Surface Integrals and Monopole Charges in Non-Abelian Gauge Theories*

Clifford Henry Taubes \dagger
Lyman Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract

We derive a formula which gives all the magnetic charges (topological invariants) of a monopole in the adjoint representation of a non-abelian gauge theory in terms of surface integrals at infinity.

1. Introduction

It has been known for some time that there exist topological invariants which are associated with static Yang-Mills-Higgs field configurations on Minkowski space [1-3]. In particular, suppose that the gauge group G is a simple, compact Lie group. Further, assume that the Higgs field is in the adjoint representation of the Lie algebra g of G. Every field configuration satisfying certain asymptotic conditions (c.f. Theorem 2.1) is known to define a gauge invariant set of integers $\left\{n_{a}\right\}_{a=1}^{\ell}, \ell \leqq \operatorname{rank} G[3]$. These integers are the aforementioned topological invariants. It is the purpose of this paper to prove that the integers $\left\{n_{a}\right\}_{a=1}^{\ell}$ are completely specified by surface integrals at $|x|=\infty$. For example, if $G=S U(n)$ and the representation of g is the defining one, then

$$
\begin{equation*}
Q_{k}=\lim _{R \rightarrow \infty} \frac{1}{4 \pi} \int_{|x|=R} \operatorname{tr}\left(\Phi^{k} F_{A}\right), \quad k \in\{1, \ldots, \ell\} \tag{1.1}
\end{equation*}
$$

completely determine the integers $\left\{n_{a}\right\}_{a=1}^{\ell}$. Here Φ is the Higgs field; the Lie algebra-valued two form F_{A} is the curvature of the Yang-Mills connection A; and $x=\left(x^{1}, x^{2}, x^{3}\right)$ are cartesian coordinates on \mathbb{R}^{3}. For example, if $G=S U(2)$ then only Q_{1} is needed. In this case the right hand side of (1.1) computes the winding number of the map

$$
\hat{\Phi}=\Phi /|\Phi|: S_{R}^{2}=\left\{x \in \mathbb{R}^{3}:|x|=R\right\} \rightarrow S^{2}=\{\sigma \in \operatorname{su}(2):|\sigma|=1\}[1]
$$

(see also [4], Proposition II.3.7.)
We remark that the right hand side of (1.1) is gauge invariant so it is not surprising that there should be some connection between the numbers $\left\{Q_{k}\right\}_{a=1}^{\ell}$ and the integer invariants $\left\{n_{k}\right\}_{k=1}^{\}}$. This relationship is stated as Theorems 2.4-5. The proofs are contained in Sect. 3-5.

[^0]
2. The Topological Invariants

We begin by establishing our notation. For convenience, we realize G as an embedded submanifold in the vector space $\mathbb{M}(m ; \mathbb{C}$ or $\mathbb{R})$ of $m \times m$ matrices for some m. Let $\operatorname{tr}(\cdot)$ denote a normalized trace on \mathbb{M}. For $\sigma \in \mathbb{M}$,

$$
|\sigma| \equiv\left(\operatorname{tr}\left(\sigma^{\dagger} \sigma\right)\right)^{1 / 2}
$$

If A is a connection on the principal G bundle $\mathbb{R}^{3} \times G$ then the curvature of A is the g valued 2 -form F_{A} given by the well-known formula

$$
\begin{equation*}
F_{A}=d A+A \wedge A \tag{2.1}
\end{equation*}
$$

If Φ is a section of $\mathbb{R}^{3} \times g$ then A defines a covariant derivative by

$$
\begin{equation*}
D_{A} \Phi=\left(\nabla_{A} \Phi\right)_{i} d x^{i}=d \Phi+[A, \Phi] . \tag{2.2}
\end{equation*}
$$

We identify a gauge transformation with a map $g: \mathbb{R}^{3} \rightarrow G$ and (A, Φ) transforms under the action of g in the usual way.

Let \hat{x} denote a point on S^{2} and suppose that

$$
\begin{equation*}
\hat{\Phi}(\hat{x})=\lim _{t \rightarrow \infty} \Phi(t \hat{x}) \tag{2.3}
\end{equation*}
$$

defines a map of S^{2} into g. Let $h=\hat{\Phi}(1,0,0)$. Then define the Lie subgroup $J \subset G$ as

$$
\begin{equation*}
J=\left\{g \in G: g h g^{-1}=h\right\} . \tag{2.4}
\end{equation*}
$$

Theorem 2.1. (Theorem II.3.1 of [4].) Let A be a C^{1} connection on $\mathbb{R}^{3} \times G$ and $\Phi a C^{1}$ section of $\mathbb{R}^{3} \times g$. Assume that

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \sup _{|x|=R}(1-|\Phi|)=0 \tag{2.5a}
\end{equation*}
$$

and that for some $\delta>0$,

$$
\begin{equation*}
|x|^{1+\delta}\left|\nabla_{A} \Phi\right| \leqq \text { const. } \tag{2.5b}
\end{equation*}
$$

Then
(a) There exists a gauge such that $\hat{\Phi}(x)$ is a continuous map from S^{2} into g.
(b) The configuration (A, Φ) defines a homotopy class $[(A, \Phi)] \in \Pi_{2}(G / J)$. (c.f. Proposition 2.2).
(c) The class $[(A . \Phi)]$ is invariant under C^{1} gauge transformations.
(d) Suppose that (a, ϕ) is respectively a $C^{1} g$-valued 1 -form and a C^{1} section of $\mathbb{R}^{3} \times g$ which satisfy

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \sup _{|x|=R}|\Phi|=0=\lim _{R \rightarrow \infty} \sup _{|x|=R}|x||a| . \tag{2.6}
\end{equation*}
$$

Then

$$
[(A+a, \Phi+\phi)]=[(A, \Phi)] .
$$

In order to be more specific, we note that the map

$$
\begin{equation*}
\rho: G / J \rightarrow M=\left\{g h g^{-1}: g \in G\right\} \subset g \tag{2.7}
\end{equation*}
$$

is a diffeomorphism (c.f. [5], Theorem 2.9.4).

Proposition 2.2. The map $\hat{\Phi}(\hat{x})$ takes values in M. Further, the map

$$
\begin{equation*}
\hat{h}(\hat{x})=\rho^{-1}(\hat{\Phi}(\hat{x})): S^{2} \rightarrow G / J \tag{2.8}
\end{equation*}
$$

is at least C^{0}.
By definition, the class $[(A, \Phi)]=[\hat{h}]$.
We remark that Proposition 2.2 is a restatement of Lemmas II.4.3, 4 of [4]. However, there are some errata in the statement and proof of Lemma II.4.3 so we prove Proposition 2.2 in full in Sect. 4, c.f. Lemma 4.3.

The homotopy class $[(A, \Phi)] \in \Pi_{2}(G / J)$ is the topological invariant alluded to in the introduction. In order to categorize $[(A, \Phi)]$ we remark that the lie algebra j of J is necessarily the direct sum of a commuting algebra \hbar of dimension ℓ and a semi-simple lie algebra g^{\prime} of $\operatorname{rank} s=\operatorname{rank} G-\ell$.
Theorem 2.3. The group $\Pi_{2}(G / J)$ is isomorphic to \mathbb{Z}^{ℓ}.
Thus, if (A, Φ) satisfies $(2.5 \mathrm{a}, \mathrm{b})$, the topological invariant $[(A, \Phi)]$ is completely determined by a set of integers $\left\{n_{a}\right\}_{a=1}^{\ell}$.
Theorem 2.4. Let $G=S U(n) \subset \mathbb{M}(n, \mathbb{C})$. Suppose that (A, Φ) satisfies the conditions of Theorem 2.1 and in addition that F_{A} and $D_{A} \Phi$ are square integrable. There exist constants b_{a}^{k} with $a, k=1, \ldots, \ell$ which depend only on $A d_{G} h$ such that

$$
\begin{equation*}
n_{a}=\sum_{k=1}^{\ell} b_{a}^{k} \lim _{R \rightarrow \infty} \int_{|x|=R} \operatorname{tr}\left(\Phi^{k} F_{A}\right), \quad a=1, \ldots, \ell \tag{2.9}
\end{equation*}
$$

are integers. Further, the set $\left\{n_{a}\right\}_{a=1}^{\ell}$ specify $[(A, \Phi)]$ in $\Pi_{2}(G / J)$.
Theorem 2.5. Let $G=S p(n) \subset \mathbb{M}(2 n, \mathbb{C})$ or $G=S O(2 n) \subset \mathbb{M}(2 n, \mathbb{R})$ or $\quad G=$ $S O(2 n+1) \subset \mathbb{M}(2 n+1, \mathbb{R})$. Suppose that (A, Φ) satisfies the conditions of Theorem 2.1 and in addition that F_{A} and $D_{A} \Phi$ are square integrable. There exist constants $b_{a}^{k} ; a, k=1, \ldots, \ell$ which depend only on $A d_{G} h$ such that

$$
\begin{equation*}
n_{a}=\sum_{k=1}^{\ell} b_{a}^{k} \lim _{R \rightarrow \infty} \int_{|x|=R} \operatorname{tr}\left(\Phi^{2 k-1} F_{A}\right) \tag{2.10}
\end{equation*}
$$

is an integer for each $a \in\{1, \ldots, \ell\}$. Further, the set $\left\{n_{a}\right\}_{a=1}^{\ell}$ specifies $[(A, \Phi)]$ in $\Pi^{2}(G / J)$.

There is a general formula to compute the integers $\left\{n_{a}\right\}_{a=1}^{\ell}$ which is valid for any Lie group and all faithful representations. This is the content of Proposition 4.5.

The proofs of Theorems 2.3-5 comprise the next three sections. In Sect. 3 we review the relevant topology of G / J and prove Theorem 2.3. In Sect. 4, it is proved that the integrands in $(2.9,10)$ are pull-backs of a linear combination of generators of $H_{D R}^{2}\left(H_{D R}^{*}\right.$ is the DeRham cohomology complex). This fact and Hurewicz isomorphism [6] allow us to prove the general result expressed in Proposition 4.5. Theorems 2.4-2.5 follow from Proposition 4.5 and properties of the matrix representation of the classical groups. This is explained in Sect. 5.

As a parenthetical remark, we point out that in theories with no Higgs self interactions, finite energy solutions to the classical equations of motion exist for all simple groups G, subgroups J and integers $\left\{n_{a}\right\}_{a=1}^{\ell}$ if all the integers are the same sign (with respect to a specific choice of generators of $\Pi_{2}(G / J)[4,7]$.

3. Algebraic Topology on $\boldsymbol{G} / \boldsymbol{J}$

This section is a review of the algebraic topology behind the computation of $\Pi_{2}(G / J)$. The important result is that the second homotopy group is isomorphic to the second cohomology group of the universal covering of G / J. The implications of this isomorphism are summarized in Proposition 3.2, and the second cohomology group of the universal cover is described in Proposition 3.3.

Let \widetilde{G} be the universal covering space of G. There is a natural covering projection

$$
\begin{equation*}
\tilde{G} \rightarrow G \tag{3.1}
\end{equation*}
$$

Further, identifying G / J with M defined by (2.7) we have

$$
\begin{equation*}
G / J=\left\{g h g^{-1}: g \in G\right\}=\left\{g h g^{-1} ; g \in \tilde{G}\right\} \tag{3.2}
\end{equation*}
$$

Define the group \tilde{J} by replacing G by \tilde{G} in equation (2.4). Then

$$
\begin{equation*}
G / J=\tilde{G} / \tilde{J} . \tag{3.3}
\end{equation*}
$$

Let $\tilde{J}_{(0)}$ be the component of \tilde{J} which is path connected to the identity. The projection

$$
\begin{equation*}
p^{\prime}: \tilde{G} / \tilde{J}_{0} \rightarrow \tilde{G} / \tilde{J}=G / J \tag{3.4}
\end{equation*}
$$

is a covering space map. Since $\Pi_{1}(\widetilde{G})=\Pi_{0}\left(\tilde{J}_{(0)}\right)=(0)$, the long exact homotopy sequence of fibration [6, Theorem 7.2.10] implies that $\Pi_{1}\left(\tilde{G} / \widetilde{J}_{(0)}\right)=(0)$. Thus $\widetilde{G} / \widetilde{J}_{(0)}$ is the universal covering space of G / J.

Let x be the image of J in G / J and x_{0} the image of $\tilde{J}_{(0)}$ in $\tilde{G} / \tilde{J}_{(0)}$. The following proposition is standard [6, Theorem 2.4.5 and 7.2.10].
Proposition 3.1. Let M be a simply connected space and $m \in M$. Suppose that ψ maps the pair (M, m) into $(G / J, x)$ continuously. Then there exists a unique lifting

$$
\tilde{\psi}:(M, m) \rightarrow\left(\tilde{G} / \tilde{J}_{(0)}, x_{0}\right)
$$

such that $p^{\prime} \psi=\psi$. In addition, the projection p^{\prime} induces an isomorphism between $\Pi_{n}\left(\widetilde{G} / \widetilde{J}_{(0)}, x_{0}\right)$ and $\Pi_{n}(G / J, x)$ for all $n \geqq 2$.

Because $\Pi_{1}\left(\widetilde{G} / \widetilde{J}_{(0)}\right)=(0)$, the Hurewicz isomorphism is applicable, that is,

$$
\begin{equation*}
H_{2}\left(\widetilde{G} / \tilde{J}_{(0)} ; \mathbb{Z}\right) \approx \Pi_{2}\left(\tilde{G} / \tilde{J}_{(0)}\right) \tag{3.5}
\end{equation*}
$$

Here $H_{*}(\cdot ; \mathbb{Z})$ are the singular homology groups with integral coefficients [6, Chapt. 7.5].

The group J is a closed subgroup of G and an analytic submanifold ([5], Lemma 2.9.2.) Since \tilde{G} is compact, \widetilde{J} has a finite number of path components. Hence $\widetilde{G} / \widetilde{J}_{(0)}$ is a compact manifold. By poincaré duality [6, Theorem 6.2.18],

$$
\begin{equation*}
\left.H_{2}\left(\widetilde{G} / \tilde{J}_{(0)} ; \mathbb{Z}\right) \approx H^{m-2}\left(\widetilde{G} / \tilde{J}_{(0)}\right) ; \mathbb{Z}\right) \tag{3.6}
\end{equation*}
$$

where $m=\operatorname{dim} \tilde{G} / \tilde{J}_{(0)}$ and $H^{*}(\cdot ; \mathbb{Z})$ are the singular cohomology groups with integral coefficients.

The Universal Coefficient Theorem [6] relates cohomology with integral coefficients to cohomology with real coefficients:

$$
\begin{equation*}
H^{m-2}\left(\tilde{G} / \tilde{J}_{(0)} ; \mathbb{Z}\right) \otimes \mathbb{R} \approx H^{m-2}\left(\tilde{G} / \widetilde{J}_{(0)} ; \mathbb{R}\right) . \tag{3.7}
\end{equation*}
$$

A fundamental result of R. Bott [8] is that

$$
\begin{equation*}
H^{m-2}\left(\widetilde{G} / \tilde{J}_{(0)} ; \mathbb{Z}\right) \approx \mathbb{Z}^{\ell} \tag{3.8}
\end{equation*}
$$

where ℓ is the dimension of the center of $\tilde{J}_{(0)}$. This gives Theorem 2.3. In particular, H^{m-2} is freely generated so

$$
\begin{equation*}
H^{m-2}\left(\tilde{G} / \tilde{J}_{(0)} ; \mathbb{R}\right) \approx \mathbb{R}^{\ell} \tag{3.9}
\end{equation*}
$$

Finally, $H^{m-2}\left(\widetilde{G} / \tilde{J}_{(0)} ; \mathbb{R}\right) \approx H_{D R}^{m-2}\left(\widetilde{G} / \widetilde{J}_{(0)}\right) \approx H_{D R}^{2}\left(\widetilde{G} / \widetilde{J}_{(0)}\right)$. Here $H_{D R}^{*}$ are the DeRham cohomology groups.

The above discussion is summarized in
Propositions 3.2. There are ℓ linearly independent generators $\left\{q_{1}, \ldots, q_{\ell}\right\}$ of $\Pi_{2}(\widetilde{G} / \widetilde{J})$ and ℓ linearly independent generators $\left\{\eta^{1}, \ldots, \eta^{\ell}\right\}$ of $H_{D R}^{2}\left(\widetilde{G} / \widetilde{J}_{(0)}\right)$. Any element $[\psi] \in \Pi_{2}(\widetilde{G} / \widetilde{J})$ has a unique expansion

$$
\begin{equation*}
[\psi]=\sum_{a=1}^{\ell} n_{a} q_{a} \text { with } \quad n_{a} \in \mathbb{Z} \tag{3.10}
\end{equation*}
$$

There is an $\ell \times \ell$ matrix α_{a}^{k} which is independent of $[\psi]$ such that

$$
\begin{equation*}
n_{a}=\sum_{k=1}^{\ell} \alpha_{a}^{k} \int_{s^{2}} \psi^{*}\left(\eta^{k}\right) \tag{3.11}
\end{equation*}
$$

Here $\psi \in[\psi]$ is any representative map.
With Eq. (3.11) in mind, we examine $H_{D R}^{2}\left(\widetilde{G} / \tilde{J}_{(0)}\right)$. With $\widetilde{G} \subset \mathbb{M}(m)$ as a smooth submanifold, we represent $\tilde{G} / \tilde{J}_{(0)}$ as the quotient by matrix multiplication on the right:

$$
g \sim g^{\prime} \text { iff } g=g^{\prime} j \quad \text { with } j \in \widetilde{J}_{0}
$$

Let $\left\{x_{j}\right\}_{j=1}^{\operatorname{dim}_{g}}$ be an orthonormal basis for g. That is

$$
\begin{equation*}
\operatorname{tr}\left(x_{j}^{\dagger} x_{k}\right)=\delta_{j k} \tag{3.12}
\end{equation*}
$$

The structure constants of $g,\left\{C_{i j}{ }^{k}\right\}$ are defined by the comutator

$$
\begin{equation*}
\left[x_{i}, x_{j}\right]=c_{i j}^{k} x_{k} \tag{3.13}
\end{equation*}
$$

We denote a basis for the left invariant 1 -forms on g by

$$
\begin{equation*}
\omega^{j}=\operatorname{tr}\left(x_{j}^{\dagger} g^{-1} d g\right), \quad j=1, \ldots, \operatorname{dim} g \tag{3.14}
\end{equation*}
$$

Here $d g=d g_{A B}$ is the restriction to \widetilde{G} of the Euclidean one forms $d x_{A B}$ on M. The one forms ω^{j} satisfy the equations of Maurier-Cartan, namely

$$
\begin{equation*}
d \omega^{k}=-\frac{1}{2} C_{i j}{ }^{k} \omega^{i} \wedge \omega^{j} \tag{3.15}
\end{equation*}
$$

It is convenient to distinguish the elements of the basis $\left\{x_{j}\right\}$ which generate the subgroup $\tilde{J}_{(0)}$. Recall that the Lie algebra $j=h \oplus g^{\prime}$ where $[h, j]=0$. Let
$\left\{h_{a}\right\}_{a=1}^{\ell}$ be an orthonormal basis for h
$\left\{e_{\alpha}\right\}_{\alpha=1}^{\lim _{\alpha} g^{\prime}}$ be an orthonormal basis for g^{\prime}
and $\left\{y_{A}\right\}_{A=1}^{\operatorname{dim} g-\operatorname{dim} g^{\prime}-\ell}$ be an orthonormal basis for the remaining generators of g. Then set

$$
\begin{array}{ll}
\omega^{a}=\operatorname{tr}\left(h_{a}^{\dagger} g^{-1} d g\right), & a=1, \ldots, \ell \\
\omega^{\alpha}=\operatorname{tr}\left(e_{\alpha}^{\dagger} g^{-1} d g\right), & \alpha=1, \ldots, \operatorname{dim} g^{\prime} \tag{3.16}\\
\omega^{A}=\operatorname{tr}\left(y_{A}^{\dagger} g^{-1} d g\right), & A=1, \ldots, \operatorname{dim} g-\operatorname{dim} g^{\prime}-\ell
\end{array}
$$

Proposition 3.3. Let $p_{0}: \tilde{G} \rightarrow \tilde{G} / \tilde{J}_{(0)}$ be the canonical projection. For each $a=1, \ldots, \ell$ there exists a closed two form $\eta^{a} \in \Lambda^{2}\left(\tilde{G} / \tilde{J}_{(0)}\right)$ such that

$$
\begin{equation*}
p_{0}^{*} \eta^{a}=-\frac{1}{2} C_{A B}^{a} \omega^{A} \wedge \omega^{B} . \tag{3.17}
\end{equation*}
$$

Further the set $\left\{\eta^{a}\right\}_{a=1}^{\ell}$ generates $H_{D R}^{2}\left(\tilde{G} / \tilde{J}_{(0)}\right)$ as an \mathbb{R} module.
Proof. See, for example [9] and references therein.

4. The Pull-Back of Cohomology from $\tilde{\boldsymbol{G}} / \tilde{J}_{(0)}$

We begin by studying the asymptotic behavior of Φ to demonstrate that for sufficiently large r, the Higgs field $\Phi(r \hat{x})$ maps S^{2} into a tubular neighborhood of the manifold M defined by (2.7). Hence we can compute the homotopy class defined by $\hat{\Phi}(\hat{x})$ from $\Phi(r x)$. The result is Proposition 4.5.

In this section it is always assumed that (A, Φ) satisfy the conditions of Theorem 2.1.

For $x \in \mathbb{R}^{3}$, define $\hat{x}=x /|x|$.
Lemma 4.1. There exists a smooth gauge such that

$$
\lim _{r \rightarrow \infty} \Phi(r \hat{x}) \equiv \hat{\Phi}(\hat{x})
$$

is a continuous map of S^{2} into g. Further,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{\delta}|\hat{\Phi}(\hat{x})-\Phi(r \hat{x})| \leqq \text { const. } \tag{4.1}
\end{equation*}
$$

Proof. It is always possible to choose a smooth gauge in which the radial component of the connection vanishes [10]. Then (4.1) follows from (2.5.6) by integration. The continuity of $\hat{\Phi}(\hat{x})$ is proved in Lemma II.4.1 of [4].

The statements above are gauge invariant under all gauge transformations $g(r \hat{x})$ which, as a function of $y=1 / r$, are Hölder continuous with exponent $\delta \leqq 1$ as $y \rightarrow 0$.

Let $\left\{t_{k}\right\}_{k=1}^{J}$ be an orthonormal basis for the Cartan sub-algebra $t \subset g$. Require that $t_{a}=h_{a}$ for $a \in\{1, \ldots, \ell\}$ where $\left\{h_{a}\right\}_{a=1}^{\ell}$ is defined in Sect. 3. By convention $h_{1} \equiv h$. It follows from (4.1) that there exists $R_{0}>0$ such that $|\Phi(x)| \geqq \frac{1}{2}$ if $|x|>R_{0}$. Set $v_{0}=(1,0,0)$ and $\bar{v}_{0}=(-1,0,0)$. For $R>R_{0}$ define

$$
V_{R}=\left\{x \in \mathbb{R}^{3}:|x|>R \text { and } \hat{x} \in S^{2} \backslash \bar{v}_{0}\right\} .
$$

Lemma 4.2. For some $R_{0}<R<\infty$ there exists $g \in C^{\infty}\left(V_{R}, G\right)$ and $\left\{\phi_{k}\right\}_{k=1}^{\infty} \in C^{\infty}\left(V_{R}\right)$ such that the following is true: For $x \in V_{R}$,
(a) $\Phi(x)=\sum_{k=1}^{0} \phi_{k} g t_{k} g^{-1}$.
(b) $\lim r^{\delta}\left|\phi_{1}(r x)-1\right|<$ const.
$r \rightarrow \infty$
(c) $\lim r^{\delta}\left|\phi_{k}(r x)\right|<$ const., for $k=2, \ldots, \triangleleft$.

Proof. Statement (a) follows from the fact that every element in g is conjugate to an element in t. The smoothness conditions follow because $V_{R_{0}}$ is contractible and $|\Phi|>0$. Having established (a) we compute $D_{A} \Phi$:

For $x \in V_{R_{0}}$,

$$
\begin{equation*}
D_{A} \Phi=\sum_{k=1}^{0} d \phi_{k} g t_{k} g^{-1}+\sum_{k=1}^{0} \phi_{k}\left[A+d g g^{-1}, g t_{k} g^{-1}\right] . \tag{4.3}
\end{equation*}
$$

Using (4.3) and (2.5b) we obtain for $\hat{x} \in S^{2} \backslash \bar{v}_{0}, r_{1}>R_{0}$ and $k \in\{1, \ldots, \sigma\}$ that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left|\phi_{k}(r \hat{x})-\phi_{k}\left(r_{1} \hat{x}\right)\right|<\text { const. } r_{1}^{-\delta} . \tag{4.4}
\end{equation*}
$$

Further, for $\hat{x}_{1}, \hat{x}_{2} \in S^{2} \backslash \bar{v}_{0}$, and $r>R_{0}$

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{\delta}\left|\phi_{k}\left(r \hat{x}_{1}\right)-\phi_{k}(r \hat{x})\right| \leqq \text { const } \tag{4.5}
\end{equation*}
$$

The conclusion from (4.4) and (4.5) is that for each $k \in\{1, \ldots, \sigma\}$ there exists a constant c_{k} such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} r^{\delta}\left|\phi_{k}(r \hat{x})-c_{k}\right| \leqq \text { const. } \tag{4.6}
\end{equation*}
$$

By construction, $c_{k}=\delta_{k 1}$. Hence statements b) and c) of the Lemma.
Let

$$
\begin{equation*}
e_{1}(x)=g(x) h_{1} g^{-1}(x) \in C^{\infty}\left(V_{R} ; M\right) \tag{4.7}
\end{equation*}
$$

where $g(x)$ is given in Lemma 4.2 and M is defined in (2.7).
Lemma 4.3. The function $e_{1}(x)$ extends to an element in $C^{\infty}(\{x:|x|>R\} ; M)$. In addition,
(a) $\lim _{r \rightarrow \infty} r^{\delta}\left|\hat{\Phi}(\hat{x})-e_{1}(r \hat{x})\right| \leqq$ const.
(b) Proposition 2.2 is true.
(c) For all $r>R, \hat{\Phi}(\hat{x})$ and $e_{1}(r \hat{x})$ are homotopic as maps from S^{2} into M.

Proof. The fact that $\phi_{1}(x)$ never vanishes in $\{x ;|x|>R\}$ implies that $e_{1}(x)$ has the stated extension. Statement (a) follows from statements (b, c) of Lemma 4.2
and Eq. (4.1). Statement (a) of Lemma 4.3 implies that the sequence $\left\{e_{1}(m R \hat{x})\right\}_{m=1}^{\infty}$ is a Cauchy sequence in M for fixed \hat{x}. Hence the limit, which is $\hat{\Phi}(\hat{x})$, takes values in M. This last fact and the previous Lemma imply (b). Statement (c) is implied by statement (a).

The orbit of each $h_{a}, a \in\{1, \ldots, \ell\}$, under $\operatorname{Ad}_{\tilde{G}}$ maps the group \tilde{G} smoothly into its Lie algebra. Define $l_{a}: \tilde{G} \rightarrow g$ by

$$
\begin{equation*}
\ell_{a}(g)=g h_{a} g^{-1} \tag{4.9}
\end{equation*}
$$

We note that for each $a \in\{1, \ldots, \ell\}$, the map ℓ_{a} descends to a smooth map (which we also denote by ℓ_{a}) of $\tilde{G} / \tilde{J}_{(0)}$ into g. This is because $\tilde{J}_{(0)}$ is generated by $\exp (j)$ and $[h, j]=0$.

Let \hat{h} be the map defined in Proposition 2.2. Denote by $\tilde{h}: S^{2} \rightarrow \tilde{G} / \tilde{J}_{(0)}$ the unique lifting of $\hat{h}: S^{2} \rightarrow \tilde{G} / \widetilde{J}$ as guaranteed by Proposition 3.1.

It follows from (c) of Lemma 4.3 that for $r>R$, the maps

$$
\begin{equation*}
\hat{h}(r: \hat{x})=\rho^{-1}(e(r \hat{x})): S^{2} \rightarrow \tilde{G} / \tilde{J} \tag{4.10}
\end{equation*}
$$

are homotopic to $\hat{h}(\hat{x})$. In addition, the liftings of these maps,

$$
\begin{equation*}
\tilde{h}(r ; \hat{x}): S^{2} \rightarrow \tilde{G} / \tilde{J}_{(0)} \tag{4.11}
\end{equation*}
$$

are homotopic to $\widetilde{h}(\hat{x})$.
For $a \in\{1, \ldots, \ell\}$ define

$$
\begin{equation*}
e_{a}(r ; \hat{x})=\ell_{a}(\tilde{h}(r, \hat{x})) \tag{4.12}
\end{equation*}
$$

Definition 4.4. For $r>R$ and $a \in\{1, \ldots, \ell\}$ define

$$
\begin{equation*}
Q_{a}(r)=\int_{|x|=r} \operatorname{tr}\left(e_{a}(r ; \hat{x}) F_{A}\right) \tag{4.13}
\end{equation*}
$$

Proposition 4.5. Let (A, Φ) be as in Theorem 2.1. Then

$$
\begin{equation*}
\int_{s^{2}} \tilde{h}^{*}\left(\eta^{a}\right)=\lim _{r \rightarrow \infty} Q_{a}(r), \tag{4.14}
\end{equation*}
$$

where the two cocycle $\eta^{a} \in H_{D R}^{2}\left(\widetilde{G} / \tilde{J}_{(0)}\right)$ is defined in Proposition 3.3
Proof. By assumption, A is C^{1} so the integrand in (4.13) is smooth. Hence we have

$$
\begin{equation*}
Q_{a}(r)=-\int_{|x|=r} \operatorname{tr}\left(D_{A} e_{a} \wedge A+A \wedge A\right),=-\int_{\substack{|x|=r \\ \hat{x} \in S^{2} \mid \bar{v}_{0}}} \operatorname{tr}\left(D_{A} e_{a} \wedge A+A \wedge A\right) \tag{4.15}
\end{equation*}
$$

Recall that the set V_{R} is contractible so that in $V_{R}, e_{1}(x)$ is given by (4.7) with $g(x) \in C^{\infty}\left(V_{R} ; \widetilde{G}\right)$. Then up to an element of $\tilde{J} / \tilde{J}_{0}$ (which is a discrete group)

$$
\begin{equation*}
e_{a}(x)=g(x) h_{a} g^{-1}(x) \tag{4.16}
\end{equation*}
$$

An explicit computation of (4.15) gives

$$
\begin{align*}
Q_{a}(r)= & -\int_{\substack{|x|=r \\
\hat{x} \in S^{2} \mid \bar{v}_{0}}} \operatorname{tr}\left(g h_{a} g^{-1} g d g^{-1} \wedge g d g^{-1}\right) \\
& +\frac{1}{2} \int_{\substack{|x|=r \\
\hat{x} \in S^{2} \mid \bar{v}_{0}}} \operatorname{tr}\left(\left[g h_{a} g^{-1}, A+g d g^{-1}\right] \wedge\left(A+g d g^{-1}\right)\right) \tag{4.17}
\end{align*}
$$

Use (4.3) to estimate the second term in (4.17). That is, let A_{L} be the component of $A+d g g^{-1}$ taking values in $g \dot{j} g^{-1}$ and let A_{T} be the orthogonal complement. Because $\phi_{1} \rightarrow 1$, equations (4.3) and (2.5b) imply that

$$
\left|\left[A+d g g^{-1}, g h_{a} g^{-1}\right]\right| \leqq \text { const. } r^{-1-\delta}
$$

and hence that

$$
\begin{equation*}
\left|A_{T}\right|<\text { const. } r^{-1-\delta} . \tag{4.18}
\end{equation*}
$$

Since the skew form

$$
g \rightarrow\left[g h_{a} g^{-1}, g\right] \quad(a \in\{1, \ldots, \ell\})
$$

has a kernal which includes j and maps j_{T} into itself, we conclude from (4.20) that

$$
\begin{equation*}
\left|\operatorname{tr}\left(\left[g h_{a} g^{-1}, A_{T}\right] A_{T}\right)\right| \leqq \text { const. } r^{-2-2 \delta} \tag{4.19}
\end{equation*}
$$

Therefore the second term in (4.17) is order $r^{-2 \delta}$. As for the first term in (4.17),

$$
\begin{align*}
& -\int_{\substack{|x|=r \\
\hat{x} \in S^{2} \backslash \bar{v}_{0}}} \operatorname{tr}\left(g h_{a} g^{-1} g d g^{-1} \wedge g d g^{-1}\right)=\int_{\substack{|x|=r \\
\hat{x} \in S^{2} \mid \bar{v}_{0}}} g^{*}\left(-\frac{1}{2} C^{a}{ }_{A B} \omega^{A} \wedge \omega^{B}\right), \\
& =\int_{\substack{|x|=r \\
\dot{x} \in S^{2} \mid \bar{v}_{0}}} g^{*} p_{(0)}^{*}\left(\eta^{a}\right)=\int_{\substack{|x|=r \\
\dot{x} \in S^{2} \mid \bar{v}_{0}}} \tilde{h}(r ;)^{*}\left(\eta^{a}\right) . \tag{4.20}
\end{align*}
$$

Because $\tilde{h}(r ; \cdot)$ is C^{∞} we can replace the point \bar{v}_{0} in (4.20). Since $\tilde{h}(r ; \cdot)$ is homotopic to \tilde{h}, Eq. (4.20) implies Eq. (4.14) and the Proposition is proved.

We now expand on the remarks in the opening paragraph of this section. The manifold M is the orbit of h under Ad_{G} and it is a regular, compact submanifold of $g \simeq \mathbb{R}^{\operatorname{dim} g}$. As such, there exists a tubular neighborhood, $\mathcal{O}(M)$ of M in g and a C^{∞} projection $q: \mathcal{O} \rightarrow M$. (see [11], Chap. 12 for details.) We can specify q uniquely by requiring that it be the orthogonal projection onto M defined by the Killingform on g. This choice has the advantage that the projection commutes with the action of Ad_{G} on M and \mathcal{O}.

Lemma's 4.1 and 4.3 imply that $\Phi(r \hat{x})$ maps S^{2} into \mathcal{O} for all r larger than some
r_{1}. It is not hard to show that

$$
(q \circ \Phi)(r \hat{x})=e_{1}(r \hat{x}) .
$$

We end this section with a summary:
Theorem 4.6. Let (A, Φ) satisfy the conditions of Theorem 2.1 Let $\rho: G / J \rightarrow M=$ $\operatorname{Ad}_{G} h$ be the canonical map. Let $q: \mathcal{O} \rightarrow M$ be a tubular neighborhood of M in g such that q commutes with Ad_{G}. Let $\ell_{a}: G \rightarrow g$ map $g \in G$ to $\operatorname{Ad}_{g} h_{a}$. There exist constants $b_{a}^{k} ; a, k \in\{1, \ldots, \ell\}$ which depend only on $\operatorname{Ad}_{G} h$ such that

$$
\begin{equation*}
n_{a}=\sum_{k=1}^{\ell} b_{a}^{k} \lim _{r \rightarrow \infty} \int_{|x|=r} \operatorname{tr}\left(\ell_{a}\left(\widetilde{\left.\rho^{-1} \circ q \circ \Phi\right) F_{A}}\right)\right. \tag{4.21}
\end{equation*}
$$

is an integer. The set $\left\{n_{a}\right\}_{a=1}^{\ell}$ specifies $[(A, \Phi)]$ in $\Pi^{2}(G / J)$. Here $\widetilde{\rho^{-1}{ }^{\circ} q^{\circ} \Phi}$ is the lifting of $\rho^{-1}{ }^{\circ} q^{\circ} \Phi$ to $\tilde{G} / \tilde{J}_{(0)}$.

5. The Classical Lie Groups

Equation (4.21) can be simplified considerably if the properties of the specific matrix representation of a compact group G are taken into account. A faithful, irreducible, unitary representation of G of dimension m is equivalent to an embedding of G in $S U(m)$ or $S O(m)$ if the representation is real. Then h is an $m \times m$ matrix and we can consider the matrix powers $h^{k}=h h \ldots h, k$ times. The set $\left\{h^{k}\right\}_{k=0}^{p-1}$ are linearly independent where p is the number of distinct eigenvalues of h. (By construction, h is traceless.) Let $\not \mu(h)$ be the linear span of $\left\{h^{k}\right\}_{k=0}^{p-1}$. Since $[h(h), j]=0$, the projection of $\mu(h)$ onto g lies in the commuting subalgebra \hbar spanned by the orthonormal basis $\left\{h_{1}=h, h_{2} \ldots h_{\ell}\right\}$. The projection of $\not \mu(h)$ on g spans a subset $\ell^{\prime} \subseteq h$, say the subspace generated by $\left\{h_{1}, \ldots, h_{\ell^{\prime}}\right\}$ with $\ell^{\prime} \leqq \ell$. Then there exist constants c_{a}^{k} where $a \in\left\{1, \ldots, \ell^{\prime}\right\}$ and $k \in\{1, \ldots, m\}$ such that

$$
\begin{equation*}
h_{a}=\sum_{k=1}^{m} c_{a}^{k} h^{k}, \quad a=1, \ldots, \ell^{\prime} \tag{5.1}
\end{equation*}
$$

Equation (5.1) suggests that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \cdot \sum_{k=1}^{m} c_{a}^{k} \int_{|x|=r} \operatorname{tr}\left(\Phi^{k} F_{A}\right)=\int_{S^{2}} \tilde{h}^{*}\left(\eta^{a}\right) \tag{5.2}
\end{equation*}
$$

for $a \in\left\{1, \ldots, \ell^{\prime}\right\}$, and where η^{a} is a generator of $H_{D \cdot R}^{2} .\left(\tilde{G} / \tilde{J}_{(0)}\right)$ as discussed in Sect. 3 (Proposition 3.3.) In fact this is the case with a proviso, namely F_{A} and $D_{A} \Phi$ are squared integrable.
Proposition 5.1. Let (A, Φ) satisfy the conditions of Theorem 2.1 and in addition suppose that F_{A} and $D_{A} \Phi$ are square integrable. Let a faithful, irreducible representation of G be given by an embedding of $G \subset S U(m)$ or $S O(m)$ for some m such that (5.1) holds. Then (5.2) holds.

Proof. Equation (5.2) holds with Φ replaced by $e_{1}(r \hat{x})$ as defined in (4.7). Lemma 4.2 and Eq. (5.3) imply that there exists $r_{1}>0$ such that $D_{A} e_{1} \in L_{2}\left(\mathbb{R}^{3} \backslash\left\{|x|<r_{1}\right\}\right)$. Using Kato's inequality (c.f. [4], Chap. VI.) we have $\nabla\left|\Phi-e_{1}\right| \in L_{2}\left(\mathbb{R}^{3} \backslash\left\{|x|<r_{1}\right\}\right)$ where ∇ is the ordinary derivative. Lemma's 4.1 and 4.3 imply that $\left|\Phi-e_{1}\right| \in$ $L_{q}\left(\mathbb{R}^{3} \backslash\left\{|x|<r_{1}\right\}\right)$ for all $q>3 \delta^{-1}$. Then the Sobolev lemma (see e.g. [4], Chap. VI.) gives:

$$
\begin{equation*}
\left|\Phi-e_{1}\right| \in L_{6}\left(\mathbb{R}^{3} \backslash\left\{|x|<r_{1}\right\}\right) . \tag{5.3}
\end{equation*}
$$

Fix once and for all a function $\beta(x) \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ with the property that
(a) $0 \leqq \beta(x) \leqq 1$,
(b) $\quad \beta(x)=1 \quad$ if $|x| \leqq 3 / 4$,
(c) $\quad \beta(x)=0 \quad$ if $|x| \geqq 1$.

Set $\beta_{r}(x)=\beta(x / r)$ which we define for $r>0$. Then for $r>2 r_{1}$,

$$
\begin{align*}
\Delta(r)= & \left|\int_{|x|=r} \operatorname{tr}\left(\Phi^{k} F_{A}\right)-\int_{|x|=r} \operatorname{tr}\left(e_{1}^{k} F_{A}\right)\right| \\
\leqq & k \int_{|x| \leqq r}\left(1-\beta_{r}\right)\left(|\Phi|^{\mid k-1}\left|D_{A} \Phi\right|\left|F_{A}\right|+\left|D_{A} e\right|\left|F_{A}\right|\right) \\
& +\int_{|x| \leqq r}\left|d \beta_{r}\right|\left(1-\beta_{r / 2}\right)|\Phi-e| k\left(|\Phi|^{k-1}+1\right)\left|F_{A}\right| . \tag{5.5}
\end{align*}
$$

Here we have used Stoke's theorem along with the identities

$$
d \beta_{r}=d \beta_{r}\left(1-\beta_{r / 2}\right),
$$

and

$$
\begin{equation*}
\Phi^{k}-e^{k}=\frac{1}{2}(\Phi-e)\left(\sum_{j=0}^{k-1} \Phi^{j} e^{k-1-j}\right)+\frac{1}{2}\left(\sum_{j=0}^{k-1} \Phi^{j} e^{k-1-j}\right)(\Phi-e) . \tag{5.6}
\end{equation*}
$$

Now using Hölder's inequality, we obtain

$$
\begin{align*}
& \Delta(r) \leqq\left\|\left(1-\beta_{r / 2}\right) F_{A}\right\|_{L_{2}}\left(\left\|D_{A} \Phi\right\|_{L_{2}}+\left\|\left(1-\beta_{r / 2}\right) D_{A} e\right\|_{L_{2}}\right. \\
& \left.\left\|\nabla \beta_{r}\right\|_{L_{3}}\|\Phi-e\|_{L_{6}}\right) k\left(\|\Phi\|_{L_{\infty}}^{k-1}+1\right) . \tag{5.7}
\end{align*}
$$

By scaling, $\left\|\nabla \beta_{r}\right\|_{L_{3}}=\left\|\nabla \beta_{1}\right\|_{L_{3}}$ so we conclude from (5.7) that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \Delta(r)=0 \tag{5.8}
\end{equation*}
$$

This proves Proposition 5.1.
Proof of Theorem 2.4 Let $G=S U(n)$ acting on \mathbb{C}^{n}. The number of different eigenvalues of h is precisely the dimensions of h. Hence the projections of the powers $\left\{h^{k}\right\}_{k=1}^{n-\ell}$ onto h span h. Thus Theorem 2.4 follows from Proposition 5.1.
Proof of Theorem 2.5. Case 1. $G=S p(n)$ acting on $\mathbb{C}^{2 n}$. An arbitrary element in the Lie algebra $s \nsim(n)$ has the form [12, Sect. 65]

$$
\begin{equation*}
A \otimes 1+S_{j} \otimes \tau_{j} \tag{5.9}
\end{equation*}
$$

where $\left(1, \tau_{j}\right)$ are unit quaternious; A and S_{j} are real $n \times n$ matrices but $A^{T}=-A$ while $S_{j}^{T}=S_{j}$. The Cartan subalgebra may be chosen to have the form

$$
\begin{equation*}
t=\left\{D \otimes \tau_{3} ; D \text { a diagonal } n \times n \text { real matrix }\right\} \tag{5.10}
\end{equation*}
$$

The eigenvalues of $h \in t$ come in \pm pairs since τ_{3} has eigenvalues $\pm i$. Hence we need only consider the odd powers of h (the even powers are orthogonal to $\delta \mu(n)$.) We write

$$
h=H \otimes \tau_{3} \quad \text { with } H \text { diagonal. }
$$

It is not hard to see that the number of distinct eigenvalues of h (the number of distinct eigenvalues of H up to sign) is precisely the dimensions of h. Hence $\mu_{\text {odd }}(h)$ spans h. Case 1 follows now from Proposition 5.1.
Case 2. $G=S O(2 n)$ acting on $\mathbb{R}^{2 n}$. The Lie algebra so $(2 n)$ is the space of $2 n \times 2 n$ real skew-symmetric matrices. Let α, β, σ be 2×2 matrices defined by

$$
\begin{align*}
& \alpha=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \\
& \beta=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& \sigma=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) . \tag{5.11}
\end{align*}
$$

Every element in so(2n) has the form [12, Sect. 65]

$$
\begin{equation*}
A_{0} \otimes 1+A_{\alpha} \otimes \alpha+A_{\beta} \otimes \beta+S_{\sigma} \otimes \sigma \tag{5.12}
\end{equation*}
$$

where $A_{0}, A_{\alpha}, A_{\beta}$ and S_{σ} are real $n \times n$ matrices with $A_{0, \alpha, \beta}$ antisymmetric but S_{σ} symmetric. An element h in the Cartan subalgebra can be put in the form

$$
\begin{equation*}
h=H \otimes \sigma \quad \text { with } H \text { a diagonal } n \times n \text { matrix } \tag{5.13}
\end{equation*}
$$

Hence the eigenvalues come in \pm pairs also and we need only consider the odd powers of h. Once again the number of distinct eigenvalues of h is precisely the dimension of h and $\ell_{\text {odd }}(h)$ spans h. Case 2 follows from Proposition 5.1. Case 3. $G=S O(2 n+1)$ acting on $\mathbb{R}^{2 n+1}$. The group $S O(2 n+1)$ has rank n. The Lie algebra, $s o(2 n+1)$ is the space of $(2 n \times 1) \times(2 n+1)$ real skew-symmetric metrices.
Every element in so $(2 n+1)$ has the form

$$
\left(\begin{array}{c|c}
s o(2 n) & 0 \tag{5.14}\\
\hline 0 \ldots & 0
\end{array}\right)+\left(\frac{0 \mid v}{-v \mid 0}\right)
$$

where v is an $n \times 1$ matrix. An element h in the Cartan subalgebra may be taken to have the form

$$
h=\left(\begin{array}{c|c}
H \otimes \sigma & 0 \tag{5.15}\\
\hline 0 & 0
\end{array}\right)
$$

where H is diagonal [12]. This case reduces to the case of $S O(2 n)$.

Acknowledgement. The author warmly thanks Professors A. Jaffe and R.Bott for their many insights and suggestions. Thanks also to D. Groisser.

References

1. Coleman, S. : Classical lumps and their quantum descendents. In: New Phenomena and subnuclear Physics. Zichichi, A. (ed.) New York: Plenum Press 1977
2. Englert, F., Windey, P. : Phys. Rev. D14, 2728 (1976)
3. Goddard, P., Nuyts, J., Olive, D. : Nucl. Phys. B125, 1 (1977)
4. Jaffe, A., Taubes, C. : Vortices and monopoles. Boston : Birkhäuser 1980
5. Varadarajan, V.: Lie groups, lie algebras, and their representations. Englewood Cliffs, NJ : Prentice-Hall Inc. 1974
6. Spanier, E. : Algebraic Topology, New York: McGraw-Hill 1966
7. Taubes, C. : The existence of multimonopole solutions to the non-abelian Yang-Mills equations for arbitrary simple groups. Commun, Math. Phys. 80, 343-367 (1981)
8. Bott, R. : The geometry and representation theory of compact Lie groups. In : Representation Theory of Lie Groups. London Math. Soc. Lect. Note 34, Cambridge: Cambridge University Press 1979
9. Samelson, H. : Bull. Am. Math. Soc. 58, 2 (1952)
10. Uhlenbeck, K. : Removable singularities in Yang-Mills theory. Commun, Math. Phys (to appear)
11. Palais, R. : Foundations of global nonlinear analysis New York : W. A. Benjamin, Inc. 1968
12. Pontryagin, L. : Topological groups. New York : Gordon and Breach 1966

Communicated by A. Jaffe
Received November 14, 1980; in revised form November 26, 1980

[^0]: * Supported in part by the National Science Foundation under Grant No. PHY 79-16812
 \dagger Junior Fellow, Harvard University Society of Fellows

