preceding sections, where h is the parameter (in the physical
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world Planck's constant divided by 2π) which appears in Schrodinger's equation
as follows

ih- ψ{t,x), (4.1)

where (,)d is the scalar product in Ud.
We start by considering the trace formula given by Theorem 3.1, which in the

present case reads

Trexpj --tH ) =

the path integral being defined by

y(t) = x
y(0) = x

where

det

y(O) = x

exvUst(y))dy)dx, (4.2)

(4.3)

{2πhf

1/2 /}/ A

exp I -( x, (cos At — l)x
y h\ sm At / d

exp( ΐ—σ(sin At) ),

gh

x(y) = exp ( - %- J F(y(τ) + α(x)(τ)

and we recall that

(y, By) = i

Note that now equipped with the scalar product given by the norm

-\y2(τ)dτ. The operator 5 is clearly bounded and is invertible with bounded
n0

inverse provided the equation γ + A2y = 0, γ(t) = γ(0) = 0 has no nontrivial solution,
which is the case if t is not a multiple of the periods π/λi of the corresponding
classical harmonic oscillator, where the λi are the eigenvalues of A. In this case
the integral over ^ o , o ^s °f t n e tyPe °^ t n o s e considered in Sect. 4 of [1], since B ι

is bounded. We now proceed as in Sect. 4 of [1] and will prove that the integral
(4.3) can be evaluated asymptotically for /i-»0, reducing the situation to the one
of an oscillatory integral with one stationary point followed by a finite dimensional
one.

We now take an integer n and split any path yeJf 0 0 into y = yλ +y2, where

/QtOJ = l,2,y2 is such that y2(τ) + A2y2(τ) = 0 in all intervals
k — 1 t

ί,/c-

fe=l,2,...,n with y2( fe- ) = fe- | for all fe = 0,...,n. Note that then y2(0) =
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y2[t) = 0, and γι=γ— y2, hence y1(/cί) = 0, k = 0, . . . ,n. Hence the space of all y2

when y varies in jf0 0 is (n — 1) d-dimensional. Moreover note that {y2,By{) = 0,

since on each interval (fc—l)-,fc- \k = l,...,n,γ2 is a solution of yJrA2y = 0

in the inner points and the limit of its derivative at the endpoints exist and y1

vanish at both endpoints. Hence y = yi

Jry2 is a direct splitting of J#Όt0

 w ^ t n

respect to the quadratic form (y, By), which together with the fact that the quadratic
form B is nondegenerate on ^ ~ B~ι ]tf2 allows us to use by Proposition 4.5 in
[3] the Fubini theorem for normalized integrals and split the integral over J^o,o
in (4.3) into the iterated integral first over .Wx and then over J^ 2 , where J ^ 2 is
the (n — 1) d-dimensional Hubert space of the paths of above form y2 (and yf x is
the Hubert space of paths yx of the above form).

We will now proceed to examine the integral over j f 0 0. We have

] exp(~(y,By))gh

x(y)dy= J exp( ^(y2,By

- \ ί V{yx(τ) + y2(τ) + <φc)(τ) + β(τ))dτ jdyγ W . (4.4)

Using now that V is the Fourier transform of the measure μv on Ud we have that
(4.4) is equal to

^ >2>By2))( fexp^(y 1 ,ByjW('-^(y 1 ,y 2 5 x)^y 1 W (4.5)

with

t

W(yy, 72>x)=Π e x P '<σ' Ti(τ) + y2W + «(x)(τ) + (β(τ))rf)rfμ^(σ)ί/τ. (4.6)
0 Kd

Introducing now the function yτ(s) ~ G(s, τ), with G(s, τ) the Green's function for

— —^ with Dirichlet boundary conditions at τ = 0 and τ = ί, i.e. G(s,τ) =

for 5 ̂  τ, we have

(*, 7i W + y2W)r f = to>t, ?i + y2), (4.7)
where we recall that (,) denotes the scalar product in Jf 0, hence in J f 0 0. From
(4.7) we can express W as the Fourier transform on Jf0>0 of the measure

dμw(p) = ί J δ σ y τ (p)^^^> + «dμκ(σ)dτ, (4.8)
o κd

From (4.6) we can trivially estimate the total variation of μw on j f 0 0 by the total
variation of μκ on Rd by

(4.9)
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To apply Theorem 4.3 of [1] we need moreover to show that the quantity

f expiy/lWB-^WλlpMμwliPuPi), (4.10)

where pl9p2 are the components of (p1,p2)eJ^00 according to the splitting
•^o,o = ^ i ® ^ 2 described above, is bounded by A2, for some λ>0 such that
||μ^|| < λ2. We recall that | | is the norm in J*f 0, hence in J^o,o a s w e ^ For this
bound it is sufficient that

J Qxp(^/2\\B'1\\λ\pί\)d\μw\(pί9p2)<λ2.
^ 0 , 0

Now from (4.8) we have

(4.11)

where σy[ι\ σy{

τ

2) are the components of σyτ in fflγ respectively Jf^, according to
the above decomposition.

But the measure exp( v/2I|β~ x | | λ\pί\)μw(ρ1,p2) is equal to

f AP2)eί(i

.ei(°y(τ2)Mχ) + β)dμv(σ)dτ.

But

(4.12)

k{tIn) k(t/n)
j\i^y/{τ-k(t/n))\σγ[l)\\σ\d

(4.13)

for all τe[(k-l)(t/ή),k(t/ή)] fc = 0,l,...,n, where we used (σy{

τ

ί\σy{

τ

i)) =
(σ, ay{1]{T))d. Now the total variation of (4.12) is bounded by

t J J ̂ vjΆB-'Wλ^y^Mμy^dτ. (4.14)

From (4.13) we have then that (4.14) is bounded by

Σ - ί S UP
k = 1 « Rd te[(k - 1 )(t/n),*(t/π)]

^ t I exp
\

σ\i Uμv\{σ),
/

(4.15)
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where we used \σy{1}\ S \σyτ\ = y τ(τ) 1 / 2 |σ |d = f f c ^ V \σ\d^ γ\σ\d. If we

assume now that V is such that

j eεlσl«d\μv\(σ) < + oo (4.16)

for some ε > 0, we see that for any fixed t we can choose n and λ > 0, n sufficiently
big, such that (4.15) is bounded by A2. On the other hand by (4.9) we have
\\μw\\<λ2, whenever / I 2 > ί | | μ κ | | (and \\μv\\ is finite, independent of λ by
(4.16)).

We have thus verified all basic conditions required for the results in Sect. 4 of
[1]. Those results give then the general asymptotic representation of the oscillatory
integral over Jf0>0 as /z->0, as a sum of terms which represent contributions from
each stationary point of the phase

= ί ( ϊ f W - (y(t), A2y(τ))d - V(γ(τ) + α(x)(τ) + β(τ))}dτ.
0

Note that this phase Φ(y) depends on x, through the second term. Now the
stationary points of the phase Φ(y) are the solutions of dΦ{γ) = 0. This is equivalent
with

t

By = dW(y + α(x) + β)9 with W(y + α(x) + β) = J V(y(τ) + α(x)(τ) + β(τ))dτ. (4.17)
o

But (4.17) is equivalent with Newton's equation of motion

yt

x{τ) + A2γx{τ)=-VV{yt

x{τ)) (4.18)

for a particle in the total potential \{z,A2z)ά + V(z) and with boundary conditions
ytJQ)=γt

x(t) = x. We shall say that such a solution yx of (4.18) is nondegenerate
if D(yx) = 1 — B~id2W(γt

x) is nondegenerate, where fx = yx — oc(x) — β. We shall
call a solution yx a closed orbit if it has finite energy. We can now formulate the
following

Lemma 4.1. Let Ve%(Md) be such that

J eε^dd\μv\((x) < + co

for some ε > 0. Then we have for the diagonal part Kh(t, x, x) of the Green's function
for the Schrodinger equation the following asymptotic behaviour as h -• 0

K%x,x) = J
y(O) = a

det-
A

sin At

-1/2
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where the sum is over all closed orbits which solve the equation of motion

with yx(t) = ΫJO) = x and fx = yx — α(x) — β. We assume that all orbits are
nondegenerate. m(yx) is the number of negative eigenvalues of B — d2W(yx). 0(1) is
bounded uniformly in h.
Proof We have already verified that the condition on V allows us to apply the
results of Sect. 4 in [1] (in particular Th. 4.1) to the oscillatory integral (4.3) for
Kh(t,x,x). This then yields, under the assumption of nondegeneracy, that the
integral over j f 0 0 in (4.3) possesses an asymptotic expression in h, whose leading
term is the one given in the lemma. D

Remark 1. In the case where the nondegeneracy condition is not satisfied, i.e. there
are some closed orbits for which 0 is an eigenvalue of the operator D(yx) =

Det —
A -1/2

( 1 - B ιd2W(yx)\ then the asymptotic expression for Kh(t,x,x)
sin At

as h -» 0 is of the type

K%x,x) = Σexpfe/yy W y y , (4.19)

where the sum is again over the closed orbits and the function G(h\yx) behaves
as h -• 0 in a way which is uniquely determined by the type of singularity of the
critical point of the phase, i.e. of the operator D(yx). This is discussed in Sect. 5
o f [ l ] .

Remark 2. Under the assumption on V of Lemma 4.1 the potential V is analytic
and one can show that the set of degenerate critical points is discrete (see [27]).
Moreover under the nondegeneracy assumption the set of closed orbits yx is finite
(see [27]).

Remark 3. Actually the results in Sect. 4 of [1] also give information about the
higher order corrections to the leading term for Kh(t,x,x) given in Lemma 4.1, in
the case of nondegeneracy, in form of an asymptotic series in powers of h for 0(1).

To compute the quantity \D(yι

x)\ appearing in Lemma 4.1, we consider following
Truman [32] the Wiener integral

El exp ί j (w(τ), T(τ)w(τ))ddτ \\ (4.20)

where 2T(τ) = A2 + d2 W(y(τ)) and y = y — α(x) — β, y being any of the closed orbits
yx, the expectation being with respect to the conditional Wiener measure for paths
w in Ud starting at τ = 0 in x = 0 and ending at τ = t in x = 0. We assume first
T(τ) Ξ> 0, which is e.g. satisfied for t sufficiently small. Let y^/τ) be the/ h component
of yx(τ) in Ud and

Pθ,k — -a

It follows from a well known result of Cameron and Martin that (4.20) is equal to
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Det
-1/2

where by we understand the evaluation of

(4.21)

at τ =

Comparing with the expression for the leading term of Kh(t9 x, x)5 we then get

WJ Det
dy* •

1/2

(4.22)

By using a decomposition of the interval [0, t] in small subintervals together with
the Fubini theorem on iterated integrations one deduces that (4.22) holds also for
arbitrary t. Using the above computation we see moreover that the index m(yx)

in Lemma 4.1 coincides with the number of negative eigenvalues of

Hence m{yx) is identified with Maslov's index for the closed orbit yx. This is
independent of the point x on the orbit (for concepts of Maslov's theory see e.g.
[19], [25], [26], [33]). We formulate this result in the following

Lemma 4.2. With the same assumptions and notations as the Lemma 4.1 we have

Ί , ,Λ ( iπ
V I'll1 I l θ V 1 Λ I

h

Det
1/2

(2πihY12

oτ
where yxjj — l,...,d is the f* component of the closed orbit yx and pok = -

is the kίh component of the initial momentum on the orbit γx,k = l,...,d. m(yx) is
the Maslov index of the closed orbit yx and depends only on yx but not on the initial
point x on yx.

Remark 4. If there are no closed orbits going through x the sum above is
understood in the sense that the leading term vanishes.

Remark 5. From this Lemma 4.2 we see that the condition of nondegeneracy of
the closed orbit in Lemma 4.1 and in the corresponding remarks is actually the

condition that the matrix be nondegenerate.

In the expression for Kh(t, x, x) in Lemma 4.2 the closed orbit yx starting and
ending at x enters. Let us call two closed orbits yx and yn

x equivalent if they
coincide as subsets of Ud. We shall denote by y the equivalence class (called again
a closed orbit) with a representative yx. Let φ be a C^(Ud) function. Then from
Lemma 4.2 /. \

?-d/2 + 1O(l), (4.23)

where %?* is the set of all closed orbits y (with representative yx) of period t.

exp

Det(
WoJJ

φ(x)dx
ll2(2πih)dl2
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We shall now discuss the integral on the right hand side of (4.23) in the limit
ft-»0 applying the method of stationary phase. The stationary points of the phase
are given by dxSt{yx) = 0. But

dxSt(yx) = dx ί LWxto* 7χ(τ))d - Wxb\ A2yx(τ))d - V(yt

x(τ))'] dτ
o

with px(τ) = fx{τ) where we have performed a partial integration and used that
y^(τ) is a closed orbit. We remark that pJO) is the initial momentum we denoted
before simply by p0. From (4.24) we see that the stationary points are those for
which px(t) = pJO), hence the orbits which contribute to the leading term as h -» 0
are not only closed but periodic. We call orbits, i.e. solutions of (4.18), for τe(0, ί)
periodic orbits (of period ί, starting at x), if fx(t) = γx(0). Let SP be the set of all such
periodic orbits.

We shall now derive the expressions for the leading term of (4.23) as h -> 0 by
method of stationary phase in finite dimensions. We consider a point x on a
periodic orbit yx. In a neighbourhood Ux of x we introduce transversal (xT) and
a longitudinal (xL) coordinates, with respect to the periodic orbit. Let fx be a
closed orbit starting and ending at 0 respectively t in x. Consider St(fx). We have
dxSt(yx) = px(t) — px(0), where px(τ) = γx(τ), since yx solves the classical equation
of motion with yx(t) = yx(0) = x (by the same computation as in (4.24)). We have

XLPX PX ~ dτPx T γ(τ)

component of px(τ) and this is zero for yx — yx, using the classical equation of

motion —px(τ)\ τ = t = — VF(x) — A2x =—pt

x{τ)\τ = 0 and the fact that for a periodic
dτ dτ '

orbit one has yx(t) = γx(0). Furthermore dXτXLSt(γx) = dXτ(px>
L{t) - ftL(0)) - 0 for

fx = yx. Finally dXτXτSt(yx) = dXτ(p^τ(t) — /%Γ(0)), where pι

x

τ{τ) is the transversal
component of p^τ). Thus

where /%L(T) is the longitudinal

dxxSt(Ό\yγ =y'x = ( o ly with a = dXτW-τ(t) - p^(0)), (4.25)

where dXτ(px

tT(t) -p^'7(0)) is the value at fx = yx of dXτXτSt(fx). In particular
dxxSt(yx) is independent of xL. We remark that the nonvanishing term in (4.25) is
of the form R(t) — 1, where R(ή is the part of the Poincare map for the classical
Hamiltonian flow relative to the transverse momenta.

We shall now apply the method of stationary phase to (4.23), splitting the
integration over dx in an integration over dxτ first and then over dxL. By a partition
of the unit we see that we can always suppose that φ has support in Ux, the
remainder giving only a contribution vanishing faster than any power of h as h -• 0.
In this way we obtain, using (4.22):

D e t C — ' {2πihY'2
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e χ P ί - iw
( 4 2 6 )

where Δ{yf

x) = Det 4 τ(pJ(ί) - pJ(O)), computed for
Here m is the number of negative eigenvalues of the (d — 1) x (d — 1) matrix

dXτ(pl(ή — pJ(0)). But on the other hand S ^ ) and m(?y are independent of xL9

for ye&\ and we write them simply as St(y) respectively m(y). Taking this into
account we get that the asymptotic evaluation for h -• 0 of (4.23) is

exp(l-St(y)

\K%x,x)φ(x)dx = X - \ /expί -
^t \LTlln) y y

(4.27)

where Aφ(y) is a number depending on the periodic orbit y and on φ:

Λφ{y) = $lA(γ>x)Γll2Wx)Γllzφ(xL,0)dx, (4.28)

and m\y) = m(y) H- m(y).
We say that a periodic orbit yetf** has primitive period t if there does not exist

any positive integer n such that t/n is a period of y. If a periodic orbit y of period

t does not have primitive period t then there exists an n and a primitive periodic

orbit ytln of period t/n such that 7 is yt/n run rc times. Let έ?^n be the family of all

primitive periodic orbits of period t/n. We can then split the sum over 0*1 in (4.27)
a s Σ Σ ^ e t f° r y£^\fln be the primitive periodic orbit such that y is ytln run

n timefs. Then St(y) = n St/n(ytln) and m(y) = nm(ytj% m(y) = nrh(ytln), thus m\y) =
nrn'(yt/n\ and the formula (4.27) can be rewritten in the form

0

f K * ( f , x , x ) φ ( x ) d x = Σ Σ

Άφ(f'"){l+h0(l)}. (4.29)

We now remark that the potential V being smooth by our assumptions, the
Hamiltonian function ^y(τ)2 +|(y(τ), Λ2y(τ))d + V(y(τ)) associated with a classical
orbit y(τ) is constant in time. In particular for y a periodic orbit of period t it is
equal to EJ, where E] is one of the possible energies corresponding to the prescribed
period ί.

We now suppose that \E]\ < Ct for all ye&\ for some Ct independent of y.
Then \y{τ)\ < C/, |y(τ)| < Cf for all τe[0, ί] and some C}9 Cf independent of yeΨ1.
Taking φ = φRδ in (4.29) equal 1 on the sphere in Ud of radius R > Co and center
at 0, and satisfying 0 ̂  φ g 1 and moreover φ = 0 outside the sphere of radius
R + δ, δ > 0, with center at 0, we have (4.29) with Aφ(ytln) replaced by
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(4.30)

For t outside a discrete set (where Kh

0{t, x, x) is singular) we can for given ε > 0

find a <5(ε) such that J Xh(ί,x,x)φΛ^(x)dx < ε, hence

J K%x,χ)dx - K%x,x)φK(

Hence for the t such that \K\t,x,x)dx exists as a limit of j Kh(t,x,x)dx for
|JC] <R

R -+ oo we can for given ε > 0 choose R(ε) and <5(ε) such that
\jKh(t,s,s)dx-jKh(t,s,s)φRδ(x)dx\<ε. Thus J^(ί,x,x)^x is given by the right
hand side of (4.29) with Λφ(yt/n) replaced by (4.30). We summarize these results in
the following

Theorem 4.3. Let Ve%(Md) such that j" ee | α |d|μκ |(α) < oo for some ε > 0 and let all

periodic orbits of period t be nondegenerate. Then for any φeC™(Md)

\K"(t,x,x)φ(x)dx=

expj -nSt/n(γ»")

exp| - i -

wίίft y "̂ ί/ie family of all primitive periodic orbits of period t/n, and m'(γ"") a Maslov
index for γ'1". This holds also for φ s 1 for all t such that θh(t) s \Kh(t, s, s)dx exists,
with Aφ{γ'ln) then given by

The quantity Aφ(y) involves D(y1^ which is given by (4.22). It is known from
classical mechanics that

JJ
Let us now consider the Hamiltonian system (q(τ\p{τ)) with the single energy

integral E. Let Sτ be the Hamilton-Jacobi function Sτ(y9 τ x, 0). Then one has

when t = ί(x, y, E) is the time for a classical path going from x to y. Let WE be the
Legendre transform of Sv i.e.

WE = St + ί£.

It is then easy to show that

d2s d2w\~1

 Λ dE
and —

d2WE ld2W

dE 2 '
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So one gets

67

dxidyj

d2wE d2wE \d2wE

JE2''

where we used the Hamilton equations. Assume now that to given periods t' in
a neighbourhood of the given period t there exist periodic orbits with energy E'

such that
dW dt

is well defined. Observing that = -—, we obtain the
dE dEdE'

following representation

,dPxι(0)J) dE\\dX;dXi

Furthermore we have, introducing xT9xL as variables:

ίf(0)2 0

The matrix Dr = I j

dt dt

3Xj' dxt

δ2t

\dxτδxΊ

d2t
0

is independent of xL, Then the quantity

\D{y'x)\~ι/2 entering A (y) in (4.28) is equal to
dt_

dE

1/2

\y'M\/\Dτ\
112, where | D 7

is the determinant of Dτ. Moreover, along γ, dxL = \fx(Q)\dτ, hence

dE_

It
(4.31)

Now because of the above interpretation of dxτ(px(t) - px(0)) we have from classical
mechanics that its determinant has the form

= [I (4cos2 iβkt),
k = l

where the βk are numbers, the stability angles (see [16]). Thus

1

Define
w 2

A(y) =

dE

It

1/2 d - I

π
k= 1

Yl4cos2iβkt\-ιl2$φ(yx(τ),0)dτ.

\Dr\
ln

dE

It

1/2

l\4cos2iβkt
k= 1

-1/2

(4.32)

(4.33)

(4.34)

(so that A(y) is Λ (y) for φ = 1).

We have then the formulae of Theorem 4.3 with Aφ(ytln) and A{yt/n) given by (4.33)
respectively (4.34).

Finally we examine the case d—\. In this case there are no transversal
coordinates, hence the right hand side of (4.32) as well as DT are to be taken equal
to 1.
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Thus in this case

and

m) = Jn

dE(γ"n)

at

112 tin

J '
0

1/2

We summarize these results in the following

Theorem 4.4. Let V be as in Theorem 4.3. Then in the case where the energy is
the only integral for the Hamiltonian system and to given periods t' in a neighborhood

of the given time t there exist periodic orbits with energy E' such that ~τzr is
dE'

well defined, then for any

IK%x,x)φ(x)dx= Σ Σ
exp(-nS(/π(/'«)

(2πίh)ί/2

dE(y'ln)

expf -

1/2 tin

and

'*(')= Σ Σ
exp(-nS ί/n(y"")

(2πih)112

1/2

exp( -i-nm'{γln))Ctln

dt

with Ctjn = \DT
-1/2 4cos2 iβkt/n

-1/2

In the case d = 1 we have Ctjn = 1.

Remark. Theorem 4.3 and 4.4 give asymptotic (as h-+Q) formulae for the theta
function in terms of classical periodic orbits and correspond thus to the known
trace or Poisson formulae in the case of elliptic operators on compact manifolds.

In the case of the Laplacian on the torus T= Ud/Γ, Γ a discrete subgroup, the
ί

homogenity of the action St(y) =^j" y2(τ)dτ, gives an exact (the classical Poisson
o

formula for the Jacobi theta function) instead of an asymptotic formula. Some
information on the structure of classical periodic orbits can be extracted from [8].

5. The Eigenvalue Spectrum and the ^-Function

In Sect. 3 we defined the ^-function for the Schrόdinger operator H as the
generalized function
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(5.1)
h "v

where λn(h) are the eigenvalues of the Schrodinger operator H. We have

where #" means the Fourier transform and £<5(Λ—An(Λ) I is the spectral

distribution. Since in our case the potential V is bounded and continuous we have

Ί
that AM τλn(h) S λ I has polynomial growth in λ, where iV(α ^ β) is the number of

eigenvalues α of if which are less or equal to β, so that 0Λ is a tempered distribution.
It is now interesting to study the singularities of the theta function θh(t). Let

us take a function g such that \θh{t)g(t)dt is defined in the sense of generalized
functions. We first observe that if the Fourier transform g(λ) of g(ή exists and has

support around rλn(h\ where λn(h) is an eigenvalue of H, such that supp g contains

no point -λn., (h\ rϊ φ n, then we have

/1 \

•<g,θh>. (5.3)

In the following we find it more convenient to consider functions g of the form

gλ(t) = txpl -λt j/(ί), where f(t) is a real function in Sf(U + ) such that (gλ,θh)

exists and f(t) = 0 for ί ^ 0. The method of Sect. 4 gives an asymptotic expansion
for θh(t) as h -> 0. In particular we have

0h(ί) = ^( ί ) -f- /z'O^l), (5.4)

where the leading term θ®(t) has been given in Theorem 4.3 respectively 4.4.
Observing that 0,(1) is slowly increasing in t, as follows easily from our

asymptotic expansions (see for the higher order terms the theorem in Sect. 4 of
[1]) we have

Now the expression for θ%(t) given by Theorem 4.3 and Theorem 4.4 is

n ^ψΓ^ Ί J (5-6)

- Σ ΣiifΊ-
n= 1 yχln

We now want to apply to (gλ(t),θh(ytln)} the method of stationary phase with
respect to the ί-integration. We assume that gλ has compact support. Let &**„ be
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the family of periodic orbits yt/n of period t and primitive period t/n. Let

^λ,n = U ^n We suppose that £Pλftι consists of families of periodic orbits
tesuppgλpgλ

(yt/n,tesuppgλ) such that the following properties hold:

a) StJn(γt/n) is C 2 in t for all t in the inner Int(supp gλ) of supp gλ,
(5.7)

b ) all

Now the stationary points of the phase of the integral (gλ(ή,8h(ytIn)) are the
solutions t(λ) of the equation

dt
/») + λ = 0 (5.8)

for given AeR. It is well known from analytical mechanics that for a classical orbit
γ and action Sτ the relation between time τ and energy £ is given by

f % ) + £ = 0 (5.9)

E is thus the energy associated with the classical orbit γ and the action function
Sτ(y) (in the time interval [0,τ]). From (5.8) and (5.9) we see that the parameter λ
plays the role of energy parameter for the orbit γt/n of primitive period t/n run in
time t/n, i.e. with τ = t/n,y = ytln we have that (5.8) is equal (5.9), with λ = E. I.e.
the values of λ for which there are indeed classical periodic orbits can be interpreted
as energy values.

The method of stationary phase gives now under the above assumptions, with

λ = E and (//M, t e supp gE) e & EiΛ,

<9E(t), θh(ytln)> =
(Zπin) ιhEt{E))

(5.10)

where the sum is over all values of t(E) in supp gE such that (5.9) is satisfied for
the periodic orbit yt{E)/n of period t(E) and primitive period t(E)/n. We make as
before the convention that the sum is zero if the set of such t(E) is void. The quantity
rh is defined by

m{yt{E)ln) = m(ytiE)/n) + σ{ymin), (5.11)

d2S
where σ(ym/n) = 0 if —τ(ytln)

d τ t=f(£)

The quantity |zl(7ί(£)/")| is defined by

>0 and

(5.12)
= t{E)



Trace Formula for Schrόdinger Operators 71

We note that if t{E) is a solution of (5.9) for given E then also kt(E) is a solution,
for all k = 1,2, Moreover the orbit of period fcί(is) has primitive period t{E)/n
iff the orbit of period t(E) has primitive period t(E)/n. Consider now

9 ί ( t ) , Σ W " ) • (5-13)

By the fact that the set of n such that t/n is a primitive period for some ίesuppg£

is finite, we have that (5.13) equals

Inserting now (5.10) into (5.4) we have a double sum Σ Σ This sum is over
« t(E)

all periods f(£)esupp0£ corresponding to (5.9) and such that t(E)/n is for some n
a primitive period and t(E)/nesuρpgE.

Hence Σ £ = £ ]Γ (setting first ί(E) = nίo(JE) and letting then ίn(£) and n
n t(E) n tQ(E)

vary) where Σ is the sum over all primitive periods fo(£)esuppg£ and Σ is
to(£) n

the sum over all such neN such that nto(E)esxxppgE, so that the sum on the right
hand side can be interpreted as the sum over all periodic orbits with energy £,
run n times, provided nto(E)esuppgE, to(E) being the primitive period for the orbit
in question.

Introducing this into (5.14) and using (5.14), (5.10) we get

Mθhίy '"))-ΣΣJ
n to(E)

π \ Ά(vto{E))

Let now WE be the Legendre transform of the action functional Sτ along a classical
orbit in a time t interval τ, i.e.

WE = Sτ + Eτ. (5.16)

Introducing (5.16) into (5.15) with τ=-to(E), we get

i
exp( -nWE{yt0(E))

n to(E) y^iun)

•exp/ - ίn-m(ytoiE)) j — J [j2({ - f - h θ ( i ) ) . (5.17)

dt (E) 1 / 2

We can now compute |zl(/o ( £ ))|1 / 2 to be equal to n1 / 2 °
dE



72 S. Albeverio, Ph. Blanchard, and R. H0egh-Krohn

Hence from (5.17) and (5,6), (5.7) we get, observing that the sum in (5.7) is over

1/2

dE

where the sum £ is over the class Γ(£) consisting of all pairs (ίo(jE), yto{E)) such
Γ(£)

that yto{E) is a periodic orbit of primitive period to(E) and energy E. The sum over
n is restricted to those n such that nίo(£)esuppg£.
Hence we have prove the following

Theorem 5.1. Let V be as in Theorems 4.4 or 4.5. Let E be a positive number and

let gE(t) = expί -Et )f(t) xvithfe5f(^ + ) and supp/compact. Suppose supp/is such

that one can find some family (/, ίesupp/) of periodic orbits / of primitive period
ί, where t ranges over supp/. Suppose £,(/) is C2 in t and nondegenerate in the inner
of supp /. Then

= Σ

•A{yt{E)){\+hO{\)\

where the sum Σ Σ z'5 o v e r a^ trΨ^es (π? ^(^X / ( £ ) ) 5 W C ^ ^ β ί y ί ( £ ) I<5 a periodic
n Γ{E)

orbit of primitive period t(E) and energy E, and n is any integer such that nί(£)esupp /
Here WE(yt{E)) is Hamilton's principal function, i.e. the Legendre transform of the
classical action along yt{E) m(yt{E)) is a Maslov index associated with the orbit yt{E\
and is given by (5.11). The quantity Λ(yt{E}) is equal to 1 if d— 1 and equal to

1 d-\ -1/2

if d> I. If f is such that there exists no periodic orbit of primitive period some
ίesupp/, then {gE,Θh} = o{h) as h^O.

Remark. The assumption about the existence of a family of periodic orbits is e.g.
satisfied, under our assumptions on the potential F, if supp/ contains one of the

point — , where λ] are the eigenvalues of the matrix A2. See [10], p. 169. The
A.

assumptions about the dependence on t of Sffl) can be made more explicit, using
the analyticity of V. E.g. for d = 1 the values of ί such that the above family exists
form an open set and the set of points where Sffl) does not satisfy the assumptions
is discrete.

We remark that
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Σ

We assume now that / is such that f(nt(E)) = f(t(E)) for all integer n such that
nt(E)esupp f. Then the formula of Theorem 5.1 simplifies to

, _ (2πihΓ«-»'*

Γ(E)

m.+ΛiS^M^ίl + ̂ l)), (5.19)
i = . . . = m d - i = O fc = ^

where the sum ̂  is over all n such that nί(£)esupp/ Let now Nf(t(E)) be the
n

largest integer n such that nt(£)esupp/. Then (5.19) reads
d - 1

(2πih)~~2~ ._ ^
<g£»g*>= ιDι./2 Σ w w g » Σ

•exp n Γ

Effectuating this sum we then get

) ~ i d ~ 1 ) / 2 d~ι °°

, 1 / 2 Σ ί(£)/(t(£)) Σ Σ

2 d " 1 / 1\
with m' = -iY [mk+-)βkt(E) + rn(γtiE)). The quantity on the left hand

π Λ 27
side can also be written, using (5.1) in the form

= f
(5.20)

for any fe^{U+\ where /(λ) = Jexp ( - Uλ ]f(t)dt. Tr (/(H - £)) is by definition

the middle term in (5.20) whenever it exists.
We can then formulate the above results in the following
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Theorem 5.2. Under the same assumption as in Theorem 5.1 and with f such that
f(nt(E)) = f(t(E)) for all periods t(E) to the energy E and all integers n such that
rcί(£)esupρ/, then

h(t) ) = Ύrf(H -E) = (2πihy{d-ί)l2\Dτ\'il2 £ f(t{E))t(E)
I T(E)

Σ

- exp ( l^ft(E)\ WE(y«E)) - |m'(/(E>)/τ Vl + h(O(l)\

where f is the Fourier transform of f WE(yt{E)) is Hamiltons principal function, i.e.
the Legendre transform of the classical action along the classical orbit yt{E} of period
t(E). m! is the sum of an Arnold-Maslov index m associated with yt{E) and the
expression

involving the stability angles βk of the Poincare mapping. The sum ]Γ is over
T(E)

all periodic orbits of period t(E). D
We also note that Theorem 5.1 yields the following, taking / such that its

Fourier transform has support containing only a finite number of points of the
spectrum of H:

Theorem 5.3. Under the assumption of Theorem 5.2 and assuming moreover that
to a given energy E there is only one classical orbit, we have that the eigenvalues of
H are given asymptotically as h —• 0 by the values of the energy E satisfying the
extended Bohr-Sommerfeld quantization conditions

1 12 d~1

+ / + H Σ K + i)M£)

Remark. For a derivation of relative formulae for the corresponding JWKB
quantities, see [11], [15], [16], [22], [23], [29].

Remark. We can also consider the generalized function

Since λn = O(nd) as n -• oo we have that ζ(s) is defined as an analytic function for
Res > d.

For the one-dimensional harmonic oscillator



Trace Formula for Schrόdinger Operators 75

with ζR the Riemann (-function ζR(s) = Σ— In the general case ζ is the

ζ-function for the Schrόdinger operator H in as much as it has the same relation
to the β-function for the Schrόdinger operator as the classical Riemann ζ-function
has with the classical theta function, namely ζ is the Mellin transform of the analytic
continuation to imaginary t of the theta function θ. It also coincides with the
so-called Minakshisundaram-Plejel function, in the case of manifolds.

From the above results about the theta function 0(ί) and its asymptotic
behaviour as /ι->0, one can derive asymptotic expressions for the ζ-function in
terms of classical periodic orbits.
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