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Abstract. We study the Cauchy problem for minimally coupled classical
Yang-Mills and scalar fields in n + 1 dimensional space-time in the temporal
gauge. We prove the existence and uniqueness of solutions for small time inter-
vals and for any n. We then develop a general theory of solutions in local spaces
and extend the previous local (in time) results to this more general setting. In
space-time dimensions two and three, we prove the existence of global (in
time) solutions by the method of a priori estimates, both in global and local
spaces. In space-time dimension four, our estimates yield only partial results
on the global existence problem.

1. Introduction

In spite of the large amount of work which has been devoted in the last years to the
Yang—Mills equations, a satisfactory understanding of the properties of their
solutions is still lacking. At the classical level most of the effort has gone into the
Euclidean version of the theory, partly because of the richness of its geometrical
structure, and partly because of its possible relevance to the quantized theory.
On the other hand the theory in Minkowski space-time poses an interesting and
non-trivial problem from the point of view of non-linear partial differential equa-
tions, and may appear as the classical limit of the quantized theory. The equations
in Minkowski space-time have been studied most notably by Segal [11] who has
considered the Cauchy problem for the pure Yang-Mills theory in four dimen-
sional space-time, in the so-called temporal gauge A° =0, giving a proof of the
existence and uniqueness of solutions of the Cauchy problem for small time
intervals. More recently, for coupled Yang—Mills and scalar fields in four dimen-
sions, Glassey and Strauss have studied the time decay of solutions [4], [5] and
have obtained a class of global solutions of a special type suggested by the known
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explicit static solutions [6]. A global existence proof for the Cauchy problem with
general initial data in four dimensional space-time would be of great interest.!

In this and in a subsequent paper we take up the Cauchy problem for minimally
coupled Yang-Mills and scalar fields in n + 1 dimensional space-time and extend
the previous results in two directions. One concerns the local problem and is
inspired by two remarks. First the Yang—Mills equations describe propagation
at finite speed; it is therefore unnatural to impose restrictions on the behaviour
at infinity of the initial data and of the solutions. A more natural setting consists
of working in local spaces as was done in [9]. The local theory developed in [9]
however was restricted to uniformly locally bounded initial data and solutions. In
the present paper we extend the local theory to remove this restriction and apply
it to the equations under consideration. This extended local theory also provides
a convenient starting point to study the “boost” problem considered in a more
general setting by Christodoulou [2]. The second remark that leads us to develop
a theory in local spaces is that the Yang—Mills equations carry with them a non-
trivial elliptic constraint which may, and in general will, produce long range
effects, especially in low dimensions. These long range effects may impose severe
and unnecessary restrictions on the initial data and on the solutions if one insists
on working in global spaces.

The second direction of our investigation is concerned with the global (in
time) existence problem. In this paper we prove the existence of global solutions for
coupled Yang-Mills and scalar fields in the temporal gauge in two and three space-
time dimensions, and obtain some partial results in space-time dimension four.
In the following paper we prove the existence of global solutions in two dimensional
space-time both for the coupled (possibly massive) Yang-Mills and scalar fields
in the Lorentz gauge and for a number of related models, namely for the so-called
O(N), CP(N), and GC(N, p) models. All these global (in time) existence results
hold both for the theory in global and in local spaces. The proof of the existence
of global results uses the standard method of a priori estimates in the form recently
developed by Moncrief [7] to treat the case of scalar electrodynamics in three
space-time dimensions. An important role in performing the estimates is played by
the Sobolev inequalities with covariant derivatives.

The paper is organized as follows. In Sect. 2 we introduce the basic notation,
write the equations, choose the dynamical variables and treat the local problem in
global spaces for arbitrary space-time dimension. In particular we prove the
existence, uniqueness and regularity of the solutions. This section is a straight-
forward extension of Segal’s work [10], [11]. In Sect. 3 we develop at a semi-
abstract level a general theory of local (in time) existence and uniqueness in local
spaces. In Sect. 4 we apply this theory to the equations for coupled Yang-Mills and
scalar fields in the temporal gauge, for arbitrary space-time dimension. In Sect. 5
we study the problem of global existence: we derive the relevant estimates and
use them to prove the existence of global solutions both in global and local spaces
for space-time dimensions two and three. For space time dimension four our

1 After this paper was completed, we were informed by V. Moncrief that he and D. Eardley have
succeeded in obtaining such a proof [12]
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estimates prove that the solutions are either global or fairly irregular. The co-
variant Sobolev inequalities are proved in the Appendix.

The results of this paper and part of those of the subsequent paper were an-
nounced in [3].

2. The Cauchy Problem in Global Spaces for Small Time Intervals

In this section we begin our study of the initial value problem for the classical
Yang-Mills field minimally coupled to a scalar field, in the temporal gauge
A, =0. We first introduce some notation. The Yang-Mills potential A (z, x) is
a function from n + 1 dimensional space time to the Lie algebra ¢ of a compact
Lie group G. The corresponding field is F,, =0,4,—0,4, +¢[A,, A,], where
[] denotes the commutator in 4. We assume the existence of a non-degenerate
positive definite bilinear form in %, denoted by <...), invariant under the ad-
joint representation of the group. If G is semisimple one can take the Killing form;
if G is commutative one can take any positive definite form on 4. The scalar field
o(t, x) belongs to a unitary representation of G in a finite dimensional complex
vector space &. We also denote by <.,.» the invariant scalar product in & and
we use the same notation for an element of 4 and for its representative in #. We
shall write (B, B) =|BJ*. We use the same notation D, for the covariant deri-
vative in &, where D, =0, + ¢[4,,.] and in #, where D, =0, + eA,. We use the
metric g, with g, =1,g,= —1,9,,=0for v+ p.

The field equations are the variational equations associated with the
Lagrangian density

L = —(F,  F*'> + (Db, D"d) — V($]?), 2.1)

where V is a real 4" function defined in R* with ¥(0) = 0. The equations are
K*=D,F*+ J'=0, (2.2)
M =D, D ¢+ ¢V'(|¢[*) =0, 2.3)

where J“e¥ is defined by (J* C) = 2eRe(D*¢p,C¢) for all Ce¥, and V' is the
derivative of V. As is well known, in order to convert these equations into an evo-
lution equation for a suitable set of dynamical variables, ones needs to add a gauge
condition on the potentials. Here we choose the temporal gauge A, = 0. It can be
shown that any suitably regular potential A,k can be transformed into a new
potential with 4, =0 by a gauge transformation [11]. In this gauge we choose
as dynamical variables the quantities A = {A4,, 1 <j<n}, F = {Fo;» 1 Sj=nj,
F={ij, 1<j<k<=n}, ¢, y,and y = {l//j, 1<j<n} (, has to be thought of as
D, ). The variational equations can be conveniently rewritten as the following
first-order system of equations of motion

A 0 1 0\/4 0
S[Fol={ 0 0 R F, |+ —e[4~F,1-7 ) (49
F/ \0o —-Rt 0/\F e[A, F ]+ e[F,, A]
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b 0 1 0\ /¢ 0
o\ ¥y |=| O 0 R lﬁo + |- eAklﬁk —oV'|, 2.5
v 0 —R* 0/ \y e(Ay, + Fy¢)
supplemented by the constraints
F,=0,A,— 0,A;+ e[A, A4,], 2.6)
K,=0, 2.7)
Y, =D. (2.8)
Here J, and J={J,,1 <j =n} are supposed to be expressed in terms of ¢, ¥,
and ¥ ;; R, is the n x n(n — 1)/2 matrix operator with entries (R ) = — 670" +
60’ and R is the 1 x n matrix operator with entries (R)) = — &’. The system of
equations (2.4) and (2.5) can be written more compactly as
Oou(t) = Tu(t) + f(u(t)), 2.9)

where

u, A 10)
u= ,qu(FO),u¢=(tpO) , (2.10)
u, F v

()
and TA,T¢,fA, 0 T¢> ®

and f, can be read directly from (2.4) and (2.5). The fields u , and u » take values in
the finite dimensional vector spaces ¥, =4 @ R*"*""~ Y2 and ¥" = F @ C**"
respectively, so that u takes values in "= %", @7¥" . The Cauchy problem for the
equation (2.9) can be transformed into the following integral equation

u(t) = Uty + jdrU(t —1)f (u(1)), (2.11)
0

where u,, is the initial condition,

U,t) 0
U(t)=<0A U¢(t)>,

1 o'sinw (1.~coswlt)w12RA
U,6)=|0 cosw,t (sinw, t)o 'R, (2.12)
0—Rw;'sinw,t cos(R*R,)"*t

with w, = (R (R*)/? or equivalently (w?)/ = — 9,0/ — 46/, and

1 o 'sinwt (1 —coswt)w™ %R
U,t)=[0 cosawt (sin wt)w~ 'R
0— R*w 'sinwt cos(R*R)Y2t

with w = (RR*)Y/2 = (— A)'/2,
In this section we look for solutions u(t) of (2.11) as continuous functions of ¢
with values in the space #*= #*(R") (where k is a non-negative integer) of

(2.13)
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functions from R" to ¥~ for which

Jul? =2 | IE;kIHC’"‘uaHli <.

Here « is a multiindex and ¢ labels the components of u corresponding to the
decomposition (2.10) and, possibly, for each term in this decomposition, to its
various components in an orthonormal basis of R", so that, for each o, u_ takes
its values in & or #. Finally ||-||, denotes the norm in L%R"). The space #*(R") is a
direct sum of usual Sobolev spaces.

In order to prove the existence of solutions of (2.11) we need the following
properties of U(t).

Lemma 2.1. For any k, U(t) is a (bounded) strongly continuous one parameter
group in #* and, for any teR, for any ue #*, U(t) satisfies the estimate

[U@u| < p@)|ul, (2.14)

u(e) = {1+ 3l (e] + @ + 4232, (215)

Proof. 1t will be sufficient to prove (2.14) for smooth u. The estimate is satisfied
separately by U ,(t) and U (t). We prove it only for U ,(¢), the proof for U ,(¢) being
similar. Since U ,(t) essentially describes the evolution under the free Maxwell
equations, it is well known that, for any multiindex o of space derivatives, the
quantity

where

M@= 3 [ll*Fo, 1[5+ X [1o*F 3 (2.16)

1=jsn
is time independent under the evolution described by U ,(t). We next consider the
quantity

NeP= T [0 0l12 (2.17)

which satisfies
|0, N(t)?| = 2| [dx{ 2" 4%, 0°F ;|

Therefore <OIM@E)NG). 2.18)
so that N(t) < N(0) + M(0)[¢], (2.19)
M(t)* + N(t)> < M(0)* + (N(0) + M(O)lt])2

= (M(0)* + N(0)*) u(t)*, (2:20)
where
p()?* =Sup{l+(a+|t|)*}(1+a>"". (2.21)
a>0

By an elementary computation (2.21) yields (2.15). The required estimate for

U ,(t) follows from (2.16), (2.17) and (2.20).
Q.ED.
We can now prove the existence of local solutions of (2.11). For any interval



6 J. Ginibre and G. Velo

I and any Banach space # we denote by €(I, %) the space of continuous functions
from I to 4, and, for any positive integer 7, we denote by %“(I, #) the space of
/-times continuously differentiable functions from I to 4. For compact I, (I, %)
is a Banach space when equipped with the Sup norm.

Proposition 2.1. Let k= [n/2 + 1]([4] is the integral part of 1), Ve%***(R™)
and uye#*. Then there exists T, > 0, depending on |u,||, such that (2.11) has a
unique solution u¥ ([ — T,, T,], #").

Proof. The result is a straightforward application of the methods of [10], using
Lemma 2.1 and the fact that fsatisfies a Lipschitz condition, namely

/@) —f@) ] < Colp) | u—v] 2.22)

for all u, ves#* such that |ul], | v| <p, where C,(-) is an increasing real function.
This in turn follows from the assumption Ve €**2(R™), from the fact that the terms
in fnot containing Vare bilinear in the components of u, and from the fact that the
Sobolev space H*(R") is a Banach algebra for k > n/2([1] Theorem 5.23 p. 115).

Q.E.D.

If the initial data and the interaction potential V satisfy additional regularity
properties, the solution is also more regular.

Proposition 2.2. Let k' 2k = [n/2 + 1], let Ve%*'* (R*) and let u,e #*. Let I be
an interval of R containing the origin and let u€ (1, #*) be a solution of (2.11). Then
ueb (I, #* ) forany £,0 < ¢ <k'.

Proof. First we prove that ue%(I, #*) by induction. Suppose that ue%(I, H~ 1)
for some 7,k </ < k'. We want to show that ue€(I, #°) or equivalently that, for
any multiindex « with |o| = ¢ — k, O*ue@(I, #*). Let v* = 0°u. Then v*e(I, #* )
and v* satisfies the equation

vi(t) = U(t)0u, + tjdt Ut - t){zgf—(u(r))vg(r) + g"‘(u(r))}, (2.23)

[ [

where g* is a polynomial in the space derivatives of u of order at most / — k — 1
and in the derivatives of f with respect tou of order at most/ — k. Fr.om the assump-
tion on V, the induction assumption, and the fact that HR") is an algebra, it

follows that g*(u(t)) and a@_f (u(t)) belong to (I, #*). Furthermore the inhomo-
u

geneous term U(t)0%u, beiongs to 4(I, #*) by assumption. Therefore (2.23)
considered as a linear integral equation for ¢* has a unique solution both in
(I, #*) and in €(I, #*~ ). These two solutions coincide and therefore 0*ue
%(I, #*). This completes the induction proof that ue® (I, #*).

We can now prove Proposition 2.2 by induction on /. Suppose ue N
05js/-1

@1, #% )= Y,_, for some £ with 0 </ < k'. By Sobolev’s inequalities this also
implies thatf (u(t))e Y,_, and since T maps #™ into #™~ ! for any m, also U( — 1)
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f(r))eY,_,. From (2.11) written in the form

u(t) = U(— tu(t) = uy + id‘c U(—1)f (u(7)), (2.24)
0

it follows that ie% (I, Jf"')m( N €', Jf""’)). That in turn implies that
0gjs¢-1
ue%’(I, #* %), which completes the induction.
Q.E.D.

Remark 2.1. From the equations d, A, =F; and d,¢ =, and from Proposition
2.2, it follows that each component of A and of ¢ actually belongs to®’ (1, H ~7)
forall/,0 <7/ k'

Remark 2.2. In the standard regularity theorems ([10], Theorem 3, p. 353, and
corollaries), space regularity of the solutions follows from the fact that the solutions
remain in the domain of suitable powers of the infinitesimal generator T of the free
group. In the present case however, T'is highly degenerate and these domains are
not related in a simple way to the spaces #*, so that it is easier to give the previous
direct proof.

So far we have considered the system (2.4) and (2.5) without taking into account
the constraints (2.6), (2.7) and (2.8). We now show that these constraints are pre-
served in time.

Proposition 2.3. Let k= [n/2 + 1], let Ve@** (R*) and let u,e#*. Let I be an
interval of R containing the origin, and let ue%(I, #*) be a solution of (2.11).Let u,
satisfy (2.6) (respectively (2.8)) at t = 0. Then u(t) satisfies (2.6) (respectively (2.8))
for alltel. If in addition u, satisfies(2.7) at t = 0, then u(t) satisfies(2.7) for all tel.

Proof. From Proposition 2.2 and Remark 2.1 it follows that the quantities F, —
0,4, +0,4;—e[A;,A,] and Y, — D¢ belong to €'(I, H*™ ') componentwrse
Furthermore therr first time derrvatrves vanish by (2.4) and (2.5), so that they
vanish for all times. Similarly from Proposition 2.2 it follows that K ,e%*(I, H*"?)
componentwise and that K,e%(I, H*"') componentwise. Therefore D*K L€
(I, H*~ %) and, by a direct computation, using (2.4), (2.5), (2.6) and (2.8), D*K ,=0.
This implies that d K, = 0, so that K, vanishes for all times.

Q.E.D.

3. Abstract Cauchy Problem in Local Spaces for Small Time Intervals

In this section we develop a general theory of equations of the type (2.11) in
local spaces. In order to cover our needs and to illustrate the scope of the method, it
will be sufficient to consider spaces of Sobolev type. Let therefore X be a finite
direct sum of Sobolev spaces W™?(R") with m non-negative integer and 1 < p < o,
possibly for different values of m and p. For any open set Q in R”, let X(Q2) be the
corresponding direct sum of W™?(Q). In this section we shall denote by |- | the
normin X and by |- |, the norm in X(Q). For any open set @, let r,, be the operator
of restriction to @, namely the multiplication by the characteristic function of Q.
For any open set Q' o Q,r,, is a norm decreasing map from X (€') to X(22). For any
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open set , we define X, _ (€2) as the space of functions u such that r,, ue X(Q') for
any open bounded set Q with closure ' contained in Q (' = = Q). X, _(Q)isa
Frechet space, when equipped with the family of seminorms |[u ||, = ||, u|. We
shall use the notation X, _for X, . (R"). For any bounded open set Q with regular
boundary 092 (by which we mean that 0€2 is smooth, for instance ¥*, and that
locally Q lies on only one side of it), it is known [1] that there exists an extension
Jjo which is a bounded map from X(Q) to X, namely

ligul = €@ ul. (3.1)

and such that r,j,u = u for all ueX(€2). Furthermore one can choose j, such that
for all ueX(Q), j,u has compact support contained in a fixed bounded open set
Q' 5 o5Q ([1] Theorem 4.26, p.84). We shall be interested especially in the case
where Q is the open ball B(x, R) with center x and radius R in R”. In this case we
shall make the following choice for j,. For each component u e W™?(B(0, 1)), we
choose an extension j, - such that, for some 6 > 0, Supp j, u, < B(0, 1 + 9) for all
u,eW™?(B(0, 1)) and such that ([1], loc. cit.), for any multiindex , 0 < |or| < m,

” aa!jlaua ”p é C Z H aﬁua “p,l 4 (32)

B:|BI = lal

where |- |, denotes the norm in L?(R") and | || . denotes the norm in L?(B(0, R)).
The extension j, is defined as the appropriate direct sum of the j, ’s. Then, for any
Q = B(x, R) we set

jo=D(x,R)j, D(x,R)" ', (3.3)

where D(x, R) is defined by (D(x, R)u)(y) = u((y — x)/R) and maps X(B(0, 1)) onto
X (B(x, R)).

Lemma 3.1. Let Q = B(x, R) and let j, be given by (3.3).Then

o] = CL(R) ] 64
where, for any R >0, C,(R) is uniformly bounded for R 2R, .
Proof. By translation invariance in R" it will be sufficient to consider the case

x = 0. In addition it will be sufficient to prove (3.4) for each component u_ of u,
u, eW™?(Q). For brevity we drop the index ¢. From (3.3) it follows that

| D(O, R)Y3*j, DO, R u ),
<C Z H D(0, R)O*D(0, R) ™ tu HP,R (3.5)
B:1Bl <o
for all ue W™?(B(0, R)). Since 9* D(0, R) = R~ *I D(0, R)3%, (3.5) yields
|%pull,=C X [0fu], R"H,
B:1Bl Slal
from which the Lemma follows.
Q.ED.

An essential ingredient of the theory is the fact that the free group U(¢) describes
propagation with velocity at most one. In order to exploit this property we intro-
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duce some definitions. For any open set @ < R" and for any teR, we define

Q+(t)=Qu<UB(x,|t|)>, (3.6)
and xe
Q)= C{(CQ), )], (37

where C denotes the complement in R". If Q = B(x, R), then Q, (¢) = B(x, R + |t|)
with the convention that B(x, R) = Jif R £0.

We shall call dependence domain any open subset Q of R x R” (this means in
particular that Q :({0} x R")is open in R"**) such that for any (¢, x)€ Q, Q contains
the set {(¢',x'):t' 20 and |x —x'| <t —¢'}.

This definition implies in particular that the sets

0(t) = {x :xeR" and (¢, x)e Q} (3.8)
are open and that there exists a function 6 from R" to R* such that
0={@tx):0=t<6(x)}, (3.9
and that for all x, x'eR",
[0(x) — O(x")| <|x —x']. (3.10)

Conversely, any function 0 from R" to R* satisfying (3.10) defines a dependence
domain through (3.9). Clearly any finite intersection and any union of dependence
domains is a dependence domain.

We now abstract the crucial property of the free evolution in the following
definition. We shall call hyperbolic semigroup a strongly continuous one para-
meter semigroup U(t) in X, for which, for any teR*, for any open ball @ = B(x, R),
there exists a constant u(Q2, r) = 0, uniformly bounded for (R, t) in compact subsets
of (0, o) x [0, 00), such that

1U@u] oo =u@ 0] ul, (3.11)

for any ueX, .
The following lemma is an immediate consequence of the previous definition

Lemma 3.2. Let teR™ and let Q be an open ball in R". Then
1) For any uy,u,€ X, such that ro u, =ro, ,u,,

roUMu, =rq Uthu, . (3.12)

2) Let Q' be a bounded open set containing Q _(t) (respectively an open set
containing Q,(t)), Q" a bounded open set with regular boundary such that
Q. ()= Q' cQ (respectively Q, (1)c Q" < Q') and j,, an extension from
X(Q")to X. Then

loc

Ugo (t)=1,Ut)jg.7g. (3.13)
defines a bounded operator from X(€') to X(Q) (respectively from X, (€') to X(2))
independent of Q" and j,...

loc
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3) The operator Uy, (t) is strongly continuous in t for any t such that
Q, (e cQ.

We now turn to the interaction term. We shall call local interaction a contin-
uous function ffrom I x X, to X, ., where I is an interval of R containing the
origin, such that for any compact subinterval J of I, for any open ball Q in R",
for any peR™*, the following inequality holds

?ljpl[f(t, w— ft,0)]o SCo (T, p)|u—v|, (3.14)

for all u, ve X, _ such that ||ul|,, |v|, < p. In addition for 2 = B(x, R), C,(, J, p)
is assumed to be bounded for R in any compact subset of (0, o).
The previous definition implies immediately the following lemma.

Lemma 3.3, Let Q be an open ball in R". Let Q' be a bounded open set containing
Q (respectively an open set containing Q), 2" a bounded open set with regular bound-
ary such that Q< Q" <& (respectively Q< Q"< < Q), and j, an extension
from X(2")to X. Then

fQ,Q,(t, W=rof(tjo.Tolh) (3.15)
defines a continuous map from I x X(£') to X(Q) (respectively from I x X, (€) to

X(Q)), independent of Q" and j,. .

loc

Remark 3.1. The choice of the extension j in Lemmas 3.2 and 3.3 is immaterial.
The only role played by j is to ensure that for any open set Q' and any open ball
Q< <  the map u— ryu from X, (£) to X(£) is surjective.

We shall look for solutions of the equation

ut) = U(t)u, + tfd‘c Ut — 1) f(z, u(t)), (3.16)
0

where U(r) is an hyperbolic semigroup, f(t,u) is a local interaction, defined for
tel, and u,, is the initial data, in the following sense. Let Q be a dependence domain
such that [0,7) = I, where T = Sup{t:Q(t)#+ &}. By an X, -valued solution of
(3.16) in Q, we mean a set of pairs { (¢, u(t) }, 0 < ¢ < , such that

(1) for any tef0,7), u(t)e X, (Q()),

(2) for any te[0,7) and for any open ball Q< <= Q). r,ue?([0, ], X(2))
and the following equality holds

loc

rou(t) = UQ’Q(O)(t)uO a1

t
+ de UQ,Q+ t—1) (t - T)fﬂ+(t—t),Q(t—t) (‘[7 u(’r)).
0

It is clear that, if Q and Q' are two dependence domains with Q < @', any solution
in Q' has a natural restriction to Q which is a solution in Q.
We can now prove the following uniqueness result.

Proposition 3.1. Let Q,,i = 1,2, be two dependence domains, let U(t) be an hyper-
bolic semigroup, let f,,i = 1,2, be two local interactions defined for tel and such that
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Sor all tel
ge.w=f6u) = f,@0)=f,u— 1,0, (3.18)
and
[ilt,0)=£,(,0) in Q)" Q,(¢), (3.19)

let uy; € X100 (Q(0)), i= 1,2, be such that uy, =u,, in Q,(0)nQ,(0) and let u,,
i=1,2,be X, -valued solutions of (3.16)in Q, with initial data uy; and interactions f
Then U, =1u, m 0,n0,.

Proof. It is sufficient to prove that for any ¢ and any open ball Q< = Q (t)n
Q, (), rqu, (t) = rqu,(t). By taking the difference of the equations (3.17) for u, and
u, and by using Lemma 3.2, Lemma 3.3 and (3.19), we obtain

rm(t—s)(“l(s) u,(s)) u(dr Ug., (r~s),9+(t—r)(s_ 7)

{g{)+ t-1,0, (t— 1;)(1’ Uy (’C)) - gQ+ (t—1),Q,(t— t)(L ug(T))} (320)

for all s with 0 < s <t. Lemmas 3.2 and 3.3 and (3.11), (3.14), then imply

lu, () = u,)] o Q.(— s)<deT””1(T) T)“m(t—r)» (3.21)

where the constant C depends on €, on ¢, and on Max Sup [u,(7)],, (- From
i=1,2 0Stst
(3.21) and the assumption uy, = u,, in Q,(0)NQ,(0) it follows that u, (s) = u,(s) in
Q. (t —s) for all se[0,1].
Q.E.D.

We now turn to the existence problem. We first consider the case where u,, and
f(t,0) have compact support.

Propesition 3.2. Let U(t) be an hyperbolic semigroup, let 2 be an open ball in
R", Let f be a local interaction defined for tel with Supp f(t,0) = Q_ () for all tel,
let u,eX with Supp u, Q. Then there exists a T, > 0 with Tl and a function
ue ([0, T,], X) with Supp u(t) = Q, (t) for all te [0 o] and satzsfymg(3 16) for all
te[0, T, ].

Proof. For any T > 0, Tel, we define
= {u:ueb([0, T], X) and Suppu(r) < Q (1) for all te[0, T]}. (3.22)
One sees easily that %', is a Banach space when equipped with the norm

(eel] = Sup [u®)]a. - (3.23)

te[0,T

The operator S, defined by

Sw))= Ult)u, + }dr U(t — 1) f(x, u(t)), (3.24)
0
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maps %, into %', and, for T sufficiently small, is a contraction, as can be seen from
(3.11) and (3.14). The fixed point of this contraction provides the solution we are
looking for. Q.E.D.

Remark 3.2. In the special case under consideration, Proposition 3.2 provides a
solution of the equation (3.16) in the dependence domain

0 = ([0, T,)xR" U {(t, x):t =0 and x¢2, ()},

This solution is obtained by extending the function u obtained in Proposition 3.2
by zero in the part of Q with t > T,,.

We are now able to treat the local existence problem for general initial data
ueX,, (Q) where Q is an arbitrary open subset of R" (possibly Q = R").

Proposition 3.3. Let U(t) be an hyperbolic semigroup, f a local interaction defined
for tel, let Q be an open subset of R", and let u, X, (). Then there exists a depen-
dence domain Q with Q(0)= Q (i.e the associated function 0 is strictly positive in
Q) and a (unique) X, -valued solution of (3.16)in Q.

Proof. We first show that to any open ball Q = B(x,, R;) = < Q there is associat-
ed a (non-trivial) dependence domain Q,, with @, (0) = €, and a solution of (3.16)
in @, . In fact let uy = j, r,, u, and

S/ w) =jgra,f(t0) + f(t,u)— f(t,0).

Then u, and f'(t,0) have compact support contained in the ball Q' =
B(x,,(1 + 0)R,). By Proposition (3.2), there exists T, and u, €6([0, Ty, ], X)
satisfying (3.16) for all t€[0, Ty, ]| with u, replaced by u; and f by f'. Applying
ro,_(t) to this equation for arbitrary t€[0, T, ] one sees easily that the restriction
of ug, to the dependence domain @, = {(t,x):0 =t < Ty, ,xe€Q,_(t)}isasolution
of (3.16) in that domain.

We now define Q as the union of the dependence domains Q, associated in
this way to all open balls Q, = = @ and we define u in Q by u =ug, in Q. This
definition makes sense by Proposition 3.1 and u thereby defined is easily seen to be
an X, -valued solution of (3.16) in Q.

loc

loc

Q.ED.
Remark 3.3. The use of the extension j in the proof of Proposition 3.3 is not essen-
tial and can be avoided by a cutoff procedure. For Q) = B(x,,R;) = < @, let "
be an open ball with Q) c « Q"< = Q, letgeby with0 =g <1,g=1inQ and
g=0in CQ and let uj=gu,.f"(t,u)= gf (t,0)+f(t,w) —f (¢ 0). Then ujeX,
Supp uy = Q" and Supp f”(t,0) = Q”. One can then proceed as in the proof of
Proposition 3.3 with u;, replaced by ug and f”(t, u) by f”(¢t u). The advantage of

using the extension j is that uy, is estimated in terms of r, u,, only, through

Jupll = €, (R ug ”907
whereas ug is estimated in terms of r,,, u,, through

=C(Q,, ")

|ug ty | -

This point will be important in some future applications. In addition the constant
C,(R,) is independent of x,,, whereas for fixed R, the constant C(€2), Q") in general
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blows up as a function of x, when the distance of Q, to the boundary of Q (and
therefore to the boundary of Q) tends to zero.

Remark 3.4. The shape of the dependence domain obtained in the proof of Proposi-
tion 3.3 (we restrict our attention to the case where u € X, ) will depend on the
constants u(€2, t) appearing in (3.11), C,(, J, p) appearing in (3.14), on the local
norms of u, in the spaces X(£2) and, through the construction of u;, on the constant
C, (R)appearing in (3.4). Of special interest is the case when p and C,, are uniformly
bounded with respect to space translations of Q. In this situation, if in addition
u, is uniformly locally bounded, namely, i
uniformly bounded in x, then, for Q; = B(x,, R,), the time Ty, that occurs in the
proof of Proposition 3.3 can be taken uniformly bounded from below with respect
tox,, Ty, =2 T, > 0,s0 that the dependence domain Q contains a strip [0, T, | x R".
This situation is considered in particular in [9]. If the local norm [ u, ||, increases
when |x, | tends to infinity, we expect the dependence domain Q to become thinner
at infinity. On the contrary, if the local norm |u, |, tends to zero as |x,| tends
to infinity, the dependence domain is expected to thicken at infinity. In particular, if
the constant C,(£2, J, p) tends to zero when p tends to zero for fixed 2 and J and
if the local norm of u, decreases sufficiently fast at infinity, one can ensure that the
function 0(x) defining Q (see (3.9) and (3.10)) increases linearly at infinity, namely
0(x) ~ y|x| for some 7,0 <y <1, thereby solving the so-called “boost problem”
considered in a more general setting in [2]. This is achieved by imposing conditions
on u, that ensure that, for any Q, = B(x,, 7 x,|) with |x,| = a >0, one can take
Ty, =7]x,], so that Q contains the region {(t,x):0 <t < y|x|}. In fact, it follows
from (3.4), (3.11) and (3.14) that a sufficient condition for the operator S defined by
(3.24) with u,, replaced by ug = jg 7, U, to be contracting in 2’y is

T Sup  w(Blx, L)1)
0<t<T
RSLZR+2T

x Co(B(xq, R + T), [0, TT, C,(¢xo]) o]l o pinoy) < 1> (3.25)

where R = (1 + d)y|x,|. For T =y|x,| and if C(2, J, p) tends to zero as p tends to
zero, (3.25) takes the form

“%“B(xo,y|xof) = olx,) (3.26)

for a suitable function ¢. This condition expresses the required decrease of u,,
at infinity. More precise estimates would require more detailed information on
U(t) and on f(t, u). The method has a large flexibility and can handle more com-
plicated situations, where for instance u,, tends to zero in some directions, and to
infinity in others, when | x| tends to infinity. The dependence domain of Remark 3.2
is a limiting case of the previous construction: with the best possible decrease
available, namely with u, having compact support, the dependence domain Q
has 0(x) ~ |x| at infinity.

4. The Cauchy Problem in Local Spaces for Small Time Intervals

In this section we apply the general theory developed in Sect. 3 to the coupled
Yang-Mills and scalar fields previously considered in global spaces in Sect. 2.



14 J. Ginibre and G. Velo

We consider again the system (2.4) and (2.5) in the integral form (2.11), supple-
mented by the constraints (2.6), (2.7) and (2.8). The space X of Sect. 3 now becomes
the space #* of Sect. 2 and, for any open set Q = R", the spaces #*(Q) and #¥ (Q)
are defined accordingly. In order to apply the general theory we have to verify
that U(¢) defined by (2.12) and (2.13), is an hyperbolic semigroup and that f, which
can be read off from (2.4) and (2.5), is a local interaction in the sense of Sect. 3.
For this purpose it will be convenient to introduce the following notation: for any

open ball @, for any teR, we define
Q(Q, 1) ={(t',x):0 <|¢'| <|t|,tt' = 0and x'€Q_(¢")}. (4.1)

(For t > 0,Q(, t) is a dependence domain in the sense of Sect. 3.) In addition,
for any ¢,1 < ¢ < oo, for any open set Q, we denote by |-, , the norm in LY(¢).

Lemma 4.1. For any non-negative integer k, U(t) is a strongly continuous one-
parameter group in #°X _, and, for any teR, for any open ball Q = R", for any ue #:

loc? oc?

the following estimate holds:

1U@ulo_q = @)ul
where u(t) is defined by (2.15). In particular U(t) is an hyperbolic group in H#

o> 4.2)

k
loc*

Proof. 1t will be sufficient to prove (4.2) for ¢ positive and smooth u. The estimate
is satisfied separately by U ,(¢) and U ,(¢). We prove it only for U ,(t), the proof for
U,(t) being similar. For any solution of the free evolution equation u (t)=
U ,(t)u(0) (see (2.10)) it is well known and easy to check that for any multiindex
o of space derivatives,

au@" =0, 4.3)
where
O° = —%(8"‘F°j,8"‘F0j>+i<6°‘F"‘,6“F%> 4.4)
and
O = <8“F0j, 0°F¥ >, 4.5)

The vector @ is time-like by Schwarz’s inequality and has a positive time com-
ponent. Now let ©2 be an open ball and ¢ > 0. Integrating (4.3) in Q(£2, t), applying
Gauss’s theorem, and taking into account the fact that @* is outgoing on the side
surface of Q(,t), we find

[ dx0°@) < [dx@°(0). (4.6)
On the other hand Y ’
ol — LOM, 74y} = — (A, F°F,)>. @.7)
If we now define
My = 1 §<n Ho"Fo 0l 5.0 o+ Ek Ho*F,03.0_ 438)
and
No*= ) [l*4,0l5e o (49)

1=jsn
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then (4.6) and (4.7) yield
M(t) < M(0) (4.10)
and

N(t) = N©O) + idtM(r) < N(0) + tM(0). (4.11)
0

From there on the proof proceeds as that of Lemma 2.1.

Q.E.D.
We now turn to the interaction.

Lemma 4.2. Let k = [n/2 + 1], let Ve #*T*(R") and let X = #*. Then f'is a local
interaction in X, . = #},.; more precisely, for any open ball @ = R", for any peR*,
[satisfies the estimate

If @) =1 @) o = Co@ p)[Ju— vl (4.12)
for all w and ve #},, with ||u|q, |v|, < p. Furthermore, for Q = B(x, R), Co(%, p)

loc

can be taken independent of x and uniformly bounded for R = R > 0.

Proof. The estimate (4.12) is a local version of the estimate (2.22) and follows from
the assumptions on V, the fact that the terms in f'not containing V are bilinear in
the components of u and from Sobolev inequalities in Q. These inequalities are
derived from the corresponding ones in R" by using the extension j,. The stated
properties of C, (£, p) follow from Lemma 3.1.
Q.ED.
The local existence result of Proposition 3.3 can be restated as follows.

Proposition 4.1. Let k= [n/2+ 1], Ve4** *(R*)and u,e #* .. Then there exists a
dependence domain Q with Q(0) = R” and a (unique) #¥, ~valued solution of (2.11).
in Q (in the sense of Sect. 3).

As compared to the general case, we note that here 1 does not depend on Q
(compare (3.11) with (4.2)) and C, does not depend on J (compare (3.14) with (4.12))
and can be taken invariant by translation of Q. As mentioned in Remark 3.2, this
implies in particular that, if u is uniformly locally bounded, then the dependence
domain Q of Proposition 4.1 contains a strip.

We now turn to the problem of the regularity of the solutions for suitably regu-
lar initial data.

Proposition 4.2. Let k' = k= [n/2 + 1], let Ve€* *(R"), let Q be a dependence
domain, let u,e Ay (Q(0)) and let u be an #¥ -valued solution of (2.11)in Q. Then,

for any t > 0 and any open ball  such that Q = = Q(t), roue@’([0,t], #* ~(Q))
forany £,0 </ < k' In particular u is an #°¥, -valued solution of (2.11)in Q.

loc

Proof. Lett > 0and let Q2 be an open ballsuch that Q = = Q(t).Let Q, = Q(Q, (1), 1)
(see (4.1)). We shall prove that there exists a finite covering of the interval [0, ¢ ]
by open subintervals I, of R*, and for each j, a function u,e % (I, #*) such that

(a) u; coincides with u in Q, N (I; x R"),

(b) u;e (I, #*~*)for any 7,0 </ <k'.

Let s€[0,¢] and let

U(S) =Jg, ¢-s 0, a-sils), (4.13)
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where the extension j, is adapted to the space #*. Then by Proposition 2.1,
the equation

t
v() = Ut — s)'(s) + [drU(t — 7)f (v(x)) 4.19)
has a unique solution v €%([s,s + T, ], #*). From Lemma 3.1 and the fact that
Sup [[us) |, s < (4.15)
0ss=<t

it follows that «/(s) is uniformly bounded in #* for se[0,¢] and therefore, by
Proposition 2.1, T , can be taken independent of s. We now define ¢, =j T/2 for
0<j=[2t/T,—1}, I';=[t;t;+ T,) and u;=v,. Then, for all j, u; solves
the equation for v

rQ+(t—s)U(S): U{l+(t—s),!2+(t—t,)u((tj)
s 4.16)
+ j dTU.Q+(t—s),Q+(t—r)fQ+(t—t),Q(t—t)(U(T))
tj
for all sel’;. On the other hand, it follows from (3.17) and (4.13) that u also solves
(4.16) in I} for all j. The same argument as in the proof of Proposition 3.1 then
implies that u = u; in the translated dependence domain Q, N (I; x R"). This proves
statement (a) above with I, = I and =, t;+ Ty for 1<j<[2¢/T,—1]
Statement (b) follows from Proposition 2.2 by an elementary induction argument
on j. Proposition 4.2 is an immediate consequence of statements (a) and (b).
Q.E.D.

Remark 4.1. From the equations 0,4, = F; and 0,¢ =,,, it follows that for
any t > 0 and any open ball 2 such that @ = = Q(¢), each component of 4; and of
¢ actually belongs to €“* ([0, t], H* ~%(Q))for all £/,0 </ < k'.

Asin Sect. 2, we now show that the constraints (2.6), (2.7) and (2.8) are preserved
in time for the solutions of (2.11).

Proposition 4.3. Letk = [n/2 + 1],let Ve@** ' (R™), let Q be a dependence domain,
let uye A% (Q(0)) and let u be an H'¥, ~valued solution of (2.11)in Q. Let u, satisfy

(2.6) (respectively (2.8)) in Q(0). Then u(t) satisfies (2.6) (respectively (2.8)) in Q(t)
for all t. If in addition u,, satisfies (2.7), then u(t) satisfies (2.7) in Q(t) for all t.

Proof. The proofis similar to that of Proposition 2.3. One simply replaces the spaces
%’ (I, H™) by 6° ([0, t], H™(Q)) with t > 0 and Q an open ball such that Q = = Q(¢).
In the case where m < 0 (this occurs for the preservation of (2.7) for n = 1), one
uses instead of H™(£) the space of distributions 2'(Q,) for some open ball Q,
such that Q< = Q, = < Q(r).

Q.E.D.

5. Existence of Global Solutions

In this section we prove the existence of global solutions of the equation (2.11) for
n=1,2, and make some comments on the cases n = 3,4. The proof relies on a
priori bounds on the solutions in #*. These in turn follow from estimates on
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conserved or quasiconserved quantities which we now set out to define formally.
The energy of the system is defined by
Ey=[dx{—3{FY Fy,>+3{F" F,>
+ Q0> — <UL + V(6P (5.1
More generally we define
E, = [dx{3(D’F%, D,Fy.>— i(D"FU,D‘,FU)

— DY, Do) + DY D (5-2)
E, = jdx{—L(D*D'F%,D,D,F,,> ++(D*D'FU,D,D,F >
+ (DD, DD > — (DDA, DD >}, (5.3)

and so on. We shall derive the relevant estimates in Lemmas 5.1 to 5.6 below.

Lemma 5.1. Let k =[n/2 + 1],let Ve®* "' (R™) and let u,c#*. Let I be an interval
of R containing the origin and let ue €(I, #*) be a solution of (2.11). Then
(1) Ey(t) = E,(0) for all tel.
(2) Let in addition V satisfy the condition
V(p) 2 —a’p (5.4)

for some a = 0. Then F,F, A\, and ¢ are estimated in L in terms of the initial
data for all tel. More precisely

S0l + 5 1EOLE |+ W0

+Eiol1 <0 <( 20V, 69
[e@1l, = 1O, + v, (56)
1 1/2 1 1/2
oz} sf5ziaon] o 657
where
Eo(t) =E,+da | ]¢>(t)] H% (5.8)
and
v(e)= || ()] ]|, coshat — 1) + E((0)"/>a™ " sinh a|¢| (59)

Proof. To prove part (1), we remark that by Proposition 2.2, ue%*(I, #*~ ') and
therefore that E(t) is differentiable in time. Taking its derivative and using the
equation of motion (2.9), we see that E, (¢) is constant in time.

To prove part (2), we note that

0o Eot) = 2a°Re{ ()Y, ()
=2a |||, E,0'",
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where we have used (5.4) in the last inequality. By an elementary computation,
this yields (5.5) and (5.6). The inequality (5.7) follows from (5.5) and from

60<A1,Aj> = 2<Af,F0j>. (5.10)

Q.E.D.

In order to simplify the notation, from now on we shallomit the| | when appearing
in an LP-norm, we shall denote generically F . OV F and Y, by ¥, and we shall
drop the space-time indices in most of the estimates.

We now turn to the quantity E, .

Lemma 5.2. Let k=[n/2 + 1], let Ve@***(R"), and let u,e #* satisfy the con-
straints (2.6) and (2.8). Let I be an interval of R containing the origin and let
ueb(I, #* beasolution of (2.11). Then

(1) E,(t) is differentiable for all te I and satisfies

0,E, = [dx{e({D,F*,[F*,F, 1>
~ (D,Fi,[F* F]>)+2eRe(~ Dy, F“y,>
+ DA+ D, FOU ) + DN, F4 o>
~ Y. (D, FOW>) + 2Re D, Dy V') ) ).

(5.11)

In addition let V satisfy (5.4) and define the function ¢, by
0,(0)= Sup ([V')| +20|V"0))) (5.12)

0<aosp
(2) Let 1 <n < 3.Foranytel, E,(t) satisfies the estimate
IaOEl(t)l é C {El(t)llz +n/4 Eo(t)l —nj4
+E,0"E0" e, (| ¢0)2)} (5.13)
with

Cle@ |y E, )" (n=1)
I6@].. = <C.l o[5> B, E (0 (n=2)
CE )" E (t)"* (n=3)
(5.14)

and 0 <e<1forn=2.
In particular, for n = 1, E, (t) is estimated in terms of the initial data for all tel.
(3) Letn=2and let V satisfy

@, (p) =b,(1 +p") (5.15)
for some p,0 <p < oo. Then, for all tel, E (t) satisfies the estimate
[0,E,(t)] < C{E,(DE,(t)'* + E (1) /2E ()"
(14 E,02] ) |5 Ey07 ™)) (5.16)

(with 0 <e<p) for p=1, and a similar estimate for p < 1. In particular, E (t) is
estimated in terms of the initial data for all tel.
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(4) Let n=13,4 and let V satisfy (5.15) for some p,0 < p < co. Then, for all tel,
E | (t) satisfies the estimate

laoE1(t)| S C{E (0)' 2 E (1) "4
+E,(0)2E, () 1*(1 + (E,(t)">~ 1 Eo(£)> "))} (5.17)

Proof. (1). It will be sufficient to prove the result for u,e#**'. The general case
where ue#* will follow from the fact that each u e satisfying the constraints
(2.6) and (2.8) can be approximated by elements of s#* ! still satisfying the cons-
traints (2.6) and (2.8), from the continuity of the solution of (2.11) with respect to
the initial data u,([10] Corollary 1.5, p. 350) and from the fact that both E, and
the right hand side of (5.11) are continuous functions of ue#*. For uje#**", the
solution u(t) of (2.11) belongs to ¥* (I, #*) by Proposition 2.2 and satisfies the
constraints (2.6) and (2.8) by Proposition 2.3. Therefore E (t) is differentiable in ¢.
Taking its derivative, using the equations of motion (2.9) and the constraints (2.6)
and (2.8), we obtain (5.11). (The constraints are used to express the commutators of
covariant space derivatives in terms of F).

(2), (3) and (4). We estimate the right hand side of (5.11). For brevity we omit
the ¢ dependence in all this proof. The terms of order e in the integrand are of the
form {( DF, [F,F]), {y,(DF) > and {Dy, Fyy ). All these terms are estimated in
the same way and we consider only the first one. Using the covariant Sobolev
inequalities (4.2), we obtain for 1 <n <4

fdx|<{DF,[F,F1>| < C|DF|,| F|3
SC|DF|} ™| F|3~"*
SCEHWaEL-ni4, (5.18)

We next estimate the terms containing Vin the right hand side of (5.11). From the
relation

D(@V)= VY, +2V"Rel, Y, > ¢, (5.19)
it follows that
D@V =0, (|6]))]¥)]
pointwise, and therefore
§ax[<DWso. DAV < [ DY [, @, ($1W [, (520)
< CIDy, [l e, (l#13), (5:21)

which together with (5.18) and its analogue for the terms of order e containing y,
implies (5.13).

On the other hand, for 1 <n < 3, the covariant Sobolev inequalities, together
with the constraint (2.8), imply that the L*-norm of ¢ is estimated by

Cllof32 w3 (n=1)
Io]., = S Clel5*Iwll; =D 5> (n=2) (5.22)
Cly ;7 Dy 5 (n=3)

which together with the definitions of EO and E, yields (5.14). The proof of part (2)



20 J. Ginibre and G. Velo

of the Lemma is completed by noting that the last statement follows from Lemma
5.1, part (2), and from the fact that the right hand side of (5.13) is at most linear in
E forn=1.

In order to prove part (3), we note that (5.16) follows from (5.13), from (5.15)
and from (5.14) with ¢ replaced by ¢/p if p > 1. A similar (actually better) estimate
holds for p < 1. The last statement of part (3) follows from Lemma 5.1, part (2),
and from the fact that for ¢ < 1 the right hand side of (5.16) is at most linear in E | .

We finally turn to part (4). For n = 3, the estimate (5.17) follows immediately
from (5.13), (5.14) and (5.15). However this proof does not apply to the case n = 4,
since in that case ¢ is not estimated in L* in terms of E o and E, . We therefore give
a direct proof (which also covers the case n = 3). The contribution of the constant
term in (5.15) to the right hand side of (5.20) is estimated by ||, | D¢ |,. The
contribution of the term p? is estimated as

Cloy, vl I, = C D, . [91 55, (523)

by Holder’s inequality, with 1/r + 1/g = 1/2. We take 1/q =¢/n with ¢= Min
(1, p(n — 2)). Applying the covariant Sobolev inequalities in the form

[l = clpyls vl
“¢“2p = C“Dl//”g(n_z)_s“l//”g(‘*—n)ﬁ—s’

2pg =
we estimate the last member of (5.23) as

e L 1
< CE1/2+p(n/2—1)E(1)/2+p(2—n/2)‘ (5_24)

Together with (5.18) and its analogues for the terms containing v, (5.24) implies
(5.17), thereby completing the proof of part (4) of the Lemma.
Q.E.D.

Remark 5.1. For space time dimensions 4 and 5, i.e. for n = 3 and 4, the right hand
side of (5.18) increases faster than linearly in E,, thereby precluding an a priori
estimate of E, in terms of the initial data. However, from the covariant Sobolev
inequalities, one obtains, for 2 <n <4,

Jdx|<DF,[F,F]>| < C|DF|?| F|,. (5.25)

Similarly, the terms of order e containing ¥ in the right hand side of (5.11) are
estimated, possibly after shifting the covariant derivative from F to s by an inte-
gration by parts, as

Jax|<Dy. Fury| < Clow|3|Fl,. (526)

From (5.25), (5.26) and from (5.24) it follows that an a priori estimate of F in L"
implies an a priori estimate of E, , provided Vsatisfies (5.15) withp < (n —2)7'.
We now turn to the quantity E,.

Lemma 5.3. Let n=2,k=[n/2+1], let Vet***(R*). Let u,eA* satisfy the
constraints (2.6) and (2.8). Let I be an interval of R containing the origin and let
ue € (I, #*) be a solution of (2.11). Then
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(1) E,(t) is differentiable for all tel and satisfies
0y E, = [dx{eO({D*F,[DF,F]) + {D*y,FDy )
+ (D>, (DF)Y > + (DY, (D> F)y>)
—2Re<DjD‘xp0,D}.D{(¢V’)>}. (5.27)
The part of order e in(5.27)is a sum of several terms of the form indicated with various

combinations of indices.
Now in addition let V satisfy (5.4),define ¢, by (5.12)and ¢, by

@,(p)= Sup (3¢'*|V"(0)| +25*2| V" (0)]). (5.28)
0<0sp
(2) Let n=2. Then for all tel, E,(t) satisfies the estimate
|0,E,(t)| S C{E,(t)* "2 E,(t)' "*E,(t)"?

+ E,(02E, 0) (0, ([ ¢0)[12) + Eo)"* 0,([| 60 [|3))}
(5.29)

with 0 < ¢ <1. In addition let V satisfy (5.15) for some p,0 <p < 0. Then E,(t) is
estimated in terms of the initial data for all tel.
(3) Let n=3,4. Then for all tel, E, (t) satisfies the estimate

[0,E,(1)] < C{E,(t)"*E,(t)**~"*
+E,0"(E,0 0, (]| 0)]2)

+E (0" Eq (1) " 0, (]| o) | 2))}, (5.30)
with ¢ satisfying the estimate (5.14) for n = 3 and
6@, < CE,@)"*E, (t)* ~92E,(t)"* (5.31)

withO < e< 1, for n=4.
Ifn=4,let V satisfy in addition (5.15) and

®,(p) =b,(1+ p”) (5.32)

Jfor some p,0 < p < co. Then in both cases, an a priori estimate of E, (t) implies an a
priori estimate of E, (t).

Proof. The proof of part (1) is analogous to that of part (1) of Lemma 5.2 and will
be omitted. In order to prove parts (2) and (3), we estimate the right hand side of
(5.27). All the terms of order e are estimated in the same way and we consider only
{D*F,[DF,F]). By Holder’s inequality, we obtain

Jdx|<D*F.[DF.F> < C|D*F |, | DF| | F], (5.33)

with 1/g + 1/r =1/2. For n =2, we take 1/q =¢/2 for some ¢,0 <¢< 1, and for
n=3,4, we take r =n. From the covariant Sobolev inequalities we obtain for
n=2

L= C[] D*F Hl”[[DF[[g‘“ HFUE < CE‘21 +e)2 E{”Ef)/z, (5.34)

2 2
and for n = 3,4,
L= C[]DZFH’Z‘/2 HDF”;‘”/2 S CEY*EY?—m4, (5.35)
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We next estimate the term containing ¥ in the right hand side of (5.27). From the
relation

D,D(¢V)=V'D, +2V"Re<$, D, >
+ V' {2Re (.Y, >, +2Re .y, >, + 2 Re Y, 1, > ¢}

+ V”"2Re{ ¢, ;//j>2Re<¢>,t//4,>d>, (5.36)
it follows that

fdx|<D'DY,, DD,V )| = | DY ],
<[ 1D¥lo, (o) + W[ 20,(0 ) ], (5:37)

Forn =2 and 3, ¢ is estimated in L™ through (5.14). For n = 4, repeated use of the
covariant Sobolev inequalities together with the constraint (2.8) yields in a similar
way

191 = Clvl2 Dyl D% |52, (5.38)

which implies (5.31). One can then estimate the right hand side of (5.37)for2 <n <4
by

=L Dy L e (1 6112)
+CDY 2[5 0 ([ S112))- (5.39)

Together with (5.34), (5.35) and their analogues for the terms of order e containing
¥ in the right hand side of (5.27), (5.39) yields the estimates (5.29) and (5.30). The
last statement of part (2) of Lemma 5.3 then follows from Lemma 5.2, part (3)
and from the fact that the right hand side of (5.29) is at most linear in E, . Similarly,
the last statement of part (3) follows from the fact that, given E and E,, the right
hand side of (5.30) is at most linear in E, under the assumptions made. This last
fact follows directly from (5.14) for n =3, and for n = 4, from (5.15), (5.32) and
(5.31), possibly after replacing ¢ by ¢/p if p < 1 (cf. the proof of Lemma 5.2, part (3)).

Q.E.D.

Remark 5.2. Together with Remark 5.1, part (3) of Lemma 5.3 shows that for
n=3,4,an a priori estimate of F in L" implies an a priori estimate of E, if V satis-
fies (5.15) with p < (n — 2)™?, and for n = 4, if V satisfies in addition (5.32) for some
p,0=<p<oo.

Remark 5.3. We have not considered E, for n= 1, because in this case E, is not
defined for general u e #°*. However for u,€ #°?, also u(t)e # > by Proposition 2.2,
so that the quantity E, is well defined. It satisfies part (1) of Lemma 5.3 and an
estimate similar to (5.29) and is therefore estimated in terms of the initial data.

Lemma 5.3 completes the estimates needed on the gauge invariant quantities
E,. In order to obtain a priori bounds on the solutions u of (2.11) in #*, we need
additional estimates on the potential 4.

Lemma 5.4. Let 1 <n <4, let k=[n/2+ 1], let Ve&***(R") satisfy (5.4). Let
u eA’* satisfy the constraints(2.6) and (2.8). Let I be an interval of R containing the
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origin and let ue¥ (I, #*) be a solution of (2.11). Then for any tel, A satisfies the
following estimate
[0, 0A®)||,| < C{E, (&) + E,(t)"® E,(0)"/>~"®
x | 0A(@) || Y* ] A) |24}, (5.40)

In particular A satisfies an a priori estimate in H' in terms of E, and of the initial
data.

Proof. As in the proof of part (1) of Lemma 5.2, it is sufficient to prove the result
for u,e#* . In this case the quantity

mJt):%jdx(@"’Aj,at,Aj} (5.41)
is differentiable in time with derivative
Oom,(t) = fdx{ <6"Af,D’FOj> — e(@’Aj,[A/,FOjD}. (5.42)

Therefore, by Holder’s inequality
dolloAll, = [ DF[, + Clal.] Fl..
and by the covariant Sobolev inequality

0,041, < | DF, + C[DF [ F3* |oa ]3] A3~

2

from which (5.40) follows. The last statement follows from Lemma 5.1 and the
fact that the right hand side of (5.40) is at most linear in || 04 |,.
Q.E.D.

Lemma5.5. Let 2<n <4, let k=[n/2+ 1], let Ve&***(R") satisfy (5.4). Let
u,€X* satisfy the constraints (2.6) and(2.8). Let I be an interval of R containing the
origin and let ue® (I, #*) be a solution of (2.11).T hen, for any tel, A satisfies an a
priori estimate in H in terms of the initial data and of E| and E , .

Proof. The proofis analogous to that of Lemma 5.4. We consider the quantity
m,(t) = —%jdx(@"&‘Aj,akﬁjAj% (5.43)
with time derivative
dym,(t) = — fdx{*°A’, 0,0,F ;7 (5.44)
so that by Schwarz’s inequality
ol 0*All, =[*F{,.

One then expresses 0°F in terms of covariant derivatives and obtains, in addition
to D*F, terms of several types, which are estimated as follows:

| ADF |, < C| D*F|[4* DF | =" [aA]3* ] a]3~"%,
[@AF|, < CDFIE* | FI3- oAy a3,

and
|42F [, <C,|DF ;™| F[5 64l [l 4]~
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forn=2,
| 4F[, <C|DF[,[a4:  forn=3,
| 42F ||, <G| D*F |3 ~#| DF |5 | A5 oA |3

forn =4, where0 <¢< 1.
The lemma follows from these estimates and from Lemmas 5.1 and 5.4
Q.ED.

The last step in the a priori control of the solutions of (2.11) in #* consists in
estimating the L>-norms of the ordinary derivatives of the various components of
u in terms of the L2-norms of the covariant derivatives. In order to cover all cases
of interest with a compact notation, in the following lemma, we denote by h a
function from R" to % or # or any direct sum of such spaces, and by H* the Sobolev
spaces of such vector valued functions.

Lemma 5.6. (1) Let he H' and Ae L + L%, namely A= A, + A, with A, e L™ and
A,el!,whereq=2 forn=1,q>2 forn=2,and q = n for n = 3. Then h is estimated
in H" in terms of the L*-norms of h and Dh. More precisely

[orll, = | Dh|, + e 4, ], (4],

+ A [ [ DRE 1]~ (5.45)

(2) LetheH?* A=A A, with AjeL”, A,eLf and A = A} + A, with0A| eL”
and 0A,€L*"?, where ¢ —4forn<3 q >4forn~4 and q —-nfor nx=Ss. Then
his estzmated in H? in terms of the L?-norms of h, Dh and D*h (through a formula
similar to (5.45), but more complicated, see(5.46) below).

Proof. (1) The estimate (5.45) follows immediately from the definition of the
covariant derivative through the Holder and covariant Sobolev inequalities.
(2) Similarly, from

0*h = D*h ~ 2e ADh — e(0A)h + e* A%h,

one finds, using the Holder and covariant Sobolev inequalities,

|o*h|, = [ Dk, + C{[ A, || D |,
+(oAy |, + 14, I2) k], +1 4, ], | D*R |5« | DR| L
+(J o4l .+ 14,02 h],) (5.46)

where 1/r +2/q' = 1/2. The last norm | k|, is itself estimated in terms of the L*-
norms of h, Dh and D*h by further use of the covariant Sobolev inequalities.
Q.E.D.

We are now in a position to state the global existence results. We first consider
the theory in global spaces as described in Sect. 2.

Proposition 5.1. Let n=1, 2, let k=[n/2 + 1] and let Ve €**2(R™) satisfy (5.4).
If n=2, in addition let V satisfy (5.15) for some p, 0 <p < co. Let u e #* satisfy
the constraints (2.6) and (2.8). Then the equation (2.11) has a unique solution ue
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(R, #*) and u satisfies the constraints (2.6) and (2.8) for all times. If in addition u,
satisfies the constraint (2.7), then u satisfies (2.7) for all times.

Proof. Let u be a solution of (2.11) in an interval I containing the origin. Then it
follows from Lemmas 5.1 to 5.6 that u(¢) is estimated a priori in #* in terms of u,,
uniformly on bounded subintervals of I. More precisely, one first estimates the
L*-norms of F, A4,  and ¢ by Lemma 5.1, part (2), then the quantity E, by Lemma
5.2, part (2) for n = 1 and part (3) for n = 2 and, for n = 2 only, the quantity E, by
Lemma 5.3, part (2). From this, one derives an estimate of 4 in H' by Lemma 5.4,
and, for n =2, of A in H? by Lemma 5.5. Using these estimates, one can convert
the estimate of E, into an estimate of F and  in H' by Lemma 5.6, part (1), and,
for n = 2, one can convert the estimate of E, into an estimate of F and y in H?, by
Lemma 5.6, part (2). Finally one estimates ¢ in H* by using the constraint (2.8), the
estimates on Y and Lemma 5.6 again. The existence of global solutions of (2.11)
follows from the a priori estimate of u in #°* thereby obtained and from Proposi-
tion 2.1 by standard arguments. The last statement of Proposition 5.1 is a partial
repetition from Proposition 2.3. Q.E.D.

In four dimensional space time (namely for n = 3), our estimates are not suffi-
cient to prove the existence of global solutions of (2.11). Nevertheless, they yield the
following partial result, which strengthens Corollary 4.1. of [11].

Proposition 5.2. Let n=23 let Ve%*(R™") satisfy (5.4) and (5.15) for some p,
0 <p < 1. Let uye A’ satisfy the constraints(2.6) and (2.8). Then the equation (2.11)
has a (unique) solution ue (I, #?) for some interval I containing the origin, and
either u can be continued for all times, or F is unbounded in the L*-norm over the
maximal interval of existence.

Proof. The result follows by the same argument as in the proof of Proposition 5.1
from the estimates obtained in Lemma 5.1, part (2), in Lemma 5.2, part (4), in
Remark 5.1, in Lemma 5.3, part (3), and in Lemmas 5.4 to 5.6.

Remark 5.4. In space time dimensions three and four, namely for n = 2 and n = 3,
the assumptions on the potential V' in Propositions 5.1 and 5.2 as well as in
Proposition 5.3 and Remark 5.6 below, consist of the condition Ve%*(R™"), the
lower bound (5.4) and the upper bound (5.15) with 0 < p < w0 for n=2 and
0 <p =1 for n= 3. In particular, they allow for potentials of the form

V(I¢I2)= _ a2|¢|2 + I¢I2(p+1)

with p a positive integer or 3 <p < o for n=2, and for the often considered
potential

V(o) = —a|o] +|o[*
for n = 3. These potentials have non trivial minima.

Remark 5.5. It is clear, but we have not checked in detail, that Proposition 5.2
can be extended to five dimensional space time (namely n = 4) with #? replaced
by #3, L* by L*, with p restricted to 0 < p < 1/2in (5.15) and V satisfying in addi-
tion (5.32) for some p, 0 < p < 0. A complete proof would require an estimate of
E, and of A in #7°.
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We finally prove the existence of global solutions of (2.11) for the theory in

local spaces described in Sect. 4. For potentials with non trivial minima such as
those described in Remark 5.4, this will allow in particular for initial data and
solutions for which |¢| tends to a non zero value minimizing ¥ at space like
infinity.
Proposition 5.3. Let n=1,2, let k =[n/2+ 1] and let V satisfy the assumptions
of Proposition 5.1. Let uoe%foc satisfy the constraints (2.6) and (2.8). Then the
equation (2.11) has a unique solution ue% (R, #¥ ) and u satisfies the constraints
(2.6)and (2.8)for all times. Ifin addition u, satisfies the constraint (2.7),then u satisfies
(2.7) for all times.

Proof. The result follows from Proposition 5.1 through a cut-off procedure, as in
the proof of Theorem 1.2 of [9]. We first prove that for any open ball Q = B(0, R),
there exists a (unique) #},_-valued solution u® of (2.11) in the double cone A(R) =
0(2, R)u (L, — R) (see (4.1)), in the sense that the restriction of uR to Q(R, R)
is an #F _-valued solution of (2.11) in Q(€2, R) and that a similar property, defined
by an obvious symmetry, holds in Q(2, — R). For this purpose, we pick a function
gRe®y such that 0<g® <1, g® =1 in B(O,R) and g® =0 in CB(O,R + 1). For
uoe,}iﬂ we define the cutoff initial data u? by

loc?
AR = gRA, F§ = gRF,, ¢ = R, ¥ = g™y, YF = (@, + eA])PR,
and

FR = 9,AR — 3, A% + e[ AR, 4],

Then uf e #*, with Supp ug = B(0, R + 1), and u still satisfies the constraints (2.6)
and (2.8). Therefore, by Proposition 5.1, there exists R €% (R, s#*) satisfying (2.11)
with u, replaced by u, for all times, and satisfying the constraints (2.6) and (2.8).
From the fact that U is an hyperbolic group and fa local interaction, it follows in
addition that the restriction u® of #* to the double cone A(R) is an #% -valued
solution of (2.11) in A(R).

In order to complete the proof, we pick an increasing sequence {R}, j =1,
2,... tending of infinity, so that U AR) = Rr+1 With each R;is associated an

H#F -valued solution u™ of (2. 11) in A(R,), and by Proposition 3.1, for j <7, u®
coincides with the restriction of u®’ to A(R) We then define u in R"*! by the
consistent set of conditions that for all j=1, 2,..., the restriction of u to 4(R))
coincides with 4™, It is then straightforward to check that uis an AL —valued
solution of (2.11) in R"*! and satisfies (2.6) and (2.8) for all times.

Uniqueness follows from Proposition 3.1, while the last statement of Proposition
5.3 is a partial repetition from Proposition 4.3.

Q.ED.

Remark 5.6. In four dimensional space time, Proposition 5.2 also extends to the
theory in local spaces, with # replaced by #2_and L’ by L? . Similarly, Remark
5.4 should extend to the theory in local spaces with appropriate changes.

Appendix

In this Appendix we derive the Sobolev inequalities that are used in Sect. 5. Let
¥ be a finite dimensional complex vector space with scalar product {-,-) and
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norm || = ¢-," »'/%,u a function from R" to 7~, and A, j=1,...,n,nfunctions from
R" to the antihermitian matrices in ¥". The covariant derivative is defined as
Du=0u+ Au. We shall denote by I Hq the norm in L?= [4(R") and we shall
also use the notation L for vector valued functions. The formulation of the follow-
ing proposition is essentially taken from Nirenberg [8].

Proposition A.1. Letn=1,1<g=< 0,1 <r < ,andletoandpsatisfy0 <o <1,
1<p=0,and

I/p=01—-0o)r+o(l/g—1/n). (A.1)

Assume in addition that if p= o, then r < o and o < 1. Let A,j=1..nben
Sfunctions from R" to the antihermitian matrices in ¥". T hen, there exists a constant C,
depending only on n, p, g, , such that, for any ue L for which 0;ue L* and A;uel?, j =
1, ..., n, thefollowing inequality holds :

lll, scllull=o{ 5 11l a2

1<jsn

provided in the case r = o0 and q < n, we assume in addition that either u tends to
zero at infinity or ue L' for some finite r, > 0.

Proof. Let u be as in the assumptions of the proposition. For any ¢ > 0 we define
the real valued function v by

u(x) = (Ju(x)|* + )2 — . (A.3)
First we show that the distributional derivatives of v are given by
0;0=([u]* +&*)~ ' Re<u,0,u. (A4

This is obtained by a regularization technique. Let {u,}, k =1, be a sequence of
%~ functions with values in 7~ such that u, - u in L] and almost everywhere,
and 0;u, — 0;u in Li..j=1,...,n. The corresponding v,, defined by
ka(x) = (luk(x)lz -+ 82)1/2 — & (A.S)
satisfy in an obvious way
0,0, =(u > +e)7 1 Reu,0u). (A.6)

: - .
From |v, —v| < |u, — ul, it follows that v, — v in L}, so that d,u, - d,vin @'. On

the other hand, by using the fact that u, — u almost everywhere and that 0,u, — 0,u
in L; , one sees that the right hand side of (A.6) converges to the right hand side
. This proves (A.4). Now since

of(A4)in L}
Re <u,0ju> = Re <u,Dju>,
(A.4) implies
]('ijl < [Djul (A7)

so that, by applying the usual Sobolev inequalities [8] to the scalar function v,
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one obtains

ol =chol{ ¥ osl.}

15j2n
<clofi{ ¥ Joull,} A9
Sjsn
The inequality (A.2) follows by taking the limit ¢ — 0 in (A.8).
Q.ED.
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