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Some Twisted Self-Dual Solutions
for the Yang-Mills Equations on a Hypertorus*

Gerard 'tHooft**

California Institute of Technology, Pasadena, CA 91125, USA

Abstract. The SU(N) Yang-Mills equations are considered in a four-dimen-
sional Euclidean box with periodic boundary conditions (hypertorus).
Gauge-invariant twists can be introduced in these boundary conditions, to
be labeled with integers nμv(= — nvμ\ defined modulo N. The Pontryagin
number in this space is often fractional. Whenever this number is zero there
are solutions to the equations Gμv = Q. Here Gμv is the covariant curl. When
this number is not zero we find a set of solutions to the equations Gμv

= Gμv, provided that the periods aμ of the box satisfy certain relations.

1. Introduction

Understanding quantized gauge theories in the strong-interaction region is
made difficult by severe infrared divergences. It is therefore useful to consider
gauge models enclosed in a box with sides of variable lengths. As for the
boundary conditions at the sides periodic boundary conditions are the most
natural choice [1]. Indeed, computer simulations have been made of gauge
theories in such boxes and taught us much about their phase structure [2].

After having dealt with the vacuum in the box one may consider studying
some of the first excited states, such as those corresponding to a hadronic
particle trapped in the box. But it is perhaps of more fundamental importance
to look at a trapped amount of electric or magnetic flux in the box. The first
of these would correspond to a string connecting two opposite sides of the box.
(This is the string which in the infinite volume limit is believed to confine
quarks inside hadrons.) The energy of such a state corresponds directly to the
string constant. In [1] it is explained how this state is described in terms of
field configurations in a box where the periodic boundary conditions have
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been "twisted." One must temporarily introduce also periodic boundary con-
ditions in the Euclidean time direction and then the string state is obtained by
handling twists in the space-time direction in a certain way. We will explain in
Sect. 2 how the twist is defined and how it is related to the center Z(N) in the
case that the gauge group is SU(ΛΓ). We will see that the twist is labeled by six
integers nμv defined modulo N.

Field configurations with any twist are not difficult to write down, and it
was soon realized that they do not always have integer Pontryagin number

[1]:

X - v - , (1.1)

where v is any integer and

K = 4^v^v = w i2«34 + W i 3 w 4 2 + w i 4 « 2 3 » (1.2)

is also integer.
If K is not divisible by N then the total action of the field configurations

with twists nμv is bounded:

JTrGG >min
. 8π2

(1.3)

The question is: can we always saturate the bound, or equivalently, is there
a solution to the equation

Gμv = $eμvΛβGΛβ = Gμv, (1.4)

for all integer values of v and nμvl In particular if only the space-space
components of nμv are non-zero, then κ = 0 and there should be a solution of
Gμv = 0. Indeed, such field configurations were found [3] and that marks a
difference between the non-Abelian SU(iV) theory and the Abelian theory,
because in the latter all twists must carry a finite amount of action. In Sect. 3
we show in a simple way, that whenever v — κ/N = Q there is such a field
configuration.

Next, if nί2 = n34 = l and all other nμv vanish, then the lower bound (1.3)
amounts to 8π2/g2]V. Saturating this bound means that we have non-trivial
field configurations surviving in the usual N -»oo limit, because in that limit
g2 N is kept fixed [4]. We show in Sect. 4 how to construct configurations with
such an action. All our solutions will be represented in a suitably chosen gauge
that makes them look essentially translationally invariant and Abelian. How-
ever, considering the difficulty we had in finding them it looked worth-while to
publish the result.

2. The Boundary Conditions

We have four coordinates xμ with

αμ) μ = l, .-. ,4, (2.1)
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and in this space we have a vector field

which for every x and μ is a Hermitian traceless matrix with N rows and
columns. The coupling constant g occurring in the introduction will from now
on be put equal to one, since it is irrelevant for our discussion. For discussing
the boundary conditions we need a short-hand notation for functions defined
on the walls of the box:

f(x1=a1) stands for f(al9x2,x^,x4), (2-2)

etc. Actually, on the four walls xμ = aμ we have unitary matrices Ωμ(xμ = aμ).
Also, we will write

Ωμ Aλ instead of Ωμ I A λ - i —\ Ω~ \ (2.3)
\ oxj

where - — Ω,, is defined to be zero for each μ.
(ΊΎ
U ^μ

In each μ direction we now require the boundary condition to be

(2.4)

which just means that we have periodicity modulo gauge transformations.
When functional integrals are considered in this system we must keep the

Ωμ fixed, but vary the fields Aμ(x). This implies that at the corners of the box
the conditions (2.4) must not give rise to mutual incompatibilities for any
choice of Aμ. For example,

xi=x2=0), (2.5)

and the two different transformations on any chosen Aλ(x1 =x2 = G) should
give the same result. Therefore, the periodicity conditions on Ω are

Ω1(x2 = α2)β2(x1=0) = Ω 2(x 1=α 1)fl 1(x 2 = 0)Z12, (2.6)

where Z12 is one member of the center group Z(N) of SU(JV). A similar
condition holds in all pairs of directions μ, v. We write

Zμv = Q x p ( 2 π i n μ v / N ) ι nμv = -nvμ. (2.7)

Clearly, these exponents cancel out in (2.3). Because of continuity, the nμv must
be x-independent. Because of that, we find no further periodicity conditions.

What happens when we perform gauge transformations? Consider an arbi-
trary continuous and differentiable gauge transformation Ω(x). Then,

Aμ->ΩAμ, (2.8a)

Ωμ^Ω(xμ = aμ)ΩμΩ-1(xμ = 0). (2.8b)
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This allows us to transform any set of Ωμ into any other set except that the Zμv

in (2.6) and the numbers nμv remain the same. Therefore, if we wish to find a
field configuration with a given twist combination, we may just pick any
convenient set of Ωμ satisfying (2.6). It is as good as any other. Indeed, most of
the structure of the solutions described in the following sections will be
absorbed in the Ωμ, so that they look rather complicated. The fields Aμ(x) on
the other hand are very simple.

3. Zero Pontryagin Number

Now we will look for zero-action solutions for the case that

±nμvήμv = 0 (modTV). (3.1)

We will show that the solution of [3] is explicitly possible but we must assume
that N is not divisible by a prime number squared. One asks for a solution of

where
(3.2)

(3.3)

Equation (3.2) implies that there must be a gauge transformation Ω(x) that
transforms all Aμ to zero. This Ω will transform the Ωμ into some special set.
Now from the boundary condition (2.4) and (2.3) one easily reads off that the
new Ωμ must be completely x-independent. The boundary condition (2.6) for
Ωμ now becomes simply

v = ΩvΩμexp(2πinJN). (3.4)

We will now show how to construct these Ωμ for any set of nμv satisfying (3.1).
We then have the solution of (3.2) in the gauge where Aμ = Q, and the Ωμ are
constant. If the original Ωμ were not constant it is a trivial exercise to find a
gauge transformation Ω(x) that satisfies (2.8 b).

So how do we solve Eq.(3.4)? Let us define the SU(JV) matrices P and Q as
follows:

P =

0 1

0 1

0

0 1

0

π i ( l - J V ) 02πi/N

y2πi(N-l)/N

(3.5)

so that they satisfy

= QPexp(2πi/N). (3.6)



Twisted Self-Dual Solutions 271

Theorem. Whenever nμv satisfies (3.1) and N is not divisible by a prime number
squared, there is a set of integer numbers sμ, tμ such that

Ω^=PsμQtμ (3tη

satisfy (3.4).

Proof. Equation (3.4) for these Ω reduces to

nμv = sμtv-tβsv(modN). (3.8)

We must therefore show that one can solve (3.8) for any set of nμv that satisfies
(3.1). That is, for any nμv with

Kv aXv"«/* = 0 (modN). (3.9)

The most elegant way to prove this is by observing that Eq.(3.8) and (3.9) have
a large invariance group, namely SL(4, Z(N}}. This is the group of 4 x 4 ma-
trices with coefficients in Z(N) and determinant one. Using these transfor-
mations it is easy to bring nμv in a standard form:

(3.10)

To see (3.10) it is sufficient to consider nμv as a combination of one covariant
and one contravariant three-vector in SL(3,Z(ΛΓ)), which can be brought in a
standard form by applying successive SL(2,Z(JV)) rotations. If AT is a prime
then Eq.(3.9) corresponds to n14 = 0. In that case the solution of (3.8) has be-
come trivial:

s, = (OΛO,0);f, = (0,0,n23,n24). (3.11)

If N is the product of different primes P1...Pk then we first solve (3.8) for
N = P^P2, etc. and then combine the results.

4. Field Configurations with Non-zero Pontryagin Number

Some field configurations with non-vanishing Pontryagin number are easy to
construct. Those easy configurations are obtained by assuming the fields Aμ(x)
and the matrices Ωμ(x) all to correspond to the same Abelian subgroup of
SU(JV). But then the total action, if non-trivial, never descends below 8π2(N
— l)/g2N. If we want a configuration with non-trivial twist and an action
decreasing as l/g2N for large JV, then we must search for a non-Abelian
solution. We will now describe a successful approach.

We choose two positive integers k and /, such that fc + / = ]V, and split all
rows and columns of the matrices in two parts. We work in the subgroup
SU(fc)®SU(0® C/(l)cSU(N). Let ω be the traceless matrix
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(4.1)

-k

corresponding to the [/(I) generator. Then we define P1>2 and Ql 2 as in
Eq. (3.5) but now acting in the two subgroups SU(fe) and SU(zf). Their com-
mutation rules are

(4.2)

(4.3)

P2Q2 = Q2P2exp(2πi/N-ωί/N/\

and all other pairs commute:

Kβ2]=0, etc.

In making an ansatz we now must realize that the Ωμ must have on the one
hand an explicit x-dependence and on the other hand satisfy simple com-
mutation rules. We try

V2μ exp(i (4.4)

summed only over λ in the exponent. The numbers sμ, ίμ, wμ, and uμ are as yet
arbitrary integers and αμv any real matrix with vanishing diagonal com-
ponents: αμ|ί = 0 for all μ.

Inserting the twisted boundary condition (2.6) and using (4.2) we find

2 πi (2πi

modulo 2πi . (4.5)

This equation only contains the matrix ω and the identity matrix in U(N), so
we really get for each (μ, v) two equations, one at the upper elements and one
at the lower elements of the matrix ω:

-(uμvv-uvvμ) -k(αμv = αvμ} = nμv

where Aμv and Bμv are integers. We can rewrite this as

(4.6)

(4.7 a)

(4.7b)
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(4.8 a)

. (4.8 b)μv μ v

Let us assume that neither k nor ?f are divisible by a prime squared.
From the theorem of the previous sector we derive that given any set of n$,
n(

μv\ with

n™n™ = 0 (mod/c)

and

^X2) = 0 (mod/), (4.9)

one can find numbers A, B, s, ί, M, v that satisfy (4.8).
Our ansatz for the vector field is

Aμ(x) = ωBμ(x), (4.10)

where Bμ is just a real vector field. The boundary condition is then

Aλ(xμ = <*μ) = Aλ(xμ = Q)-ωctμJaλ. (4.11)

A solution to the second-order field equations is certainly

Aλ(x) = -ωXαμ λxμ/αμαA, (4.12)
μ

Gμv = -ω(aμv-ttvμ)/aμav. (4.13)

Let us check the index theorem:

Gμv = — Trω2 2εμ v α / ?αμ vαα / ?

16π2

+integer), (4.14)

where F = f|αμ, and (4.7) and (4.9) were used. Notice that if s, ί, M, and t; were
M

chosen to vanish then the index would always contain a factor Trω 2/W 2

= k ί/N instead of l/N. It is now also obvious that without loss of generality
we could have taken αμv antisymmetric.

Now our last point. We are interested in self dual (or anti-self dual)
solutions:

. (4.15)

This implies an equation between the coefficients aμv and the periods aμ: if

n =«μy-°W
i UV '

«μ^v

then

βμ,= ±βμv (4.16)
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Since the aμv are constrained to be some simple rational numbers we find that
some or all ratios between the aμ are restricted to simple rational numbers.

Let us consider more closely the case — w 1 2

 = w34 = l, rest = 0. Let us search
for solutions with

(4.17)

that is, we have to choose βμv as small as possible. Therefore,

rest = 0. (4.18)

Note that here we could drop the restriction on N. We have

/234 = l/ jV/α 3 α 4 .

Therefore we have a solution if

.̂ (4.19)

This restriction is typical for this kind of solution. If more twists are non-zero
we get more constraints on the periods aμ. If all rcμvφO then the squares of all
ratios are restricted to similar rational numbers.

5. Conclusion

We found solutions with non-vanishing Pontryagin number only if the ratios
of the sides αμ of the box satisfy certain relations, containing simple rational
numbers. We have not gone through the labor of finding the most complete
generalization of these solutions (for instance one might suggest to split N into
three or more integers rather than two). More important is the observation
that they exist. Many solutions will be gauge transformations of each other,
but it is impossible to transform a solution with one set (fc,/) into one with
different fe and /, because the eigenvalues of Gμv are different. If solutions exist
for all aμ then it seems to us that the functional dependence on aμ will be
complicated.

It is important that we have solutions with total action decreasing as
l/g2N for Λf-xx), so that they will certainly survive in the usual N -> oo limit
[4]. The implications of that for the JV—> oo theory are however not clear to the
author.
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