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Abstract. We study some systems of non-linear PDFs (Eqs. 1.1 below) which
can be regarded either as generalizations of the sine-Gordon equation or as
two-dimensional versions of the Toda lattice equations. We show that these
systems have an infinite number of non-trivial conservation laws and an
infinite number of symmetries. The second result is deduced from the first
by a variant of the Hamiltonian formalism for evolution equations. We
also consider some specializations of the systems.

1. Introduction

The title refers to the following system of equations for n unknown functions

I ~ Ri+ι) (1-1)

The ci are constants, and the suffixes are read mod n where necessary. It follows
from (1.1) that (ΣR.)xt = 0, and the most interesting case is when ΣR. = 0 too, so
that there are really only n— 1 independent unknown functions in (1.1), say
R0,...,Rn_2. However, even in this case it is more pleasant to write the equations
in the symmetrical form (1.1).

These equations have been studied recently by several other authors (see
[4, 9, 10]). The work [10] is in some respects more advanced than ours: we did
not see either this paper or [9] until the present manuscript had been completed.
We feel that since our point of view is rather different from that of [10], it is best
to present our results without any alteration. However, at the end of the introduc-
tion we have inserted a few comments comparing our results with those of [10].

Let us first explain how the Eqs. (1.1) arise from our point of view. In the simplest
case n = 2 and R0 + R{ = 0, we have just one unknown R = R0, and the equation is

R* = cι exP ( ~ 2*) - co exP (2K) (1-2)

For suitable values of c{ we get the well known sinh-Gordon equation

Rχt = sinh 2R.

The factor 2 is of course inessential, and could be removed by rescaling. Replacing
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R by iR, we could get the even more popular sine-Gordon equation

That is why we call the systems (1.1) 'generalized sine-Gordon equations'. In this
paper we are concerned only with purely algebraic properties of the equations,
so the substitution R -> iR is harmless.

Now, it is well known that the sinh-Gordon equation, or more generally
Eq. 1.2, is closely related to the Korteweg-de Vries (KdV) equation. The connec-
tion is via the 'modified' KdV equation for the variable r = Rx : the modified KdV
equation and the sinh-Gordon equation both have Lax representations

3tL=[L,P] (1.3)

with the same 'scattering operator' L (it is a first order operator with 2 x 2 matrix
coefficients). On the other hand, the KdV equation itself has a Lax representation
in which L is the Schrόdinger operator ξ2 + u (ξ = d/dx). The position of the system
(1.1) can now be explained as follows: it is related to the Lax equations based on a
scalar πth order operator

in the same way that Eq. 1.2 is related to the KdV equation. The 'modified Lax
equations' needed to make this connection were introduced in [6].

To avoid confusion, we point out that although we speak of a 'Lax representa-
tion' for the system (1.1), this system is not what we call a 'Lax equation': as in,
for example [6, 12], we reserve that term for equations having a representation (1.3)
in which (at least) the entries in the coefficients of P are differential polynomials
in those of L. A Lax equation is thus always an evolution equation for the entries
in L. The operator P in the Lax representation for (1.1) is not of this kind (indeed,
(1.1) is not even an evolution equation); however, we shall see that it is near enough
so that we can handle the system (1.1) by only a slight extension of the usual
algebraic machinery for Lax equations.

Our two main results about the system (1.1) are simply extensions of the funda-
mental results on Lax equations. They state that (i) all the (infinitely many) conserv-
ed densities for the modified Lax equations are also conserved densities for (1.1);
(ii) all the modified Lax equations are symmetries of (1.1) in a rather strong sense
that is explained precisely in Sect. 4. We should like to emphasize that both these
properties are of a purely algebraic nature : in our view it would be inappropriate
to formulate or prove them in terms involving functions decreasing at infinity,
transmission coefficients, or other irrelevant complications. The system (1.1)
can be viewed algebraically as follows : it is an example of the class of what might
be called 'quasi-evolution equations' of the form

dtr = F(R); (1.4)

here r. = Rίx, r and R are vectors, and F is a function of the Rt and (possibly)
their x-derivatives R(/}. The dt in (1.4) can now be regarded as defining a derivation
of the algebra of functions of r[j\ with values in the larger algebra of functions of
R\j\ Studying the algebraic properties of the Eq. 1.4 amounts to studying this
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derivation. The situation should be compared with the more familiar one of an
evolution equation dtr = f(r): here dt can be viewed as a derivation of the algebra
of functions of r\j} into itself.

The paper is organized as follows. Section 2 summarizes the material on
modified Lax equations that we need from our previous paper [6]: we refer the
reader to [6] for proofs and more details. Section 3 derives the Lax representation
for Eq. 1.1, following the example of AKNS [1] for the sine-Gordon equation.
The formulation and proof of the two main results are in Sect. 4. The formulations
are probably of more interest than the proofs, which we omit anyway, since they
are exactly the same as for Lax equations. The two results can be proved inde-
pendently of each other, but it is more interesting to deduce one from the other
by Hamiltonian formalism: the necessary extension of the usual Hamiltonian
formalism is explained in Sect. 5. Section 6 considers the 'specializations' of (1.1)
obtained by making the basic operator L in the Lax representation skew-adjoint;
this gives equations resembling (1.1), but in about half as many variables. The
main problem here is to check which of the conservation laws for (1.1) remain
non-trivial for the specialization. Finally, in an appendix we have discussed the
relationship of the approaches of Lax [7] and AKNS [1] to 'integrable' equations.
This will (we hope) be well known to many readers, and is essentially explained
already in Lax's article [8] nevertheless, we have the impression that the situation
is not as widely understood as it should be, so it seemed worth while to set it out
in black and white.

To end the introduction we offer a few comments on the relationship between
our work and the papers [9,10]. These papers approach the system (1.1) from
a different angle: they view it as a two-dimensional version of the periodic Toda
lattice. Indeed, if in (1.1) we regard R. as functions of just one variable ί, replace the
left hand side by R. tt and take all the constants ct= 1, we have exactly the equations
of the periodic Toda lattice. (The finite non-periodic Toda lattice is also included
as the case when c0 = 0.) Now, as Bogoyavlensky first pointed out [2], the n-
periodic Toda lattice is the special case An_ 1 of a construction that can be carried
out starting off from any irreducible root system: the paper [10] considers the
two-dimensional versions of these generalized Toda lattices. The equations that
we obtain by specialization in Sect. 6 are among these: for n = 2kwe get the system
corresponding to Cfe, and for rc = 2k + 1 we get the system of [10] corresponding to
the non-reduced root system BCk (the possibility of the specialization A2k -» BCh

is mentioned in [9,10]). However, the remaining irreducible root systems do not
seem to arise so naturally from our point of view. In [10] the authors obtain
'zero curvature' representations for these systems, and use them to construct
conservation laws (though they do not state which of the conservation laws
constructed are non-trivial). The papers [9, 10] do not contain any analogue of
our second main result, concerning the symmetries; however, we note that pre-
viously Zhiber and Shabat [13] had proved the existence of infinitely many
symmetries for the equation

Rxt = α exp (- 2R) + βexpR.
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This is our specialized equation in the simplest case n = 3 (corresponding to the
root system BC^.

We are grateful to A. M. Perelomov for letting us see a preprint of the interesting
paper [10].

2. Modified Lax Equations

The modified Lax equations of [6] are evolution equations for unknown functions
vv(x, ί), . . . , vn_ l (x, ί). They have a Lax representation based on the following first
order n x n matrix operator L : let ω = exp (2πί/n\ let Ω be the diagonal matrix

Ω = diag(l,ω,ω2,...,ω"-1), (2.1)

and let circ (α0, . . . , an_ J denote the circulant matrix1 whose first row is the vector
indicated. Then

L = Ω.circ(ξ,ι>1,... 9vn_J (2.2)

(recall that ξ = S/Sx).
Let 5 = C[pί7)] j ^ 0, be the algebra of differential polynomials in the v. with

the usual derivation dv\^ = v\j+1\ We denote by Mn(B) the algebra oϊ n x n
matrices with entries in B, and by Mn(E)[ξ,ξ~l~\ the algebra of formal pseudo-
differential operators with coefficients in Mn (B). Each element X of this algebra
has a unique decomposition X = X+ + X _ , where X+ and X _ are of the form

x

+ = Σ*i?> X-=Σ x& Xi*Mn(B). (2.3)
0 - oo

Proposition 2.3. Let L be given by (2.2). Then there is a unique element
XEMn(B)\ξ, ζ"1] with the following properties:

(i) X commutes with L
(ii) X is homogeneous of degree 1 with respect to the natural grading (deg£ = 1,

g t p =;'+!)
(iii) X = Id. ξ + (terms of negative order)
(iv) X is a circulant.
The modified Lax equations are now defined by

3βL=[**+,L] = [L,*!]. (2.4)

That is, dg is the 6d/df of the gth equation of the hierarchy. The equations are non-
trivial except when q is a multiple of n.

The connection of these equations with scalar Lax equations is as follows. Let

s : (circulant operators) -> B [ξ, ξ ~ 1 ]

be the homomorphism that adds up the entries in one row (or column) of a circu-
lant. Let L= s(Ln\X = s(X). Thus Lis a scalar operator of the form

1 That is, the matrix whose (ij) entry is aj_l (indices run from 0 to n - 1, and j - i is read mod n)
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Proposition 2.5. (i) The equations dqL = [X\,L\ implied by (2. 4) are just the usual
Lax equations formed from L. (ii) The operator Lf actor izes

where we have set

> (2-6)

Remark 2.7. In the paper [4] the factorization of L is taken as the starting point.
From this point of view our operator L arises as follows. There is a standard way of
using the factorization of L to rewrite the nth order equation Lψ = λnψ as a first
order system; however, in the resulting system Lφ = λψ the leading coefficient of L
is not diagonal (it is a circulant). If we diagonalize it, we arrive at the L in (2.2).

Remark 2.8. It is sometimes convenient to consider slightly more general equations
involving an extra variable ι;0 : we start off from the operator

and proceed as before. We have dqvQ = 0 for all q9 so the case v0 = 0 is the one of
most interest. In the general case v0 =J= 0, the roots r0 , . . . , rn _ t of L are independent
variables (v0 = Q clearly corresponds to Zrt = 0): that makes the Hamiltonian
form of the modified equations a little more pleasant in this case.

The Hamiltonian form is as follows. Define the Ήamiltonians' HqεB by

Hq = q-ltτπsX*. (2.9)

(We recall that the residue of an operator is the coefficient oίξ'1.)

Proposition 2.10. The modified Lax equations ( 2 .4 ) can be written in the form

It will be useful to have the corresponding expression in terms of the variables
r. in (2.6). From [6], Sect. 6, we see that the skew matrix defining the Hamiltonian
structure in terms of these variables is DΛ9*, where D = (ωij) is the (Frechet)
Jacobian of r with respect to v9 and t is the skew matrix for the variables vt. A
short calculation gives the following.

Proposition 2.11. When written in terms of the variables r ί 9 the modified Lax
equations take the form

where
(i) in the case v0 =j= 0, r = (r0, . . . , rn_ 1 )* and S = — Id
(ii) in the case vQ = 0, r = (r0, ... 9rn_2)

t and S = n"1£-Id; here E is the
(n—l}x(n—ΐ) matrix with Etj = 1 for all ij.

Proposition 2.12. The Hamiltonians Hq are conserved densities for all the modified
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Lax equations (2 A), that is, we have drHqedBfor all r. Except when q is a multiple
ofn, these conserved densities are non-trivial, that is, Hq$dB.

It is clear that Hq is homogeneous of degree q + 1 with respect to the grading on
B (deg v^ =7+1). Thus the modified Lax equations have a non-trivial conserved
density of every degree not of the form an + 1.

Finally, in Sect. 6 we shall use the fact that the Hq can be calculated from the
scalar operator L.

Proposition 2.13. We have

mod dB.

3. The Lax representation of (1.1)

According to AKNS [1], the sinh-Gordon equation can be represented as the
compatibility condition for the system

where A is a matrix of functions and L is our operator (2.2) for n = 2. As Lax
pointed out (see [8] and the appendix below), this means that the equation has a Lax
representation

3fL=[L,P] (3.1)

in which P is a matrix of functions times L~ 1. We shall now calculate the corres-
ponding equations of this kind for any value of n, L being given by (2.2). For (3.1)
to be consistent, we want P to be a circulant: we therefore seek P in the form

the b. are functions whose relationship to the u. is yet to be determined. Let us
set F=circ (vQ, ...,vn_1)9 so that L=Ω(ξ + V); (the reader can set vQ=ΰ if
he wishes). A short calculation then shows that (3.1) is equivalent to the equations

dtV=ΩBΩ~1-B ( ' '

(The first of these equations expresses the condition [L, P] _ = 0.) Explicitly,
Eqs. (3.2) say that

(All indices and summations run from 0 to n — 1, and indices are read mod n.)
Introduce new variables
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(so the r. are as in Sect. 2). Then Eqs. (3.3) become

Introducing variables R0, ... , Rn_1 with dRt = r., we can 'solve' the first of these
equations to get

putting this into the second equation yields the system (1.1).

Remark. Some readers may wonder why we do not go further and consider equa-
tions of the form (3.1) with P a polynomial in L"1 of order 2, 3, 4, ... The reason
is that the coefficients of such operators P (and the resulting equations) would
involve increasing numbers of 'integrations' of elements of our original algebra
of differential polynomials in the v. we do not like that.

4. Conservation Laws and Symmetries

In order to discuss the algebraic properties of the system (1.1) without introducing
irrelevant analytic considerations, we proceed as follows. Let

be as in Sect. 2. (For definiteness let us consider the general case vQ =|= 0 the case
v0 = 0 is exactly the same : we then take B = C [r^}, . . . , rj/1 2].) We form the larger
algebra

B = B[expR.9exp(-Ri)~]9 O^i^n-l.

Thus an element of B is a Laurent polynomial in the symbols exp R. with coeffi-
cients in B. The derivation d is extended to B by setting

d exp Rt = r exp RΓ

(Naturally, we have in mind that dR. = r , but at this stage we do not want to
introduce the jR. themselves into our algebra.) The grading of B is extended to B
by giving exp R. degree zero. The derivation d still increases degree by 1, and its
kernel still consists just of the constants : these properties will ensure the validity
of the arguments from [12] that we refer to below in the proofs of Theorems 4.1
and 4.2. The algebra B is the smallest algebra containing all the expressions arising
in our study of the system (1.1).

We now let

dt : B -* B

be the derivation defined by the properties
(i) dt commutes with d
( i) dtrt = Ci_, exp (R^- R,} - c{ exp (Rt -Ri+1).

It is clear that there is a unique dt with these properties. The derivation dt embodies
the algebraic properties of the system (1.1).
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Theorem 4.1. The Hamiltonians Hq for the modified Lax equations (see Sect. 2) are
also conserved densities for Eq. 1,1 that is, we have

dtHq = dJq for some JqεB.

Proof. Using the Lax representation for (1.1) given in Sect. 3, it is easy to check
that the proof of the corresponding fact for Lax equations given in [12] is still
valid.

Next we formulate the result about symmetries, which is the counterpart for
(1.1) of the fact that the flows of Lax equations based on the same operator L com-
mute. As in Sect. 2, let dq : B -> B be the derivations corresponding to the modified
Lax equations. From the Hamiltonian form of these equations (see (2.1 1)), the dq

have the form

dqrί = dyt

for some y^B (depending of course on q). It follows that dq has a natural extension
to an evolutionary2 derivation of any algebra of C°° functions of the variables
R\j}: the extension is determined by

In particular, we have a natural extension of d to a derivation dq : B -> B, with

Theorem 4.2. The modified Lax equations are symmetries of (1.1) in the sense that
the following diagrams commute:

<U g

B -A B

Proof. It is enough to show that

where L is the operator (2.2). That can be done by the same argument as for Lax
equations (see [12], Sect. 3). Alternatively, one can deduce (4.2) from (4.1) by (an
extension of) the Hamiltonian formalism: we shall do that in the next section.

Remark. Our introduction of the algebra B in this section was motivated by the
desire to work in the smallest algebra possible (clearly, the smaller the algebra in
which the 'fluxes' Jq can be asserted to lie, the more content theorem 4. 1 will have).
In the next section, however, for the sake of indicating a general theory we shall
work with larger algebras: we shall regard dt as a derivation from the algebra of
C00 functions of r\J) to the algebra of C°° functions of Rίjλ For the purpose of proving
the commutativity of the diagrams in (4.2) it makes no difference which kind of
algebra we work with, because in both situations evolutionary derivations are
uniquely determined by their values on the basic variables r .

2 That is, commuting with d



Conservation Laws and Symmetries 197

5. Hamiltonian Formalism

Let R0,...,RN_1 be independent variables (in our application we shall have
N = n or n — 1, but for the moment we want to describe some general machinery).
Let A(R) denote the differential algebra of C°° functions of R^J ^ 0 (with some
domain of definition that we need not specify). We set r. = dR^ so that we have an
inclusion of differential algebras

Let S be a constant symmetric N x N matrix, and suppose we are given on A (r)
the Hamiltonian structure defined by the skew operator Sd. That means that to
each function feA(r) we assign the Ήamiltonian vector field' (evolutionary
derivation) df\A(r) -» A(r) such that

(5.1)

(vector notation: r = (r09...,rN_1)
t, etc.).

Now, (5.1) can be written

δf
—.
or

Hence we have the following.

Proposition 5.2. Every Hamiltonian vector field d^ feA(r)9 extends to an evolutio-
nary derivation df of A(R) defined by

Now, each/e^(r) can be regarded as lying in A(R\ so we can form the varia-
tional derivatives δf/δR.. It is easy to see that we have

δR δr'

Thus (5.1) can also be written

In this form the formula still makes sense forfeA(R).

Proposition-definition 5.3. Let FεA(R). Then we assign to F the (unique) evolu-
tionary derivation

dF:A(r)-+A(R)

defined by

V = - s (5-4)
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If it happens that FeA(r\ then this derivation takes values in A(r) and coincides
with the dF defined by (5.1).

In contrast to (5.2), note that if Fφ A(r\ then 3F does not necessarily have any
extension to a derivation of A(R) into itself.

If now FeA(R) and gεA(r\ we can define their Toisson bracket' by

{F,g} = dFg=- dgFeA(R)/Imd.

Then the main fact expressing the 'quasi-Hamiltonian' character of this bracket
is as follows.

Proposition 5.5. For any FeA(R\ geA(r\ we have

(The last bracket means dFdg — dgdF, so both sides of the equation are derivations
from A(r) to A(R.))

We omit the proof of (5.5), which is just like the proof that the operator Sd
is Hamiltonian in the usual sense (see, for example [5]).

It follows in particular from (5.5) that if geA(r) is a conserved density for
Eq. 5.4, that is, if dFgeImd, then \_dF,dg~] = 0; that is, the equation dtr = Sdδg/δr
is a symmetry of Eq. 5.4 in the sense discussed in Sect. 4. Since the modified Lax
equations have this form (see (2.11)), in order to deduce (4.2) from (4.1) we have
only to check that our Eq. (1.1) can be written in the form (5.4), with S as in (2.1 1).

Proposition 5.6. The system (LI) can be written in the form

R
where S is as in(2.11), and

H= -trresP- - ΣciQxp(Ri - Ri+ί).

That is most easily checked by direct calculation.
The 'quasi- Hamiltonian formalism' that we have been using is a special case of

a fairly general set-up : we end this section by sketching the general theory. Readers
who find the following discussion too brief could consult [6], Sect. 5 and 6. Suppose
we have two sets of variables (M.), (υ.\ and an inclusion

(More generally, we could consider a homomorphism of differential algebras
φ : A(u) -> A(υ\ but to simplify the notation we suppose φ injective and suppress it.)
Let D be the Frechet Jacobian of u with respect to v. Let f be a skew matrix defining
a Hamiltonian structure on A(u); and suppose that £ has the form

{ = CD* - - DC* (5.7)

for some matrix C of differential operators (with coefficients in A(υ)\ Then for
each fEA(u\ the Hamiltonian vector field df on A(u) determined by ( has an
extension to an evolutionary derivation df of A(υ\ defined by

g « = _ C * | ζ feA(u).J δu
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(That follows at once from the formula

dtu = Ddtv,

valid for any evolutionary derivation dt of A(v).}
Now, for FεA(υ\ we can define an evolutionary derivation

dF:A(u)-+A(v)

by the requirement

δF
dFu=C—.

δv

The formula

*f = D**f, feA(u},
δv δu

shows that if FeA(u\ then this <9F agrees with our original one. We can now define
Poisson brackets {F,g} as before, and we say the triple (C,D,0 satisfying (5.7)
is quasi-Hamiltonian if the bracket-preserving condition in (5.5) holds. Earlier,
we were dealing with the special case f — Sd,D = Id.5, C = — S. Slightly more
generally, arguments like those in [5] would show that any triple of constant
coefficient operators (C, D, £} is quasi-Hamiltonian (also in the generalization to
the case of more than one space variable).

This set-up should be compared with the one discussed in [6], Sect. 6. There
( had the form f = D^1D*9 where t^ was a skew matrix defining a Hamiltonian
structure on A(v). That is of course a special case of what we had above, where
C has the form C = D f ί . The effect of this special form for C is that all the deriva-
tions dF:A(u) -> A(v) defined above in fact extend to derivations of A(υ) into
itself (the extension is just the Hamiltonian vector field determined by ^). In the
case where C is not of the form D/l, however, dF has in general no such extension,
and we have, so to speak, only one and a half Hamiltonian structures rather than
two.

6. Specializations

In this section we consider the specializations (sometimes called 'reductions')
of the modified Lax equations, and of the system (1.1), obtained by requiring the
basic operator L of (2.2) to be skew-adjoint.3 That has the effect of cutting down
the number of independent variables vi or r. to [w/2], that is, to n/2 if w is even and
to (n — l)/2 if n is odd. Of course we take n > 2, since for n = 2, L is already skew.

In terms of the variables vί or rp the skew-adjointness condition is

v.= —ωiv_i or ri=-r_ί_ί (6.1)

(suffixes mod n as usual). As our basic independent variables we can take
rθ'Γ l ' •'• 'Γ[n/2]-l

3 We always take adjoints in the 'real' sense; that is, the adjoint of a complex number is itself, not its
complex conjugate
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Our first task is to determine which of the modified Lax equations and conserv-
ed densities Hq survive this specialization of L (see [6], Sect. 3). That is very easy.
First, the extra consistency condition for the modified Lax equation d L — [L, Xq_ ]
is just that the right hand side should be skew-adjoint, that is, essentially, that Xq

should be skew-adjoint, which happens only when q is odd (the skew-adjointness
of L is equivalent to that of X}. Thus only the modified Lax equations with q odd
survive the specialization (remain consistent). The same happens for the conserved
densities.

Proposition 6.2. The conserved density Hq = q~ltr res Xq remains non-trivial
when we make L skew-adjoint if and only ίfq is odd (and not a multiple ofn).

Proof. First, if q is even, then Xq is self-adjoint, so that Hq = 0. So now suppose q
is odd; by (2.13), it is enough if we show that res Xq = res Lq/n is not in Im d. Now,
we have

where

[n/2]-l

un_2 = — Σ rf 4- (linear combination of dr.).
o

We calculate what remains of Lq/n when we put all derivatives of r , and also all
coefficients of L except un_2, equal to zero. Since killing the derivatives makes
everything commutative, that can be done by the binomial theorem: we get

Since a 'fractional binomial coefficient' is never zero, we see that (if q is not a
multiple of n) res Xq contains a term that is a non-zero multiple of Σr\ + ί hence
obviously

Remark. This argument can also be used to prove the non-triviality of the con-
served densities for (unspecialized) scalar Lax equations : indeed, it is the kind of
argument that was originally used for the KdV equation (see [11]). However, it
does not work for matrix Lax equations : that is why we preferred to give a different
argument in [6], Sect. 7.

Proposition 6.3. The generalized sine-Gordon equation (1.1) remains consistent
under the specialization (6.1) if and only if the constants c. satisfy the condition

Ci = C-i-2
That is trivial to check. Naturally, the condition on the c{ is equivalent to the

operator P in the Lax representation of (1.1) being skew-adjoint. The effect of (6.3)
is that the specialized systems are obtained simply by writing down the first [rc/2]
equations in (1.1) and substituting for the extraneous variables from the conditions
R. = - R_ί_l.li follows automatically from (4.1) and (4.2) that these systems will
have infinitely many conserved densities (the surviving Hq) and symmetries (the
surviving modified Lax equations).

Let us write out the simplest examples, for n = 3, 4, 5. For n = 3, we have
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TQ -j- r2 = γ^ = 0; setting R = RQ we get the equation

Rxt = c2 exp (-2R)- c0 exp R. (6.4)

For n = 4, we have r0 + r3 = r1 + r2 = 0, giving

v,xt =
 C3 exp(- 2£0) - CQ 0

For n = 5, we have r0 + r4 = rl+r3 = r2= 0, giving

- 2R0) - c0 exp(R0 -

From (6.2) we get the following.

Proposition 6.7. (i) 77?£ equation (6.4) has a non-trivial conserved density of every
even degree not of the form 3α + 1.

(ii) The system(6.5)has a non-trivial conserved density of every even degree.
(iii) The system(6.6)has a non-trivial conserved density of every even degree not

of the form 5a + 1.
Here it is understood that the conserved densities are polynomials in the

r\j\ and we recall that rί7) has degree j + 1. The equation (6.4) is first mentioned
(as far as we know) in the paper [3] of Dodd and Bullough, who already noticed
that it had many conserved densities. (They thought it had only a finite number,
but as we have seen, that was not right.)

Appendix: Lax and AKNS Representations

In the AKNS approach to 'integrable' equations [1], the equation of interest is
represented as the compatibility condition for a system

Here Lis a first order matrix ordinary differential operator with leading coefficient
an invertible constant diagonal matrix, and A is a matrix of functions (not operators)
depending rationally (often polynomially) on the 'spectral parameter' λ.

On the other hand, the Lax equation dtL = [P, L] can be viewed as the compat-
ibility condition for the system

=
(A2)

Here P is an operator (differential or formal pseudo-differential) and does not
depend on λ.

The connection between the points of view (Al) and (A2) is very simple. Since L
is of order 1 with invertible leading coefficient, it is clear that every (formal pseudo-

r

differential) operator has a unique expansion in the form J] m.L*, the mf being
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matrices of functions. In particular, the operator P in (A2) can be written in the
form

P = Zp.L\ (A3)

(If P is a differential operator, only non-negative powers of L will occur.) The
corresponding A (λ) in (Al) is then just

A(λ) = ΣPiλ
l. (A4)

Conversely, given A(λ) in the form (A4), we can write down the corresponding
operator P in the form (A3). Thus (in the case when L has order 1) the only difference
between the Lax and AKNS approaches is that in the latter one chooses always to
represent the operator P in the form (A3) (and then suppresses it by writing (A4)
instead).
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Notes added in proof, (i) Everything in this paper can be generalized to the equations associated with
simple Lie algebras studied in [10]: these equations all have infinitely many (non-trivial) conservation
laws and corresponding symmetries. There is a symmetry of each degree congruent to an exponent
of the relevant Lie algebra modulo the Coxeter number, and the degrees of the conserved densities
are one more than these. Details will be given in a forthcoming paper by the second author (submitted
to Έrgodic Theory and Dynamical Systems').

(ii) Recentwork of Drinfel'd and Sokolov (Dokl. Akad. Nauk SSSR 258:1, 11-16 (1981)) also con-
tains these results, and shows clearly that the affine (Kac-Moody, Euclidean) Lie algebras provide
the correct setting in which to discuss these questions; for example, the equations described in [10]
as associated with the root system BCk are best understood as coming from the 'twisted' affine algebra
A(2κ> Drinfel'd and Sokolov also have a far-reaching generalization of the results of our paper [6]
concerning the Miura transformation. We are most grateful to Yu. I. Manin for informing us about
this work.




