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Abstract. In the two-dimensional O(N) nonlinear σ models, the expectation
value of any 0(N) invariant observable is shown to have an infrared finite weak
coupling perturbative expansion, although it is computed in the "wrong"
spontaneously broken symmetry phase. This result is proved by extracting
all infrared divergences of any bare Feynman amplitude at D = 2 — ε dimen-
sion. The divergences cancel at any order only for invariant observables. The
renormalization at D = 2 preserves the infrared finiteness of the theory.

1. Introduction

Two-dimensional σ-models have raised an increasing interest during the last
years, owing to their similarity with four-dimensional gauge theories, their simpler
structure and the development of powerful nonperturbative methods. In this paper
we deal with the weak coupling perturbative approach. This approach suffers from
the fact that the naive vacuum state is not the true one, as presumably is the case
for four-dimensional gauge theories. Indeed, the perturbative expansion has to be
made around a peculiar classical solution, i.e. in the spontaneously broken sym-
metry phase, although such a phase cannot exist in two-dimensional space [1,2].
So the symmetry has to be dynamically restored for any positive coupling con-
stant [3,4, 5]. A drastic consequence of the fact that the perturbative expansion is
made in the wrong phase is that this expansion has very important infrared diverg-
ences, since even the free propagator of a massless Goldstone boson does not exist
at two dimensions. For this reason the first perturbative calculations have been
performed by introducing a symmetry breaking term which makes the theory
infrared (I.R.) finite (and then by setting this term to zero) [4, 5].

However, S. Elitzur, following a remark of A. Jevicki about the effective poten-
tial of the 0(N) σ model [6], conjectured that any 0(N) invariant observable has
an infrared finite expectation value to any order in perturbation expansion [7],
and checked the fact up to third order of the two-point function. Various comput-
ations have been made by some authors [8,9] for the O(N) and G®G chiral
models which have verified the conjecture in many cases and used it to study these
models. Moreover, this result is very similar to what is expected for four-dimen-
sional gauge theories, a namely that some gauge invariant quantities should be
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I.R. finite, although the nature of the divergences, as of the invariant states, is
much more complicated for gauge theories. Nevertheless, Elitzur's argument is
very insufficient and may not be considered as a complete proof.

In this paper we present a general proof of Elitzur's conjecture for the 0(N)
nonlinear σ model. The infrared problem is shown to be disconnected with the
ultraviolet (U.V.) problem, as assumed in [7, 8]. We use dimensional regulariza-
tion (which has many advantages for this purpose), and prove that the regularized
vacuum expectation value of any 0(N) invariant observable is I.R. finite at any
order of perturbation at dimension D = 2 — ε. The U.V. renormalization at D = 2
may then be performed.

The key to the proof is the explicit extraction of the I.R. divergent part of any
integral present in the perturbative expansion of any observable of the fields. For
this purpose we use and adapt the general method developed by M. C. Bergere and
Y. M. P. Lam in [10, 11] for studying the asymptotic expansion of Feynman
amplitudes, and we also use results of [12] about dimensional regularization.
This analysis is very technical and uses general technics of Mellin transform and
subtraction operators. Only its final result is needed to show the mechanism of
cancellations of I.R. divergences, so for clarity we shall first present this last point.

This paper is organized as follows:
In Sect. 2 we briefly recall the perturbative expansion of the 0(N) σ model. We

then present in Lemma 2.1 the result of Sect. 3, namely the I.R. behaviour of any
Feynman integral at 2 — ε dimensions. Then this result is used to exhibit the
mechanism of cancellation of I.R. divergences for invariant observables. We finally
deal with the problem of renormalization.

Section 3 is devoted to the analysis of I.R. divergences of the 0(N} σ model.
We first present (in part A) the method of [10, 11] of analysis of asymptotic be-
havior, and introduce the main tools which shall be used. This method allows
the extraction of I.R. divergences of any graph at generic (nonexceptional) mo-
menta. This is performed for the graphs of the σ model in part B.

Divergences remain at exceptional momenta (this is related to the distribution-
like character of the amplitudes in two-dimensional momentum space). This
problem is discussed in part C. One has to look at the limit of nonexceptional
momenta tending toward exceptional ones. This may not be studied by the former
methods. We do not give a complete solution of this problem but present argu-
ments for the general decomposition. This decomposition is proved in particular
for the 2-ρoint function, and a complete proof shall be given elsewhere.

2. I. R. Divergences of the O(N)σ Model and Their Cancellations

We consider the Euclidean 0(N) nonlinear σ model. The 0(N) invariant action is

) (2.1)

where S(x) is a N-component real field with the usual constraint
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To obtain in I.R. finite perturbative expansion around g = 0, let us note

Sl(x) = ^gπl(x) ί=l,N-l

SN(x) = σ(x) = ̂ l-gπ2(x) (2.3)

and let us introduce a magnetic field H in the N direction, so that the action be-
comes :

H(σ(x)-l)\ (2.4)

= l\dDχ [(<3μπ)2 + # π2] + -l(dμ(σ ~ !))2 + H(σ ~ 1)2] (2 5)
2 ^

The expectation value of any observable &(π) is given by the functional integral

/ (P \ — ± (2.6)

where 3>(π) is the invariant measure

ΓT dπ(x)

Since the interaction term may be written - [ σ — \ ~ ] ( —Δχ+H)(σ—\\ we

associate to each vertex an "interaction line" which gives the factor ( — AX + H)
of the vertex (that is a factor p2 + H in impulsion representation, where p is the
total impulsion incoming to the (σ — 1): (see Fig. 1)). The graphs of the model are
considered as a set of usual propagator lines and of "interaction lines".

Fig. 1. Interaction vertices of first and second order. The wavy "interaction line" represents the term
p2 + H where p is the impulsion carried through the line

We shall argue that the I.R. and the U. V. divergences of the model are complete-
ly disconnected. So, in order not to deal with U.V. divergences, we shall use di-
mensional regularization throughout this paper and study I.R. divergences at a
dimension D = 2 — ε. This symmetry preserving regularization is much simpler
than others (for instance lattice regularization used by Elitzur [7]) and was already
used to study the I.R. problem of σ model in [8,9]. In particular, it is well-known
that with this procedure, the measure term in (2.7), which is proportional to
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<5(0) = ldDk, gives zero. Another advantage is that (as we shall see in the following),
at D = 2 — ε dimension, amplitudes diverge only as power of H~ε as H -> 0,
and there is no more log H divergences (which make the analysis of I.R. divergences
much simpler.

We now present the results of the analysis of the I.R. behaviour of any Feynman
amplitude of the O(N) σ model which is performed in Sect. 3. We shall show that
those I.R. divergences may be cancelled by the introduction of I.R. counterterms
(but at the price of strong modification of the functional integral). Then we shall
exhibit identities relative to invariant operators that prove that these I.R. counter-
terms reduce to zero for these 0(N) invariant functions, so that the I.R. finiteness
will be proved.

From Sect. 3, given a graph G, the subgraphs which give I.R. divergences are
the "dominant subgraphs" E of G defined as:

Definition 2.1. A subgraph E of G is said "dominant" if:
(a) E contains all external vertices of G (that is vertices where external impul-

sions (or positions) are attached.
(b) E contains no disconnected part, that is has no connected part which does

not contain any external vertex.
(c) There is no "interaction line" of G-E attached to E.
A dominant subgraph may be disconnected (see Fig. 2).

( α ) ( b ) ( c )

Fig. 2 a a dominant subgraph E of a graph G. b an essential E of G which does not satisfy condition
(b) of Definition 2.1. c an essential £ of G which does not satisfy condition (c) of Definition 2.1

The main result of Sect. 3 is the following Lemma, which gives the I.R. behaviour
of any amplitude.

Lemma 2.1. For any graph G, the I.R. behaviour of the amplitude /G(χ, H) at
D = 2 — ε is given by a sum of contributions relative to dominant subgraphs of G :

= Σ (2.8)

dominant

The F£'s are finite functions of the external positions x (or well-defined distribution
of the external momenta p). / ,

I{£fE}(H) is the regularized amplitude of the graph [G/E] obtained by shrinking
into one vertex the whole dominant E. It diverges like a pure power of H~ε/2,
namely

l[G/Eί ,(#) = const (2.9)

where L([G/JE]) is the number of loops of the graph [G/£].
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The asymptotic expansion (2.8) is valid for | Re ε
L(G)

The finite term of this expansion is the term relative to the dominant G itself
(which is the only dominant such that L(E) = L(G)\ that is FG(x). It follows im-
mediately from this lemma that for D > 2(ε < 0), the amplitude is I.R. finite, that is

i f ε < 0 (2.10)

and that for ε > 0, FG(x) is the analytic continuation of /G(x, 0) in the half plane
ε > 0. Of course, the FE's and the I[G/E^ always have ultraviolet poles at ε = 0, since
we deal with regularized amplitudes.

The result of Lemma 2.1 is quite similar to the Wilson Operator Product
Expansion [13], and indeed is obtained by the same methods, since in Sect. 3 we
transform by homogeneity the problem of small masses (H -»0) into a problem
of large momenta (see Fig. 3).

Fig. 3. A graphical interpretation of Lemma 2.1 (and of Eq. 3.43) giving the I.R. expansion of a graph
of the 2-point function

We may invert (2.8) to express FG as a function of the 7£'s. A single recursive
ument leads to:argument

Lemma 2.2.

= Σ (2.11)

dominant

The coefficients A[GγE](H) diverge as H (£/2)L(G/£)jike I[GγE}(H\ and are given by a
sum over all nests of dominant subgraphs of [G/E], considered as a graph which
appears in the perturbative expansion of <(π2(x)p> (where 2p is the number of
lines of G-E attached to E).

The functions A^^H) appears as I.R. counterterms to be added to the I.R.
divergent amplitude according to (2.11) to obtain a finite amplitude F. The intro-
duction of those counterterms corresponds to a strong (nonlocal) modification of
the functional integral. We shall show that this modification reduces to zero for
O(N) invariant functions, so that the bare amplitude IG may be replaced by the I.R.
finite amplitude FG in the perturbative expansion of these functions. So, having
isolated I.R. singularities for any amplitude in Lemma 2.1. and 2.2., we now deal
with the explicit mechanism of cancellation.
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Let us consider a 0(N) invariant function (9(n). In presence of a symmetry
rr

breaking term (σ — 1) in the action, the vacuum expectation value of Θ is
9

given by the functional integral (2.6).
Following an idea of Elitzur [7], let us perform an arbitrary rotation R of angle

θ in a direction ύ of the tangent plane of the π (| ύ \ = 1), so that the fields are changed
into

Γ 1 1π —> κπ = π+ (cos θ — l)(π zΓH—psinθσ \ύ (2.12)
L V# J

σ —>Rσ = cosθ-σ- ->/# sinθ(π ιί). (2.13)

Since the measure ® the function & and the invariant action A0 are invariant
under this rotation, the only term that is changed in the functional integral (2.6) is
the symmetry breaking term which becomes

rj TJ

—(1 - R

σ) = _[ 1 _ cos θ-σ + Jg sin θ(π tί)]. (2.14)
9 9

Defining a parameter a by

a = ̂ tanθ (2.15)
V 0

and rescaling H into

H -+ H/cosθ = H^/l+ga2 (2.16)

we obtain

•-«t<">~VHj]^ (21y)

Eq. (2.17) corresponds to the following identity between vacuum expectation values
for any 0(N) invariant observable (9 and any a.

To see the consequence of this identity at the perturbative level, let us develop
in g and a both sides of (2.18). We shall note perturbative expansion of < & (π) >£r

«P(π)>H= ΣgN&N(H) (2.19)
JV = 0

where $N is the sum of the amplitudes of all graphs of order N which appear in the

perturbative expansion of <0>. Developing ^/l +#α2 we get the following
expansion of the l.h.s. of (2.18)

WFSP-= Σ /Γ^(H)+ £ «2P^p(^4)^-P(H)l (2.20)
N = O L p=ι \ UΓL / J
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where the &p are polynomials of degree P and of valuation 1 (they have no term of
order zero).

We now look at the r.h.s. of (2.18). Φ(π) being invariant is an even function of
π, so that, by parity, only even powers of a occur in the expansion. We obtain

r.h.s.(2.18)
Γ

= y QN\ <uL> y ^M (2.21)
P=l

where the (9P

N(H) is sum of the graphs which occur in the perturbative expansion of
< & ( π ) ( [ H jΛc(π w))]2p/2P!>, that is graphs of 0(π) with 2P insertions of H(π ύ)
at zero momenta. Moreover, the presence of these insertions at the denominator
of (2.18) ensures that not only vacuum diagrams disappear, but also diagrams
with disconnected part where there are only insertions of H(π-ύ) (see Fig. 4). (The
factor 1/(2P)! is cancelled by a factor (2P)! which comes from the contractions in
Wick's theorem, since these 2P insertions are undiscernable). The insertions being
made at zero momenta, the contribution of each line joining an insertion to the

TJ

graph is — = 1, so that the graphs may be seen as graphs of Θ with "truncated
H

insertions" of (π ύ) at zero momenta (see Fig. 4).

Fig. 4. Example of graphs with four insertions of H(π.tί). Graph 1 contributes in (2.22), and graph 2
does not

Let us note by ^£(0) the set of all graphs that contribute to 0£, and C(E) the
counting factor of a graph E of ^P

N((9) in GP

N. We have

Φp

N(x,H)= Σ C(E)IG(x,H) (2.22)
Ee^(&)

and we identify trivially 0° with ΘN.
Identifying term by term (2.20) and (2.21), we get the following identity, which

is the perturbative version of identity (2.18):

(2.23)

The crucial point of the mechanism of cancellation is that the graphs of the
yp

N((9) are exactly the "dominant subgraphs", as defined previously, that appear
Lemma 2.1 and 2.2 in the I.R. expansion of the graphs of the perturbative expan-
sion of < (9 >.

So let us come back to the result of Lemma 2.2.
Given a graph G of ̂ (0), a dominant subgraph E of G appears to be a graph

of some yp

M(G)(M ^ N, P ̂  M) where M is the order of the graph E and 2P is the
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number of lines of G-E attached to E. Similarly, the reduced graph [G/E] appears
to be a graph of order N — M of the perturbative expansion of (π2(0))p, that is a
graph of °̂ _M(π2(0)p). It is shown in Appendix A that the counting factors are
such that the sum over the graphs G of the decomposition (2.1 1) may be factorized
into a sum over the dominant graphs E times a sum over the reduced graphs, so
we have the following decomposition :

^12) (2.24)

where the Θp

M(x,H) are given by (2.22) and where the J/PN _M(H) are given by

^PN-M(#)= Σ C(S).AS(H). (2.25)
Se<$$ι-M(π2(0)p)

The j/pQ(ff)'s diverge as a power of H~(ε/2)(p+Q\ except for the term P = 0, Q = 0,
which corresponds to the graph reduced to a point and which is set equal to 1.

We now have all the elements needed to prove the I.R. cancellation. We have
the theorem. :

Theorem 2.1. The bare vacuum expectation value of any &(N) invariant function Θ
is infrared finite at any order of perturbative expansion at dimension D = 2 — ε. The
term of order N of the development of ( (9 ), &N, is given by the sum of the finite part
FG of the amplitudes of the graphs G which appear in &N, namely

OjJ(x, H) = Σ C(G)FG(x) + 0(Hl -εNI2). (2.26)
GeV°N(β)

Proof. Let us assume that the theorem is true at any order M < N. (This recursive
hypothesis is trivially satisfied at order N = 0). Then, any derivative versus
In H of $M(M < N) has a zero limit, namely

3 Vr^77 K^M-O^1-^2) V g > l , M < J V . (2.27)
δ#/ M ~~

From (2.23), we deduce immediately that the 0P have a zero limit.

Op

N=0(Hl~E(N-p)l2) V p ^ l . (2.28)

This is also true for the &P

M(M < N) by the recursive hypothesis. So, for ε small
enough, we may add to ΘN any linear combination of the &M p, provided that their
coefficients diverge as power of H~ε/2. In particular, we may take the I.R. counter-
terms $#PN_M. So (2.28) and (2.24) lead immediately to:

Σ C(G)FG(x) = &N(x, H) + 0(Hl - ε N / 2 ). (2.29)

The l.h.s. of (2.29) being I.R. finite, the theorem is proved at order N.
We finally deal with the problem of renormalization. As claimed in the intro-

duction, we have seen that regularized vacuum expectation values of any invariant
function are I.R. finite, so that the I.R. problem is disconnected from the U.V. one.
The renormalization of the σ-model in dimension two is performed in references
[4, 5]. It is proved that, for soft invariant operators (that is for local functions of the
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fields without derivatives of the fields π), only two counterterms are needed, cor-
responding to the renormalization of the fields and of the coupling constant [5].
The bare field S0 and the bare coupling constant g0 are related to the renormalized
ones SR and gR by

(230)

(2.31)

The symmetry breaking term -Hσ has the dimension of the field S and so needs no
9

additional counterterm. The "bare magnetic field" HQ is related to the renormalized
one by

(2.32)

The counterterms Z and Z1 being independent of H, their perturbative ex-
pansions (in gR or in g0) are obviously LR. finite (but of course U.V. divergent,
and have poles at ε = 0). So we let the reader convince himself that the renormaliz-
ation of any soft operator does not introduce any additional LR. divergences. So
the perturbative expansion of any renormalized O(N) invariant soft operator is
LR. finite at any order of perturbation.

The renormalization of invariant operators of higher dimension (that is with
derivatives of the fields) is more subtle. Because the O(N) transformation laws of
the fields are modified by renormalization, the invariant operators are mixed with
what seems to be non-invariant ones [5]. The problem of the LR. finiteness of
those objects is discussed in [14] and it may be shown that they are also LR. finite.

3. Extraction of I.R. Divergences of Regularized Amplitudes at D = 2 — ε

A. Introduction

We now present the analysis of the LR. divergences of the regularized amplitudes
at D ̂  2. The general method of analysis of the asymptotic expansion of Bergere
and Lam exposed in [10,11] is adapted to study the LR. limit of graphs at generic
(nonexceptional) momenta. In our case, some simplifications occur, since we deal
with regularized (instead of renormalized) amplitudes. However, we adapt their
procedure of extraction of singularities of the Mellin transform to extract not only
the dominant part of the asymptotic expansion, but subdominant ones. Then we
give arguments, but not a complete proof, for the extraction of singularities at
exceptional momenta. Let us first introduce the main tools which are used.

Schwίnger representation of dimensionally regularized amplitude
The Feynman amplitude are written in the α-Schwinger representation.

Each propagator of a line a is written:
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and the contribution of the "interaction lines" introduced in Sect. 2 is written

(3.2)
o \ c / α/

Performing the integration over internal momenta, we obtain the Schwinger
representation for the amplitude of a graph G.

/G(p, H) = +f Π^σΓexp( - Σ «β

ff - pAJΦ V^αΓ^2] (3.3)
0 aeG L \ aeG J J

^G is the differential operator
/ f) \2

® = π —- (3.4)
«eVGVδ αα/

where ,/G is the set of "interaction lines" of the graph G.PG and dG. are the Symanzik
functions, characteristic of the topology of the graph.

Dimensional regularization is performed by taking D complex in (3.3) [12].
This integral is U.V. convergent for Re D small enough, and has an analytic conti-
nuation in D meromorphic with poles at dimension D such that the superficial
degree of divergence ωs of a connected one-particle irreducible (I.P.I.) subgraph S
is a positive or null integer. ωs is defined in our case as:

ωsΦ) = —γ~ ~ P(S) + ί(S) (3.5)

where L(S) is the number of independent loops of S and p(S) (respectively ί(S)) is
the number of propagator lines (respectively interaction lines) in S.

According to [12] when (2.10) is divergent, the regularized integral is given,
for Re D away from the U.V. poles, by the convergent integral.:

(3-6)
0 a L \ L a J/ J

where & is the subtraction operator defined in [15] as a sum over nests of divergent
subgraphs at the dimension D of products of Taylor operators:

^=l+ΣΠ(-^ ( S )) (3.7)
Jf SzJf

Each Taylor operator acts as follows :
The <x!a variables (αeS) of the subgraph S are scaled by p. One writes the genera-

lized Laurent expansion in p of a function / on which τ ~/(S) is applied as

(In our case p0 is complex, and depends on D.) The Taylor operator τ only retains
the terms with Re (p0 + p) ̂  - /(S), where

AS) = /*S) + i(S) (3.9)

is the number of lines of S, and then takes p = 1.
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We recall that a nest yKis a set of subgraphs S such that, given two subgraphs
Sl and S2 of Jf, either Sl is included in S2 , or S2 is included in Sl .

Applied on the integrand of (3.6), R may be rewritten as a sum over
Zimmermann forests of connected l.P.I. divergent subgraphs [15]. The action of
£% in (3.6) depends on the values of Re D and & performs subtractions at zero
external momenta and internal mass H, so that it is not a renormalization. Indeed
the singularities of IG are always present, and appear where D tends towards a pole
where the integral (3.6) is no more convergent.

Mellin transform and the I.R. asymptotic expansion
We now give the principle of the study of the I.R. behaviour, as exposed in [10, 1 1].
We want to study the limit as H -> 0 of the regularized amplitude IG(p, H) for a

2
dimension D less than two (namely D = 2 — ε with 0 < ε < — — — . Scaling α into α/fl

L(G)
in (3.6) we get the homogeneity relation:

(3.10)

The Mellin transform of (3. 10) is defined in [11] as

(3.11)

The integral (3.10) is convergent at infinity for x great enough (the τλ

 1 ensures the
convergence at zero). It is shown in [16] that using the integral representations
(3.6) and (3.11), we may inter vert integration in λ and α, to get the integral repre-
sentation of MΓ:

(3.12)
0 G G

The integral in α is convergent for x great enough, & being given by (3.7). The sin-
gularities of the Γ function are related to the behaviour of IG as H -> + oo and
need not be considered. The integral in α which defines the function

FG(x) = MG(x)/Γ( - x - ωG) (3.13)

may be analytically continued into a meromorphic function of x, with real poles
in decreasing order x0 > x1 > ... > x. > .... If we know the Laurent expansion of
MG(x) around these poles, namely

Pmax(N)

MG(x) = Σ *•" + regular part at X = XN, (3.14)
P=I (χ XN)

we obtain by inverse Mellin transform the asymptotic expansion of 7G(p, H\ that is:

00 Pmax(N)

IG(H)~ΣH~XN Σ T^ln'-HVH). (3.15)
N=0 p=l 1W

So, we have to analyse the singularities of the function FG(x) which arise, as for
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U.V. singularities in (3.3), from the divergent behavior of the integrand of (3.12)
when some subset of α tends towards zero. We now recall the notions of [11] which
are used to analyse those divergences.

Definition 3.1. Given a graph G and a set of external momenta {p.}, a subgraph S
of G is essential if, setting all α's relative to S equal to zero, the function pdGp is set
to zero. This is equivalent to the fact that all external vertices belong to S, ana that
the sum of the momenta attached to any connected part of S is zero.

The notion of essential subgraph depends on the external momenta {p.}. At non-
exceptional momenta, that is, in the euclidean case, if any partial sum of p.'s is
different from zero, a subgraph is essential if and only if all external vertices of G
belong to the same connected part of S.

Definition 3.2. A set of subgraphs of G is misjoint if they have no line in common,
and if the number of loops of their union is equal to the number of loops of the
individual subdiagrams. (The subdiagrams may have vertices in common).

Definition 3.3. A set ψ of subgraphs of G is called a Q-extended forest if it satisfies:
(a) Any subset of mutually noninclusive elements is misjoint.
(b) The union of nonessential elements of ψ is nonessential
(c) Every essential element E of ψ has no disconnected part, that it has no

subgraph E' such that E' and E — E are disconnected and such that E — E is still
essential.
(In [11] Bergere and Lam do not consider the condition c) but always consider
Q-extended forests with this condition.)

Definition 3.4. An essential E has an inactive part E if E and E — E are misjoint
and if E — E is still essential.

We now come back to the function FG(x). It is shown in [16] that (D being fixed
away from an U.V. pole) the poles of the function FG(x) are given by essential
subgraphs of G, and are characterized by

x + ω(G) — ω(E) = —n n positive or null integer, (3.16)

E being an essential of G.
However, from [12] and [16], as for the dimensionally regularized integral

(3.6), for Rex away from such poles, the integral (3.12) is absolutely convergent
and defines the function FG(x\ provided that the ̂  operator is given by the nest
formula (3.7), and consequently subtracts not only U.V. divergent subgraphs, but
also divergent essential subgraphs.

We now extend the results of Bergere and Lam [10,11]. It is proved that the
nest formula (3.7) for 3& may be replaced, when acting upon a function like in (3.12),
by a formula over g-extended forests, namely:

*=!+ Σ Π(-<S~'S) (3 17)
i/fβext.forests Seψ

where the sum runs over all Q-extended forests of divergent nonessential connected
I.P.I, subgraphs and of essential subgraphs (with no disconnected part from the
Definition 3.3) of G.
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If we scale by p the α's of a subgraph S in the integrand of (3.12) the first term
of the Laurent expansion in p is proved to be [11]

~ Σ ^IP^}PdίGlslP
x+ωλ (3.18)

[G/S] / )

if S is nonessential, and

-D/2 J n* + «G y Oίj eγn / _ V /v |p~^/2
s pasP

 x°^[G/5]eXP\ L, α )r[G/S]
\ [G/S] /

if 5 is essential.
Since FG(x) has singularities only at values of x such that the action of some

Taylor τs has a discontinuity, we deduce immediately that:
1) FG(x) has singularities given by (3.16), only for the essential subgraphs with

no disconnected part. (Other essentials give no singularities)
2) x being fixed away from these poles, the only forests which contribute in

(3.17) are forests of nonessential connected I.P.I, subgraphs S such that ωs > 0
(to deal with U.V. singularities) and of essential subgraphs with no disconnected
part such that

Rex<ω £ -ω G . (3.20)

So, (3.12) gives an integral representation of MG(x) around any poles x.. To
extract the Laurent expansion of MG at x., we may perform explicitly a Cauchy
integral around xt to compute residues. The general method presented here is now
applied to the Green's functions of the 0(N) σ model.

B. The Case of Nonexceptional Momenta

The I.R. behaviour of an amplitude is in general different at exceptional and at
nonexceptional momenta (since the essential subgraphs are different). So we first
deal with the I.R. divergences of the 0(N) σ model at nonexceptional momenta
(that is when any partial sum of external momenta is nonzero).

Let us consider a connected graph G that appears in the perturbative expansion
of a AT point function at D = 2 - ε (with N ^ 2). At nonexceptional momenta, any
essential subgraph E without disconnected part in connected and contains all
external vertices. Then we have

ME ~ ™G = \ WV ~ L(£)l - "* (3 21)

where n{ is the number of "interaction lines" in G — E attached to E. (See Fig. 2).
From (3.22), only essentials with nt = 0 give poles at x ^ 0. Let us call such essentials
"leading essentials." (The leading essentials are the connected dominant sub-
graphs of G).

The function FG(x) has singularities at

(3.22)
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since the superficial degree of convergence of G is

a>G = (i-")-2 (3.23)

The singularities of FG do not interfere with those of the function Γ( — x — ωG)
in the definition of MG(x). Moreover, from the general analysis of (A), the following

g
poles of FG are smaller than — 1 4- ^L(G). (See Fig. 5.)

Fig. 5. Singularities in x of the Mellin transform MG(x] around D = 2

To extract the Laurent expansion around XL

MG(x)= Σ a

t
p=ί

we have only to write the Cauchy integral

dyMG(σ+ + iy)(σ+ + iy - XL)P~
i Γ +0

ap = — I j

εL/2<σ+<((ε/2)(L+l))

+ 00

- <εL/2

and to use the integral representation (3.12) of MG(x) in the bands

and

(3.24)

dyMβ(σ_ + iy)(σ_ + ίy - xLγ- * \ (3.25)

(3.26a)

(3.26b)
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From (3.17), in BL, (respectively BL_1) in the expression of ̂ , only Q-extended
forests which contain leading essential subgraphs E such that L(G) — L(E) > L
(respectively L(G) — L(E) ̂  L) contribute. The Γ function in (3.12) ensures con-
vergence at infinity of the integral (3.25). So, we invert integrations in y and α in
(3.25), to obtain for ap a convergent integral representation where only the Q-
extended forests are present which contribute in BL_l and do not in BL, namely
those which contain one leading essential such that L(G) - L(E) = L.

We get

+ 00 l + o o

0 G ^π - oo

φ containing Seφ C \ G / ) /

a lead. ess. E

such that L(G/E) = L

Let us consider such a β-extended forest ψ. It is obvious that it contains only one
leading essential E such that L(G/E) = L, and that it is the greatest essential of ψ.
The action of τ~*E onto the function { } in (3.27) is given by (3.19); we get a
factorization into a part relative to E and a part relative to (G/E]:

UG/£]exp(
L \

e x p -
[G/JE]

where [G/E] is the reduced graph where E is shrunk to a point in G. Reorganizing
the sum order β-extended forests as a sum over leading essentials E such that
L(G/E) = L and a sum over <2-extended forests containing E, and factorizing over
forests of [G/E] and of E we get finally for αp, up to the problems of convergence
of the integrals, which shall be discussed later:

+ «> Γ ΊΓ /
*, = Σ ί Π Λx 1 + Σ Π(- τs-' ) %/£] exp ~ Σ

£ leading ess. 0 [G/£] L Q ext S J L \ [G/£]

such that forests

L(G/E) = L in [G/E]

+ 00 Ί + o o

0 E

Σ Π
<2 ext. forests S

in £ which do

not contain E

The term relative to [G/E] is simply the regularized amplitude I[G/E](H = 1).
In the integral relative to E the sum runs over all 2-extended forests in E which do
not contain E itself. Let us note this term R?,. To perform the integration over y,
we have to make precise the dependence of the integrand in (3.29) on y. From the
expansion properties (3.18) and (3.19), we have for a given β-extended forest ψ\

?r- +1>+»° (3.30)
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where Emίn is the smallest leading essential in ψ (if ψ does not contain a leading
essential, we take £min = E\ and where [£min] ̂  is the reduced graph obtained by
shrinking to a point every subgraph of ψ in Emin.

We now perform the integration over y. Denoting z = — σ_ — iy — ω(G/E\
we compute

ι Im z = + oo

— ί
ΔlΊl I m z = - o o

Gp(x, ω) is defined as

\ /

So finally for RP

E we get the following integral representation

RE = J 1 1 dot 2_j G (pdrE -, P , co£)
0 E ψ Q-ext. forest

(ψ eventually empty)

pdEp)i\. (3.33)

In (3.33) we sum over all g-extended forests which do not contain E, including the
empty forest. In fact, the RP

E are null if p > 1. Indeed, let us scale α into Λ,α in the
integral (3.33). We get the same integral, except that Gp(pdίEmin]p,a)E) is changed
into Gp(λpd[Emiΐί]P,ωE). Differentiating with respect to λ and using (3.32) we get

λ

~dλ
A— &p-&p+i =0 (334)

E — E — ' ^ '

so that only RE is nonzero and shall be noted RE in the following. The conclusion
£

of this study is that MG(x) has a single pole at XL = -L. Its residue is given by

Resεt/2{MG(x)}= Σ IlG/E](H = l). RE(P) (3.35)
leading essential

E such that L(G/E) = L

εL
This may be done at every pole — , so that we recover all leading essentials. By the

inverse Mellin transform, we deduce immediately the exact asymptotic behaviour
of/G(p,ίf)asH->0.

Theorem. 3.1. Any regularized amplitude of the 0(N) σ model at nonexceptional
momenta has the following I.R. asymptotic behaviour at D — 2 — ε :

ιβ(p,H)= Σ fl~"*2 Σ
n = L(G) lead ess. £

such that L(G/E) = n
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The divergent terms H~εL(G/£)/2/(G/£) (1) are relative only to reduced subgraphs
[G/E] and are, by homogeneity, equal to I(G/E}(H). The part RE(p) associated to a
leading essential E is I.R. finite and is given by (3.33) with p = 1.

The finite part of the expansion (3.36) is the term at n = 0. The only leading
essential such that L(G/E) = 0 is the graph G itself, so that the finite part of (3.36)
is RG(p).

To complete the proof, we have yet to prove that the integral (3.33) which
defines RE(p) is convergent. This is now obvious, because we know that

RE(p) = Residue at x = 0 of M£(p, x).

RE(p) is directly given by the convergent integral representation (3.33) with
E = G,L = 0,p= 1.

This suggests another representation of RG(p). We may extract the pole at
x = 0 simply by scaling α->Λ,α in the integral representation (3.12) of MG(x).
We thus get

λ-*MG(p, x) = Γ( - x - ωG) 7 Yld*a®{@Ge-λΣ«PG

D/2(pdGpr+ω°}- (3.37)
0 α

Differentiating with respect to λ and setting λ equal to one, we get

M (p,x) = -Γ( — x — ω ) f T\da £%\2) e~%a\ Yα }p~D/2(Όd D}X+COG}'- (3.38)
x o a I \ G /

So we have + oo /- / \ ^

RG(p) == •* I ^G' J 1 idttβΛ 1 °^G

e G I 2-f^ )jPG (pdGP) G ζ (3.39)
0 α ( \ G / J

where ̂  is given by (3.17)
The result of theorem 3.1 is clearly close to Lemma 2.1. But only connected

dominants are present in the decomposition. We shall indicate in the next section
how nonconnected dominants have to the introduced to take into account the
problem at exceptional momenta.

We finally mention that in (3.36), some leading essentials give a zero contri-
bution, that is to say RE = 0. It is the case of the "essentials with inactive parts"
(Definition 3.4) which may be proved not to contribute in the decomposition (3.36).

C. The Case of Exceptional momenta

However, we have not yet extracted all I.R. divergences. Indeed, the jRG(p)'s are
well-defined functions of p at nonexceptional momenta, but they diverge at
exceptional momenta, and so are not well-defined distributions of the p's. This
difficulty occurs with the bare propagator:

The propagator l/p2 is not a distribution at D ̂  2, since the integral \dDp-^ is

not convergent at zero. As already mentioned in [8, 9], to obtain the well defined

distribution Fp-^ (Finite part of -̂ , see [17]) we have to subtract a divergent term
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at p2 = 0, since Fp( —^ \ is defined as

This problem is not an academic one, since we have to define I.R. finite distributions
in impulsion space if we want, for instance, to obtain a finite function in position
space by the Fourier transform. So we have to analyze the behaviour of the func-
tions RG(p) as the impulsions p tend toward some exceptional impulsions. This
analysis needs different methods, since the methods used in 3. A only allow us to
analyze the I.R. limit at fixed momenta. We shall not give a complete proof in the
general case but shall discuss here two points :

— First the extraction of the singular part may be performed very easily for
graphs of the 2-point function.

— Second we shall give arguments for the general form of decomposition which
leads to Lemma 2.1.

Let us first look at the two-point function. By homogeneity, the function RE(p)
relative to any leading essential E depends on the external impulsion p by a
power

RE(p) = const [p2] ~ 1 ~εL(E}/2 (3.41)

and is not a distribution. The finite part of RE(p) is defined as for the propagator
by

= RE(p) ~ δ(p) J dDkRE(k). (3.42)

We incorporate this equation in the asymptotic expansion (3.36) of IG(p,H)
(G being a graph of the two point function) and get

£ F£(p)/[G~(H)+... (3.43)
lead ess.

The expansion is now made in terms of well defined distributions, the new term
may be rewritten

δ(p)ίdDkIG(k, H) = FSo(p)IlGrSo](H) (3.44)

where δ(p) = FSo(p) is the contribution (I.R. finite) of the graph SQ which contains
only the two external vertices and where [G/S0] is the graph obtained from G by
reducing to a point S0 (Fig. 3).

We now generalize this result. It follows from the general arguments of (A)
that, at exceptional momenta, the essentials which give the leading I. R. singularities
are not the "essential leadings" described in (B). More precisely, any set of excep-
tional momenta is characterized by a (unique) partition of the external vertices,

{ l . . . J V } = / 1 u . . . u / p (p^l) (3.45)

such that the subfamily of external momenta attached to any element of the
partition / has its sum equal to zero and any partial sum nonzero. Then the
analysis of (B) may be performed.
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The leading subgraphs are then subgraphs E of G with p disconnected parts
Et ... E , each Eq being a "leading essential" for the set of momenta relative to Iq,
that is to say (see Fig. 6):

—Eq is connected and contains the vertices of Iq.
—No interaction line of [G/E] is attached to E.

\ —

1 , ,...

E1

1

J

Γ

E?
— o

— °

Fig. 6. Example of a leading essential E = E^ uE2 of a 4-point graph at exceptional moment p1 + p2 = 0

One may obtain an asymptotic expansion of the infrared divergences at
exceptional momenta analog to (3.36), where the leading subgraphs previously
defined play the role of the leading essential in (3.36). Those infrared divergences
are of course more important than at nonexceptional momenta, since the ampli-
tudes diverge at least as rapidly as a negative integer power of H. We expect that a
quite similar expansion is obtained for RG(p) when the momenta p (nonexcep-
tional) tend toward exceptional ones, and that, taking into account all cases of
exceptional momenta, the I.R. distribution "Finite part" of RG(p) may be expressed
in terms of all possible leading essentials of G that is precisely all "dominant
subgraphs" of G (see Definition 2.1), and of I.R. divergent parts relative to the
corresponding reduced graphs, as done for the two-point function. As explained
before, a complete discussion of this problem should be much more cumbersome
than the analysis of (B) and shall not be presented here. We present only the
expected result, which appears to be the natural generalization of Theorem 3.1,
where all possible leading essentials (in all cases of external momenta) are present.

The regularized amplitude of a graph G has the following I.R. asymptotic
expansion in terms of finite distributions (in momentum space) relative to the
dominant subgraphs of G:

= Σ
£ £ G

Dominant

(3.46)

Subgraphs

In (3.46) the sum runs over all dominant subgraphs E of G. FE(p) is a finite distribu-
tion of the external momenta, which is in fact the "finite part" of the function
RE(p). I[G^}(H) is the amplitude of the graph obtained by shrinking the graph E
to one point. As^in Theorem 3.1, this term diverges as a pure power of H~ε/2,
namely H~(ε/2}L(^} (except for the graph G itself).

Equation (3.46) coincides with the Theorem 2.1 at nonexceptional momenta.
Indeed, in that case, only connected leading essentials give a contribution and the
distribution FE(p) coincides with the function RE(p).

This result is also in agreement with the decomposition of the two-point
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function given in (3.43). Indeed, at p = 0, the only dominant subgraph which has
to be taken into account is the graph S0 (composed only of the two external
vertices). The other dominant subgraphs necessarily have an inactive part (which
is the subgraph itself) and so give a zero contribution, from the remark that ends
part (B).

Of course, we have checked Eq. (3.46) on simple four point graphs. This equa-
tion is precisely the result of Lemma 2.1 (expressed in momentum space instead of
position space).

4. Conclusion
In this paper we have presented a general proof of the perturbative I.R. finiteness
of the vacuum expectation value of any 0(N) invariant function of the 0(N)
nonlinear σ-model. The proof was performed by using general methods of extract-
ing the I.R. divergences of any amplitude of the perturbative expansion. We recall
that the extraction is made in Sect. 3 in the case of nonexceptional momenta and
extended (but not completely proved) at exceptional momenta. The general I.R.
behaviour allows us to exhibit in Sect. 2 the mechanism of cancellations.

For explicit perturbative computations, we have shown that we may replace
the "bare" I.R. divergent amplitudes IG by I.R. subtracted ones, the RG given
by Eq. (3.39), provided that we deal with invariant quantities. It may be shown
that, for non-invariant quantities, this operation is equivalent to an average of
the orientation of the symmetry breaking magnetic field H in (2.4). The amplitude
of the magnetic field also has to be modified, and the average has to be performed
with some weight over the sphere; this weight is related perturbatively to the I.R.
counterterms of (2.11) in some complicated way, and so diverges as the symmetry
breaking term tends towards zero.

The result of this paper is that, as expected, the perturbative expansion of
any invariant function of the 0(N) two dimensional σ model is free of I.R. diver-
gences although computed in the wrong phase where the symmetry is sponta-
neously broken. However, as argued in [8], the fact that the symmetry is dynami-
cally restored so that there are no more long distance correlations, may not be
seen at any order of the perturbative expansion (where there are always such
correlations), but only by dealing with the full Green's functions.

Let us finally mention that the analysis of I.R. divergences at two dimensions
presented here may be extended to other two-dimensional models, for instance
the chiral models or the generalized σ-models [18], where such cancellations of
I.R. divergences are also expected to occur.

Appendix A

Given a graph G belonging to ^(0) and a dominant subgraph E in G, E belongs
to some 0^(0) (M ̂  TV, P ̂  M) where M is the order of E and 2P is the number
of lines of G — E attached to E. Similarly, let us consider the graph G — E as a graph
of order (N — M) of the perturbative expansion of the operator:

~^Xπ.Γ.
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The counting factor C(G) is the number of contractions which leads to G by
applying Wick theorem in the expansion of <$>. Separating those contractions
into contractions which lead to E plus contractions which lead to G — E plus
contractions between E and G — E which lead to G we get the following relation
between factors of G, E and G — E.

HI C(G) = n2n3C(E)C(G - E\ (A.I)

where n1,n2 and n3 are defined as:
nl = number of ways to decompose G into E and G — E.
n2 = number of ways to link the 2p lines of G — E to E in order to reobtain G.
n3 = (N — l)q where q is the number of lines carrying the (N — 1) internal indices

of the field ~π closed by the former operation which get G from G — E and E.
nv and n2 are factors coming from Wick theorem, n3 is a symmetry factor

depending on the group 0(N).

Now, from (A.I) we may reorganize the sum over the G in (2.1 1) as a sum over

the dominant subgraphs E times a sum over the graphs G — E, where we link all
"free" lines of G — E to a point in all the possible ways. We then obtain the reduced
graphs [G/E] as graphs of the perturbative expansion of (τ?2(0))p, with the corres-
ponding counting factor. We thus obtain

Σ C(G)FG= Σ C(G)I6+ Σ ( Σ C(E)IE}( Σ C(S)AS] (A.2)
0°(0) <j?°(0) O^M^N\&rψ / \ y°M^N(π2p) J

which gives (2.24).

Acknowledgements. I would like to thank M. Bergere, E, Brezin, H. Kluberg-Stern and J. Zinn-Justin
for their interest and for many helpful discussions, and also M. Peskin for some useful comments. I am
grateful to M. Bergere and E. Brezin for a critical reading of this manuscript.

References

1. Mermin, N. D., Wagner, H.: Phys. Rev. Lett. 17, 1133 (1966)
2. Coleman, S. : Commun. Math. Phys. 31, 259 (1973)
3. Bardeen, W., Lee, B. W. Schrock, R.: Phys. Rev. D14, 985 (1976)
4. Brezin, E., Zinn-Justin, J. : Phys. Rev. B14, 3110 (1976)
5. Brezin, E., Zinn-Justin, J., Le Guillou, J. C.: Phys. Rev. D14, 985 (1976)
6. Jevicki, A. : Phys. Lett. 71B, 327 (1977)
7. Elitzur, S. : Institute of Advanced Study. Preprint (1979)
8. Mc.Kane, A., Stone, M.: Nucl. Phys. B163, 169 (1980)
9. Amit, D. J., Kotliar, G. B.: Nucl. Phys. B170, 187 (1980)

10. Bergere, M. C., Lam, Y. M. P.: Commun. Math. Phys. 39, 1-32 (1974)
11. Bergere, M. C., Lam, Y. M. P.: Asymptotic expansion of Feynman amplitude. Part II—the diver-

gent case. Freie Universitat Berlin. Preprint FUBHEP May 74/9
12. Bergere, M. C., David, F.: J. Math. Phys. 20,1244 (1976)
13. Wilson, K.: Phys. Rev. 179, 1499 (1969)

Zimmermann, W.: Lectures on elementary particles and quantum field theory. Cambridge:
MIT Press 1970

14. Heidenreich, R., Kluberg-Stern, H.: Nucl. Phys. B182, 205 (1981)
15. Bergere, M. C., Zuber, J. B.: Commun. Math. Phys. 35,113 (1974)

Bergere, M. C., Lam, Y. P. M.: J. Math. Phys. 17,1549 (1976)



170 F. David

16. David, F.: Regularisation dimensionnelle des amplitudes de Feynman, These 3eme cycle. Saclay
Preprint DPh. T, Mars 1978

17. Schwartz, L.: Theorie des distributions. Paris: Hermann 1966
18. Zakharov, V. E., Mikhailov, A. V.: Sov. Phys. JETP 47,1017 (1978)

Eichenherr, H., Forger, M.: Nucl. Phys. B155, 381 (1979)
Brezin, E., Hikami, S., Zinn-Justin, J. : Nucl. Phys. B165, 528 (1980)

Communicated by E. Brezin

Received June 2, 1980




