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Abstract. We study the 3-dimensional pure U(l) lattice gauge theory with
Villain action which is related to the 3-dimensional Z-ferromagnet by an exact
duality transformation (and also to a Coulomb system). We show that its string
tension α is nonzero for all values of the coupling constant g2, and obeys a
bound α ̂  const -mDβ~1 for small ag2, with β = 4π2/g2 and
mp = (2β/a3)e~β^Cb(0)/2 (a^lattice spacing). A continuum limit a-»0, mD fixed,
exists and represents a scalar free field theory of mass mD. The string tension
otnip 2 in physical units tends to oo in this limit. Characteristic differences in the
behaviour of the model for large and small coupling constant ag2 are found.
Renormalization group aspects are discussed.

1. Introduction and Discussion of Results

In this paper we will study the Zζ-ferromagnet on a 3 -dimensional cubic lattice
ΛQ(aZ)3 of lattice spacing a. The spin variables n(x) of the model are attached to
the sites x of the lattice. They take values which are integer multiples of 2π. The
partition function is

ZΛ= Σ expL(n), with L(n)= - ~{ [P^x)]2. (1.1)
ne(2πZ)Λ ^P x

We use the notations (eμ — lattice vector of length a in μ-direction)

(1.2)

β has dimension of a length, whereas n is dimensionless. Formula (1.1) must be
supplemented by boundary conditions. We choose to immerse the system into an
infinitely extended heat bath which is described by a massless free field theory, see
Eqs. (2.3) of Sect. 2. [Formally, the partition function for the combined system is
also given by Eq. (1.1), but the variables n(x) are integrated over the reals outside
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A] These boundary conditions break the global 2£-invariances of the model,
because the symmetry φ(x)->φ(x) + const in a massless free field theory is
spontaneously broken. We will take it for granted that the oo volume limit /l/(a2ζ)3

exists, and can be performed in the Kirkwood Salsburg equations (see Sect. 6).
They define a state and will be shown to admit a unique solution in oo volume.

Three dimensional U(l) lattice gauge theory was investigated by several
authors after Polyakov's pioneering work [4], It is now well known [5] that the
Z-ferromagnet (1.1) is related by an exact duality transformation to 3-dimensional
17(1) lattice gauge theory without matter fields with Villain action (in a heat bath
that is described by noncompact electrodynamics, see Appendix A). The coupling
constants are related by

β = 4π2/g2 (1.3)

(β can be interpreted as an inverse temperature for the lattice gauge theory, and as
a temperature for the Z-ferromagnet). Moreover, the string tension α in the 17(1)
gauge theory equals the surface tension in the ^-ferromagnet1. More precisely, the
Wilson loop expection value is transcribed as follows.

Let C be a closed loop which is a boundary of some surface Ξ on the dual
lattice2 /I* of A. Let U(C) be the parallel transporter around C in the 17(1) lattice
gauge theory, and χk(U)= Uk for Uε 17(1), k integer. Then3

<Xk(U(Q)>u(1)=ZA(k,S)/ZA. (1.4)

ZΛ(k,Ξ) is the partition function of the Z-ferromagnet with a modified action. It
depends actually only on C and not on Ξ, and ZΛ=ZA(Q, •).

where

(1.5)
ne(2πZ)Λ

(1.6)

1 The surface tension of a ferromagnet is given by the free energy per unit area of a domain wall
between domains with different spontaneous magnetization. The Wilson loop definition of α
corresponds to a mathematical definition of surface tension that is not quite the standard one [22],
unless the loop C lies on the boundary of A
2 By definition, the sites, links, plaquettes and cubes of Λ* are the cubes, plaquettes, links and sites of
A. Therefore Ξ consists of links in A and C consists of plaquettes in A. We write d* for the boundary
operator on A*. It is called the coboundary operator on A. For further explanation of the dual lattice
the reader is referred to [18, 27]
3 This formula can be generalized as follows. Let Ξ be a 2-chain with integer coefficients on A*t

Ξ — ̂ c(p)p (sum over plaquettes p in A* = links in A) and <?*S = £nίCί, where Cί are closed paths on
Λ*. Then

where ZΛ(k, Ξ) is given by Eq. (1.5), with/μ(x) = c(p)2πα 1 for p = (x, x + eμ). Truncated expectation values
of this form will be briefly considered at the end of Sect. 7
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The string tension is obtained by considering a rectangular loop C in a lattice
plane of side length L1 ?L2

α = — lim lim
L2-» co LI->OO LJ^L

l,Ξ)/ZJ, (1.7)
L2^l

in the infinite volume limit.
4Finally we define a mass mD by

:) = ( — A) l(xϋ) is the Coulomb potential on the infinitely extended lattice
*. Its numerical value at zero distance is known [11]

^Cb(0) = 0.2527a~1. (1.8b)

Now we are ready to state our main result.

Theorem 1. The surface tension α of the %-ferromagnet (as defined by Eq. (1.1))
satisfies the following inequality with a constant c>0for β/a sufficiently large

θί^.cmDβ~^. (1.9)

We believe that the right hand side of (1.9) represents the true asymptotic
behaviour of α, apart from the value of the constant c, but the estimates to prove it
are lacking. A classical approximation based on the effective action (1.22) (without
the correction terms ...) would give

αclass.approx.

in the limit

Corollary 2. The string tension α in the (7(1) lattice gauge theory with Villain action
is bigger than zero for all values of the coupling constant #2>0.

The corollary follows from Theorem 1 and the remarks preceding it because
αa2 is a monotone decreasing function of β/a by the 3-dimensional version of
Guth's inequality (Lemma 4.1 of [18] with K=Δ~l\

We will see from Theorem 4 below that mD is asymptotically equal to the
physical mass ( = mass gap, or inverse correlation length). It follows that the
coupling constant g2 and the string tension α in units of physical mass (squared) go
to infinity in the continuum limit a-»0,

θL/ml^cg\4π2mDΓl=c(2β^/a^Γll2eβ^(^^^^ (1.10)

as /?/a-»oo. To the best of our knowledge, this kind of behaviour of the string
tension had not been anticipated.

4 The Z-ferromagnet and [/(I) lattice gauge theory are also related to a Coulomb system by another
exact transformation [5]. m^1 is equal to the prediction of a Debye Hϋckel approximation for the
screening length of that Coulomb system
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Fig. 1. An example to illustrate the construction of Lτ and L

The proof of Theorem 1 is based on a rigorous block spin calculation. (The
block spin method was invented by Kadanoff [14]. It forms the backbone of
Wilson's renormalization group procedure [13, 15]. The Glimm-Jaffe-Spencer
expansion [9] of constructive field theory also employs it. Other rigorous
applications have been made by Gallavotti et al. [17] and Gawedzki and
Kupiainen [16].)

The first step in the proof is to integrate out the high frequency components of
the field φ(x) = β~1/2n(x). This produces an effective action Leff(Φ) for a real field
Φ with Pauli Villars cutoff M= λ'1 mD of order mD. L e f f ( Φ ) is obtained in the form
of a series expansion. It is a nontrivial problem to establish bounds on the correction
terms in this expansion. Such bounds are needed in the second part of the proof.
Our solution of this problem is based on splitting the Yukawa interaction v(xy)
= ( — Δ + M2)~ ί(xy) that is mediated by the high frequency parts of the field into
pieces of decreasing strength and increasing range, and treating one after the other
of these pieces by cluster expansion. This is our method of iterated Mayer
expansions which was described in [6]. We will obtain bounds which show, in
particular, that no interactions of range significantly larger than the cutoff length
M"1 are generated by integrating out the high frequency parts of the field. (We
come back to this point in Remark C below.)

To state the bounds we need a measure L(α1? ...,0n) of the spatial separation
between subsets aγ . . .αn of A. Let Tbe a tree graph with vertices z = l ... ί^n. It
consists of ί— 1 ordered pairs (z^) such that all but one of the vertices z = 1 ... t
occur exactly once as ir Set

Lr(a l9 ...,αn)= min £ l l X f - x / l l , (l.lla)
(xkeak) (ij}eT

L(α1?.., an) = min L τ(α l 5..., an). (1.1 Ib)
r

The first minimum is over all ί-tuples x1? ...,xί with x 1 Gα 1 , ...,xnEan, xsεΛ for
n<s^t. The second minimum is over all tree graphs with n or more vertices,
ί = 1 ...t^n. Figure 1 illustrates the construction.
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We use the notations (1.1) and the following definitions of/, Jμ

(1.13)

K etc. (i.i4)

Jμ is a current supported on the Wilson loop.
We use the abbreviations

ξ = (m,x) (m=±l,±2, . . . ;xeΛ), \dξ= £ f , (1.15)
m= ± 1, ±2,... xeΛ.

4 = - V-μVμ is the lattice Laplacian on (a£)3, see Eq. (1.2), and Vol(a)= J 1.
xeα

Proposition 3. Fix λ sufficiently small, and suppose that β/a is sufficiently large
(depending on λ). Set ε(ξ)= - 1 + exp[imβ~1/2Φ(x)]. Then

ZA(k, Ξ) = e- W-W» »c^ j dμuM-ι/2f(Φ}e-v^ , (1.16)

where dμu^(Φ) is the Gaussian measure with mean g and covariance u,

and Veff is of the form

~Veff(^= Σ ίdξ, . . . d ξ f ( ξ 1 ) . . . ε ( ξ j ρ s ( ξ ί , . . . , ξ j . (1.17)

Given κ< GO, μ< oo arbitrarily large, and C>0, δ >0 arbitrarily small and < 1, then
the following bound is true for s^l, uniformly in A

f #!... ί ^Jρs(ξ1,...,ξs)k2'c(-1+ΣW)

, (1.18)

provided λ is sufficiently small (depending on K, μ, C, <5,) and jS/a is sufficiently large
(depending on K, μ, C, δ, and λ). Finally

2βm~ΐρ1(±i,x)-^l if β/a-^oo and Mβ-*0.

The effective action Lef^(Φ) is the sum of — Veff(Φ) and a kinetic term that
comes out of the Gaussian measure. Veff(Φ) does not depend on /:, Ξ, and it still
has the global Z-invariance of the model under

Φ(x)-+Φ(x) + 2πβ-1/2I (JeZ). (1.19)

The heat bath, which breaks this symmetry, is incorporated into the Gaussian
measure. Formally

, (1.20)
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where

(Λ,Λ)=*~3 Σ ΛMΛM (1-21)
ce(aZ)3

[The reader should imagine that the sum and product over x run over a subset /L1?

ΛcΛ1C(a1)3 to begin with, with 0-Dirichlet boundary conditions which put
Φ(x) = 0 on the boundary dΛ1; then the limit Λ1/(aZ)3 is taken. This limit
procedure is already incorporated in the construction of the Gaussian measure on

The effective action is therefore of the form

ί [l-cos/?1/2Φ(x)]+.... (1.22)

The terms represented by dots come from terms with 5_2 in (1.17), and from the
part of the 5 = 1 term with \mί \ = 2. In addition, the deviation of ρ x( ± 1, x) from its
asymptotic value leads to a small change of the coefficient m^/β. The bound (1.18)
shows that these correction terms can be suppressed by making β/a large (and
mD/M and βM small). In the further analysis of the theory with action Le//, the
part of the 5 = 2 term that is quadratic in Φ — 2πβ~1/2 integer is treated as a small
correction to the first term in Eq. (1.22).

The second step in the proof of Theorem 1 consists in the analysis of a theory
with the action specified by Proposition 3. Such an analysis has already been
carried out by Brydges and Federbush [2], and we can use their results. (They also
derive this effective action for a dilute Coulomb gas. The derivation of this part of
their results requires a small value of the reduced fugacity z though (z = a3 fugacity
when the self-interaction of the charges is included in the potential) or, if z= 1 as in
the Coulomb gas representation of our model, a cutoff length M~1 that is less than
one lattice spacing a - see the discussion in the introduction of [6].) Their analysis
is based on the Glimm-Jaffe-Spencer expansion around mean field theory. The
expansion and its convergence proof are readily adapted to cover the case of the
Wilson loop expectation value [the ratio (1.4) of partition functions].

We will now give a brief and informal discussion of the main ideas that are
involved in this analysis in order to explain how the string tension comes out.
Technical aspects such as justification of approximations and control over
correction terms are discussed in later sections.

Imagine that a lattice A of lattice spacing L is superimposed on the dual lattice
A*. L is chosen of order M" *, LM = sufficiently small constant. The presence of the
Pauli-Villars cutoff M in the effective action ensures that the Φ-integral, which
gives the partition functions, is dominated by functions Φ of x which are very
nearly constant on block cells of side length L. Therefore

e e f f ϊz [ [ e e f f x , (1.23a)
jc'eΛL'

where Φ(x'} = average of Φ over the block cell specified by xΈΛ'. We see that
33e//(Φ(x')) has isolated minima at Φ(x') = 2πβ~1/2I, I integer, which are separated
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by maxima. These maxima are very high. We choose M, L ~~1 of order mD, so that
nipL^/β is of order (mDβ)~l which grows exponentially with β/a. Based on this
observation, the field Φ(x) is decomposed into a sum of an "integer" part h(x),
βll2h(x)/2π = integer and constant on block cells, which selects a minimum of Veff,
and a spin wave part that describes fluctuations around it.

We see now that there are two kinds of excitations, spin waves and domain
walls. The domain walls consist of those plaquettes on the block lattice Ar where
h(x) jumps by 2πβ~1/2 integer.

In the Glimm-Jaffe-Spencer expansion [9], the domain walls are treated by a
low temperature expansion (Peierls expansion), and the spin waves by a cluster
expansion [10]. The presence of a domain wall costs very much energy per
plaquette in A', due to the presence of the high maxima in 3$eff(Φ(x')). The
configurational entropy of the domain walls on the block lattice cannot compete
against this. As a result the density of domain walls on the block lattice is very low,
the surface tension α (= free energy of domain walls per unit area) is not zero and
the Peierls expansion converges.

The cluster expansion converges because the spin waves interact weakly. The
large factor m^L^/β in Eq. (1.23b) implies that the Gibbs measure assigns sizable
probability only to values of the average field Φ(x') which are close to a minimum
of 33eyy. Since the dominant field configurations Φ are nearly constant on block
cells [see before Eq. (1.23)], the same is then also true for Φ(x). For such Φ(x) the
later terms in the Taylor expansion of the cosine in Eq. (1.22) around this
minimum are very small compared to the leading term. The leading term tells us
that the spin waves have bare mass mD.

The same method also enables us to derive a result about the existence of a
continuum limit. For the purpose of deriving a lower bound on the surface tension,
it was most efficient to use a ratio M/mD = λ~1 of cutoff M to mass mD which is
sufficiently large but independent of β/a. If we want to construct a continuum limit
by letting β/a-+co, we must at the same time remove the Pauli-Villars cutoff. We
do this in such a way that the cutoff M goes to infinity in units of physical mass
(slowly) and to zero in units of inverse lattice spacing a~1 (fast). We define a new
field

Ψ(x) = β-1/2smβ1/2Φ(x). (1.24)

Theorem 4. Let the field Ψ(x) be defined by Eq. (1.24) with α choice of cutoff
M = (β/a)1/12mD. Then the correlation functions (Ψ(xι) ... Ψ(xn)y for fixed nonzero
distances mD\xί — Xj\ (in units of m^1) approach the correlation functions of the
(Lorentz invariant) Euclidean scalar free field theory with mass mD as β/a-> oo. The
string tension in units of physical mass squared goes to infinity in this limit.

We see that only the spin waves survive in this continuum limit. For their
interpretation (as a "magnetic matter field") in gauge theory language see
Remark D below. An infinite string tension means that the Wilson loop operator
U(C) — renormalized by a perimeter law behaved factor to remove the self-energy
of the static quarks - is zero.

Theorem 4 is concerned with a continuum limit in which the inverse physical
mass ( = mass gap) is taken as the standard of length. One could think of trying to
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construct another, massless, continuum limit by taking the string tension as the
standard of (length)"2. Again one would have to let the cutoff M-»oo in physical
units. It is not clear that this limit will exist because the sine-Gordon theory is
nonrenormalizable in 3 dimensions [compare Eq. (1.22)]. Finally there remains
the canonical limit in which the unrenormalized electric charge squared g2 = 4π2/β
is taken as the standard of (length)"* while a-»0. We conjecture that this limit for
5μv (Wilson loops) reproduces ordinary free electrodynamics. It has zero mass and
string tension.

We conclude this section with some remarks about A) symmetry breaking
aspects and physical interpretation, B) a possible roughening transition and
characteristic differences between the behavior of the model for weak and strong
coupling, C) renormalization group aspects, D) the interpretation of our effective
action in gauge theory language, E) mass generation, F) unicity of the equilibrium
state, and G) our choice of cutoff.

Remark A (Symmetry Breaking). The spin waves are Goldstone modes of a
spontaneously broken symmetry. They need not be exactly massless because there
exists explicit breaking from a continuous symmetry 1R to a discrete symmetry TL.
The approximate symmetry IR can be seen by replacing β~ 1/2τφc) in Eq. (1.1) by a
field φ(x) that is integrated over the reals, and replacing the Boltzmann factor by a
serrated Gaussian which depends only on the integer part of β1/2φ(x)/2π. If β/a is
large then its saw teeth, which break the symmetry φ(x)-^φ(x) +const eΊR. are
small. If the explicit symmetry breaking were switched off then the IR invariance
would remain spontaneously broken - the result is a massless free field theory
which is known to have a spontaneously broken symmetry φ~+φ + const. Note
that the global Z-invariance is always spontaneously broken if <φc)> exists at all,
since the equation <n(x)> = <n(x)> -f- 2πl has no solution for /ΦO. So the explicit
breaking from IR to TL is not important to get spontaneous magnetization
(symmetry breaking) but it is important to produce a surface tension.
Ferromagnets with spontaneously broken continuous symmetry have no surface
tension. (This is of course trivial for the massless free field theory. It can also be
proven in general, for Heisenberg ferromagnets etc. [24].)

When β/a is small then the IR-invariance is completely destroyed. In this case
the only excitations of our ^-ferromagnet are a dilute gas of small domain walls on
the original lattice (see Sect. 5), and there are no spin waves.

Remark B (Roughening Transition etc.). We have made no attempts to prove the
existence of a roughening transition [23], but we emphasize that nothing in our
results speaks against its existence. In particular the convergence of the Peierls
expansion does not imply that a domain wall with prescribed boundary C is not
rough. (It is called rough when the amplitude of the fluctuations in its position in
the transverse direction tend to infinity when the area enclosed by C becomes
infinite.) Convergence of the Peierls expansion requires that energy and chemical
potential of a domain wall are bounded below by positive constants times area.
Such a bound alone is not even sufficient to guarantee that among all surfaces with
prescribed boundary the one with least area is also the one which costs the least
energy, and it certainly does not imply that all others cost so much more energy
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that they are assigned negligible probability by the Gibbs measure. An argument
for rough domain walls which starts from an effective action like Eq. (1.22) has
recently been given by Ogilvie [25].

It is instructive to compare the behavior of the Z-ferromagnet for small and
large coupling parameter ["temperature" - see after Eq. (1.2)] β/a. At low β/a the
theory can be analyzed by Peierls expansions on the original lattice (see Sect. 5),
these are related to the familiar high temperature expansions for the 17(1) gauge
theory by a duality transformation. The only excitations are domain walls (on the
original lattice), and these are dilute. Domain walls with prescribed boundary are
not rough when they are aligned with the lattice planes. The proof of this property
makes essential use of the fact that there is only nearest neighbour interaction
[single plaquette interaction in the (7(1) gauge theory]. At large β/a the low lying
excitations are spin waves. In addition there are domain walls on the block lattice.
They cost much energy and are very dilute. In principle, the spin waves can be
integrated out, the result is an effective action L^ff(h) for a Z-ferromagnet on the
block lattice with 2π integer spins. However, the spin waves have a mass mD less
than one inverse lattice spacing L ~1, so they mediate interactions between domain
walls over a range larger than one lattice spacing L (see Remark C below). As a
result, L^ff(h) does not have nearest neighbour interaction only and the argument
against rough domain walls does not carry over to it.

Moreover, comparison of the excitations suggests that there is also a change in
bulk behavior when one goes from small to large β/a. The question naturally poses
itself whether it is associated with a phase transition. The methods of the present
paper are not powerful enough to decide the question whether the free energy is
indeed nonanalytic in β at some value β = βc. This is so because we do not have the
region of intermediate β/a under control, except for some pieces of information
that rely on correlation inequalities, like Corollary 2 and the results of Frohlich
and Spencer [12].

Fade analysis of high temperature series for the free energy of the
3-dimensional 17(1) gauge theory with Wilson action has not produced any
evidence for a phase transition [34].

Remark C (Renormalization Group Aspects). All our results are perfectly con-
sistent with the general principles of the renormalization group. This will become
evident from the discussion at the end of Sect. 2. In addition our results contain
dynamical information that is specific to the model and could not be deduced from
general principles alone. All this is as it should be. It must be emphasized, however,
that a good choice of the block spin ( = the field that appears in the effective action)
is absolutely crucial. What is a good choice and what is not depends on the low lying
excitations of a model If, by mischief, one integrates out degrees of freedom that
are associated with low lying excitations in the course of an iterative re-
normalization group procedure, then one will encounter disaster - the effective
action becomes very nonlocal. If the disaster goes unnoticed by courtesy of
uncontrolled approximations, then one may get qualitatively wrong results. We
will now illustrate the danger with the example of our model.
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For large β/a the low lying excitations are spin waves. This is not α priori
obvious, especially not if one starts from the 17(1) gauge theory. (Imagine that you
had never heard of duality transformations . . . .)

Suppose that someone wanted to set up a renormalization group procedure in
which the effective action at each intermediate step does not depend on a real field
Φ, but on an integer valued field on a block lattice. He might be motivated by the
hope of obtaining effective actions which are approximately of the form of the
original action (1.1), except for the replacement of β by a running coupling
constant. Such an action would be the dual transform of a Ϊ7(l) gauge theory on a
block lattice with one-plaquette action of the Villain form, with a running coupling
constant. It would predict a string tension proportional to the physical mass
squared, in contradiction with (1.10).

Our Proposition 3 is valid for arbitrarily large values of the ratio M/mD of
cutoff to mass. Therefore it also gives us information about what the effective
action Le//(Φ) would be at some intermediate stage of a renormalization group
procedure when M/mD is still very large but Mβ is already small. To get an effective
action L^ff(h) for a theory with integer valued block spins one would need to
integrate out the spin wave part of Φ. But this leads to disaster. The spin waves
always have mass &mD as soon as Mβ<ζl, as a result they will lead to interactions
of range m^ 1 rather than M~ l in the resulting effective action L^ff(h).

For the purpose of illustration we can use the approximation (1.23), and
substitute a periodized Gaussian for the exponential of the cosine so that

(1.25)

h is constant on cells of the block lattice A'. Its lattice spacing L is taken of order
M~~ l. If the correction terms . . . are dropped the resulting Gaussian integration can
be performed with the result that (m'D&mD, M'^M, r^l if

(! 26)

We see that the spin waves have generated an interaction of range m^ 1 between
domain walls. (The domain walls are where h jumps, i.e. P^φO.)

If one wants to determine the surface tension α one has to integrate out the spin
waves eventually. The above considerations show that one should not do this in
the course of an iterative renormalization group procedure which lowers the cutoff
sequentially, but postpone this step until the cutoff M has been brought down to
order mD (physical mass). This is what we have done. One obtains an action for an
effective Z-theory of the form (1.26). [Actually the periodized Gaussian is not a
very good approximation for the purpose of computing Lξff, because it over-
estimate the height of the maxima of 33e// by a factor ^π2/4. Therefore the
correction terms represented by dots in (1.26) are not small. But one proves that
they can at most reduce the surface tension to a finite fraction > 0.] Of course, the
resulting L^ff still does not have nearest neighbour interaction only. But it is
interesting to note that it can be replaced by the action of a simplified effective



Confinement 555

2ζ-theory5 which has only nearest neighbour interaction for the purpose of finding
a lower bound on the surface tension6. Since h is constant on block cells, we can
replace G by G in Eq. (1.26) with the kernel of G equal to the block average of the
kernel of G. The assertion follows now from the fact that G, when considered as an
operator in the Hubert space of functions on the block lattice, is bounded below by
a multiple of the unit operator i,

G^c/'1!. (1.27)

For details see Sect. 7.

Remark D (Effective Action in Gauge Theory Language). To obtain the effective
action in gauge theory language, we should apply an inverse duality transfor-
mation. We do not know how to do this for the action given by Proposition 3.
Instead we present here the solution of another simplified auxiliary problem. We
consider the action L'eff(Φ) which is obtained from Leff(Φ) by substituting a lattice
cutoff/. ~ 1 for the Pauli Villars cutoff M. Thus, Φ is regarded as constant on cells of
the block lattice A' of lattice spacing /., and ι/ = ( — Δ')~l, where A' = — V'_μV'μ is the
Laplacian on the block lattice,

Δ'F(x')=L-2 £ [_F(x'±Leμ/a}-F(x>}-\.
±,μ

The other formulae are the same, for k = 0.
We perform an inverse duality transformation on this modified action. Such a

duality transformation is a Fourier transformation on the symmetry group TL. To
apply it one must decompose IR9Φ(x') into Zζ-orbits. This is achieved by writing

Φ(x') = h(x') + θ(xf)β- ^2 , - π ̂  0(x') g π , Λ(χ')e 2πβ~ ί/2Z . (1.28)

The symmetry group acts only on h. Therefore the "spin wave" variables θ remain
unaffected by the duality transformation. We note that Veff(Φ) depends only on θ
or, equivalently, on the field χ to be introduced below, because

ε(ξ)=-l + exp[imβll2Φ(x)~]=-l+exp[_imθ(xf)'] for ξ = (m,x). (1-29)

xΈA' specifies the block cell in which is xeΛ
It is straightforward to perform the duality transformation. The result is a [/(I)

gauge theory on a block lattice with Villain action which is coupled nonminimally
to a "magnetic" matter field χ(x'). The action becomes

Kff(Fμv,χ)= -L-* Σ
x'eΛ'*

(1.30)
5 In [7] an effective TL(N] theory of quark confinement in pure SU(N] Yang Mills theory on a
4-dimensional lattice was presented (N = 2, 3). It uses only the simplest of approximations. Nevertheless
it is hoped that it will become possible one day to prove its validity mathematically, with rigorous
bounds in place of approximate equalities. The effective Z(/V) theory is a 2£(/V) gauge theory on a block
lattice with positive coupling constant and the standard one-plaquette action. It can be subject to a
duality transformation. The resulting ΊL(N] gauge theory can be regarded as an analog of the simplified
effective Z-theory mentioned in the text. 2ζ(/V) gets replaced by 2ζ because the dual of the center of the
gauge group [/(I) is 2£
6 This is not the first such result. The inequalities of [29] are another example. They bound the string
tension of an SU(N] theory by that of a ΊL(N] theory
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A'* is the dual of the block lattice A'. If / is the site of Λ'* which corresponds to
the cube of A with corner points x\ x' + e'μ, x' + e'v, x' -f e'Q, μvρ = 123 or cyclic, then

x'). (1.31)

Under space reflections

in accordance with its "magnetic" character. Veff is a power series in χ and χ
because ε(ξ) is a polynomial in χ or χ by Eq. (1.29). Fμv depends on the auxiliary
Villain variables lμv(x')ε2πL~2Z,

ι (1.33)

and the partition function is obtained by summing over lμv and integrating over Aμ

and χ.
Apart from the appearance of the matter field χ the most spectacular feature of

expression (1.30) is that the last term in { } is pure imaginary. It would be real in
Minkowski space because the antisymmetric tensor εμvρ ensures that always one of
the indices μ, v, ρ is 3 (time).

Remark E (Mass Generation). The result (1.10) indicates that the mass is "too
small" in the present model. Some years ago one of us suggested that mass
generation in nonabelian gauge theories could be understood as a dynamical
Higgs mechanism [26]. In an abelian pure gauge theory this mechanism cannot
work because the gauge field carries no colour charge.

Remark F (Unidty of Equilibrium State). Convergence of the infinite volume
cluster expansions (of Sect. 6) for the Z-ferromagnet at low temperatures makes it
most unlikely that its equilibrium state is nonunique (in the sense that there is
another one which assigns expectation values to ^-invariant observables that are
different from those determined by solution of the infinite volume Kirkwood
Salsburg equations of Sect. 6. ^-invariant observables do not distinguish between
Gibbs states that are obtained from each other by a symmetry transformations.) A
proof of unicity would be desirable.

Remark G (Choice of Cutoff). For a block spin calculation, it might seem
appropriate to define a field Φ(x') on a block lattice (LTEf by

Φ(x') = L~3 f β~l/2n(x).
Deblock

Since n(x)/2π is integer, such a choice would require that Φ(x') is an integer
multiple of 2π(a/L)3β~ 1/2. We avoid this by the use of a Pauli Villars cutoff. In this
way we can work with a real field and a smooth action for it.

2. Yukawa Gas Representation

The most convenient starting point for a rigorous treatment of the 3-dimensional
17(1) lattice gauge theory and its dual transform, the Z-ferromagnet, is another
well-known representation of this model which is intermediate between the
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Coulomb gas representation and the 2£-ferromagnet. It uses the gas picture to deal
with short distance problems (up to M"1) and the ferromagnetic language for
longer distances. This idea was used by Frohlich [30] in his work on
2-dimensional Coulomb systems, and later also by Brydges [1] (see also [31]). In
this section we review the derivation of this representation. Some informal
remarks on renormalization group aspects are added at the end.

Since we are only interested in ratios (1.3) of partition functions, we will allow
ourselves to add constants to the action, and redefine the partition function by
corresponding factors independent of /:, Ξ, without introducing a new notation
each time. We set the lattice spacing

a = 1 throughout Sects. 2-5 . (2.0)

Accordingly, the scalar product ( , ) in the space of square summable functions on
the infinitely extended lattice takes the form

σ,0)= Σ /(%M (2.i)
xeZ3

Using Eq. (1.13) and completing the square, the action in Eq. (1.5) can be rewritten
as

~ί[pχχ)-/y;^

~ α (2.2)

We introduce a real field φ(x) on the lattice Ί? which is going to replace β~ 1/2φc).
The integrality condition on n(x) for xeΛ will be imposed through ^-functions. Let
άμv f(φ) be the Gaussian measure with mean / and covariance v . We can use it to
write the partition functions for the 2£-ferromagnet with boundary conditions as
described in the introduction in the form

ZA(k, Ξ) = e-
k2(J-^CbJ-}/2βZΛ(k, Ξ) , (2.3a)

2 Σ δ(φ(x)- β-^njϊ (2.3b)

= vCbV_μjμ as in Eq. (1.12). /depends on Ξ. The periodized 5-function can be
expanded in a Fourier series. This gives

Π{2π/Γ1/2 Σ δ(φ(x)-β-v2nx)\=Σ eiβl/ί(m'φ) (2.4)
xeΛ [ nxε2κTL } meZΛ

One inserts this into Eq. (2.3b) and performs the φ-integrations with the help of the
well-known formula for the characteristic function of a Gaussian measure

j dμv> f(φ)eί(d> φ} = e~ ̂  "*> + ί(^ f} . (2. 5)

In this way one obtains the Coulomb gas representation of Banks et al. [5]. The
partition functions become

Z (k,Ξ)= V e

ίk(m>ne-β(m>vcbm)i2 π 6)
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For k = ΰ this is the partition function of a Coulomb gas with insulating boundary
conditions [12]: vcb(x — y) is the Coulomb potential on the infinitely extended
lattice Z3, but the charged particles (monopoles7) are constrained to be in /L;
m(x) = 0 for x outside A.

Now one splits the Coulomb potential into a Yukawa potential v of range
M"1 which dominates for distances much shorter than M"1, and the rest

(2.7)

with

(2.8)

1 (2.9)

Inserting the split (2.7) into (2.6) one obtains

Z (k Ξ)= Y e

i/((™,f)-τβ(™,Um)e-^β(m,vm)

meZΛ

Now one uses the formula (2.5) for the characteristic function of a Gaussian
measure again to reexpress the first factor

ZA(k,Ξ)= Σ ϊdμ^-^Φ^'^e-^'^. (2.10)
meZΛ

Φ is a real field on Z3. m-summations and Φ-integrations can be intercharged (by
the dominated convergence theorem). Using Eq. (2.3a) we can therefore write

ZA(k, Ξ) = e-*2(J»vc>>JJ/2β f dμUtkβ-ί/2f(Φ)ZΛ(Φ) (2.1 1)

with

ZΛ(Φ) = £ eiβl/2(m φ)e-β(m*vm)l2. (2.12)
meZ-71

Z^(Φ) is a partition function of a Yukawa gas with complex space dependent
fugacity. It turns out to be positive [12] so that one can define
Veff(Φ)= — lnZyl(Φ). The problem is to show that Veff admits an expansion with
the properties stated in Proposition 3. The natural thing to try is a Mayer
expansion, as in the work of Brydges, and Brydges and Federbush. Unfortunately
the known methods for proving convergence of such a Mayer expansion fail for
the values of β and M in which we are interested. Therefore a new piece of
technology had to be developed. This is discussed in the next section.

We add some informal remarks. Inserting Eq. (2.4) into Eq. (2.3b) with /r = 0
one can write

with |m(x)|>l}. (2.13)

7 They are monopoles of the gauge theory, see [4, 5]. Monopoles in SO(3) lattice gauge fields are
discussed in [33]
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For temporary use only we introduce normal ordering: : with respect to the
Gaussian measure dμ =dμ n. It is defined byr~vcb Λ ί > C b , U J

= e%(f> vcb nei(f, <P) t (2. 14)

Equation (2.13) becomes

ZΛ = ldμ^cb(φ] Π {l + 2z:cos j8
1/2φ(Λ:):+ terms with |m(x)|>l) (2.15)

xe/l

with

z = e-β^(Q}/2 = m2

D/2β. (2.16)

If we could neglect the monopoles with \m\ > 1 and also the hard core of the others,
we could approximate this expression by

(2.17)
L

This formula was first derived in Appendix A of [5]. (Normal ordering is
presumably tacitly understood there.) The normal ordering is crucial here, it is
responsible for the exponentially small factor 2z = m^/β, compare Eqs. (2.15) with
(2.13). It absorbs the self-interaction of the charged particles.

The integrand in (2.17), which is a smooth function of φ, looks like a very
drastic approximation to the exact integrand in Eq. (2.3b) with k = Q, which
involves ^-functions. But it is instructive to compare Eqs. (2.17) with (1.22) for the
effective action. This reveals that the main effect of integrating out the high
frequency components of the field φ(x) is that φ(x) in (2.17) gets replaced by a
cutoff field Φ(x), and the correction terms ... in (2.17) get suppressed. [One can
rewrite Eq. (1.22) in normal ordered form, but this makes little difference there
because of the presence of the low cutoff mass M.] There are other correction
terms appearing, including some that could be absorbed in part by mass and wave
function renormalization, but they are all small so long as the ratio cutoff/physical
mass ^> 1 and β is large enough - see Proposition 3. All this is perfectly consistent
with the general principles of the renormalization group [13-15]. The presence of
the ultraviolet cutoff M will make it possible to write down convergent expansions
in domain walls on a block lattice with lattice spacing L of order M~ 1. A similar
expansion on the original lattice would not converge if β/a is large, because a jump
of the spin n(x) by 2π across a link costs very little energy.

3. Iterated Mayer Expansions

We wish to examine expression (2.12) for Zyl(Φ). We interpret it as a partition
function of a Yukawa gas on A with a complex space dependent fugacity. It
consists of particles with a hard core which prevents two of them occupying the
same lattice site. They can exist in infinitely many states labelled by charge
m = ± l , ±2, ±3... .
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We introduce abbreviations

..)= Σ ί (•••), (3-D
ml= ± 1, ±2,... xeA

(3.2)
c; — Xj) otherwise.

With this notation we can rewrite Zyl(Φ) in grand canonical form

ZΛΦH Σ ^(Φ)

ξy)], (3.3)
# = 0 , 1 , 2 , . . . j = l

with
(3.4)

as in Proposition 3, and

«!,.., U=τUxp[-f Σ !/(̂ )]. (3.5)
^v L z i , j = l

We split the potential ι/ into R pieces of increasing range and decreasing strength.

v(ξ,ξj) = vQ(ξ,ξj) + R^v\ξ,ξj}. (3.6)
r= 1

ι/° incorporates the hard core.

0° if X* = XJ> iή=J (37)o otherwise.
 (όj)

The other pieces of the interaction shall assume finite values only. They will be
specified below in Eqs. (3.19)-(3 22).

We write down an iterated cluster expansion [6]. We consider clusters of
clusters of ... of clusters of particles = constituents. They are called /-vertices,
/ = 0,1, ...,£. A 0-vertex is a single particle i which is its own constituent.
Associated with it is a variable ^^(m^Xf) which specifies its state and position,
and a vertex function

σ»(ξj = l. (3.8)

Higher vertices are defined inductively. An /-vertex α' is a nonempty finite
collection {α} of (/— l)-vertices such that no two of them share a constituent. There
is an associated variable

C=(«αU ); dξΛ. = Udξ,. (3.9)
αeα'

A particle i is a constituent of α' if it is a constituent of one of the (/— l)-vertices
αeα'. We write z§α' in this case, and C(α') for the set of all constituents of α'. One
also defines the type [α'] of an /-vertex, [α'] is an equivalence class of /-vertices. All
0-vertices are equivalent. Two /-vertices belong to the same equivalence class if
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they contain the same number of (/— 1)- vertices of each type [α]. We write ϊl for
the set of all types of l-vertices. To every /-vertex α there is an associated vertex
function σl

Λ(ξΛ). It is defined inductively as follows. Write

ΣΣ^(^j) (3 10)
ieα jeα

and

Then one defines, for /^O,

.[β]eTι W[β]') Φa' \\aeoc' /\(aγ}e<gxr

Summation is over all connected graphs ^α, on vertices αeα'. Such a graph is
specified by a set of links = unordered pairs (α, ft), with α φ ft and α, βe α'. N*β] is the
number of /-vertices of type [jϊ] in the (/+1) vertex α'.

The idea of the iterated cluster expansion is to treat one after the other of the
pieces vr of the potential by a cluster expansion, short range interactions first. In
each step one uses (3.11) and expands in products of f s. The result is a sum of
contributions which can be represented by graphs, and each such contribution
factorizes according to the decomposition of this graph into connected pieces. The
final result of this analysis is a formula for the Boltzmann factor 3?N(ξί9 ..., £N),
Proposition 2 of [6],

«1} ...,ξN)= Σ ( Π Λ/ffl!)-'S'" Π «?&)• (3.13)
{α} \[β]eTR I αe{α}

ΣC(α) = {!.,..#}

Summation is over partitions of the set 1 ... TV of N constituents into jR-vertices.
(We write Σ for the union of disjoint sets R = numbers of pieces into which v has
been split.) The prime ' indicates that only one representative {α} out of every
collection {[α]} of types of £-vertices is to be included in the sum. (This restriction
could be dropped, but the combinatorial factor would then be different.) The
symmetrizer §(c) averages over all NI permutations of the N constituents 1 ... N.
Nfβ} is the number of ^-vertices of type [/?] in {α}.

From Eq. (3.13) it follows that

j=ι

Σ'
αe{α}

ΣC(α) = {!...#}

This can be inserted into Eq. (3.3). l+ε(ξ) is a complex number of modulus 1.
Proposition 3 of [6] generalizes therefore to assert that

(3.14)
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provided Σf d£Jσ*(ξα)|<oo. We write |C(α)| for the number of constituents in α,
[«]

and we assume in the rest of this section that the following stronger bound is
satisfied

α(UI<*> (3.15)

Its validity will be proven in the following sections. The final step is to expand the
product

Π [l+fi(^)]= Σ s(c)fi(^)...fi(ίs). (3.16)
j=l s = 0\S/

§(c) symmetrizes in the arguments ξί ...ξr This is inserted into expansion (3.14).

Since Σ 2s = 3*, the bound (3.15) assures that the resulting series is absolutely

convergent and may therefore be reordered. Define

ρt(ξι .& = Σ *?(£J. (3.17a)
M

C(α) = { l . . , f }

and

1 . . .dξ t g f (ξ 1 . . .ξ t ) . (3.17b)

Then it follows from Eq. (3.14) that

(3-18)

The series in the exponent is absolutely convergent if the inequality (3.15) is
fulfilled.

If we insert Eqs. (3.18) into (3.11), we obtain formulae (1.16), (1.17) of
Proposition 3. To complete the proof of Proposition 3 we must show that
inequality (3.15) holds and that the bounds (1.18) are satisfied, for a suitable split
(3.6) of the Yukawa potential. In addition we should determine the asymptotic
behavior of ρ1(±ί9x) for β/a-^co. This will be done in the next section.

We will now specify the split (3.6) of the potential. There are three intrinsic
length scales in our problem : the lattice spacing a, the Landau length β, and the
Debye length m^1 [mD was defined in Eq. (1.8)]. If β/a is large then we have
a<^/?<^cm#1. We split the potential v into R = 3 pieces. v° incorporates the hard
core - i.e. an interaction of range a - and is defined by Eq. (3.7). v1 will have a
range of order β. The rest of v is called v2, it has range M~ 1 =λm^ 1. Explicitly

i f, x ' = ̂ ' signm^-signm, (3Λ9)

m$nf> (Xi — Xj) otherwise,

lΓ HX,-, */) > with M! - -4πβ~ 1 ln(l - C) , (3.20)

and
(3.21)

- 1 ^,). (3.22)
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C is a constant; the same constant appears in the bounds of Proposition 3. In
Eq. (3.19) use is made of the presence of the hard core to adjust the value of the
potential at zero distance conveniently.

To study fall-off properties of vertex functions we introduce the distance

||x|| = 3-1/2£|xμ |, (3.23)
M

and norms depending on a constant >4^0,

M>,= ί KW(^IWI. (3-24)
xe(aZ)3

We will need information on the energies

of a charge configuration m,

N

m(x)= £ mtδXitX.
ί= 1

It is provided by the following lemma. It tells us in particular that among all
possible configurations ofN—1 particle, a single particle with charge m t = ± 1 has
the lowest possible energy £1=^1(0). In particular, neutral dipoles have higher
energy f1. We state the lemma for an arbitrary choice of lattice spacing.

Lemma 5. // aM1 is sufficiently small and M^M2^Mί then there exists a constant
8j_ >0 such that the following inequality holds for 1=1,2

- 1 + Σ m f j for J V ^ l , (3.25)

Moreover, ^(x)^0 and

for A<(i-~δ)M, <5>0, and β/a sufficiently large, depending on δ.

The proof of the first part of this lemma is given in [6] (Proposition 8). The
proof of the inequalities (3.26) is based on explicit computation in momentum
space. Details are given in Appendix B.

4. Estimates for Vertex Functions

Equations (3.17) express the coefficient functions ρt(ξt . . . ξ t ) in the series expansion
(1.17) of Veff in terms of vertex functions σf. In this section we will derive recursive
bounds for vertex functions σl

Λ. Validity of inequality (3.15) [which was assumed in
deriving (3.17)] and of the bounds (1.18) in Proposition 3 will be deduced from
them.
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We start with the 1- vertex functions. They incorporate only the hard core and
are known explicitly, see Eq. (3.2) of [6]. There is only one type of 1 -vertex, and

σί(ξ1,...,ξn) = (-lΓίn-1δX2Xι...δXnXl (4.1)

for the choice (3.8) of 0-vertex function.
To obtain estimates for higher vertex functions, it is convenient to start from

the tree formula, Eq. (4.3) below. The tree formalism was used extensively in
constructive field theory. Proposition 4 of [6] asserts that the tree formula (4.3) for
the (/+l)-vertex function (/^l) is equivalent to the defining Eq. (3.12).

Consider the set of all functions η which assign to every integer a = 1 . . . t — 1 a
positive integer η(a) satisfying η(ά) ̂  a. Every such function specifies a tree graph T
with t vertices. Its links are the pairs (0+1, η(ά)) a = 1 . . . t — 1. One also introduces
real variables s1...st_ί which take values 0 ... 1.

Consider now an (/+ 1)- vertex α' which consists of t /-vertices. We shall label
them in some arbitrary way oq ... αr The symbol § will stand for symmetrization
on labels oc1...at. It acts on symbolic expressions F carrying such labels. The
defining expression (3.12) for the vertex function σ^1 is symmetric in the labels
^...α,.

Given the potential ^(αβαb) of Eq. (3.10) one defines a partially decoupled
interaction Wl. It depends on s = (sl5 . . .,s ί_ 1)

Wl(s\*') = \ Σ "WO + Σ *A+ i sb- X(*A) (4.2)
^ α=l l^a<b^t

The tree formula reads for / ̂  1

- _
Π Nfo " '
}*Tι

_/?y-ι
(4.3b)

π <«j
»/ α = 1

Summation is over trees η as described above, and

lΛ-Λ-2 •••*,<„)]. (4-4)
Λ = l

Empty products which arise when η(a) = a or ί=l are read as 1.
As a consequence of their definition and of inequality (3.23) in Lemma 5, the

partially decoupled interaction Wl(s\v!) also satisfies the inequalities (see Eq. (4.3)
of [6])

e, Σ>?, (4.5)
7§α'

where

5z = 7 z -ez- (4 6)
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Inserting the bound (45) for W\s\ά] and the definition (3.10), (3.17), (3.19) of
ι/(αfl,αb) into Eq. (4.3b) one obtains the inequality

• Σ Π j Σ Σ sa_A_2...sη(a)\mjm^l(xj-xk)\}. (4.7)
η α= 1 [ j ξ Ά a + ι kean(a) j

In Eq. (1.11) we introduced quantities LΓ(α1? ...,an) and L(01? ...,«„) which
measure the spatial separation between subsets α 1 ? . . . , an of Λ. If α. consist of single
sites x , we write LΓ(x1? ...,xn) in place of Lτ(α1? ...,«„), etc. It is convenient to
introduce also

L(x1? ...,xw) = minLT(x1, ...,χw)= min £ ||χ.— xj ,

minimum over tree graphs T
with exactly- n vertices 1... n. (4.8)

It follows that

L(α1? ...,βn)= min min L(xl5 . . . ^ X f ) . (4.9)

Let α be some /-vertex with n constituents iί...in. The variable ξα specifies the
position xt of every constituent ie α. We set

L(xΛ) = L(xiι9...,xin). (4.10)

Lemma 6. Let a' be a(l+ l)-vertex which consists of t l-vertices α x . . . αί5 and let η be a
map as described above which specifies a tree graph with t vertices i ...t. Suppose
that constituents j(^)eα f l+1 and k(a)e%η(a} are chosen in some arbitrary way for every
α = l...ί-l.

Proof. By definition (4.8) of L, there exist tree graphs Ta whose vertices are the
constituents of α such that

We construct a tree graph T whose vertices are the constituents of α', and such that

ί ί- 1

LτCv)= Σ LT>αα)+ Σ ll^k(α) "^(α)ll
α = l α = l

Inequality (4.11) follows from this by definition (4.8) of L. The tree graph T
consists of all the links of all the trees Ta, plus the links (k(a)J(a)\ a = 1 . . . t — 1. Π

Now we return to our vertex functions. We define norms (n = number of
constituents of α)

+Σ^lm^-εm,2)]^ (4.12)
jeα
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and

llσΊUi.,^ Σ K!kε,κ. (4.13)
[«]e7Ί

In formula (4.12) the x-summations run over the infinitely extended lattice Z3, and
not only over A as would be implied by the notational convention (3.1). i is an
arbitrary constituent of α. The result does not depend on x or i because of
translation invariance of the potentials. Summation in (4.13) is over all types of
ί-vertices.

We will derive recursive bounds for these norms from inequality (4.7). First we
incorporate factors exp[/lL( )] into inequality (4.7), using Lemma 6. This gives

0

where

1 ί-l

S l..A-ιΣ Πί Σ Σ Sα-A-2 .Λ<

(4.15)

From here on the procedure is literally the same as in Sect. 4 of [6]. One carries
out the x-summations, the ^-integrations and ^-summations (using the tree
estimate, Lemma 5 of [6]), and the m-summations. This produces a recursive
bound for H σ j j l ^ . g κ. Then one carries out the α-summations in two steps. First one
sums over (/+!)- vertices which consist of a fixed number ίΞgl of ί-vertices, and
finally one sums over t. As a result one obtains the following generalizations of
Proposition 6 and its Corollary 7 of [6].

Proposition 7. The following inequalities hold for any l=l...R— 1 and for
arbitrary choice of κ{ > 0, provided the argument of the logarithm is positive

lkl+ΊAβ,κ^-ϋ8ll"V*?r^^
βj and δl = yl — εl are the constants in the bounds (3.23) for the potentials vl, and

A is defined in Eq. (3.22).

j R - l R-ί I

Corollary 8. Set Kt= ]Γ κk, El — β ^ εfc, and ^/ = X 5k. Suppose that the following
k=l k=l k = l

inequalities are fulfilled for some A1>0, 0< C<1, κ'^0

/VlUKf^Cα-Q'^Γ1^' for / = 1.. .Λ-1. (4.17b)

Then
IkXo.^^l-CΓ^-^-'. (4.18)

The next step of our analysis will be to show that the hypotheses of Corollary 8
can be fulfilled by making β/a and λ~1=M/mD sufficiently large. We choose a
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constant C in the interval 0< C<1, as small as desired. This constant C will
appear in the bounds (1.18) in the end. We set

Kl=κ2=-ln(l-Q. (4.19)

The intermediate cutoff M1 is chosen as in Eq. (3.18), with the same C.
We begin by estimating the 1-vertex function. Consider a 1-vertex α made of

constituents 1 ...n. Since σ^(ξa) = σl(ξ1,...,ξn) is nonzero only for coinciding
positions xi9 according to Eq. (4.1), we have

σ.1(ίβ)eΛL(*-> = σβ

1(U (4-20)

There is only one type of 1-vertex, summation over [α] amounts therefore to
summing over the number of constituents n. Thus, by Eq. (4.11)

= y _ / y e-βειql+2κ"\q\\n

.ginU±iΓ±2,... ) '

Setting K" = κf + κί+κ2 = κ' + K{ and noting that El — βε1 by definition, we find
that

-cr1, (4.21)
with

Al=2e-βεί + 2κ" = 2e'βει + 2κ'(ί-CΓ^9 (4.22)

provided β is sufficiently large (depending on C, K'). This establishes hypothesis
(4.17a) of Corollary 8, for arbitrary A.

Next we turn to hypothesis (4.17b) with /= 1. Since ΔQ = 0 we must show that

β\\^\\A ^ C(l- C)5[ln2(l- C)]^ει~2κ'. (4.23)

Lemma 5 asserts that this is fulfilled for A<(l—δ)M1 and β sufficiently large,
depending on C, K', and δ. Similarly, for / = 2 we have Aί=δl, and we should show
that

β\\v2\\A g C(l - C)6[ln2(l - C)]^-2*' . (4.24)

We have (see Eq. (5.6) of [6])

y1=^(Q) = ̂ Cb(Q)-(4πΓ1/Vll + (9(Ml).

Therefore, with the choice (3.18) of M1

)8y1^^ch(0) + 21n(l-C) (4.25)

if β is large enough. We assume that β is large enough so that MrgMr Lemma 5
tells us that inequality (4.24) is fulfilled for A^M(l-δ) if

1 ̂  \b2 C3(l - C)8e~

= ±δ2C\l-C)8e-

by definition (1.8) of mD(a = l in this section).
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This is true if λ = mD/M is small enough, depending on C, κf, and δ.
Having verified validity of its hypothesis, we can now apply Corollary 8. By

definition, β(ε1 + A2) = βyl. Using inequality (4.25) again and setting κ' = κ + ̂ μ we
obtain (R = 3 always)

Proposition 9. Under the hypotheses of Proposition 3

lkX;o,κ+^K//^2κ+μα- cr9 (4.26)
for A^(l-δ)M.

Now we are ready to proceed to the

Proof of Proposition 3. First we note that m? ̂  1 implies

ΣX^|C(α)|. (4.27)
jeα

Therefore

U ^ U o O,^ Σ £μ|C(α)l ί ^>α(U (4.28)
[α]e TR (xχeΛn)

Setting μ = ln3 we see that Proposition 9 ensures validity of the bound (3.15),
under the hypotheses of Proposition 3. Therefore, lnZyl(Φ) can be represented by
an absolutely convergent series (3.18). We set

-l/β//(Φ) = lnZΛΦ). (429)

Then Eqs. (1.16) and (1.18) of Proposition 3 follows from Eqs. (2.11) and (3.18), and
Eqs. (3.27) give the following formula for the coefficient functions ρs

[α]
C(α) = {l...ί

(4.30)

If s^ 1, it follows from expression (4.9), (4.10) for L(α1? ..., αs) that

ί ... ί dξ2...dξsΣ\es(ξ1 Qe2κ*m>ί

Σ v* -« e<s\e~μ(s~1}

•max Σ dξ'ae
*** [«]

C(α) = {l ...ί}

(4.31)

by Proposition 9. Without loss of generality we may assume that μ is large enough
so that

V e-μ(t-s} = ll-e-μΓs-1^(l-CΓs~^ (4.32)
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The bound (1.18) of Proposition 3 follows from inequalities (4.31), (4.32) by
summing over x1eα1.

It remains to determine the asymptotic behaviour of ρ^ξ) when β/a-+ao. We
single out the term with t = s = 1 in Eq. (4.30). There is only a single type of /-vertex
α with a single constituent i— 1, and recursion relation (3.12) specializes in this case
to

for ξ = (m,x).

With Eq. (3.8) it follows that

<τ?(ξ) = exp[-j8roMθ)/2] if C(α) = {l}. (4.33)

Thus, Eq. (4.30) gives

£ f #2 ...dξ.σX). (4.34)
[α]

C(α) = {l . . . t)

The second term is bounded by

Σ f
ί 2

o
by Proposition 3, C can be chosen arbitrarily small and μ arbitrarily large, if β is
large enough. Since ?>(0) = ̂ Cb(0) — &(M), the first term in (4.34) is asymptotically
equal to

exp[-j8m^Cb(0)/2] = (

if β-»oo and /?M-»0. The last assertion of Proposition 3 follows from this. Π

5. Low Temperature Behavior of the Z-Ferromagnet

When β/a is small then the (7(1) lattice gauge theory can be treated by high
temperature expansions and the area law for the Wilson loop expectation value
(1.3) follows. This was proven by Osterwalder and Seller [19]. Under the exact
duality transformation, the C7(l) lattice gauge theory at high temperature β~1 goes
into the Z-ferromagnet at low temperatures β, [see the remark after Eq. (1.2)], and
high temperature expansions for the gauge theory become low temperature
expansions for the Z-ferromagnet. They are expansions in domain walls =Peierls
contours on A. In this section we will write down these low temperature
expansions. We indulge in this pedagogical exercise because it will be instructive to
compare the result with corresponding formulae that will be valid for large β/a.

We start with expression (1.5) for the partition functions. Setting a — \ it
becomes

(5.1)
ne(2πZ)Λ [ ^P xeΛ μ

For simplicity we consider Dirichlet boundary conditions, n(x) — 0 on dA, instead
of the heat bath described in the introduction.
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Fig. 2. A link b and its coboundary d*b=pί +p2 +Ps +P4 P, are the four plaquettes with orientation as
shown. The plaquette with reversed orientation is called — p.

The domain walls are positioned at those links fe = (x,x4-eμ) in A where

2πN(b) = n(x + eμ] - n(x) ~ kjμ(x) φ 0 .

These links may be considered as plaquettes of the dual lattice A* so that the
domain walls become surfaces. To specify them completely, one must also specify
the magnitude of the jumps across. In order to maintain a simple geometrical
picture, it is most convenient to do this by counting every link b in the domain wall
with the (positive or negative integer) multiplicity N(b). We introduce the 1 -chain T
with coefficients in the abelian group 2πβ~ll2Z by

T=2πβ~1/2ΣN(b)b
b (5.2)

for b = (

In the following we will also call this 7" the domain wall for short. The reader
may picture it as a surface in A* which passes N(b) times through the plaquette b
of A*. [The sign of N(b) gives the orientation of the surface.] Application of the
coboundary operator 3* amounts to forming the boundary of 7" on the dual lattice
A*. The result is a 2-chain on A ( = set of plaquettes counted with multiplicity). For
a single link b, d*b is the sum of the four oriented plaquettes shown in Fig. 2, and
d*T=2πβ~ll2ΣN(b)d*b. An example is shown in Fig. 3.

b

It follows from its definition (5.2), (5.3) and expression (1.6) for/μ that

d*T=2πβ~1/2kC. (5.4)

C is the Wilson loop in A*, it is a sum of plaquettes in A.
Conversely, every 1 -chain 7" with the prescribed coboundary (5.4) specifies a

unique spin configuration with Dirichlet boundary conditions n(x) = 0 on dA.
Using the notation

\\T\\2 = 4π2β-ίΣN(b)2, (5-5)
b

the partition functions (5.1) can therefore be rewritten as

ZA(k,Ξ)= Σ exp[-i||7Ί|2]. (5.6)
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\
Fig. 3. A 1-chain T = Σb (sum over the dark links) and its coboundary d*T=C (formal sum of the
plaquettes shown with the orientation inherited from the links b). As an object on the dual lattice Λ*9 C
is given by the dashed line

Summation is over all 1-chains (5.2) on A with the prescribed coboundary. As a
special case we have for k = Q

exp[-iliη|2]. (5.7)

Next we decompose the domain walls into connected components. The notion
of connectedness used here is the obvious one on the dual lattice A* where the
domain walls are surfaces. Two such surfaces are disjoint if they do not touch
along a link of A*, and a domain wall is connected if it cannot be decomposed into
two that are positioned on disjoint surfaces. In the language of chains on A this
can be formulated as follows. We say that

for two 1-chains Ti = 2τιβ~ll2ΎjNi(b}b if there is no plaquette p on A with the
property that there are (not necessarily distinct) links b1? b2 in the boundary of p
such that JV1(b1)=(=0 and N2(fe)φO. The 1-chaίn T represents a connected domain
wall if it is impossible to find 1 -chains 7~1? T2 such that T=Tl + T2 and Tί Λ 7~2 =0.

If C is a simple loop on A* we may decompose any domain wall T with
coboundary 2πβ~ll2kC, /:ΦO, into a connected piece 7"1 with coboundary
2πβ~1/2kC, and a rest T2 which is disjoint from Tί and has no coboundary:

such that

and

It can happen that 7~2 = 0.

d*T1 = 2πβ-1/2kC, Tί is connected

a*r2=o, T^T2=o.

(5.8)

(5.8a)

(5.8b)
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Correspondingly the partition functions become, for /rΦO

ZA(k,S)= Σ e~WTl"2 Σ e-VW. (5.9)
7Ί conn. 7~2

d*Ti = 2πβ-1/2kC d*7"2 = 0,7" ιΛΓ 2 = 0

Comparing with Eq. (5.7) we see that the second factor is a partition function of a
system on a smaller lattice A— X(T^ which is, roughly speaking, the complement
of a neighbourhood of 1 lattice spacing of the domain wall 7\. More precisely, let
T1=2πβ~ 1/2 £#!(*?)&. We define X(T^ as the union of all cubes c of Λ such that
there exists an edge b of c where ΛΓ^iOφO.

Any domain wall T2 which satisfies the conditions (5.8b) lies completely inside
the smaller lattice A—Xtf^). Conversely any domain wall 7"2 in A—X(T^) with
d*T2 = 0 fulfills (5.8b).

Therefore we can write

with

il|Γ1 | |
2]. (5.11)

Summation is over connected domain walls with coboundary 2πβ~ 1/2kC. ZΛ__X(T^
is the partition function of a system on yl— X(7\) with zero Dirichlet boundary
conditions on the part of dΛ that is in its boundary. It has no dependence on the
Wilson loop.

Equations (5.10) and (5.11) are the desired low temperature expansions for the
ratio ZΛ(k,Ξ)/ZΛ which determines the surface tension α by Eq. (1.7). It follows
from formula (5.7) that

Z^X(Γι)/Z^l, (5.12)

because every term in the sum over (coclosed) domain walls 7" on A includes in
particular all (coclosed) domain walls 7" on Λ—X(T^.

A lower bound on the surface tension α can be obtained from Eqs. (5.10)-(5.12).
We formulate the result for general lattice spacing a.

Theorem 10. There is α constant c>0 such that for β/a sufficiently small

^-1. (5.13)

Proof. We set k— 1 and observe first that the leading term in the expression (5.10)
comes from T1=2πβ~i/2Ξ (Ξ is the minimal surface on /I* with boundary C).
With the definition (1.7) of α we obtain for the leading term

2π2β~1 (5.14)

in units where a — 1.
Now we come to the proof of inequality (5.13). Inserting inequality (5.12) into

(5.10) with k— 1 we obtain

ί^ Σ expC-il lT J2]. (5.15)
7Ί conn.



Confinement 573

Any T1 which appears in (5.15) obeys

\\T.\\2 ^πβ-^Ξ], (5.16)

because Ξ is the minimal surface in Λ* with boundary C. We choose some εe(0, 1),
arbitrarily close to 1, and define κ(N) as the number of terms in the sum over T1 in
(5.15) which satisfy | |7"1 | |

2=4π2j8~1N. We conclude that

π2β'ί(ί-ε]N. (5.17)
N^ 1

Standard combinatorial arguments [10, 28] (Euler's solution of the Kόnigsberg
bridge problem) assert that

κ(N)^eCίN (5.18)

with some constant cr Therefore the sum over N converges for sufficiently small β
(depending on c1 and ε). As a result, the surface tension α defined in Eq. (1.7)
satisfies

a^2π2β-18. (5.19)

This proves Theorem 10 (with c = 2π2ε). For general lattice spacing a the factor
a ~1 appears on dimensional grounds. Π

6. The Glimm-Jaffe-Spencer Expansion

Now we turn to the analysis of the theory with Pauli-Villars cutoff M and an
effective action given by Proposition 3. We assume that λ has been chosen
sufficiently small and β/a is sufficiently large so that the hypotheses of
Proposition 3 are fulfilled. We adapt the analysis of Brydges and Federbusch [2].
It is based on the Glimm-Jaffe-Spencer expansion around mean field theory [9].

The idea is to find a substitute for expansion (5.10) of Sect. 5 which is valid for
large β/a. It will take the form

=Σ Σ -^K(X,TJ. (6.0)
ΔA X ' 7Ί ΔA

d*Tι = 2πβ-ί/2kC

It differs from expansion (5.10) in the following respects. 7\ are domain walls on a
block lattice of lattice spacing L. There is a summation over neighbourhoods X of
the support of the domain wall 7\. This is due to the effect of the spin waves; they
can mediate interactions between the domain wall 7"1 and its surroundings. They
can also mediate interactions between different connected pieces of the domain
wall; therefore T1 need not be connected now. Finally, /((X, 7^) is much more
complicated now in particular it will involve an integral over dynamical variables
associated with the spin waves. Equation (6.35) below should be thought of as an
expansion of the form (6.0) in which the summation over domain walls Tί inside X
has been carried out, viz. tf(X) = £ K(X, 7\).

To obtain a bound on the surface tension α one needs bounds on the factors on
the right hand side of (6.0). First one needs a bound on K(X, 7t) for fixed 7\ that
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ensures convergence of the X summations when the volume A is infinite. It should
suppress contributions in which X (minus a standard neighbourhood of the
domain wall) is large. In addition one needs bounds that replace those of Sect. 5 -
a bound on K(X, TJ that suppresses large domain walls (by a factor e~

const'F^ with
Fj^oc ||7"1 1| 2) and allows us to pull out an area law behaved factor as in Eq. (5.17),
and a bound on the ratio ZΛ_X/ZΛ that replaces inequality (5.12). The bounds on K
are combined in Lemma 15, which in turn depends on the bound of Lemma 12 for
F t. The bound on the ratio ZΛ_X/ZΛ of partition functions is supplied by
Lemma 17.

After these preliminaries we return to Proposition 3. To be in agreement with
the notations of [2] we rewrite the result in terms of a Gaussian measure with
mean zero, using the identity dμUtg(Φ) = dμu(Φ — g\

ZΛ(k, Ξ) = e-^^cMl2β j dμu(Φ)e~ ^//<φl**> . (6.1)

Because of the shift in the field, Veff now depends on k, Ξ. In terms of the vertex
functions it is given by

-Veff(Φ\kΞ)= £ Jdξβσ?(ξ>«" φ>'''y<<" ". (6.2)
[a.]eTR

see Sect. 3. It is convenient to introduce

eάξ) = jm(βl/2φ(x)+kf(x»-l. (6.3)

As a result of the shift one obtains the following replacement for Eq. (1.17)

i ...<ϋ%(ίι) eΛ(ϋ (6.4)
S!

We superimpose on the dual lattice A* another lattice A with lattice spacing L
(an integer multiple of a). We call it the "block lattice". Its cubes are typically
denoted8 by Ωα. We consider Wilson loops which are positioned in such a way that
Ξ is a union of plaquettes of the block lattice A.

In addition we superimpose on A* a lattice of lattice spacing m^ l with mD given
by Eq. (6.7) below. It is called "unit lattice" and its cubes are denoted by Δα. It will
suffice to consider values of/? such that fhp 1 is an integer multiple of a. We choose
L such that fhDL is small and independent of β/a.

The Glimm-Jaffe-Spencer expansion consists of three basic steps : The Peierls
expansion, the translation of Φ, and the cluster expansion.

A. The Peierls Expansion

We split the effective potential

E' includes the terms with s^2 in the expansion (6.4). For simplicity the
Φ-independent constant ρ0 is dropped (it cancels after taking expectation values).

8 Indices α will label cubes on some lattice from now on. We will write dΛ* for the boundary of Λ*,
etc. (instead of d*Λ*)
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We introduce functions h(x) that are constant on cubes Ωα. On each of them h(x)
equals an integral multiple of 2πβ~ 1/2 ft = 0 outside A*. [2πβ~112 is the period of
εώζ), considered as a function of Φ(x).] The leading term of — Veff(Φ\kΞ), i.e. the
first term on the right hand side of (6.5), is approximated by a periodized Gaussian
via the following identity :

eG

 {6.6)

h

with

ml = Σeι(m,x = 0)m2β. (6.7)
ra

By Proposition 3, m^lmD-^l if β/a-»oo and Mj8"1->0.
eG is a correction factor (close to one for the most important fields Φ, at least

away from the domain walls). It differs from that of [2] due to the presence of /in
(6.6) and due to the slight dependence on x of ρ1(m1,x) for a finite lattice A.
Therefore we give an explicit expression :

= exp {J dξβl(m, 0) jV^*""72 - 1 - imδ(x)β112 + ±m2δ(x)2β]

+ 1 dξ(ρι(m, x) -βl(m, 0)) [<></>">*<*)+*,<»)) _ i]} , (6.9)

where δ(x) = δ(x) + kβ~ 1/2<5/(x).

exp {X 8l(m, θ)Z.3[eta(/"'2^«/«) _

α Σ exp { mέm
neZ

^l(x) (/(x)) is the average of Φ(x) (/(x)) over the cubes Ωα, and 5(x) (<5/(x)) is its
fluctuating part :

(6.11)

for xeΩα. We use charge symmetry which implies that J]ρ1(m,0)m = 0.
m

B. Translation of Φ

The combination of (6.5) and (6.6) yields [ZΛ is related to ZΛ by Eq. (2.3a)]

~smDHΦ-kβ 1/2f-h}2

eE'eG^ (6>12)

For any ft we define a function 0(x) = gh(x). It differs from that of [2] and its precise
form will be given below. We write

(6.13)
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and include in the Gaussian measure the quadratic terms in ψ, namely — \wi2

D J ψ2

Λ

and — \ Jtpvtp. The second expression is the part of E' which is quadratic in φ and
comes from the term with 5 = 2 in the expansion (6.4). We obtain the explicit form
of v if we write εk(ξ) = εk(ξ)-\-imβ1/2ψ(x) with

(6.14a)

This gives

-^ιpvψ=-\$dξίdξ2ρ2(ξl,ξ2)mίm2βιp(x1)ψ(x2). (6.14b)

We define the quantity E by the split

E' = E-$$ψvψ. (6.14c)

We introduce new covariances (χΛ is the characteristic function for the region A)

C^=u-l+m2

DχA9 CΓ^C^+v, (6.15)

and the normalized Gaussian measure dμ(ψ) with covariance C, i.e.

" - r o ^ - V /A ϊ ^\

(6.16)

is a normalization factor.)
Putting everything together we obtain finally :

ZΛ(k,Ξ)= Σ^$dμ(ιp)eEeGe-Fie-F\ (6.17)
h

-ig, (6.18)

(6.19)

with

0c = «έCoJCι[Λ-*r1/2/]. (6.20)

If we set f̂ equal to hc then F2 is zero. For technical reasons we define g to be
slightly different from gc. For any h we define a 2-chain 7" on the block lattice with
coefficients in the group 2πβ~l/2Έ

T^T(h) = 2πβ-V2Σ^(p)p=Σδh(p)p-2π/<β-V2Ξ. (6.21)
P

In this formula, Ξ is to be read as "sum of oriented block plaquettes in the surface
Ξ". Summation is over all plaquettes p of the block lattice A'. δh(p) denotes the
discontinuity in h across p. For later use we introduce the abbreviation [compare
with (5.5)]

\\T\\2 = 4π2β^Σ^(p}2. (6.22)
p

The domain wall Γ is a union of blocks plaquettes p where yΓ(p)φO. In contrast with
the situation in [2], Σ has a boundary which is given by the Wilson loop C. (More
precisely, d'T=2πβ~1/2kC, df = boundary operator on the block lattice A\
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of block links in C.) We let IT be the union of unit lattice cubes in A*
whose distance from Σ is less than L'. L' is a new parameter. It will be chosen later
on, such that mDL is large and independent of β/a. Σ" is a neighborhood of the
domain wall Σ.

Now we will define g. We introduce the propagator

If ΞnSβφ0 the following definition is used instead

lihnCnnih^ — kB f) in Sn — BSn

We consider first the case when no domain wall comes near the boundary of A*,
i.e. dA* r\Σ~=0. In this case we set Sf' = ΣΛ. We let {Ra}ael be the set of connected
components of the complement of &* in the infinitely extended lattice (aZ)3, and
(Sβ}βej tne set °f tne connected components of IT. The union of unit cubes inside
Sβ having non-empty intersection with dSβ is denoted by BSβ. We choose a smooth
function χβ for every βe J such that

O g χ ^ r g l , χ^ = 0 outside Sβ, χβ=ionSβ — BSβ (6.23)

and all finite difference derivatives of χβ are uniformly bounded (by powers of mD

times constants that are independent of Σ'). For every set Sβ we define he

β to be
equal to h inside S ,̂ and constant on connected components of its complement in

We define g by

h in Ra

'*' m S'~BS' } if SnS/l = 0. (6.24)
yΛ)Λ in BSΛ J

if ΞnSβΦ0.
in jBS^J

(6.25)

If d/L*nIΓΦ0, ̂  is chosen to consist of IT, the complement of yd*, and the union
of unit lattice cubes in A* that have a distance less than L from the boundary dA*
of/t*. The other definitions are the same, except that C00 is replaced by C0 on the
set Sβ which contains dA*.

The usefulness of this definition comes from the properties of the quantity

F'2 = C^(g-gc). (6.26)

We note that CQ 1 and CQQ agree as differential operators in the interior of A. We
distinguish five possibilities for the arguments of F'2(x):

(i) XE ,Rα,

F'2 = u~l(h-kβ~~ll2f) = M~2(-A+M2}F_μ(Fμh-kβ~1/2jμ) = Q, (6.27)

because Vμh — kβ~ 1/2/μ has its support in IT [in deriving (6.27) we made use of the
decomposition (C.I3) of Appendix C].

(ii) X<E Sβ — BSβ, Ξr^Sβ — 0,

F'2=-u-lkβ-1/2f = Q, (6.28)
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because u~~lf has its support in a neighborhood of two lattice spacings a around
Ξ. This is a pleasant feature of the Pauli-Villars cutoff.

(iii) xεSβ-BSβ,ΞnSβ*0,

F'2 = 0, (6.29)

which follows by inspection of (6.25).
(iv) xeBSβ9ΞnSβ = 0,

F'2=-C-1χβCOQu^he

β + u~\h-kβ-^2f)=~C^χβC00u-ίhe

β (6.30)

by the same arguments as in case (i).
(v)

F'2=-Cϊ0

lχβC00u-\h*β-kβ-u2f). (6.31)

We see that F'2 is zero except on BSβ. This matches with the situation in [2]. It will
be used later on to prove smallness of F2.

C. The Cluster Expansion

The variables h and ψ in (6.17) describe the two kinds of excitations, the domain
walls and the spin waves, respectively. The spin waves are treated via a cluster
expansion [10], first introduced by Glimm, Jaffe, and Spencer. The setup of the
cluster expansion and the proof of its validity is rather involved. A detailed proof is
given in Appendix E together with an explanation of all notations. (The statement
of the s-dependence of E(X, s) in the text of [2] contains a misprint. The correct
definition is found in our Appendix E before Lemma E.I.) The cluster expansion
for (6.17) reads

4(*,3)= Σ ΣK(X>h)^$dμ(ψ}eE(χc)eG(χc}e-F^e-F2(χc\ (6.32)
h X

ds$ dμs(ψ)eE(X>s}κ(y, φ^-F^-F^) (6 33)

y

The validity of (6.32), (6.33) is proved in Appendix E (Proposition E.2).
These formulae are the same as (8.3), (8.4) in [2], except that in our case jtf = l.

The setX1 is chosen to be the set of unit lattice cubes touching the Wilson surface
Ξ. Another modification is due to the /-dependence of E, G, F19 F2 h specifies a
domain wall Σ. X is summed over subsets of A that are a union of unit cubes and
contain Xί and the connected component of Σ" in which the Wilson loop C is
located.

The sum over h in (6.32), (6.33) factorizes in a natural way

h = hx + hχc , Xc = A -X = complement of X in A , (6.34)

where hx and hχc are restricted to a form compatible with X and Xc respectively
(see [1]). For instance hx is constant in certain "collar" neighborhoods of width L
of connected components of Xc.

In this way we arrive at the final form of the expansion :

(6.35)
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where

)eE(X>s}κ(y,s)eG(X}e-F^e-Fι(X} (6.36a)
y Λ

and

Z'(Λ,X) = Σ^ί dμ(ψ}eE(χc}eG(χc}e-^(χc}e~^(χc} . (6.36b)

We notice that Z^^Z^/r^O, Ξ) for arbitrary Ξ, and so the expansion for ZΛ is
given by

ZA=^(X)Zf(Λ9X), (6.37)
x

where $C(X) = Jf (X) Γ *= 0 and Z'(A,X) is again given by Eq. (6.36b), X1 can now be
chosen as an arbitrary unit cube Δ^cΛ.

We have to show that Z'(Λ,X) as defined by Eq. (6.36b) does not depend on kf.
Only in this case the quantities Z'(A,X) in Eqs. (6.35), (6.37) are identical (except for
the change in the definition of XJ. Z'(A,X) can be considered as a partition
function of a system in A— X. (This system interacts with the heat bath if
Xcr\dΛή=0. In addition one has boundary conditions h = 0 on a collar neigh-
borhood of every connected component of X that meets dΛ.) To verify our claim
for E(XC) and G(XC) we must calculate

*l2f (6.38)

(6.39)

and show its independence of / in the region Xc.
In Xc we have always ΞnSβ = 0 and so definition (6.24) of g applies:

This is obviously independent of /.
From Eqs. (6.26)-(6.28) and (6.30) we see that F2(XC) is also independent of/. It

remains to show it for F1(XC). We return to the definition (6.18), use (6.38) and
(6.39) and remember that u~l f has its support in Xί CX. This proves our claim.

The combined expansion (6.35)-(6.37) should be compared with the simple
expansion stated in (5.10), (5.11) which is valid for small β/a. The domain walls are
living on the block lattice with spacing L (L is exponentially increasing in β/a) and
their action — F1 is more complicated than the simple expression (5.5), (5.6) for the
low temperature expansion. In the next section (Lemma 12) we state a lower
bound on F v which gives an upper bound on e~F l of the same form as K(T v] in
Eq.(5.11).

The expansions (6.35)-(6.37) are formulated for a finite lattice A. To compute
the string tension we need to consider an infinite lattice Λ = (a1)3. If we assume
that the thermodynamic limit A-+(a%)3 exists we can define the quantity

ρ(X)= lim Z'(Λ,X)/ZA. (6.40)
Λ-+(ai}3

From the definitions (6.15), (6.15;) we see that in the infinite volume limit
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If Xr\dΛ = tt, the only Λ-dependence of JΓ(X) and 3Γ(X) comes from the
covariance C = (C0"1+v)~1 which appears in κ(y,s) and in the measure dμs(ιp).
Therefore the limit Λ-*(aZ)3 for Jf βf), 3Γ(X) causes no problems : we only have to
replace C everywhere by (u~l H-m^ + v)"1, i.e. to drop the characteristic function
χΛ in Eq. (6.15). The A dependence of ρs(ξ1 . . . ξ s ) in G and E is controlled by
Proposition 3. We use the same notations Jf (AT), JΓβΓ) for the corresponding
quantities in the limit Λ-^(aZ)3. In the infinite volume limit we have the following
system of equations to determine ρ(x) and <Z^(ί7(C))>[7(1):

(6Ala}

(6.41b)
x

The summation over X is over all finite unions of unit cubes of the infinitely
extended unit lattice.

Similar equations hold for expectation values of other ^-invariant observ-
ables9 (compare [2]). From now on we will study the state of the infinite volume
Z-ferromagnet at low temperature that is defined by solution of these equations.
As we shall see in the next section, the Glimm-Jaffe-Spencer expansion (6.41a,b)
converges for the range of the expansion parameters in which we are interested
(Lemmas 15 and 16), and the Kirkwood-Salsburg equations (6.41b) are sufficient
to determine ρ(X) uniquely, by iteration (compare with Appendix 4 of [2]). Of
course, once we know ρ(X) we can calculate <Z/r(^(C))>[7(1) with the help of
Eq.(6.41a).

For future reference, the infinite volume propagators are given by

(6.42)

7. Convergence of the Glimm-Jaffe-Spencer Expansion

The proof of convergence of the expansion (6.41a,b) requires an estimate of the
quantity (c1 ^0, \X\ is the volume of X measured in units of m^1)

Σ |jf(Y)|e"l*l. (7.1)
X,X3Xι

The methods used by Brydges and Federbush [2] to obtain this upper bound,
namely the method of combinatoric factors (Sect. 9.1), the Holder inequality
(Sect. 9.2), the vacuum energy estimates (Sects. 9.6 and 9.7), the bounds on
derivatives of r(A) (Sect. 9.5), and the bounds on functional derivatives (Sect. 9.8
with j t f = ϊ ) can be adapted to our situation word by word, except for our use of
lattice Gaussian measures (see the remark at the beginning of Appendix D).

We state only the results and give the basic definitions. For proofs the reader is
referred to [2]. More details can be found in [32].

9 We are only interested in Z-invariant observables because others have no interpretation in gauge
theory language. Accordingly a state is defined as a positive linear functional on an algebra of
Z-invariant observables
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Lemma 11. We assume that the iterated Mayer expansion of Proposition 3 is valid,
i.e. β/a is sufficiently large and λ = M~lfhD is sufficiently small. For any δί9 δ2, c l 5

cΊ >0 there are c2, r such that for any subset W of A

(x 8)ι<ίeG™e-Fl™e-F*™\0, (7.2)

where P is a perimeter law behaved factor (see Eqs. (7.8) and (1.1 a) below). The
distance distpΓ1? W) (with respect to the norm (3.23)) is measured in units of m^1.

This lemma replaces Lemma 9.4 of [2]. We explain the notations in (7.2). κf is
the same as K except that any term in K which contains a quantity like S(a^ ...,at)
is multiplied by er0°e*L° ((5 = 1 — 2(51 +δ2). The formal operators L0 and 00 are
defined by

^L°:ί(fl1,...,flf)^^(fll βt) ^(fl1,...,α t), (7.3)

and
βΓ O o:<f(fl1,...,fl f)->e r ίί(α1,...,α t). (7.4)

The symbol | |0 means that one performs first all derivatives in K', this produces a
finite sum. The absolute value is taken inside this sum. The supremum in (7.2) is
over all parameters that occur in the combined Glimm-Jaffe-Spencer and iterated
Mayer expansion. These are :

n, (rrii), (y^), h, J ds, T, types of terms in K', ί, (A'i9 A"), ( a l , ..., at) . (7.5)

Their precise meaning is given in Sect. 9.1 of [2]. The definition of d is

(7.6)
i= 1

where dist(/d/

ί, A") is the distance between unit cubes zl , zl'/. It is calculated with the
norm (3.23) and is measured in units of m^1.

The proof of Lemma 11 is literally the same as the corresponding one in [2].
The only modification is due to the replacement of Lemma 9.2 of [2] by the
following

Lemma 12. There is a constant cF>0 such that

F^h)^cFm^W(h)\\2--PF. (7.7)

The meaning of T(h) and || T(h)\\ was defined in (6.21) and (6.22). The quantity PF is
independent of all parameters listed in (7.5) and it is "perimeter behaved" in the
sense that PF obeys an inequality of the form

(7.7a)

with some constant c. \C\ is the length of the Wilson loop.
The proof of Lemma 12 is given in the Appendix C. An explicit expression for

PF can be found there also. The factor P in (7.2) is related to PF by

P = ec/ίPF. (7.8)
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The Lemma 1 1 is a purely combinatorial one. It remains to be shown that the right
hand side of (7.2) is finite for a suitable choice of parameters <515 <52, c1? c\.

The first step in the extimate of the Gaussian integrals in (7.2) is the use of a
bound on the functional derivatives in κr which act on e°e~Fίe~F2. It is given by
Eqs. (9.823), (9.22), (9.23) of [2].

In a schematic notation one obtains an upper bound

1/2/)2]. (7.9)
i

The integrals in (7.9) are restricted to the region X. /((χ.))^0 are given by a
complicated expression, see Eq. (9.823) of [2]. The constant y comes from a bound
on derivatives of r(A) which is defined in Eq. (6.10). This bound is stated in
Lemma 9.7 of [2]. y has the form

(7.10)

where η can be made arbitrarily close to 1 — 4π~2 [compare the discussion after
Eq. (1.26) in the Introduction]. (7.9) is further estimated with the help of Holder's

4

inequality. We choose four numbers pί ...p4 with ]Γ p~ 1 = l j p^ = even integer,
i= 1

pt> 1, ρ3y<ίh2

D and obtain the equivalent of inequality (9.25) of [2]

!(7.9)| ̂  j 4((xM dμs Π M^ F1 ]PΓ ' [f dμse-**F*γ* " >e~^

- Γf dμ e^
p3ΎS(ψ + 9~h+/<β~ί/2f}2e2p3"lD^δ2lpί 1

• [f dμse
p4Eep*G2e-2p4^~δ2γ* \ (7.11)

The fluctuation part δ of ψ is defined by Eqs. (6.9), (6.11), (6.13).

Lemma 13. There are constants c, c' > 0, c' < 1 such that the product of the last four
factors on the right hand side of (7.11) is bounded by

p>ec\X\e~c'F^ (?>12)

where P' is a perimeter behaved factor (see Eq. (7.14) below) that does not depend on
the parameters listed under (7.5). The validity of (7.12) requires that λ is sufficiently
small, mDL is sufficiently small, and mDL' is sufficiently large.

Proof. The corresponding proof in [2] applies in our case, except for one
modification. It leads to the factor P in front of (7.12) and involves the following
estimate of JF2

2 which replaces the estimates of Sect. 9.4 in [2].

Lemma 14.

(7.13)

where c(L'} becomes arbitrarily small (exponentially) as mDL goes to infinity. PF is
the same quantity as in Lemma 12.

This lemma is proved in Appendix D.
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The factor on the right hand side of (7.11) involving F2 is estimated by the same
methods as in Sect. 9.4 of [2] together with our Lemma 14. The last factor but one
is bounded by Lemma 9.8 of [2] (together with our Lemma 14) and finally the last
factor can be estimated by use of Lemma 9.9 of [2].

For details of the rather lenthy proofs the reader is referred to [2].
Lemma 14 shows that P is of the form (with constant c>0):

P' = ecP^ (7.14)

P can be absorbed in the factor P of Lemma 11. Proof of Lemma 13
completed. Q

The first factor on the right hand side of (7.11) is estimated by using Wick's
theorem. As shown in [2, 10] it produces the bound (in units where mD = l)

^c'̂ 'ΓK !' (7.15)
j

where n is the number of x/s in the unit cube Δ .
Now we are ready to finish the proof of convergence of the Glimm-Jaffe-

Spencer expansion. We use (7.9), (7.11), (7.15), and Lemma 13. We end up with an
object like that of Eq. (9.824) of [2]. At this point the bound (1.18) of Proposition 3
comes in. We see that the combinatoric factors eδL°, er°° can be controlled if we
choose δ = l — δ in e^L° sufficiently small and μ in (1.18) sufficiently large. The
factor eδd is controlled by the exponential decay of the covariances C(s). This
exponential decay is assured by Lemma B.4 (Appendix B). Although (B.27) is not a
pointwise estimate on C(xy) it suffices in our situation. This can be seen by
inspection of (9.824) of [2]. (The tree structure of the cluster expansion is essential
here.)

We use our estimates above to bound the right hand side of (7.2). For details
the reader is again referred to [2].

In this way we arrive at the main lemma which is the complete transcription of
Lemma 9.12 of [2].

Lemma 15. Assume that all parameters in our theory like λ = M~lmD, L, /.', S1 are
fixed as above and let c1 be an arbitrary constant. Then there are constants c2

(independent of β) and P (which depends on β and is perimeter behaved) such that
for β/a sufficiently large:

Lemma 15 is sufficient to derive the lower bound on the surface tension α which is
stated in Theorem 1. This is shown in the next section.

The proof of our Theorem 4 (on the continuum limit) requires a generalization
of Lemma 15. This generalization deals with expectation values of observables like

w w

or ^2= Ylβ-1/2smβυ2Φ(Xj) (7.17)
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instead of the Wilson loop. In this case the connection with the work of Brydges
and Federbush [2] is even closer. The problems caused by the /-dependence of
Veff(Φ\k,Ξ) in (6.2) are absent here.

All the above arguments (and those of [2]) can be applied and combine to
prove the following

Lemma 16. Let the parameters (1, /., /.', δ^) be fixed as in Lemma 15, let jtf be an
observable of the form (7.17), and consider the quantity:

= Σ ΣSdsldμ^x^K&s^e-^e-^j*. (7.18)

For arbitrary c1 >0 there are constants c2, c3 (independent of β) such that for β/a
sufficiently large:

Σ \^(x)\eCίlx^cy^x^ e~(1-2δ^dίst(Xί'W}. (7.19)
x

X3Xι,XnWΦ6

Xl is a union of unit cubes that contains the support of #0. If we require that X
strictly contains X19 i.e., X— X1ή=09 we may replace c3 by c-c3 where c-»0 as
β/a-*ao.

By a standard "doubling the measure" argument [1, 2] and our Lemma 15 one
can also investigate truncated correlation functions such as

< UίCJ U(C2)yuw - < [/(C,))^^ U(C2»V(1}, (7.20)

where C1? C2 are closed loops separated by a large distance.
The exponential decay of (7.20) with respect to the distance of C1? C2

determines the glue-ball mass. It turns out that this glue-ball mass is asymptoti-
cally bounded from below by mD. The details are left to the reader10.

8. Proof of the Area Law

We will now apply our results to prove Theorem 1. For this purpose we need an
upper bound for the "ratio of partition functions" Q(X\ which is the solution of
(6.41b).

Lemma 17. Under the same conditions on parameters an in Lemma 16 there exists a
unique solution of the Kirkwood-Salsburg equations (6Alb) and there is a constant c
such that

\ρ(x)\^eclxl. (8.1)

Proof. The proof is the same as that for Lemma A.4.1 of [2] to which the reader is
referred. G

Proof of Theorem 1. With Lemma 17, and Eqs. (1.4), (6.1), and (6.41a) we obtain the
following bound

Γ | , (8.2)

10 We thank G. Miinster for a private communication concerning the glue-ball mass in the [/(I)
lattice gauge theory
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where c is the same constant as in Lemma 17. We return to inequality (7.11) and
extract from e~Fί a small fraction e~εFl, where ε is so small that the proof of
Lemma 15 remains unaffected if e~Fl in the right hand side of (7.11) is replaced by

β-d-ε)Fι g-εf i ^s I^QH estimated from above with the help of Lemma 12 and the
inequality (C.22) of Appendix C. Finally we apply Lemma 15 with W=XV

In this way we arrive at

<%(TO)>u(i)^~*2(Jμ^^^ (8.3)

The upper bound on (χk(U(C))yu(1} in (8.3) implies a lower bound on α as seen
from the definition (1.7) of α.

The perimeter law behaved factors in (8.3), namely p = e-*<2v» »cbjμ)9 p; e

ε^? do
not contribute to the string tension because

By construction we have

|X1| = 2mέ|Ξ| + 2mD|δΞ| + 8. (8.5)

For β/a sufficiently large the factor e

2c^m^\Δ\ which comes from the insertion of (8.5)
in (8.3) is controlled by the factor exp[ — εcF4π2k2m2

)Lβ~1\Ξ\'] at the cost of
lowering ε to ε'<ε.

In conclusion the surface tension obeys the inequality (k=l)

mDL'mDβ~l . (8.6)

(8.6) is just the inequality (1.9) of Theorem 1 if we remember the relation between
mD and mD mentioned below Eq. (6.7) \mDL is a small but β independent
quantity], Π

9. Continuum Limit

In this section we prove Theorem 4. We recall the dependence of the various length
scales on the lattice spacing a. In the continuum limit which we consider here, a
shrinks to zero and mD is held fixed.

Therefore

β = β(a) is the solution of a2m2

D = 2(β/a)e-^coβ/a , (9.1)

where c0 = avCb(Q)c* 0.2527 by Eq. (1.8b).
The Pauli-Villars cutoff is chosen as follows

= (β(a)/a)lli2mD. (9.2)

As a goes to zero, β(a)/a tends to infinity. The quantities mDL and mDL are
independent of β and a. After these replacements everything depends on a (and mD)
and we denote the expectation value by the symbol < >a .

We consider the observable

^a= Π ^)"1/2sin^)1/2Φ(^). (9.3)
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stf is a periodic function of Φ and therefore the expansion given in the previous
sections can be applied. In the limit a->0 we have /?(#)-» 0 (in units of physical
length m^1) and therefore, formally

lim.fi/, = Π Φ W Ξ a/o. (9 4)
a^o ί=ι

If VQ = ( — A+mp)~l is the propagator of the free field theory in the continuum
with mass mD and dμVQ(Φ) is the corresponding Gaussian measure, we have to
show that the following equality is true :

). (9.5)

To begin with we choose X1 to be the smallest union of unit lattice cubes which
contains the points x1? ...,xw. We decouple v0 between Xί and ~X± :

if dther x' yGZl °r X? ye ~Xl (9 6)
O otherwise. l ' ]

From supp^QCX^ and well-known properties of Gaussian measures one con-
cludes that

). (9.7)

Now we start to prove (9.5) with v-0 replaced by £0.
We consider the expansion for <^a>a presented in Sects. 6 and 7:

Wa= Σ
*,XD*ι

with

= Σ Σ^s^dμs(ψ)eE(X'My^)eG(X}e-Fί(X}e'F2(X}^a. (9.9)

We split the sum overZ inX=Xί and those X which strictly contain Xv From the
last statement of Lemma 16 we see that

lim X JfpOρpΓ) = 0. (9.10)
a-»o x.x^Xi

strictly

This implies

lim <^a>a - lim ̂ (X^X,} . (9.11)

So the continuum limit is governed by the leading term of the expansion (9.8). The
expansion for ρ(X) reads

+ X ^(X)ρ(X). (9.12)
X , X D X ι
strictly

is given by the same expression as Jf (JΓ), Eq. (9.9), except that «$/ = 1. By the
same arguments as above it follows that the second term on the right hand side of
(9.12) tends to zero when a-»0.
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Therefore

1 l irYΛ "/ΓίΎ \rtiV ^ (Q 1 1\1 — lim Jt (A \ J^IA ^ ) . \y,Lθ)
a-^0

We combine (9.11) and (9.13) to obtain

The definition (9.9) of J>Γ(X) and JΓQC) reduces for X=Xί to the formulae

h

and

h

We want to show that the contributions from h φO vanish as #—>(). To this end we
use the Schwartz inequality:

Λ ΐ O J i φ O

e-Fl [jdμ(ψ)β-2F2]1/2. (9.16)

By Lemma 9.5 of [2] we have

[_$dμ(ιp)e-2F^ll2^ec(LΊFi (9.17)

with c(Z/)->Ό as Z/-»oo [see also Appendix D].
From Lemma 12 (modified for the situation that there is no Wilson loop, i.e.

/r = 0) we get

F^cX/^Σlfliίp)!2- (9.18)
p

In our situation the quantity m^/.3/?"1 goes to infinity as a->0 (β"1 comes from
the fact that h is an integer multiple of 2πβ~1/2). Because foφO the sum over
plaquettes p (of the block lattice) is non-zero and therefore the product of the last
two factors in the right hand side of (9.16) vanishes in the limit a—»0. The first
factor is bounded uniformly in a by c^2*1 with an arbitrarily small constant c2 >0
and some constant cv

We use the bounds (9.22) and (9.23) below on E and G and the easy estimate

Kl2^ Π(Φ(X;)-/Z(X;))2. (9.19)

ί = l

Finally we end up with the equation

r , _ r fdμ(Φ)β£(Xl)eG(Xl)^lim <X >. - Inn J /; ,̂ . £(X . Gα /, 9.20
a^o^ a/a a^o §dμ(Φ}eE(Xί}eG(Xi}

provided the dominator has a non-zero limit.
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Lemma 18
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^X-^o and HmeE(X^eG(Xί) = 1 .
a->o a ° a-^o

Jzmiίs m (9.21) are understood as poίntwίse in Φ.

To prove this lemma we need the following

Lemma 19

(i) eE(Xl}^c(a) uniformly in Φ , c(s)->l as a->0.

(ii) £G ( X l )^exp^m2JΦ2, vv/ί/z ?/6(l-4π~2, 1).

(iii) lim eG(Xί} = 1 , lim e£(Xl) - 1 .v ' a-^o a^o

The 77 in (9.23) is the same as that of (7.10).

Proof of Lemma 19.

(i) |£(XΊ)|£ Σ ? ί dξ,... J dξM^,....^)!.

(9.21)
^ ;

(9.22)

(9.23)

(9.24)

(9.25)

The right hand side of (9.25) goes to zero as a-»0, β/a-^oo, M=(β/a)1/12mD-+αo.
This follows from Proposition 3 and the bound (1.18) given there. (9.22) is then

established. ^ f Σρι(w>0)[co8^'2Φ(x)-l]

(ϋ) ee= Π ϊ " (9.26)

By periodicity of G we may assume that /?1/2Φ(.x)e[ — π, +π]

denominator ̂  exp

So we get:

1

ί (9.27)

By the same techniques used in bounding derivatives of r(A) (Lemma 9.7 of [2])
one can show that

(9.28)

(9.27) and (9.28) imply (9.23) if we remember the relation between mD and mD stated
after Eq. (6.7).

(iii) The second part of (9.24) follows from the bound (9.25). For fixed Φ the
denominator in (9.26) approaches (as a-»0)

- J
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and we would have succeeded if we could show that

exp J Σρί(m,ty[_cosmβl/2Φ(x)-l+±m2βΦ(x)2']->l. (9.29)
xeΛΓi m

We expand the cosine in (9.29) in a Taylor series up to fourth order with remainder

ί

= ί
xeXi m

^ ί <Z>W4ΣM^O)|^2m4 [with 0^6(0,1)]. (9.30)
xeXί m ^

Now we can use Proposition 3 to show

with some constant c>l. (9.31)

The remaining factor of β in (9.30) ensures that (9.29) is indeed true as a->0. This
implies that limeG ( X l ) = l. The convergence is only pointwise in Φ.

d ~* 0

End of the proof of Lemma 19. Π
Lemma 18 follows from Lemma 19 and (9.4). Π
With these preparations we are able to carry out the limit in (9.20) and to prove

(9.5). We use the dominated convergence theorem. Its applicability is proved by
the Lemmata 18, 19 together with the bound:

K I ^ Π I Φ W I (9.32)
1=1

In addition we remember that M-^oo (in units of physical length m^ *) as a-»0.
It is well known that the lattice Gaussian measure (with covariance C in our

case) converges to the continuum Gaussian measure with the corresponding
covariance (see for instance [20, 21]). In our situation this covariance is just £0,
Eq. (9.6) (asM->oo). Therefore Eq. (9.5) is now proven and Theorem 4 is
established. Π

Appendix A. Relation Between the U(ί) Lattice Gauge Theory
and the Z-Ferromagnet

We give a short derivation of the duality transformation mentioned in the
introduction with special emphasis on the boundary conditions (the reader should
compare with [5]). Let A9A1 be finite cubic lattices such that

ACA^^Z)3. (A.1)

A, A1 should be closed cell complexes under the boundary operator d. The center
of A is located at the origin Oe(a2ζ)3. The dual lattices A*, A* are then closed under
the coboundary operator δ*. We define ΛJ, to be the minimal lattice which is
closed under d and contains A\\
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The 3-dimensional 17(1) lattice gauge theory embedded in a heat bath of
noncompact electrodynamics is given by the measure11

(A.2)
ΓΊ e*'(β(Λ).

peyΐ*

The product over b, p is over all links, plaquettes in /1*,Λ.*. θ(b) is integrated over
the range [ — π, +π] for feeΛ.* and over IR for ί>eΛ:f — ΛL*. θ( — b)= —θ(b) where
— b denotes the link b with opposite orientation. θ(p) is the oriented sum over all
θ(b) with be dp, consider modulo 2π if p lies inside A*.

The function J&?p(0) outside /I* is that of noncompact electrodynamics:

jS?p(θ)=-i)51θ
2, for pe/ι*-/l*. (A.3a)

[The parameter /^ is related to β by Eq. (A. 10) below.]
Inside of A*, =£?p(θ) has to be a periodic function with period 2π. The standard

Wilson action for lattice gauge theories would be

ΐ). (A.4)

Instead of this action we choose the Villain action

^p(θ) = ̂ (θ) = ln^e-*lil(θ-2πn}2, for peΛ*. (A.3b)
neTL

We are interested in the limit Λ\-*(aTD? while A* is held fixed. This limit causes no
problems because outside of A* the action is purely Gaussian [quadratic in θ(b),
see (A.3a)].

The duality transformation is obtained if we expand the Boltzmann factors e^p

(and the observable) in a Fourier series or Fourier integral respectively and then
integrate over the θ- variables. The Fourier decomposition of e^p reads

1^212^, for peΛ*-Λ*9 (A.5a)
IR

and

(2πβ,Γυ2eίl(p)θ(p}e-l(p}2/2β\ for peΛ*. (A.5b)

The integration over the θ- variables produces <5-functions δ(l(d*b)) for
and Kronecker δ's δ(/(3*b)) for 6eyl*. (Here it is crucial that /I* is closed under δ*,
i.e., if fce^l* then also 3*6 C^l*.) l(d*b) is the oriented sum over all l(p) with ped*b.

In particular we have

/(p) = 0, for pedA*. (A.6)

The constraint

/(δ*fc) = 0, for 66vi*-/L* (A. 7)

can be solved in the standard way [5] :

11 The reason for the unusual boundary conditions is that they can be dually transformed without
producing nonlocal constraints. In the Coulomb gas representation (see Sect. 2) they imply that the
monopoles are only in A ("insulating boundary conditions")



Confinement 591

there is a function n living on cubes of A\ (equivalently on sites of Aλ) which is
integer valued in A* and real valued in A% — Λ* and satisfies

l(p) = n(d*p) and n(c) = Q for cedA*. (A.8)

The final expression for the dually transformed measure is then given by

dv^(n) = Y\dn(x) Π e x p - (n(x)-n(y) (A.9)
xeΛi beΛι,b = (x,y) L ZP

where the product over x,b is over all sites, links in
There is a constraint on n, namely n(x) = 0 for x
n(x) is integrated over 1R for xeA1 — A (with the usual Lebesgue measure) and

summed over the integers Έ for xeA.
Therefore (A.9) is a Z-ferromagnet embedded in a heat bath described by a

massless free field theory. βί is related to the parameter β of Sect. 1 by

Appendix B. Decay Properties of the Lattice Yukawa
and Coulomb Potential

We consider the Yukawa potential of mass m > 0 on an infinitely extended lattice
(aZ)3 of lattice spacing a

vm(x-y) = (-A+m2Γ1(x,y). (B.I)

Its Fourier representation is

vm(x -y) = (2πΓ 3 J d3keik χϊm(k) , (B.2)

(B.3)
μ=l

We wish to estimate the quantity

WU=a3 Σ ^mW^ l | x i l=a3 Σ ^Weα||x|11, (B.4)

where α = 3-1/2A and || x l l^ΣlxJ.
μ

For the purpose of this paper it suffices to have estimates which are valid
when a-m is sufficiently small (for fixed m, α). Such estimates can be obtained by
verifying that the sum in Eq. (B.4) converges if

(B.5)

and converges to the corresponding expression in the continuum when a m->0.
Let us consider v m(x) for arguments x with xμ ̂  0 (all μ). vm((kμ + ία)) is free

from singularities in the interval (B.5). Therefore the path of the ^-integrations in
Eq. (B.2) can be shifted as shown in Fig. 4. The contributions from the dashed
pieces of the closed path shown in Fig. 4 cancel by periodicity.
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IOC

-*/Λ

Fig. 4. Shift of the contour of the /^-integrations

Therefore

V (l-
*μ=ι

-1

(B.6)

for .x^O (μ=l,2,3) and α in the interval (B.5). The expression [...] is bounded
below by

|[...]|^m2-6a-2(chαa-l) (B.7)

in the interval (B.5).
This produces the bound of the following lemma, with

By symmetry the bound generalizes to all xμ.

Lemma B.I. For α in the interval (B.5)

U> (Ύ}\ <. r p~a\\x\\ι fΐί Q\\^m\ λ}\ = Lae Vβ W

The bound (B.8) is not yet good enough for our purpose because ca can blow up
when a m->0. But it assures convergence of the x-summations in Eq. (B.4). vm(x) is
positive. From Eq. (B.4) it follows that

X"1. (B.9)
X μ ^ O

Because of Lemma (B.I) we may insert Eq. (B.6) [with α replaced by some α' > α, α'
in the interval (B.5)] and interchange the x-summations with the fc-integrations.
The x-summations can be done since they are geometric series.

As a result
3a3 ί d3k[n

-π J TT

•Πd
μ

The limit a m->0 of this integral exists and gives

,-3 J

-oo <£,,< +00

limsuplkmU^8(2π
a'm~>0

m2+

(B.10)
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v^ is the Yukawa potential in the continuum, and the second equality follows by
repeating the above calculations in the continuum.

Finally we can use the explicit expression for v-™

~w|x | with

Since \\x\\ ̂  j/3|x| it follows that

lim \
a m^ O

provided that ]/3 α<m. This is true in the interval (B.5).
Finally we choose some c> 1. If O^A <m then the condition (B.5) is fulfilled

for sufficiently small a-m. Therefore

for 0^>4<m, c>l, and a-m sufficiently small, depending on c andA/m.
The assertions of Lemma 5 for \\VI\\A (i=l,2) follow from this because

v1(x) = v-Ml(x)έϊ.Q and 0 ;^?>2(x) ̂ ^(x), with M, M1 as in the hypotheses of
Lemma 5.

In Sect. 7 and Appendix D we need estimates for the exponential decay of the
co variances C, C0 and the finite difference derivatives of C0.

We start with the following

Lemma B.2. (i) For arbitrary constants ct >0, 7/6(0, 1), <5>0 αnrf any integer j'^0
is α constant c2 depending on c1? ^,7, 5 SMC/Z ί/zαί

.
2 ' (B.14a)

/or l l x l l o o ^ C j m 1

where
Arsha m/2
- -

a m/2
c2 is independent of a, m.

(ii) For any integer j^O f/iere is a constant c depending on j such that

(B.14b)

c is independent of the lattice spacing a.

Proof. Because of the lattice symmetry we may assume that U x U ^ = |x1 |=x1 >0.
(i) We rescale the integration variables kμ = mpμ

\ 3 -1

θm ~ μ dm

The finite difference derivatives Vμ act on (B.I6) in the following way
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We have 7μι ... ̂ .^FΓ^2^"3, with n1+n2 + n3=j. The p1 -integration can be
done with the help of the Cauchy formula:

+ π/am

-π/am

.a-«im-»i(e-2Arshi*mM(p)_ jyn ^ (B.I 8)

where
Γ 3 11/2

M(p)= \l + 4a-2m~2' £ sin2^pμam . (B.19)
L μ=2 J

Equations (B.16)-(B.18) produce an integral representation of 7μί ... Vμ.v m(x). We
estimate it using the following inequalities :

\eip»*»m\ ^ 1 , (B.20a)

a^m-V^-ll^lpJ, for μ = 2,3, (B.20b)
and

a~ 1m" i|β-2ArshiamM(P )_ j| ̂ 2^- ιm~ i Arsh^mM(p)^M(p) . (B.20c)

In addition we use M(p)^l and m%1 ̂ cl and obtain finally

l^μι ... ^m(x)l^(2π)-3m^'+1π J dp2dp3e-ηmXί2a~ίm~1Arsh^am .

~^^^^. e-<ι(l -^β^m-iArshiflm^^

(B.21)

We get an estimate on M(p) if we remember that

-2

This implies

^s2, se[-π/2, +π/2]. (B.22)

Mu(p)2 = 1 + ̂  (Pi + Pi) ̂  MW2 ̂ ;

for - — ̂ p,<— (μ = 2,3). (B.23)

In the same region we have

4 Γ1 / 2 . 4 11/2

2a 1m x IH—τ(p? + P?) -Arshiam
π2 2 3 2

i-c, (B.24)

provided a-m^δ. We insert (B.23) and (B.24) in (B.21). In this way we arrive at

δπ2)-1 J dp2dp3e'Cί(i'^MM'Mu(pΓ1'MQ(p)i

9

(B.25)
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where α is given by the expression (B.14b), viz.

ot = ηm'2a~1m~1 Arsh^ara. (B.26)

(B.25) is true for \\x\\ ̂ ^c^"1 and a-m^δ. We compare with (B.14a) and see that
part (i) of our lemma is proved. ,

(ii) Now we rescale the integration variables kμ = — pμ. Then we can apply the
xι

same techniques as above. The details are left to the reader.
End of the proof of Lemma B.2. Π
The propagator C0 on the infinitely extended lattice A = (aΈ)3 can be written in

the form
i} (B.27)

with r-»l, m'D^»mD and M'->M in the limit m$ 1M-+αo.
It follows that

(B.28)
and

... rμvM,(xy)\. (B.29)

We apply Lemma B.2 to the right hand side of (B.28) and (B.29).
This proves our

Lemma B.3. (i) For arbitrary constants c1>0, 776 (0,1), <5>0 and any integer j^Q
there is a constant c2 depending on c1? η, j9 δ (but independent of a, m'D, M' ) such that

for || x — y\\^ ^c^m^ 1 and a-M'^δ,

where u = ηm'D 2a 1m'D
 l

(ii) For arbitrary constants c1 > 0, ?ye(0, 1), δ > 0 there is a constant c2 depending
in cx, η, δ (but independent of a, m'D) such that

,

far l l x - y l l o o ^ C i m ^ 1 and a m'D^δ,

where α = ηm'D 2a ~ 1m^~ 1

An estimate similar to (B.31) is needed in Sect. 7 for the propagator C(xy)
defined by Eq. (6.15).

=tcί1 + v3"1' (R32)

v(xίx2) = ΣΣ Q2(mι*ι> m2x2)mίm2β . (B.33)
mi mi

To obtain such an estimate, one writes down a convergent Neumann series in
which v is treated as the perturbation

C(xy) = C0(x3>)- ί ί C0(xxί)v(x1x2)CQ(x2y)+- .... (B.34)
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Absolute convergence of this series will follow from the bounds below.
We introduce for an arbitrary subset aί of the lattice

-j;||. (B.35)
yea i

This is in agreement with the definition (1.11) in the main text. Now we can
estimate

J
}>eαι y

co(xy)e^->"+ J

y

(B.36)

The summations can be performed in the order y, x2n, ...5x2, x1 (n = number of
factors v).

Both C0 and v are translation invariant, and the sums are extended over the
infinite lattice (aZ)3. The sums of C0 are estimated with the help of (B.28) and
(B.I 3). The sums of v are estimated with the help of inequality (1.18) of
Proposition 3.

As a result one obtains

Lemma B.4. Under the hypotheses of Proposition 3

J \C(xy)\£cAe-AL(x aί)

9 (B.37)
yeαi

for A < m'D and sufficiently small lattice spacing a.

The constant CA < oo is independent of a (in units where mD = 1), and m'D-+mD

as λ = M~ίmD-+Q.

Appendix C. Lower Bound on Fl (Lemma 12)

Lemma 12 asserts a lower bound on Fί by an expression which involves only
nearest neighbor interactions in the h variables. Due to the presence of / in the
definition of F15 the proof of Lemma 12 is slightly different from that in [1,2].

We start with the obvious equality

L-6 Σ I ί 'm
p < Ω, Ω'y xeΩ yeΩ'

(C.I)
Summation over p is over all plaquettes of the block lattice.

δ(h-kβ~ί/2f)(p) is the discontinuity in h-kβ~1/2f across p.
Ω, Ω1 are cubes of the block lattice and the sum over <Ω, Ω'> is over all nearest

neighbors.

+ 5 \h(y)-kβ-ί'2f(y)-g(y)\2

(C.2)
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For any xeΩ, yeΩ' we consider the path from x to y which consists of segments
parallel to the coordinate axes. It has a maximal length of 4L So we get by use of
the Schwartz inequality

I0M-000I2 = \Vg ds

Furthermore we have:

ί
xeΩ yeΩ' x

We collect our estimates :

right hand side of (C.1)^/."6 5I32 £ $\h-kβ~ll2f-g\2

ββ' Ω

(C.3)

(C.4)

< Ω,

The right hand side of (C.5) is less than

We use the fact that

and compare with the definition (6.18) of Fl to get

where c = max{60, 720m2/.2}.
Finally we conclude from (C.I), (C.8):

with

(C.5)

(C.6)

(C.I)

(C.8)

(C.9)

The expansion is such that mDL <ζ 1. So the actual value of c should be ̂ .
The above arguments remain true if the integrals and the sum over <Ω, Ω'> and

block plaquettes p are restricted to X9 a union of unit lattice cubes.
We are going to bound the first term on the right hand side of (C.9) from below.

To this end we rewrite it in the following form :

= Σ \(h-/<β-1/2f)(Ω)-(h-kβ-^f)(Ω')\2

< Ω, Ω'y

(CIO)

Summation over <Ω, Ω'y «xj» is over all nearest neighbors of cubes of the blocks
lattice (original lattice). The factor a2L~2 compensates for multiple counting.
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The right hand side of (C.10) is

For further estimation of (C.ll) it is useful to consider the quantity

We decompose

A straightforward calculation using (1.12) and (1.13) verifies that Rμ is given by the
expression

Rμ^CbVtP-σ-Λ (C.14)

The term Rμ is associated with the perimeter and it satisfies

This follows trivially from (C.14).
With help of (C.15) we see that

The calculation of J Rμjμ is easy

K/,= -(Λ^cΛ) (c
Now we consider the quantity (C.ll) and relate it to (C.12) by /=/— δf

We use (C.16), (C.I 7) and arrive at:

A short computation shows that [for εe(0, 1)]

είlF^-*Γ1/2/^
(C.20)

uniformly in h.
We collect all our estimates and get the result :

F! ̂ c(l -ε)m^a f \Vμh-kβ~ 1/2y/ - cm2

DLak2β~ \Jμ^CbJμ)

-\k2β-imϊ\\δf\*-(z-i-l)cmiLak2^ (C.21)

In the first term in (C.21) the J can be converted back into a sum of discontinuities
across plaquettes on the block lattice. Using the definition (1.6) ofjμ one finds that
this term is equal to c(l-ε)m£/.3||7"(fc)||25 ||7 (Λ)|| defined in Eq. (6.21) of Sect. 6,
(Jμ,^cb^μ) ιs bounded by const\C\Λn(\C\/a) as is well known. (This quantity
determines the expectation value of the Wilson loop operator in noncompact free
electrodynamics.)
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To establish Lemma 12 it only remains to verify that J|F<5/|2 and J|(5/|2 are
perimeter behaved. By definition

L-3 J U(χ)-f(y)']=t--3' ί 5 rf(y'), (c.2ia)

where the inner j is over a path in the interior of Ω from y to x. We insert
Eq. (C.13)./ has its support on faces of cubes Ω and therefore contributes nothing
to the path integral. In conclusion

<5/(x) = /.-3 j 5 Rtf). (C21b)
yeΩax y'=}>

#f is the component of Kμ tangential to the path from j; to x. Expression (C.14) for
Rμ can now be inserted. From the decay properties of derivatives of the Coulomb
potential (see Appendix B) and the fact that Jτ is supported on the Wilson loop C,
it follows now that J|FS/|2 is perimeter behaved. Applying the same methods as in
the derivation of (C.3), (C.4) one concludes from (C.21b)

1 ί R2

μ(y). (C.21c)
yeΩ ax-

Therefore

$\δf\2^9L2$R2

μ=9L2(Jμ^CbJμ), (C.21d)

where the last equality follows from the expression (C.14) for Rμ. This completes
the proof of Lemma 12. Π

Given that Ξ is the minimal surface whose boundary is the Wilson loop C, it is
obvious from the definition (6.21) of T(h) that

'2β~lL~2\Ξ\, (C.22)

|Ξ = area of the surface Ξ.

Appendix D. F2 is Small (Lemma 14)

This appendix replaces Sect. 9.4 of [2]. There are two modifications as against the
situation in [2]. First our shift g is different and second we work on the (infinitely
extended) lattice with spacing a whereas Brydges and Federbush deal with a
continuum theory. Therefore we are not allowed to use the Leibniz rule if we want
to evaluate the finite difference derivative of a product. Instead we have the
following rule

P.I)

The last term on the right hand side of (D.I) can be estimated if we recognize that

\\arμ\\2£2 or \\aVμ\\^2. (D.2)

In Sect. 6 we have shown that F'2(x) vanishes except for xeBSβ. We start to

estimate J F2

/2 and finally we sum over all connected components Sβ of Σ . With
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the notations of Sect. 6 we define

he

βtμ=&

This definition is such that

if Ξ(

7 fc \-Mfi ^ 305^ = 0,
-M ^ \_A(heβ_kβ-υ2f} if Ξn^φ0.

(D.3)

(D.4)

[where we have used the decomposition (C.I 3), (C.14)], and therefore the cases (iv)
and (v), Eq. (6.30), (6.31), can be treated on an equal footing

C0

 1 is a lattice differential operator:

(D.5)

(D.6)

Let ηβ(x) be the characteristic function for the support ofhe

β μ(x) (μ= 1,2,3) and
define an operator K by its kernel

kμv(xz) = I ηιs(X)ηβ(Z) Co1!, 1--5- F_μC0

'

Then we have

(D.7)

(D.8)

We estimate the norm of the operator K

^ sup X J J ηβ(x)ηβ(z)
X'V v z yeBSβ

(D.9)

We notice that on the right hand side of (D.9) ||y — x\\ ̂ \L' and ||y — z|| ^L'. This
implies

/ / > \ \ i
3* D | |y-*ll s (D.10)

provided that inD

 1M is sufficiently large. c2 is a constant independent of a, mD, M,
andjS.

To derive (D.10) we make repeated use of (D.I), (D.2), remember the defining
properties of χβ, and then apply Lemma B.3 of Appendix B with j^ 5. In addition
we need the bound \\y — x l l^^3~ 1 / 2 | | j ; — x||.
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We evaluate the right hand side of (D.9) in two steps [using (D.10)]

-1 I-t A \ \ ( λ ^9 -—mDL—
x "/ ( I I I/ / I I -I ) rr I <^ r fίVVI P 3 ••> I I ) I I Io Xβ\L ΛΛ2 j -v^ol\y z ) =^^mDe , \u n)

with a constant c3. The factor a is due to the fact that the support of he

β μ is a two
dimensional surface (with thickness one lattice spacing a).

(ϋ) SUP f ^ W l C o ^ l l - T
*>μ yeBS/j \ V /U

with a constant c4.
Combining (D.ll) and (D.I2) we obtain

Now we are able to estimate (D.8)

From Lemma 12 and (C.21) of Appendix C we conclude

Σ Σίl^)ίlWI2^^1m^2Z.-1a-1(ίΓ

1+^)
Sβ μ x

Summation over Sβ is over all connected components of ΣΛ.
Finally we have

(D.I 6) is the assertion of Lemma 14.

Appendix E. The Setup of the Cluster Expansion

The cluster expansion to be discussed here is a well-known technique used in
constructive quantum field theory [1, 2, 10]. We give the basic definitions and a
proof of its validity. For simplicity we restrict ourselves to the situation we are
actually interested in, namely the expansion for the quantity

^dμ(ψ)eEeGe~Fίe~F2 (E.I)

for fixed value of h. The domain wall Σ is fixed by h.
To begin with, we define a covering Ϋ of Σ. Its elements are the sets SβnΛ

which contain the connected pieces of ΣΛ, and the unit cubes A C A — [J Sβ. For any
sequence y = (Y1 ... Yn) with mutually disjoint Yi (each Yi is a union of elements out
of Ϋ) and n — 1 real variables s1 ...sn_1e[0, 1] we define a co variance C(s) by its
kernel

C(xy\s) = p(Xy\s)C(xy)9 (E.2)

with

Σ sί sί + 1 - Sj - ! [&(xk/3>) + x&hjW] + Σ %i
< j ^ n + l l g ί ^ ϊ i + 1

(b.3)
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where χ. is the characteristic function of Yt (i = l, ...,n), χn+1 is the characteristic
n

function of ~ (J Y. and sw is set to zero.
i= 1

In (E.2) C(xy) is the kernel of the covariance C of the Gaussian measure dμ(ψ).
C(s) is a convex combination of covariances of the form χCχ where χ is a
characteristic function [1-3]. The Gaussian measure with covariance C(s) is
denoted by dμs(φ). If all variables s1 ->sn__1 vanish the interactions between
different regions Yt are switched off.

We set Q = eGe~Fie~p2 and notice that Q factors across unit cubes. For any
union of unit cubes X C A this factorization leads to a natural splitting

, xc = Λ-X. (E.4)

Given any sequence y = (Yί »Yn) and variables sί ...sn_1 we have to define E(X)

and E(X, s) x= (j Yi
ι= 1

following four forms:

. For this purpose we write £ as a sum of terms of the

d ξ 1 . . . $ d ξ t ρ t ( ξ l . . . ξ t ) ε k ( ξ 1 } . . . ε k ( ξ t ) , for ί^3, (E.5a)
fli at

tSdξΛdξ^ξ&mMω, (E.sb)
αi «2

H dξt f d^ρ^^A^i)*^1'2^^). (E 5c)
αi

ί dξ^ξ^im^'^x^ξ,). (E.5d)

Each αf is a unit lattice cube. E(X) is the sum of all terms (E.5a-d) where at CX for
all i.

E(X,s) is given by the same sum as E(X) except that each term (E.5a-d) is

multiplied by J~]s . Here ieliϊl^ί ^n—l and for some α, ft 1 rgα, β^ί, ααC Yj (for

some j > i) and α^ C (J Y^

Now we are ready to state the basic

Lemma E.I.

J dμ(ψ)eEQ = Σ L^(X) f dμ(ιp)eE(χc)Q(Xc) + Λn(X)] , (E.6)
x

w/iβrβ

(E.7)

1
: j ^5M^Sn Σ ί ds J dμ'ssJcψ)eE( Λ'SSn)κ(y, s)Q. (E.ϊ

0 " y [0,l]»-ι
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The notations in (E.6)-(E.8) are as follows.
(i) dμ'SSn(ψ) is the Gaussian measure with the covariance given by (E.2), (E.3)

except that sne[0,1] instead of being set to zero,
(ii) ds = dsι...dsn_l.
(iii) The summation over X is over all sets of the form [J Yh m^n, with

mutually disjoint 7^'s. Each Yi (z'^2) is a union of elements in 7and 71 =X1. XίcΛ
is a fixed union of unit cubes which is chosen before one starts with the cluster
expansion.

(iv) In (E.7) y is summed over all sequences (71 ...Yn) such thatX = [J Y.. Here
/ = i

n is arbitrary and not necessarily the same as in Rn(X). Summation over y in (E.8) is
n

over all sequences (71 ... 7J such that Z= (J 7f. If there is no such sequence then
i = l

(v) E(Λ,ssn) is defined as above with sequence (71?..., Yn,X
c) and s-variables

c S Sύ l j -5 ύn- i ? ύ^^•

(vi) It remains to define κ(y, s):

n- 1

κ(y,s)= Y\ κ(i), (E.9)

where

δψ(x)

διp(y) δψ(y)

The superscripts (i) in (E.10) have the following meaning. We expand the product
of the two square brackets and obtain a sum of five terms where the first one does
not include a functional derivative or a propagator C(s). We insert the decom-
position of E(X,s) given by (E.5a-d) and below. Then we drop all terms in this
decomposition (with support in &CΛ, (9 is a union of α/s) which violate the
following condition:

Yi+ί and Yi+ί is the smallest union of sets

from 7 that contains 0- (J Y.. (E.ll)
j^i

In particular for the term without E(X, s) in (E.10) this means that Yί+1 has to
be an element of 7:7 ί+1e7 By construction τc(z') depends only on sί ...s f and is
independent of sί+1 ... sn.

Proof. Lemma E.I is proved by induction in n [compare with [1]).
(i) n=l: Equation (E.6) reads

j dμ(ιp)eEQ = J dμ(ψ)eE^Q(X1)' J dμ(ψ)eE^Q(X\)
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This equation is indeed true because dμ'Sl = 1=dμ(ιp\ dμ'Sί = 0 factors between X1

and X\, and E(Λ9 ^ = 1) = E, E(Λ, sί=0) = E(X1) + E(X\\
(ii) n^>n+ 1 : Our strategy is to perform the derivative dSn in Rn(X\ Eq. (E.8).

κ(y, s) does not depend on sn and so the Leibniz rule gives

δsn J dμ'SSne
E( A> "»>( - )

By partial integration we see that

) (R14)

We insert (E.14) in (E.I 3) and obtain

where

κ(n) = dSrE(A, ssn) + - j j 5SnC(xy|s5π) διp(x)

(E16)

Next we use the fundamental theorem of calculus

, = 0

to introduce a new s-variable sπ+1. The set l^ + 1 C^i— (J 1̂  (appearing in the
ί = l

definition of £(/L,5sn5n+1) and dμ'SSnSn + l) has to be chosen conveniently. The choice
depends on the term we get after expanding the product of the two brackets in
(E.16).

This expansion produces a representation oΐκ(n) as a sum of five terms. For the
term without any functional derivative we let Yn+ί be an arbitrary union of

~ n

elements in Ϋ outside of (J Y . We collect all terms in E(Λ,ssn) under the
i = l

decomposition (E.5) which satisfy the condition (E.ll) for i = n. Obviously

dSnE(Λ,ssn)= Σ d^ U Yt>ssn} (E.18)
i = l

For the other four terms the Yn+l are generated by expanding the integrals over x
and y in a sum of integrals over finite regions. The factor \ in (E.I 6) cancels if we
exploit the symmetry of the integrand in x and y. The region of integration outside
A gives no contribution because the functional derivatives act on functions which
are supported in A.
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We illustrate the mechanism for the second term

where
Yn+1εY, Yn+ίn[JY^0.

i^n

In conclusion we have shown that

κ(«)= Σ φ), (E.20)
y n +ι

where φ) is given by (E.10) for ί = n. By construction we have

(1) dμ'SSnS +ί r s n + 1 = 0 factors between "Q 1J and ~"(j Y,, (E.21a)
i = 1 i = 1

(2) £(4sVπ+ι)L + 1 = o = £ j ̂ . + - (E 21b)
\ i = l / \ ί = l /

/ n + 1 \ / n+ί \

(3) Q = Q U ^ δU- U ^ (E.21c)
\ i = l / \ i=l /

We insert (E.20) and (E.I 7) in Eq. (E.I 5) which is used to rewrite formula (E.8) for
Rn(X). The second term of (E.I 7) becomes Rn+ί(X) and the first term is just

tf(X)ldμ(φ)eE(χc}Q(Xc} for X= (j 7 . (E.22)
n+l

U
i= 1

This completes the induction step and the proof of Lemma E.I. Π
We notice that Rn(X) = 0 if n is sufficiently large (depending on A). This proves

the final form of the cluster expansion given in

Proposition E.2.

f dμ(ψ)eEQ = Σ W) ί dμ(ιp)eE^Q(Xc), (E.23)
x

with

s}κ(y,s)Q(X), (E.24)

and κ(y,s) as given in (E.9), (E.10). [Q = eGe~Fίe~F\~]
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