
Communications in
Commun. Math. Phys. 82, 1-28 (1981) Mathematical

Physics
© Springer- Verlag 1981

The Cauchy Problem for Coupled Yang-Mills and Scalar
Fields in the Temporal Gauge

J. Ginibre1 and G. Velo2

1 Laboratoire de Physique Theorique et Hautes Energies*, Universite de Paris-Sud, F-91405 Orsay,
France

2 Istituto di Fisica A. Righi, Universita di Bologna and I. N. F. N., Sezione di Bologna,
1-40126 Bologna, Italy

Abstract. We study the Cauchy problem for minimally coupled classical
Yang-Mills and scalar fields in n + 1 dimensional space-time in the temporal
gauge. We prove the existence and uniqueness of solutions for small time inter-
vals and for any n. We then develop a general theory of solutions in local spaces
and extend the previous local (in time) results to this more general setting. In
space-time dimensions two and three, we prove the existence of global (in
time) solutions by the method of a priori estimates, both in global and local
spaces. In space-time dimension four, our estimates yield only partial results
on the global existence problem.

1. Introduction

In spite of the large amount of work which has been devoted in the last years to the
Yang-Mills equations, a satisfactory understanding of the properties of their
solutions is still lacking. At the classical level most of the effort has gone into the
Euclidean version of the theory, partly because of the richness of its geometrical
structure, and partly because of its possible relevance to the quantized theory.
On the other hand the theory in Minkowski space-time poses an interesting and
non-trivial problem from the point of view of non-linear partial differential equa-
tions, and may appear as the classical limit of the quantized theory. The equations
in Minkowski space-time have been studied most notably by Segal [11] who has
considered the Cauchy problem for the pure Yang-Mills theory in four dimen-
sional space-time, in the so-called temporal gauge A0 = 0, giving a proof of the
existence and uniqueness of solutions of the Cauchy problem for small time
intervals. More recently, for coupled Yang-Mills and scalar fields in four dimen-
sions, Glassey and Strauss have studied the time decay of solutions [4], [5] and
have obtained a class of global solutions of a special type suggested by the known

* Laboratoire associe au Centre National de la Recherche Scientifique

0010-3616/81/0082/0001/S05.60



2 J. Ginibre and G. Velo

explicit static solutions [6]. A global existence proof for the Cauchy problem with
general initial data in four dimensional space-time would be of great interest.1

In this and in a subsequent paper we take up the Cauchy problem for minimally
coupled Yang-Mills and scalar fields in n + 1 dimensional space-time and extend
the previous results in two directions. One concerns the local problem and is
inspired by two remarks. First the Yang-Mills equations describe propagation
at finite speed; it is therefore unnatural to impose restrictions on the behaviour
at infinity of the initial data and of the solutions. A more natural setting consists
of working in local spaces as was done in [9]. The local theory developed in [9]
however was restricted to uniformly locally bounded initial data and solutions. In
the present paper we extend the local theory to remove this restriction and apply
it to the equations under consideration. This extended local theory also provides
a convenient starting point to study the "boost" problem considered in a more
general setting by Christodoulou [2]. The second remark that leads us to develop
a theory in local spaces is that the Yang-Mills equations carry with them a non-
trivial elliptic constraint which may, and in general will, produce long range
effects, especially in low dimensions. These long range effects may impose severe
and unnecessary restrictions on the initial data and on the solutions if one insists
on working in global spaces.

The second direction of our investigation is concerned with the global (in
time) existence problem. In this paper we prove the existence of global solutions for
coupled Yang-Mills and scalar fields in the temporal gauge in two and three space-
time dimensions, and obtain some partial results in space-time dimension four.
In the following paper we prove the existence of global solutions in two dimensional
space-time both for the coupled (possibly massive) Yang-Mills and scalar fields
in the Lorentz gauge and for a number of related models, namely for the so-called
O(N), CP(N), and GC(N, p) models. All these global (in time) existence results
hold both for the theory in global and in local spaces. The proof of the existence
of global results uses the standard method of a priori estimates in the form recently
developed by Moncrief [7] to treat the case of scalar electrodynamics in three
space-time dimensions. An important role in performing the estimates is played by
the Sobolev inequalities with covariant derivatives.

The paper is organized as follows. In Sect. 2 we introduce the basic notation,
write the equations, choose the dynamical variables and treat the local problem in
global spaces for arbitrary space-time dimension. In particular we prove the
existence, uniqueness and regularity of the solutions. This section is a straight-
forward extension of Segal's work [10], [11]. In Sect. 3 we develop at a semi-
abstract level a general theory of local (in time) existence and uniqueness in local
spaces. In Sect. 4 we apply this theory to the equations for coupled Yang-Mills and
scalar fields in the temporal gauge, for arbitrary space-time dimension. In Sect. 5
we study the problem of global existence: we derive the relevant estimates and
use them to prove the existence of global solutions both in global and local spaces
for space-time dimensions two and three. For space time dimension four our

1 After this paper was completed, we were informed by V. Moncrief that he and D. Eardley have
succeeded in obtaining such a proof [12]
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estimates prove that the solutions are either global or fairly irregular. The co-
variant Sobolev inequalities are proved in the Appendix.

The results of this paper and part of those of the subsequent paper were an-
nounced in [3].

2. The Cauchy Problem in Global Spaces for Small Time Intervals

In this section we begin our study of the initial value problem for the classical
Yang-Mills field minimally coupled to a scalar field, in the temporal gauge
Ao = 0. We first introduce some notation. The Yang-Mills potential Aμ(t, x) is
a function from n + 1 dimensional space time to the Lie algebra ^ of a compact
Lie group G. The corresponding field is Fμv = dμAv — dvAμ + e[Aμ,Av~], where
[,] denotes the commutator in ^. We assume the existence of a non-degenerate
positive definite bilinear form in ^, denoted by <.,.>, invariant under the ad-
joint representation of the group. If G is semisimple one can take the Killing form;
if G is commutative one can take any positive definite form on $. The scalar field
φ(t, x) belongs to a unitary representation of G in a finite dimensional complex
vector space 3F. We also denote by <.,. > the invariant scalar product in #" and
we use the same notation for an element of ^ and for its representative in # \ We
shall write < £ , B } = \B\2. We use the same notation Dμ for the covariant deri-
vative in ^, where D = dμ + e[^4μ? ] and in #", where Dμ = dμ + eAμ. We use the
metric gμv with g00 = 1, g.. = - 1, gμv = 0 for v ψ μ.

The field equations are the variational equations associated with the
Lagrangian density

(2.1)

where V is a real Ή1 function defined in U + with F(0) = 0. The equations are

Kμ = DλF
λμ + Jμ = 0, (2.2)

\\2 (2.3)

where Jμe% is defined by < Jμ, C) = 2eRe(D μφ, Cφ} for all Ce^, and V is the
derivative of V. As is well known, in order to convert these equations into an evo-
lution equation for a suitable set of dynamical variables, ones needs to add a gauge
condition on the potentials. Here we choose the temporal gauge Ao = 0. It can be
shown that any suitably regular potential Aμ can be transformed into a new
potential with Ao = 0 by a gauge transformation [11]. In this gauge we choose
as dynamical variables the quantities A = {A., 1 ^ j rgπ}, Fo = {FQ., 1 Sj Sn},
F = {Fjk ,l^j<kSn},φ,ψ0 and ψ = {φ., 1 kj ^ n} (φμ has to be thought of as
Dμφ). The variational equations can be conveniently rewritten as the following
first-order system of equations of motion

0 -R*

(2.4)
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/Φ\ /0 ί °\/Φ\ / ° \
<9 I ι/̂  1 = ( 0 0 R \{ φA+ I-eAkφk-φV'Y (2.5)

oι o i l I I ° / 1 k I

\φj \0 -R* 0/\φ/ \e{Aφo + Foφ)J

supplemented by the constraints

i c o - υ , {i.i)

φ. = D.φ. (2.8)

Here Jo and J = {J., 1 rgy ^n} are supposed to be expressed in terms of φ, φ0

and φj 1^ is the n xn{n— l)/2 matrix operator with entries (i^A)fcίf = — δ*δk 4-
5*9̂  and K is the 1 x n matrix operator with entries (R)j

0 = — dj. The system of
equations (2.4) and (2.5) can be written more compactly as

d0u(t)=Tu(t)+f{i4t)), (2.9)

where

T =
*ndTΛ9TφJΛ9

and/^ can be read directly from (2.4) and (2.5). The fields uA and uφ take values in
the finite dimensional vector spaces i^A = ̂ (g)U2n+nin~1)/2 and V ώ = ̂ ® C 2 + n

respectively, so that u takes values in y — ̂ A®^φ- The Cauchy problem for the
equation (2.9) can be transformed into the following integral equation

u(t) = U{t)uo+ ]dτU(t - τ)f(u(τ)\ (2.11)
o

where u0 is the initial condition,

(2.12)

with ω± = {RAR^)1/2 or equivalently (ω2)^ = - dtB
j - Δδj, and

/ H ω ^ ^ i n ω ί (1 — cosωί)ω~ 2R\
C/0(t) = I 0 cosωί (sinωίjω" 1 !? j (2.13)

\ 0 - R * ω " 1 sin ωt cos(R*R)1/2t J

with ω = (RR*)112 = ( - zl)1/2.
In this section we look for solutions u(t) of (2.11) as continuous functions of t

with values in the space Jfk = jfk(Un) (where k is a non-negative integer) of
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functions from Un to V for which

HI2 = Σ Σ I l l ^ x l l l ^ .
σ \oc\^k

Here α is a multiindex and σ labels the components of u corresponding to the
decomposition (2.10) and, possibly, for each term in this decomposition, to its
various components in an orthonormal basis of Un, so that, for each σ, uσ takes
its values in & or #\ Finally || ||β denotes the norm in Lq(Un). The space J^k(Rn) is a
direct sum of usual Sobolev spaces.

In order to prove the existence of solutions of (2.11) we need the following
properties of U(t).

Lemma 2.1. For any k, U(t) is a (bounded) strongly continuous one parameter
group in 3Ί?k and, for any teU.for any us^ίfk, U(t) satisfies the estimate

where \\W)u\\Zμ(t)\\u\\, (2.14)

{ l+ | | ί | ( | ί | + (ί2 + 4)1/2)}1/2. (2.15)

Proof. It will be sufficient to prove (2.14) for smooth u. The estimate is satisfied
separately by UJt) and Uφ(t). We prove it only for U Jt\ the proof for Uφ(t) being
similar. Since UJt) essentially describes the evolution under the free Maxwell
equations, it is well known that, for any multiindex α of space derivatives, the
quantity

is time independent under the evolution described by UA(t). We next consider the
quantity

N(ί)2= Σ Ill-will2> (2 1 7)
which satisfies

Therefore = i l H V ' i n ' " ( 2 1 8 )

s o t h a t N(t)^N(0) + M(0)\t\, (2.19)

M{tf + N(t)2 ^M(0)2 + (N(0) + M(0)\t\f

^(M(0)2+N(0)2)μ(t)2, (2.20)

where
μ(t)2 = Sup{l + (a + | ί | ) 2 } ( l + a2)- '. (2.21)

α>0

By an elementary computation (2.21) yields (2.15). The required estimate for
UJt) follows from (2.16), (2.17) and (2.20).

Q.E.D.
We can now prove the existence of local solutions of (2.11). For any interval
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/and any Banach space £fi we denote by ̂ (/ , J*) the space of continuous functions
from / to J , and, for any positive integer /, we denote by ^ ( / , 0$) the space of
/-times continuously differentiable functions from / to $. For compact /, ̂ (/, &)
is a Banach space when equipped with the Sup norm.

Proposition 2.1. Let k=[n/2 + 1]([X| is the integral part of λ\ Ve^k+2(R+)
and uoejfk. Then there exists To > 0, depending on \\uo\\, such that (2.11) has a
unique solution ue^([~ To, Γ o ], J^k).

Proof. The result is a straightforward application of the methods of [10], using
Lemma 2.1 and the fact that/satisfies a Lipschitz condition, namely

\\f(u)-f(v)\\SC0(p)\\u-υ\\ (2.22)

for all u, vejf?k such that || u ||, || t; || <ίp, where Co( ) is an increasing real function.
This in turn follows from the assumption Ve^k + 2 (U+\ from the fact that the terms
in/not containing Fare bilinear in the components of w, and from the fact that the
Sobolev space Hk{Un) is a Banach algebra for k > n/2([l] Theorem 5.23 p. 115).

Q.E.D.

If the initial data and the interaction potential V satisfy additional regularity
properties, the solution is also more regular.

Proposition 2.2. Let k' ̂ k = [n/2 + 1], let Ve%k' + ί(M + ) and let uQejfk>. Let I be
an interval ofUcontaίning the origin and letue<g(I, jek) be a solution of (2.11). Then

& k'£

Proof First we prove that Me*(/, J^k') by induction. Suppose that ue<g(I, H*~ι)
for some /, k < < g kf. We want to show that ue^(I, tf') or equivalently that, for
any multiindex α with |α| = { - k,daue%(I, #ek\ Let va = d«u. Then υ«£%(I, J^k~ *)
and va satisfies the equation

tf(t)= U(t)d\+ )dτU(t-τ)h^(u(τ)X(τ) + g%u(τ))\, (2.23)

where ga is a polynomial in the space derivatives of u of order at most t — k — 1
and in the derivatives of/ with respect to u of order at most ( - k. From the assump-
tion on F, the induction assumption, and the fact that Hk(Un) is an algebra, it

follows that ga(u(τ)) and -^- (w(τ)) belong to #(/, jf*). Furthermore the inhomo-
(j

geneous term U(t)dau0 belongs to ^(I,J^k) by assumption. Therefore (2.23)
considered as a linear integral equation for va has a unique solution both in

?k) and in #(/, J f ^ 1 ) . These two solutions coincide and therefore daue
, jfk). This completes the induction proof that κeίf(/, Jffc')
We can now prove Proposition 2.2 by induction on t. Suppose ue f]

Ήj(h ^k'~j) = Y;-.! for some tf with 0 < f ^ K. By Sobolev's inequalities this also
implies that/(w(τ))e Ye_ ί and since T maps J^m into 3^m~1 for any m, also [/(- τ)
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f(u(τ))e Ύe_ x . From (2.11) written in the form

ύ(t) = U( - t)u(t) = u0 + fdτC7( - τ)f(u(τ)\ (2.24)
o

it follows that ue# (/, Jek')n( f] %j+ x(J, Jffc'~j) ) . That in turn implies that

I, 2tfk'~% which completes the induction.
Q.E.D.

Remark 2.1. From the equations dQA. = FOj. and <30</> = φ0 and from Proposition
2.2, it follows that each component of A. and of φ actually belongs to ̂ + * (/, Hk ~ *)
forallΛO^^gfe'.

Remark 2.2. In the standard regularity theorems ([10], Theorem 3, p. 353, and
corollaries), space regularity of the solutions follows from the fact that the solutions
remain in the domain of suitable powers of the infinitesimal generator Γof the free
group. In the present case however, Γis highly degenerate and these domains are
not related in a simple way to the spaces Jffe, so that it is easier to give the previous
direct proof.

So far we have considered the system (2.4) and (2.5) without taking into account
the constraints (2.6), (2.7) and (2.8). We now show that these constraints are pre-
served in time.

Proposition 2.3. Let k= \nβ + 1], let Ve^k + 1(U + ) and let uQej^k. Let I be an
interval ofU containing the origin, and let ue^(I,j^k) be a solution of (2.11).Let u0

satisfy (2.6) (respectively (2.8)) at t = 0. Then u(t) satisfies (2.6) (respectively (2.8))
for all tel. If in addition u0 satisfies (2.7) at t = 0, thenu(t) satisfies(2.7)for all tel.

Proof. From Proposition 2.2 and Remark 2.1 it follows that the quantities Fjk -
djAk + dkAj — e[Aj,Ak~] and φj — Djφ belong to (&1(I,Hk~1) componentwise.
Furthermore their first time derivatives vanish by (2.4) and (2.5), so that they
vanish for all times. Similarly from Proposition 2.2 it follows that J^e^^/,//*"2)
componentwise and that K.e^il,!^"1) componentwise. Therefore DμK e
#(J, Hk~ 2) and, by a direct computation, using (2.4), (2.5), (2.6) and (2.8), DμKμ = 0.
This implies that d0K0 = 0, so that Ko vanishes for all times.

Q.E.D.

3. Abstract Cauchy Problem in Local Spaces for Small Time Intervals

In this section we develop a general theory of equations of the type (2.11) in
local spaces. In order to cover our needs and to illustrate the scope of the method, it
will be sufficient to consider spaces of Sobolev type. Let therefore X be a finite
direct sum of Sobolev spaces Wm'p(Un) with m non-negative integer and 1 ̂  p < oo,
possibly for different values of m and p. For any open set Ω in Un, let X(Ω) be the
corresponding direct sum of Wmp(Ω\ In this section we shall denote by || || the
norm in X and by || | | β the norm in X(Ω). For any open set Ω, let rΩ be the operator
of restriction to Ω, namely the multiplication by the characteristic function of Ω.
For any open set Ω' ZD Ω, rΩ is a norm decreasing map from X(Ω') to X(Ω). For any
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open set Ω, we define Xloc (Ω) as the space of functions u such that rΩ, ueX(Ω') for
any open bounded set Ω' with closure Q! contained in Ω (Ω' a a Ω). Xloc (Ω) is a
Frechet space, when equipped with the family of seminorms || u\\Ω, = \\rΩ,u ||. We
shall use the notation Xloc for Xloc (Un). For any bounded open set Ω with regular
boundary dΩ (by which we mean that dΩ is smooth, for instance ^°°, and that
locally Ω lies on only one side of it), it is known [1] that there exists an extension

j Ω which is a bounded map from X(Ω) to X, namely

||7> 1 rgC^HU (3.1)

and such that rJΩu = u for all ueX(Ω). Furthermore one can choose j Ω such that
for all ueX(Ω), jΩu has compact support contained in a fixed bounded open set
Ω' =? ZDΩ ([1] Theorem 4.26, p. 84). We shall be interested especially in the case
where Ω is the open ball B(x, R) with center x and radius R in Un. In this case we
shall make the following choice ίoτjΩ. For each component uσeWmiP(B(0,1)), we
choose an extension j ί σ such that, for some δ > 0, Supp jlσuσ £ £(0,1 + δ) for all
uσeWmtP{B(091)) and such that ([l],loc.cit), for any multiindex α, 0 ̂  |α | gm,

\ Σ \\3βuσ\\pΛ, (3.2)

where || | |p denotes the norm in Lp{Un) and || \\ptR denotes the norm in Lp(£(0, R)).
The extension^ is defined as the appropriate direct sum of the jχ σ's. Then, for any

Ω 1 ) - \ (3.3)

where D{x,R) is defined by (D(x,R)u)(y) = u{{y - X)/JR) and maps X(B(0,1)) onto

X(B{x,R)).

Lemma 3.1. Let Ω = B(x, R) and letjΩ be given by(3.3).Then

Io, (3.4)

where, for any RQ > 0, C^R) is uniformly bounded for R^RQ.

Proof By translation invariance in Un it will be sufficient to consider the case
x = 0. In addition it will be sufficient to prove (3.4) for each component uσ of u,
uσeWm'p(Ω). For brevity we drop the index σ. From (3.3) it follows that

SC Σ \\D(0,R)dPD(0,R)-1u\\p>R (3.5)

for all ueWm>p(B(0, R)). SincedaD(0, R) = R~](x] £>(0, R)d\ (3.5) yields

p p.

βAβ\*\*\

from which the Lemma follows.

Q.RD.
An essential ingredient of the theory is the fact that the free group U(t) describes

propagation with velocity at most one. In order to exploit this property we intro-
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duce some definitions. For any open set Ω a Un and for any teM, we define

and

+{t) = Ωu([JB(x9\t\)\ (3.6)
\xeΩ /

O(ί)=C{(Cf i ) + ( ί ) } , (3.7)

where C denotes the complement in Rn. If Ω = B(x, R), then Ω± (t) = £(x, Λ ± | ί |)
with the convention that β(χ, R) = 0 if # g 0.

We shall call dependence domain any open subset Q of R + x Un (this means in
particular that Q :({0} x R") is open in Un+1) such that for any (ί, x)eβ, Q contains
the set {(t\ xf) :t' ̂  0 and | x - x' \ S t - t'}.

This definition implies in particular that the sets

Q(t) = {x :xeUn and (ί, x)eQ} (3.8)

are open and that there exists a function θ from R" to U+ such that

Q = {(t,x):0£t<θ{x)}9 (3.9)

and that for all x, x'εR",

\θ(x)-θ(xf)\^\x-xf\. (3.10)

Conversely, any function θ from Un to [R+ satisfying (3.10) defines a dependence
domain through (3.9). Clearly any finite intersection and any union of dependence
domains is a dependence domain.

We now abstract the crucial property of the free evolution in the following
definition. We shall call hyperbolic semigroup a strongly continuous one para-
meter semigroup U(t) in X l o c for which, for any teU +, for any open ball Ω = B(x, R),
there exists a constant μ(Ω, t) ̂  0, uniformly bounded for (R, t) in compact subsets
of (0, oo) x [0, oo), such that

\\m)u\\Ω^t)ύμ(Ω,t)\\u\\Ω (3.11)

for any ueXloc.
The following lemma is an immediate consequence of the previous definition

Lemma 3.2. Let teU + and let Ω be an open ball in Un. Then

1) For any u19u2eXl0C such that rΩ + (t)u1 =rΩ + (t)u2,

rΩU(t)Ul=rΩU(t)u2. (3.12)

2) Let Ω' be a bounded open set containing Ω+(t) (respectively an open set
containing Ω+(t)),Ω// a bounded open set with regular boundary such that
Ω+ (t) c Ω" c Ω' (respectively Ω+ (t) a Ω" a a Ω') and jΩ,, an extension from
X(Ω") to X. Then

UΩΩ,(t)^rΩU(t)jΩ,,rΩ,, (3.13)

defines a bounded operator from X(Ω') to X(Ω) (respectively from Xloc(Ωf) to X(Ω))
independent ofΩ" andjΩ,,.
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3) The operator UΩΩ, (t) is strongly continuous in t for any t such that
Ω+(t)czaΩ\

We now turn to the interaction term. We shall call local interaction a contin-
uous function/from / x Z l o c to X loc, where / is an interval of 1R containing the
origin, such that for any compact subinterval J of 7, for any open ball Ω in Un,
for any pe(R + , the following inequality holds

Sup\\f(t9u)- f{t,v)\\Ω£C0{Ω9J9p)\\u-υ\\a (3.14)
teJ

for all u, veXloc such that || u \\Ω91| υ \Ω <> p. In addition for Ω = B(x, R\ C0(Ω, J, p)
is assumed to be bounded for R in any compact subset of (0, oo).

The previous definition implies immediately the following lemma.

Lemma 3.3. Let Ω be an open ball in Un. Let Ω' be a bounded open set containing
Ω (respectively an open set containing Ω\ Ω"a bounded open set with regular bound-
ary such that Ω <ZL Ω" a Ω' (respectively Ω a Ω" a a Ω'\ and jΩ,, an extension
from X(Ω") to X. Then

fΩQI(t, u) = rΩf(tJΩ,,rΩ,,u) (3.15)

defines a continuous map from I x X(Ω') to X(Ω) (respectively from I x Xloc(Ω/) to
X(Ω)\ independent ofΩ" andjΩ>,.

Remark 3.1. The choice of the extension j in Lemmas 3.2 and 3.3 is immaterial.
The only role played by j is to ensure that for any open set Ω' and any open ball
Ω a aΩf the map u^rΩu from Xloc(Ωf) to X(Ω) is surjective.

We shall look for solutions of the equation

u(t) = U(t)u0 + } dτ U(t - τ)/(τ,u(τ)\ (3.16)
o

where U(t) is an hyperbolic semigroup, f(t, u) is a local interaction, defined for
ίeJ, and u0 is the initial data, in the following sense. Let Q be a dependence domain
such that [0, t)al, where f = Suρ{ί \Q{i)φ 0 } By an Xloc-valued solution of
(3.16) in β, we mean a set of pairs {(ί, u(t)}, 0 ̂  t < t, such that

(1) for any te[0J\u(t)eXloc(Qm
(2) for any ίe[0,ί) and for any open ball Ω c cz Q{t),rΩue&{[0, t\X(Ω))

and the following equality holds

rΩu(t) = UΩ (t)u0

(3.17)
t

+ ίdτ l/o > f l + ( ί_τ )(ί - τ)/β + ( ί_ τ ) ; β ( r_ τ )(τ,u{τ)).
0

It is clear that, if Q and Q' are two dependence domains with Q<^Qf, any solution
in Q' has a natural restriction to Q which is a solution in Q.

We can now prove the following uniqueness result.

Proposition 3.1. Let ζλ, / = 1,2, be two dependence domains, let U(t) be an hyper-
bolic semigroup, letf.J = 1, 2, be two local interactions defined for tel and such that
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for all tel

g{U u) = fx (f, u) - fλ (ί, 0) = f2 (r, u) -f2 (u 0), (3.18)

and

f1{t,0)=f2{t,0) in Qt{t)nQ2(t)9 (3.19)

let uOi eXloc(Q.(0)), i= 1,2, be such that uΌ1 =u02 in 6 i (0) n 6 2 ( ° ) and let w.,
i— 1,2, be Xloc-valued solutions of(3.16)in Qi with initial data uOί and interactions f..
Thenu1 = u2inQ1nQ2.

Proof, it is sufficient to prove that for any t and any open ball Ω c aQ^ήn
62(t),rβu1(ί) = rΩu2{t). By taking the difference of the equations (3.17) for u1 and
u2 and by using Lemma 3.2, Lemma 3.3 and (3.19), we obtain

s

(t_shΩ + {t_τ)(s - τ)

for all s with O ^ s ^ ί . Lemmas 3.2 and 3.3 and (3.11), (3.14), then imply

tt^T) - ^ ( T ) ! ! ^ ^ ^ . ^ . (3.21)

where the constant C depends on β, on ί, and on Max Sup || u.(τ) \\Ω+{t_ From

(3.21) and the assumption uoι = u02 in Q^nQ^O) it follows that uΛs) = κ,(s) in
β + ( ί - s ) for all se[0,t].

Q.E.D.

We now turn to the existence problem. We first consider the case where u0 and
/(ί,0) have compact support.

Proposition 3.2. Let U{t) be an hyperbolic semigroup, let Ω be an open ball in
Un, Letf be a local interaction defined for tel with Supp f(t, 0) c Ώ+(t)for all tel,
let uoeX with Supp u0 a Ω. Then there exists a To > 0 with Toel and a function
M€?ί?([0, To], X) with Supp u(t) c β + (ί)/or α// ίe[0, To] and satisfying(3.16) for all
ίe[0, T o].

. For any T > 0, Γe/, we define

^ τ - {u:M€*([0, Γ], X) and Supp κ(ί) s β+(ί) for all te[0, Γ]}. (3.22)

One sees easily that 9£Ύ is a Banach space when equipped with the norm

IIMII = Sup| |n(ί ) | | β + ( t ) . (3.23)
te[0,T]

The operator S, defined by

(SM)(ί) = U{t)u0 + ]dτU(t - τ)/(τ, u{τ)\ (3.24)
o
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maps ΘCΎ into 3CT and, for T sufficiently small, is a contraction, as can be seen from
(3.11) and (3.14). The fixed point of this contraction provides the solution we are
looking for. Q.E.D.

Remark 3.2. In the special case under consideration, Proposition 3.2 provides a
solution of the equation (3.16) in the dependence domain

Q = ([0, T0)xR")v {(t,x):t ^ 0 and xφΩ+(t)}.

This solution is obtained by extending the function u obtained in Proposition 3.2
by zero in the part of Q with ί ^ T o .

We are now able to treat the local existence problem for general initial data
u0eXloc{Ω) where Ω is an arbitrary open subset of Un (possibly Ω = U").

Proposition 3.3. Let U(t) be an hyperbolic semigroup, f a local interaction defined
for tel, let Ω be an open subset ofUn, and let u0eXloc(Ω). Then there exists a depen-
dence domain Q with β(0) = Ω (i.e the associated function θ is strictly positive in
Ω) and a (unique) Xloc-valued solution of (3.16) in Q.

Proof. We first show that to any open ball Ωo = B(x0, Ro) c cz Ω there is associat-
ed a (non-trivial) dependence domain QΩo with QΩo{0) = Ωo, and a solution of (3.16)
in QΩo. In fact let u'o =jΩrΩu0 and

f% u) = Wflo/fc °) +/&w) -/& °)
Then u'o and f'(t, 0) have compact support contained in the ball Ω' —
B(xo,(l + δ)RQ). By Proposition (3.2), there exists TΩo and uΩ(έ#([0, TΩJ9X)
satisfying (3.16) for all ίe[0, TΩo] with uo replaced by u'Q a n d / by/'. Applying
rΩo (t) to this equation for arbitrary £e[0, T Ω o ] one sees easily that the restriction
of UΩQ to the dependence domain QΩo = {(t, x): 0 ^ ί < TΩo, x G Ω O _ (t)} is a solution
of (3.16) in that domain.

We now define Q as the union of the dependence domains QΩ associated in
this way to all open balls Ωo c <= Ω and we define u in Q by u = uΩ in QΩ . This
definition makes sense by Proposition 3.1 and u thereby defined is easily seen to be
an Xloc-valued solution of (3.16) in Q.

Q.E.D.
Remark 3.3. The use of the extension j in the proof of Proposition 3.3 is not essen-
tial and can be avoided by a cutoff procedure. For Ωo = B(xo,Ro) c c £2, let Ω"
be an open ball with Ωo a a Ω" a c Ω, let ge%$ with 0 ^ gf ^ 1, g = 1 in Ωo and
gr - 0 in CΩ", and let ^ = guoj'% u) = gf (ί, 0) +/(ί, M) - / ( ί , 0). Then w^eZ,
Supp MQ CZ Ω" and Supp// 7(ί, 0) cz Ω''. One can then proceed as in the proof of
Proposition 3.3 with uf

0 replaced by U'Q and/'(ί, u) by/'^ί w). The advantage of
using the extension; is that u'o is estimated in terms of rΩςuQ only, through

whereas u"0 is estimated in terms of rΩ,,u0 through

This point will be important in some future applications. In addition the constant
C 1 (Ro) is independent of x0, whereas for fixed ,R0, the constant C(Ω0, Ω") in general
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blows up as a function of x 0 when the distance of Ωo to the boundary of Ω (and
therefore to the boundary of Ω") tends to zero.

Remark 3.4. The shape of the dependence domain obtained in the proof of Proposi-
tion 3.3 (we restrict our attention to the case where i ί 0 e l l o c ) will depend on the
constants μ(Ω, t) appearing in (3.11), C0(Ω, J, p) appearing in (3.14), on the local
norms of u0 in the spaces X(Ω) and, through the construction of u'o, on the constant
Cί {R) appearing in (3.4). Of special interest is the case when μ and C o are uniformly
bounded with respect to space translations of Ω. In this situation, if in addition
u0 is uniformly locally bounded, namely, if for some R and Ω = B(x, JR), || u0 \\Ω is
uniformly bounded in x, then, for ΩQ = B(x0, Ro\ the time TΩ that occurs in the
proof of Proposition 3.3 can be taken uniformly bounded from below with respect
to x0, TΩQ ^ T o > 0, so that the dependence domain Q contains a strip [0, To] x ίRπ.
This situation is considered in particular in [9]. If the local norm || u0 \\Ω increases
when I x01 tends to infinity, we expect the dependence domain Q to become thinner
at infinity. On the contrary, if the local norm || w0 | |Ω tends to zero as | x o | tends
to infinity, the dependence domain is expected to thicken at infinity. In particular, if
the constant C0(Ώ, J, p) tends to zero when p tends to zero for fixed Ω and J and
if the local norm of u0 decreases sufficiently fast at infinity, one can ensure that the
function θ(x) defining Q (see (3.9) and (3.10)) increases linearly at infinity, namely
θ(x) ~ y\x\ for some γ, 0 < γ < 1, thereby solving the so-called "boost problem"
considered in a more general setting in [2]. This is achieved by imposing conditions
on u0 that ensure that, for any ΩQ = B(xo,y\xo\) with |xo | Ξ>α >0, one can take
TΩQ = y |x o | , so that Q contains the region {(r,x):0 ^ ί < y\x\}. In fact, it follows
from (3.4), (3.11) and (3.14) that a sufficient condition for the operator S defined by
(3.24) with u0 replaced by u'o =jΩorΩouo to be contracting in ΘCΎ is

T Sup μ(B(xo,L\t)

R^L^R+2T

x co(£(xo, R + n [a n c1(y|χol)ll«olliκxo.yiχoi)) < ! ' (3 2 5 )

where R = (1 + <5)y|xo|. For T = y\xo\ and if C(ί2, J, p) tends to zero as p tends to
zero, (3.25) takes the form

k l U M | , o | > ^ ( * o ) (3-26)
for a suitable function φ. This condition expresses the required decrease of u0

at infinity. More precise estimates would require more detailed information on
U(t) and on f(t, u). The method has a large flexibility and can handle more com-
plicated situations, where for instance u0 tends to zero in some directions, and to
infinity in others, when | x01 tends to infinity. The dependence domain of Remark 3.2
is a limiting case of the previous construction: with the best possible decrease
available, namely with u0 having compact support, the dependence domain Q
has θ(x) ~ \x\ at infinity.

4. The Cauchy Problem in Local Spaces for Small Time Intervals

In this section we apply the general theory developed in Sect. 3 to the coupled
Yang-Mills and scalar fields previously considered in global spaces in Sect. 2.
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We consider again the system (2.4) and (2.5) in the integral form (2.11), supple-
mented by the constraints (2.6), (2.7) and (2.8). The space X of Sect. 3 now becomes
the space jf* of Sect. 2 and, for any open set Ω c Un, the spaces j f k(Ω) and ^\OC{Ω)
are defined accordingly. In order to apply the general theory we have to verify
that U(t) defined by (2.12) and (2.13), is an hyperbolic semigroup and that/, which
can be read off from (2.4) and (2.5), is a local interaction in the sense of Sect. 3.
For this purpose it will be convenient to introduce the following notation: for any
open ball Ω, for any teU, we define

Q(Ω,ή = {(t\xf):0 ^\tf\<\t\jtf ^0andx'eΩJt')}. (4.1)

(For t > 0, Q(Ω, t) is a dependence domain in the sense of Sect. 3.) In addition,
for any q, 1 ̂  q g oo, for any open set Ω, we denote by || || Ω the norm in Lq(Ω).

Lemma 4.1. For any non-negative integer k,U{t) is a strongly continuous one-
parameter group in fflfoc, and, for any t e U,for any open ball Ω c Un,for any u£^oc,
the following estimate holds:

\\U(t)u\\ΩJt)ϊμ(t)\\u\\Ω, (4.2)

where μ(i) is defined by (2.15). In particular U(t) is an hyperbolic group in ^\oc.

Proof. It will be sufficient to prove (4.2) for t positive and smooth u. The estimate
is satisfied separately by UA(t) and Uφ(t). We prove it only for UA(t\ the proof for
Uφ(t) being similar. For any solution of the free evolution equation uA{t) =
UA(t)uA(0) (see (2.10)) it is well known and easy to check that for any multiindex
α of space derivatives,

dμΘ
μ = 0, (4.3)

where

Θ°= - i < 3 α F ° ^ α F O j > + ^ < δ α F ^ , 5 α F . , > (4.4)
and

Θ'=(d«F0Γd«Fj*}. (4.5)

The vector Θμ is time-like by Schwarz's inequality and has a positive time com-
ponent. Now let Ω be an open ball and t > 0. Integrating (4.3) in Q(Ω, t\ applying
Gauss's theorem, and taking into account the fact that Θμ is outgoing on the side
surface of β(Ω, ί), we find

j dxΘ°{t)S\dxΘ°{ϋ). (4.6)
Ωjt) Ω

On the other hand

do{ - \(VA\ d"A.>} = - <5M., 3 α F o j >. (4.7)

If we now define

M(t)2 = Σ «\8"Foj{t)\ f241 (() + Σ II \d*Fjk(t)\ \\iΩ (() (4.8)

and

( t ), (4-9)
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then (4.6) and (4.7) yield
(4.10)

and

N(t) g N(0) + }dτM(τ) ^ N(0) + tM(0). (4.11)
o

From there on the proof proceeds as that of Lemma 2.1.
Q.E.D.

We now turn to the interaction.

Lemma 4.2. Let k ̂  [w/2 + 1], let Ve «* + 2 (R + ) and let X = J f *. Then f is a local
interaction in X l o c = 3^k

oc; more precisely, for any open ball Ω a Un,for any peU + ,
/satisfies the estimate

\\f(u)-f(v)\\Ω^C0(Ω,p)\\u-v\\Ω (4.12)

for all u and vej^\oc with || u \\Ω, || ι> | |Ω ^ p. Furthermore, for Ω = B(x, R), C0(Ω, p)
can be taken independent ofx and uniformly bounded for R^R0> 0.

Proof. The estimate (4.12) is a local version of the estimate (2.22) and follows from
the assumptions on V, the fact that the terms in/not containing V are bilinear in
the components of u and from Sobolev inequalities in Ω. These inequalities are
derived from the corresponding ones in 1R" by using the extension j Ω . The stated
properties of C0(Ω, p) follow from Lemma 3.1.

Q.E.D.
The local existence result of Proposition 3.3 can be restated as follows.

Proposition 4.1. Leth=\nβ+\\ Ve%k+2(M + )αnduoejelc.Thenthereexίstsα
dependence domain Q with Q(0) = M" and a (unique) J^\0Q-valued solution of (2.11).
in Q (in the sense of Sect. 3).

As compared to the general case, we note that here μ does not depend on Ω
(compare (3.11) with (4.2)) and C o does not depend on J (compare (3.14) with (4.12))
and can be taken invariant by translation of Ω. As mentioned in Remark 3.2, this
implies in particular that, if u0 is uniformly locally bounded, then the dependence
domain Q of Proposition 4.1 contains a strip.

We now turn to the problem of the regularity of the solutions for suitably regu-
lar initial data.

Proposition 4.2. Let k'^k= [n/2 + 1], let Ve^k' + 1(U+\ let Q be a dependence
domain, let u0ej^fk

oc (β(0)) and let u be an J^k

oc-valued solution of(2.11)in Q. Then,
for any t>0 and any open ball Ω such that Ω a a Q(t), rΩue^([0, t~\, j T * w ( ί 2 ) )
for any ί, 0 ^ / ^ k'. In particular u is an Jf^-valued solution of(2.11)in Q.

Proof. Let t > 0 and let Ω be an open ball such that Ω a c Q(t). Let Qo = Q(Ω+ (t), t)
(see (4.1)). We shall prove that there exists a finite covering of the interval [0, ί]
by open subintervals I. of U +, and for each j , a function u.e^il., 3^k) such that

(a) Uj coincides with u in QQn (I. x U%

(b) u.e&ilj, tfk'-£) for any /,0 kί ^k!.

Let se[0,ί] and let

U'(S)=JΩ+(t-s)rΩ+(t-s)

U(Sl ( 4 1 3 )
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where the extension j Ω is adapted to the space Jfk>. Then by Proposition 2.1,
the equation

v(t) = U(t - s)u'(s) + \dτU(t - τ)f(v(τ)) (4.14)

has a unique solution vse^(\_s,s + Γ o ] , Jffc). From Lemma 3.1 and the fact that

+ ( ( _ S ) < O O , (4.15)

it follows that u'(s) is uniformly bounded in Jf* for se[0, t] and therefore, by
Proposition 2.1, To can be taken independent of s. We now define t. = j To/2 for
0 ^ j ^ [2ί/T0 - 1], Γ. = [ί., t. + T o) and w,-= ι>tΓ Then, for a l ί ; , κ . solves
the equation for ϋ

(4.16)

for all seΓj. On the other hand, it follows from (3.17) and (4.13) that u also solves
(4.16) in ΐ. for all j . The same argument as in the proof of Proposition 3.1 then
implies that u = u. in the translated dependence domain Qo n (Γ. x Un). This proves
statement (a) above with / 0 - ΓQ and I. = (tj9 t. + Γo) for 1 g>j ^ [2t/TQ - 1].
Statement (b) follows from Proposition 2.2 by an elementary induction argument
on j . Proposition 4.2 is an immediate consequence of statements (a) and (b).

Q.E.D.

Remark 4.1. From the equations d0A. = FQ. and doφ — ψo, it follows that for
any t > 0 and any open ball Ω such that Ω c c Q(t\ each component of A. and of
φ actually belongs to &+ι{ [0, i], Hk'~\Ω)) for all ί, 0 ^ t ^ k1.

As in Sect. 2, we now show that the constraints (2.6), (2.7) and (2.8) are preserved
in time for the solutions of (2.11).

Proposition 4.3. Let k = [n/2 + 1], let Ve^k+1 (U+\ let Qbea dependence domain,
let uoe Jfk

QC(Q(0)) and let u be an J^k

oc-valued solution of (2.11) in Q. Let u0 satisfy
(2.6) (respectively (2.8)) in β(0). Then u(t) satisfies (2.6) (respectively (2.8)) in Q(t)
for all t. If in addition u0 satisfies (2.7), then u(t) satisfies (2.7) in Q(t)for all t.

Proof. The proof is similar to that of Proposition 2.3. One simply replaces the spaces
«*(/, Hm) by ̂  ([0, ί ] , Hm(Ω)) with t > 0 and Ω an open ball such that Ω c c Q(t).
In the case where m < 0 (this occurs for the preservation of (2.7) for n = 1), one
uses instead of Hm(Ω) the space of distributions 3f\Ω^) for some open ball Ω1

such that Ω c c ^ c c Q(ή.
Q.E.D.

5. Existence of Global Solutions

In this section we prove the existence of global solutions of the equation (2.11) for
n = 1,2, and make some comments on the cases n = 3,4. The proof relies on a
priori bounds on the solutions in jfk. These in turn follow from estimates on
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conserved or quasiconserved quantities which we now set out to define formally.
The energy of the system is defined by

o j \\}- (5 ] )

More generally we define

D(FOj} - ^D'F^D^y

/ ^ > } , (5.2)

E2 = fdx{ - ±(&&FV,DkDeFOj) + ̂  y , y

+ <DkDeψ°,DkD,φoy - (DkDψ,£>A^ >}> (5-3)

and so on. We shall derive the relevant estimates in Lemmas 5.1 to 5.6 below.

Lemma 5.1. Let k = [n/2 + 1], let Fe^ k + 1 (IR + ) and let uoej^k. Let I be an interval
ofU containing the origin and let ue ̂ {1, ^k) be a solution of (2.11). Then

(l)E0(t) = E0(0)forallteI.
(2) Let in addition Vsatisfy the condition

V(p) ^ - a2p (5.4)

for some a Ξ> 0. Then FQi F,A,ψo,ιl/ and φ are estimated in L2 in terms of the initial
data for all tel. More precisely

+Σill^Wl!l2

2j+Ill-will,2

v(t), (5.6)

where

E0{t) = Eo + a2 || \φ(t)\ \\l (5.8)

and

v(ί) = || 10(0)11|2 (coshαί - 1) + E 0(0) 1 / 2α~ x sinh a\t[ (5.9)

Proo/ To prove part (1), we remark that by Proposition 2.2, t / e ^ / , j f*" 1 ) and
therefore that E0(t) is differentiable in time. Taking its derivative and using the
equation of motion (2.9), we see that E0(t) is constant in time.

To prove part (2), we note that
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where we have used (5.4) in the last inequality. By an elementary computation,
this yields (5.5) and (5.6). The inequality (5.7) follows from (5.5) and from

j FOj>. (5.10)

Q.E.D.

In order to simplify the notation, from now on we shall omit the | | when appearing
in an IΛnorm, we shall denote generically F λ by F and \j/ by ψ, and we shall
drop the space-time indices in most of the estimates.

We now turn to the quantity Eί.

Lemma 5.2. Let k = [n/2 + 1], let Ve^k+2(U+\ and let uoe^k satisfy the con-
straints (2.6) and (2.8). Let I be an interval of U containing the origin and let
ue<$(I, J^k)be a solution of (2.11). Then

(1) Eχ(i) is differentiable for all tel and satisfies

\ [FOί, F,j ] » + 2e Re ( -

(5.11)

In addition let V satisfy (5.4) and define the function φt by

φί(p)= Sup (\V'(σ)\ + 2σ\V"(σ)\). (5.12)

(2) Let 1 ^ n ^ 3. For any tel, Ex(t) satisfies the estimate

} (5.13)

with

(c
\\φ(t)\l g <Cε\\φ(t)\\f Utr-^E.itr (« = 2)

(cE^Ejyi* (» = 3)
(5.14)

and 0 < ε < 1 for n = 2.
In particular, for n = 1, Eγ(t) is estimated in terms of the initial data for all tel.

(3) Let n = 2 and let V satisfy

φ^Sb^+pη (5.15)

for some p, 0 g p < oo . Then, for all tel, Eί (t) satisfies the estimate

so{tr-t)} (5.16)

(with 0 < ε < p) for p ^ 1, and a similar estimate for p ^ 1. In particular, E^it) is
estimated in terms of the initial data for all tel.
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(4) Let n = 3,4 and let Vsatisfy (5.15)for some p,0^p < co. Then, for all tel,
E^t) satisfies the estimate

Proof. (1). It will be sufficient to prove the result for w o ejf k + 1 . The general case
where uoe$?k will follow from the fact that each uoej^k satisfying the constraints
(2.6) and (2.8) can be approximated by elements of J f k + ί still satisfying the cons-
traints (2.6) and (2.8), from the continuity of the solution of (2.11) with respect to
the initial data wo([10] Corollary 1.5, p. 350) and from the fact that both Eχ and
the right hand side of (5.11) are continuous functions of uEJί?k. For uoeM?k+1, the
solution u(t) of (2.11) belongs to #*(/, jf*) by Proposition 2.2 and satisfies the
constraints (2.6) and (2.8) by Proposition 2.3. Therefore £1(ί) is differentiable in t.
Taking its derivative, using the equations of motion (2.9) and the constraints (2.6)
and (2.8), we obtain (5.11). (The constraints are used to express the commutators of
covariant space derivatives in terms of F).

(2), (3) and (4). We estimate the right hand side of (5.11). For brevity we omit
the t dependence in all this proof. The terms of order e in the integrand are of the
form <DF, [F,F]>, (φ, {DF)φ} and (Dφ, Fφ}. All these terms are estimated in
the same way and we consider only the first one. Using the covariant Sobolev
inequalities (A2\ we obtain for 1 ̂  n :§ 4

jdx\<DF,[F,F^\^C\\DF\\2\\F\\

We next estimate the terms containing Fin the right hand side of (5.11). From the
relation

Dj(φV')= V'ψj + 2V"Re(φ,ψ.yφ, (5.19)

it follows that

pointwise, and therefore

jdx|<Dtyo,a/0n>| z\\Dψ\\2\\φi(\φ\2M2 ( 5 2 ° )
SC\\Dφ\\2\\φ\\2φι(\\φ\\l), (5.21)

which together with (5.18) and its analogue for the terms of order e containing φ,
implies (5.13).

On the other hand, for 1 rg n ̂  3, the covariant Sobolev inequalities, together
with the constraint (2.8), imply that the L°°-norm of φ is estimated by

(»=2> (5.22)

(B = 3)

which together with the definitions of Eo and Eί yields (5.14). The proof of part (2)
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of the Lemma is completed by noting that the last statement follows from Lemma
5.1, part (2), and from the fact that the right hand side of (5.13) is at most linear in
£ 1 f o r n = l .

In order to prove part (3), we note that (5.16) follows from (5.13), from (5.15)
and from (5.14) with ε replaced by ε/p if p ^ 1. A similar (actually better) estimate
holds for p ̂  1. The last statement of part (3) follows from Lemma 5.1, part (2),
and from the fact that for ε ^ 1 the right hand side of (5.16) is at most linear in E1.

We finally turn to part (4). For n = 3, the estimate (5.17) follows immediately
from (5.13), (5.14) and (5.15). However this proof does not apply to the case n = 4,
since in that case φ is not estimated in L°° in terms of Eo and Eί. We therefore give
a direct proof (which also covers the case n = 3). The contribution of the constant
term in (5.15) to the right hand side of (5.20) is estimated by | |^ | | 2 \\Dιl/\\2. The
contribution of the term pp is estimated as

c\\DΦ\\MΦ\2p\\2^c\\Dφ\\2\\φl\\Φ\\22p

Pq (5-23)
by Holder's inequality, with 1/r + 1/q = 1/2. We take 1/q = ε/n with ε = Min
{l,p(n - 2)). Applying the covariant Sobolev inequalities in the form

we estimate the last member of (5.23) as

2\ (5.24)

Together with (5.18) and its analogues for the terms containing ψ, (5.24) implies
(5.17), thereby completing the proof of part (4) of the Lemma.

Q.E.D.

Remark 5.1. For space time dimensions 4 and 5, i.e. for n = 3 and 4, the right hand
side of (5.18) increases faster than linearly in £ 1 ? thereby precluding an a priori
estimate of Ex in terms of the initial data. However, from the covariant Sobolev
inequalities, one obtains, for 2 !g n ̂  4,

$dx\<DF,[F,F])\iC\\DF\\l\\F\\n. (5.25)

Similarly, the terms of order e containing ψ in the right hand side of (5.11) are
estimated, possibly after shifting the covariant derivative from F to ψ by an inte-
gration by parts, as

μ \ \ \ \ \ \ \ \ F \ \ n . (5.26)

From (5.25), (5.26) and from (5.24) it follows that an a priori estimate of F in IT
implies an a priori estimate of Ex, provided Fsatisfies (5.15) with p ̂  (n — 2)~ *.

We now turn to the quantity E2.

Lemma 5.3. Let n ̂ >2,fc= [n/2 + 1], let Vέ$k+2(U+). Let uoej4?k satisfy the
constraints (2.6) and (2.8). Let I be an interval ofU containing the origin and let
ue <g{I, ^k) be a solution of (2.11). Then
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(1) E2(t) is differentiable for all tel and satisfies

o j ^ } . (5-27)

The part of order e in (5.27) is a sum of several terms of the form indicated with various
combinations of indices.

Now in addition let V satisfy (5.4), define φχ by (5.12) and φ2 by

φ2(p)= Sup (3σ 1 / 2 |F / / (σ) |+2σ 3 / 2 |F / / / (σ) | ) . (5.28)

(2) Let n = 2. Then for all teI,E2{t) satisfies the estimate

+ E2(t)^E1(t)ί'2(φ1(\\φ(ή\\2J+E0(t)1'2φ2(\\φ(t)\\2J)}

(5.29)

with 0 < e < 1. In addition let V satisfy(5.15)for some p, 0 5Ξp < oo. Then E2(t) is
estimated in terms of the initial data for all tel.

(3) Let n = 3, 4. Then for all tel, £ 2 (ί) satisfies the estimate

+ E2(t)ί'2(Eι(ή1'2φ1(\\φ(t)\\2J

+ E,{t)^E0{tf -**φ2( || φ(t) \\l))}, (5.30)

with φ satisfying the estimate (5.14) for n = 3 and

|| φ(t) L S Cβo(tr*E,(tr-^E2(tγi* (5.31)

with 0 < ε < 1,/or w = 4.
Ifn = 4, let V satisfy in addition (5.15) and

cp2(p)^b2(l+pp) (5.32)

for some p, 0 ̂  p < oo. 77ί£ft in both cases, an a priori estimate ofEx (i) implies an a
priori estimate ofE2(t).

Proof. The proof of part (1) is analogous to that of part (1) of Lemma 5.2 and will
be omitted. In order to prove parts (2) and (3), we estimate the right hand side of
(5.27). All the terms of order e are estimated in the same way and we consider only
<D2F, [DF,F]). By Holder's inequality, we obtain

$ \ i C \ \ D 2 F \ \ 2 \ \ D F i \ \ F \ \ q (5.33)

with ί/q + ί/r = 1/2. For n = 2, we take ί/q = ε/2 for some ε, 0 < ε < 1, and for
n = 3,4, we take r = n. From the covariant Sobolev inequalities we obtain for

\ \ \ \ 2 \ \ \ \ 2 \ \ \ \ \ 2 \ ε E f , (5.34)

and for n = 3,4,

| | 2 | | / 2 | | | | ^ 2 / 4 . (5.35)
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We next estimate the term containing V in the right hand side of (5.27). From the
relation

) = V'Djφ, + 2V"Re<φ,Djφ,>φ

< ^ ^ > ^ + 2Re<^.,^>0}

^>ψ, (5.36)
it follows that

| | 2 . (5.37)

For n = 2 and 3, φ is estimated in L00 through (5.14). For n = 4, repeated use of the
covariant Sobolev inequalities together with the constraint (2.8) yields in a similar
way

\\ΦLSCε\\Ψ\\r\\DΨV2-
ε\\D2Ψ\\r, (5.38)

which implies (5.31). One can then estimate the right hand side of (5.37) for 2 ̂ n ^ 4
by

...ϊ\\D2ψ\\2{\\Dψ\\2Ψι(\\φ\\l)

\\ (5.39)

Together with (5.34), (5.35) and their analogues for the terms of order e containing
φ in the right hand side of (5.27), (5.39) yields the estimates (5.29) and (5.30). The
last statement of part (2) of Lemma 5.3 then follows from Lemma 5.2, part (3)
and from the fact that the right hand side of (5.29) is at most linear in E2. Similarly,
the last statement of part (3) follows from the fact that, given Eo and Eγ, the right
hand side of (5.30) is at most linear in E2 under the assumptions made. This last
fact follows directly from (5.14) for n = 3, and for n = 4, from (5.15), (5.32) and
(5.31), possibly after replacing ε by ε/p if p ^ 1 (cf. the proof of Lemma 5.2, part (3)).

Q.E.D.

Remark 5.2. Together with Remark 5.1, part (3) of Lemma 5.3 shows that for
n = 3,4, an a priori estimate of F in Ln implies an a priori estimate of E2 if V satis-
fies (5.15) with p ̂  (n — 2)~1, and for n = 4,iΐV satisfies in addition (5.32) for some
p,0 ^p < 00.

Remark 5.3. We have not considered E2 for n = 1, because in this case E2 is not
defined for general uoe j ^ 1 . However for uoe Jf72, also u{t)ej^2 by Proposition 2.2,
so that the quantity E2 is well defined. It satisfies part (1) of Lemma 5.3 and an
estimate similar to (5.29) and is therefore estimated in terms of the initial data.

Lemma 5.3 completes the estimates needed on the gauge invariant quantities
Er In order to obtain a priori bounds on the solutions u of (2.11) in j-ffc, we need
additional estimates on the potential A.

Lemma 5.4. Let l ^ r c ^ 4 , let fc=[w/2+l], let Ve%k+2(U + ) satisfy (5.4). Let
uQejfk satisfy the constraints (2.6) and (2.8). Let I be an interval ofU containing the
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origin and let uέ$(I,Jίfk) be a solution of (2.11). Then for any teI,A satisfies the
following estimate

t)1'2 + E^W

•κ\\dA(t)\\T\\A{t)\VrIA}- (5.40)

In particular A satisfies an a priori estimate in H1 in terms of Eγ and of the initial
data.

Proof As in the proof of part (1) of Lemma 5.2, it is sufficient to prove the result
for uoe^k+ί. In this case the quantity

^d.A.y (5.41)

is differentiate in time with derivative

aom1(t) = ί r f x { < a ^ > Z ) / F o . > - e < β ^ , [ ^ , F o . ] > } . (5.42)

Therefore, by Holder's inequality

do\\δA\\2S\\DF\\2 + C\\Al\\Fl,

and by the covariant Sobolev inequality

from which (5.40) follows. The last statement follows from Lemma 5.1 and the
fact that the right hand side of (5.40) is at most linear in || dA\\2.

Q.E.D.

Lemma 5.5. Let 2^n^4, let fc=[w/2+l], let Ve^k+2{U+) satisfy (5.4). Let
uoej^k satisfy the constraints (2.6)and(2.8). Let I be an interval of U containing the
origin and let ueΉ(I, Jfk) be a solution of (2.11). Then, for any teϊ,A satisfies an a
priori estimate in H2 in terms of the initial data and ofEγ and E2.

Proof The proof is analogous to that of Lemma 5.4. We consider the quantity

m2(t)= ~^dx(dkd'A\dkd^A.), (5.43)

with time derivative

d0m2(t) = - μx(dΨA\dkd,FOj}, (5.44)

so that by Schwarz's inequality

One then expresses d2F in terms of covariant derivatives and obtains, in addition
to D 2F, terms of several types, which are estimated as follows:

and
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for n = 2,

\A2F\\2^C\\DF\\2\\dA

for n = 4, where 0 < ε < 1.

The lemma follows from these estimates and from Lemmas 5.1 and 5.4
Q.E.D.

The last step in the a priori control of the solutions of (2.11) in Jf* consists in
estimating the L2-norms of the ordinary derivatives of the various components of
u in terms of the L2-norms of the covariant derivatives. In order to cover all cases
of interest with a compact notation, in the following lemma, we denote by h a
function from Un to 9 or !F or any direct sum of such spaces, and by Hk the Sobolev
spaces of such vector valued functions.

Lemma 5.6. (1) Let heH1 and AeU° + U, namely A = A1 + A2 with A^U3 and
A2eLq, where q = 2 for n=l,q> 2 for n = 2, and q = nfor n^3. Then h is estimated
inH1 in terms of the L2 -norms ofh and Dh. More precisely

+ cμ 2 | | β | |DΛ| | 2 ^| | fc | | 2

1 -^ (5.45)

(2) Let heH1, A = A,+ A2 with Ax eL0 0, A2eLq\ and A = A'ί + A'2 with dA\ eL00

and dΆ2eLq>/2, where qf = 4 for n <; 3, q' > A for n = 4, and q' = nfor n^ 5. Then
h is estimated in H2 in terms of the L2-norms ofh, Dh and D2h (through a formula
similar to (5.45), but more complicated, see (5.46) below).

Proof (1) The estimate (5.45) follows immediately from the definition of the
covariant derivative through the Holder and covariant Sobolev inequalities.

(2) Similarly, from

d2h = D2h - 2eADh - e(dA)h + e2 A2h,

one finds, using the Holder and covariant Sobolev inequalities,

U ί (5.46)
where 1/r + 2/q' = 1/2. The last norm \\h\\r is itself estimated in terms of the L2~
norms of ft, Dh and D2h by further use of the covariant Sobolev inequalities.

Q.E.D.

We are now in a position to state the global existence results. We first consider
the theory in global spaces as described in Sect 2.

Proposition 5.1. Let n = 1, 2, let k = [n/2 + 1] and let Ve %k+2 (U+) satisfy (5.4).
Ifn = 2, in addition let V satisfy (5.15)for some p,0<>p<co. Let uoe34?k satisfy
the constraints (2.6) and (2.8). Then the equation (2.11) has a unique solution ue
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^k) and u satisfies the constraints (2.6) and (2.8) for all times. If in addition u0

satisfies the constraint (2.7), then u satisfies (2.7) for all times.

Proof. Let u be a solution of (2.11) in an interval / containing the origin. Then it
follows from Lemmas 5.1 to 5.6 that u(t) is estimated a priori in J^k in terms of u0,
uniformly on bounded subintervals of /. More precisely, one first estimates the
L2-norms of F, A, φ and φ by Lemma 5.1, part (2), then the quantity Eί by Lemma
5.2, part (2) for n = 1 and part (3) for n = 2 and, for n — 2 only, the quantity E2 by
Lemma 5.3, part (2). From this, one derives an estimate of A in if1 by Lemma 5.4,
and, for n = 2, of A in H2 by Lemma 5.5. Using these estimates, one can convert
the estimate of Et into an estimate of F and φ in H1 by Lemma 5.6, part (1), and,
for n = 2, one can convert the estimate of E2 into an estimate of F and φ in H2, by
Lemma 5.6, part (2). Finally one estimates φ in Hk by using the constraint (2.8), the
estimates on φ and Lemma 5.6 again. The existence of global solutions of (2.11)
follows from the a priori estimate of u in jfk thereby obtained and from Proposi-
tion 2.1 by standard arguments. The last statement of Proposition 5.1 is a partial
repetition from Proposition 2.3. Q.E.D.

In four dimensional space time (namely for n = 3), our estimates are not suffi-
cient to prove the existence of global solutions of (2.11). Nevertheless, they yield the
following partial result, which strengthens Corollary 4.1. of [11].

Proposition 5.2. Let n = 3 let Ve%4(M + ) satisfy (5.4) and (5.15) for some p,
0 S P ^ 1. Let uQej^2 satisfy the constraints(2.6) and(2.8). Then the equation(2.11)
has a (unique) solution ue^(I,J^2) for some interval I containing the origin, and
either u can be continued for all times, or F is unbounded in the Ώ-norm over the
maximal interval of existence.

Proof. The result follows by the same argument as in the proof of Proposition 5.1
from the estimates obtained in Lemma 5.1, part (2), in Lemma 5.2, part (4), in
Remark 5.1, in Lemma 5.3, part (3), and in Lemmas 5.4 to 5.6.

Remark 5.4. In space time dimensions three and four, namely for n = 2 and n = 3,
the assumptions on the potential V in Propositions 5.1 and 5.2 as well as in
Proposition 5.3 and Remark 5.6 below, consist of the condition Fe^ 4 ((R + ) , the
lower bound (5.4) and the upper bound (5.15) with OSp < °° for n = 2 and
0 SP ^ 1 for n = 3. In particular, they allow for potentials of the form

with p a positive integer or 3 rg p < oo for n = 2, and for the often considered
potential

V(\φ\2)=-a2\φ\2 + \φ\*

for n = 3. These potentials have non trivial minima.

Remark 5.5. It is clear, but we have not checked in detail, that Proposition 5.2
can be extended to five dimensional space time (namely n = 4) with j ^ 2 replaced
by 2tf3, L3 by L4, with p restricted to 0 ^ p ^ 1/2 in (5.15) and V satisfying in addi-
tion (5.32) for some p, 0 <* p <£ oo. A complete proof would require an estimate of
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We finally prove the existence of global solutions of (2.11) for the theory in
local spaces described in Sect. 4. For potentials with non trivial minima such as
those described in Remark 5.4, this will allow in particular for initial data and
solutions for which | φ | tends to a non zero value minimizing V at space like
infinity.

Proposition 5.3. Let n = 1,2, let k = [n/2 + 1] and let V satisfy the assumptions
of Proposition 5.1. Let uQeffl\oc satisfy the constraints (2.6) and (2.8). Then the
equation (2.11) has a unique solution ue^(U, J^foc) and u satisfies the constraints
(2.6) and (2.8)for all times. If in addition u0 satisfies the constraint (2.7), then u satisfies
(2.7) for all times.

Proof The result follows from Proposition 5.1 through a cut-off procedure, as in
the proof of Theorem 1.2 of [9]. We first prove that for any open ball Ω = J3(0, R\
there exists a (unique) j f *oc-valued solution uR of (2.11) in the double cone A(R) =
Q(Ω9R)vQ(Ω9-R) (see (4.1)), in the sense that the restriction of uR to Q(Ω,R)
is an J f jfc

oc-valued solution of (2.11) in Q(Ω, R) and that a similar property, defined
by an obvious symmetry, holds in Q(Ω, — R). For this purpose, we pick a function
gRe<#% such that 0 ^ gR ^ 1, gR = 1 in B(0, R) and gR = 0 in C£(0, R + 1). For
MoGe^ίoc> w e define the cutoff initial data w£ by

A* = 0*Λ, F* = g*F0,φ
R = gRφ, ψR = gRφ0, ψR = (dj + eAR)φR,

and

jk ~ °jΛk °kΛj + elΛj > Λk J

Then w£e Jfk, with Supp uR a J5(0, K + 1), and uR still satisfies the constraints (2.6)
and (2.8). Therefore, by Proposition 5.1, there exists ΰRe^(U, jek) satisfying (2.11)
with u0 replaced by uR, for all times, and satisfying the constraints (2.6) and (2.8).
From the fact that U is an hyperbolic group and/a local interaction, it follows in
addition that the restriction uR of ΰR to the double cone Δ(R) is an Jffoc-valued
solution of (2.11) in A(R).

In order to complete the proof, we pick an increasing sequence {i?.}, j =1,
2,... tending of infinity, so that (J Δ(Rj)= Un + 1. With each jR̂ . is associated an

jffoc-valued solution uRj of (2.11) in A(Rj\ and by Proposition 3.1, ϊoτj^S, uRj

coincides with the restriction of uR€ to A(Rj). We then define u in ίR"+1 by the
consistent set of conditions that for all j = 1, 2,..., the restriction of u to A(Rj)
coincides with uRj. It is then straightforward to check that u is an j f {^-valued
solution of (2.11) in Un+ * and satisfies (2.6) and (2.8) for all times.

Uniqueness follows from Proposition 3.1, while the last statement of Proposition
5.3 is a partial repetition from Proposition 4.3.

Q.ED.

Remark 5.6. In four dimensional space time, Proposition 5.2 also extends to the
theory in local spaces, with jf2 replaced by fflfoc and L3 by UXoc. Similarly, Remark
5.4 should extend to the theory in local spaces with appropriate changes.

Appendix

In this Appendix we derive the Sobolev inequalities that are used in Sect. 5. Let
Y be a finite dimensional complex vector space with scalar product < v > and
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norm| | = < , >1/2,w a function from (R"to i^,'άnάApj= l,...,n, n functions from
Un to the antihermitian matrices in if. The covariant derivative is defined as
D.u = BjU + A.u. We shall denote by || ||β the norm in U = U(W) and we shall
also use the notation 13 for vector valued functions. The formulation of the follow-
ing proposition is essentially taken from Nirenberg [8].

Proposition A.I. Let rc^lj^ggooj^r^oo, and let σ and p satisfy 0 <; σ ̂  1,
1 :g p ̂  oo , and

l/p = (l-σ)/r + σ(l/q-l/n). (A.I)

Assume in addition that if p — oo, then r < oo and σ < 1. Let Aj,j = l,...,n be rc
functions from Un to the antihermitian matrices in i^. Then, there exists a constant C,
depending only on n,p, q, r, such that,for anyueUfor which d.ueΠ and A.ueU^j =
1,..., n, the following inequality holds:

\\pSSC\\\u\\\l~4 Σ \\\Dju\\\V, (A.2)

provided in the case r = oo and q <n, we assume in addition that either u tends to
zero at infinity orueU°for some finite r0 > 0.

Proof Let u be as in the assumptions of the proposition. For any ε > 0 we define
the real valued function v by

(\u(x)\2 + s2)ll2-ε. (A3)

First we show that the distributional derivatives of v are given by

dJv = (\u\2 +ε2Γll2Re<<u9dju>. (A.4)

This is obtained by a regularization technique. Let {uk}, k ̂  1, be a sequence of
^°° functions with values in Ψ' such that uk -• u in L}oc and almost everywhere,
and djUk -> cλi/ in L\OCJ= l,...,rc. The corresponding ι;fc5 defined by

^ W = ( | ^ ( x ) | 2 + ε 2 ) 1 / 2 - β , (A.5)

satisfy in an obvious way

+ε2)~1/2 Re< t t f c ,δ j t t k >. (A.6)

F r o m \υh — υ < Iw, — u , it follows that u, ->i; in L}n/, so that d.υh ->δ.i; in ®'. On
the other hand, by using the fact that uk-+u almost everywhere and that d.uk-> d.u
in L}o c, one sees that the right hand side of (A.6) converges to the right hand side
of (A.4) in L}o c. This proves (A.4). Now since

Re(u,djU} = Re<M,D.M>,

(A.4) implies

13^1 ^IJD^I (A.7)

so that, by applying the usual Sobolev inequalities [8] to the scalar function v,



28 J. Ginibre and G. Velo

one obtains

H Σ \\djv\l

\Dju\\\V. (A.8)
)

The inequality (A.2) follows by taking the limit ε -> 0 in (A.8).
Q.RD.
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