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Abstract. When translational symmetry is broken in the ground state, the
homotopy theory of defects of ordered media has to be supplemented with
integrability conditions, coming from the theory of foliations. These show how
some homotopy classes split into several distinct defects, while other ho-
motopy classes do not occur physically. This framework can also be used in
order to discuss defects of gauge fields, where in a first approximation
classifying spaces play the role of the manifolds of internal states.

1. Introduction

During the last few years, the topological theory of defects of ordered media has
become a relatively well established subject.

The general framework for this approach, as laid down by Toulouse and
Kléman, has been, so far, the following. For each type of order, one has a
“manifold of internal states”, V, characteristic for the order in question.

The mathematical model for a specific ordered medium consists of a physical
space M (which is assumed to be an n-dimensional manifold), of a subset of “defect
points” 2 CM, and of a continuously defined “order parameter”

M—Zsp—®(p)eV.

The standard approach has been to classify defects according to the homotopy
classes of the maps @ or to study the interaction of defects via the algebraic
structure of the homotopy group =,/ and their Whitehead products (see, for
example [20, 7, 15, 16, 22]).

General references for all this are Mermin’s review article [97, our Les Houches
lectures [17], or the review article of Michel [10].

Limitations of this approach, in the case of ordered media with broken
translational symmetry in the uniform state, are very carefully explained in one of
the paragraphs of Mermin’s article.

The aim of the present paper is to go one small step beyond pure homotopy
theory, towards differential geometry, in this topological study of defects. The new
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Fig. 1. Measured foliations (2-dimensional “smectics”)
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Fig. 2. Non-measured foliation

mathematical tool which we will be putting to use is the “theory of foliations”. We
will give now a very sketchy idea of what this is all about; more mathematical
details are to be found in the appendix at the end of this paper.

Assume, for simplicity, that the physical space M is an open region of the
euclidean n-space R" and that V is the set of all k-dimensional linear subvarieties of
R" (this is called the Grassman manifold G, ,). Assume, also, that the order
parameter @ associates to every pe M — X such a k-dimensional linear subvariety
®(p) passing through p. One will say that ¢ defines a foliation if M —X can be
completely covered by two-by-two disjoint, k-dimensional smooth, connected
layers such that &(p) is the tangent space of the (unique) layer passing through the
point p.

If k=1, such layers always exist, because one just has to integrate an ordinary
differential equation in order to get them. But if k=2, a field of k-dimensional
planes @ very seldom defines a foliation. The condition for this to be the case is a
non-linear “integrability condition” involving the first order derivations of the
map &. If the condition is satisfied, we say that @ is “integrable” (and if this is so,
then a foliation & is defined by @).

A very important class of foliations are the so-called “measured foliations”, for
which the layers (or rather “leaves” as they are usually called) are all equidistant.
One can think of a measured foliation as being a very rough mathematical model
of a smectic liquid crystal. Figure 1 below shows some examples of such measured
foliations, with singularities, in dimension 2 (n=2, k=1).

By contrast, the foliation in Fig. 2 is not measured.

Now, with respect to the standard homotopy theory, here comes a new fact. If
our ordered medium is modeled by a (measured) foliation with V=G, ,, although

every individual value @(p)eV is acceptable, a global map M —2% ~2, Vs not
necessarily acceptable. All this is very much in line with Mermin’s critique.

The first two paragraphs of this paper will give instances of the following two
basic facts (in this framework of ordered media defined by foliations):

(1) Not every (homotopy class of) defect(s) predicted by pure homotopy theory
is necessarily realized. In particular, we show that for a punctual defect of a two-
dimensional smectic the index of the corresponding plane field takes only the



Topological Theory of Defects 129

values:
1 1 3
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but never values strictly larger that 1.

(i) Two defects which might look homotopically the same need not be
continuously deformable into each other if the integrability condition for the map
M —X—V is to be respected. In particular, answering a question of Michel, we will
exhibit a defect of a foliated (=layered) structure which, homotopically speaking,
is trivial (if one forgets about the integrability conditions).

So, in the context of ordered media described by foliations, not only certain
homotopy classes of defects are not physically realizable, but moreover, the same
homotopy class of defects can split into several physically distinct defect classes.

Of course, two defects which are homotopically distinct are also physically
distinct. That much of the homotopy classification stays true, without exception.

Changing the topic, foliations also appear in the context of gauge fields, or
from a more mathematical standpoint when one consideres connections and
curvature. The last paragraphs of this paper will contain some preliminary
remarks about “defects of a gauge field” and about disclinations in crystalline
systems, viewed from this angle. We hope to pursue these matters in a subsequent
paper. The reader should be warned that this last paragraph requires more
mathematical background than the first two, which we have tried to keep as
elementary as possible.

Let us finish with a last comment. One of the things in which the homotopy
theory of defects has not been very successful, is coping with energy consideration.
The extra refinement which foliation theory brings to pure homotopy should, at
least partially, be able to bridge the gap and make energy computations accessible
by geometric-topological means. A forthcoming paper of Langevin [5] seems to
go quite far in this direction ; otherwise, his approach is quite different from ours.

2. Punctual Defects of 2-Dimensional Smectics

Let @ be a smooth field of directors (lines) in R?, with an isolated singularity at the
origin. It is well known that the following conditions are equivalent:

1) One can put consistent arrows on the directors, or, in other words there is
an underlying vector field, to @, which we will denote by ¢.

2) Considered as a line bundle, @ is trivial (i.e. orientable).

3) The orthogonal line bundle @* is trivial (i.e. orientable).

4) There is a differential 1-form o with an isolated singularity at the origin,
such that @ is just the kernel of w.

If all this is the case, we will call @ “orientable”.

If @ is assumed orientable, the following facts are also equivalent:

(i) The foliation defined by @ is measured. (Note that in any case @ defines a

foliation with an isolated singularity at 0, since k= 1. We will call this foliation .
Conversely a 1-dimensional foliation % defines a field of directors.)

I We understand that P.Ginsparg and N.D.Mermin have established a similar result (un-
published)
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(i) The 1-form w is closed (i.e. dw=0).

(i) roté=0.

(iv) rotét=0.

Now, an arbitary @ lifts automatically to the ramified 2-sheeted covering of R?

(the “Riemann surface” of ]/E). This lift is a new field of directors on R? with an
isolated singularity at 0, and we will denote it by 2. It is easy to see that the field
29 is always orientable.

For a vector field & with an isolated singularity at 0, one defines, classically, the
index of &: I(€)eZ (=the integers), which measures how many times ¢ turns
around O.

The following two facts are easily established:

1) I(&)=I(—¢).

2) I1(2¢)=2I(¢)—1.

In view of 1), the index I(£) depends only on the director field associated to &,
and in view of 2), we can consistently define the index of an arbitrary field of
129)+1

directors @, as being the half integer I(P)= 3

Examples. In Fig. 1, the corresponding field is orientable if and only if the “number

of prongs”, g, is even. Moreover, one checks easily that: I=1— %

We leave it as an exercise to the reader to construct @’s with an arbitrary half-
integral I(®).

As already said, we will consider measured (possibly non-orientable)
1-dimensional foliations % in a 2-dimensional physical space as a mathematical
model for 2-dimension smectic liquid crystals.

The purpose of this paragraphs is to establish the following:

Theorem 1. Let @ be a field of directors in R* with an isolated singularity at 0,
defining a measured foliation. Then 1(®) < 1. In particular, a vector field & on R, with
an isolated singularity at 0, such that rot& =0, has the property that 1(£)< 1.

We start by noting that 2 also defines a measured foliation and hence it is the
kernel of a closed 1-form w. By the so-called “Poincaré lemma” [3], any closed
form in R" is exact, and so the proof of our Theorem 1 is reduced to the following:

Theorem 2. Let f:R*—R be a smooth function whose gradient has an isolated
singularity at 0. Then I(grad f)<1.2

The proof runs as follows. Let D? be the unit disk. After a slight perturbation of
/. the only points where grad f is orthogonal to the unit circle S' =0D? are one of
the four types in Fig. 3.

Note that the points of type I and III represent maxima of f]S*, while the
points of type II and IV represent minima of f|S?*.

2 The analogue of this statement for maps R"—R with n>2 seems to be false. One might
nevertheless ask whether this is in any way connected to the Guth-Weinberg theorem as explained by
L. O’Raifeartaigh, in Lett. al Nuovo Cimento, Vol. 18, No. 7, p. 205 (1977)
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Type 1 Type II Type III Type IV

Fig. 3. Our convention is f(level —)< f(level 0)< f(level +)

We will introduce the following notations:

u={the number of points of type II}
o = {the number of points of type III}.

We have the following:
Lemma If I(grad )=+ +1, then p=o.

Before proving this, let us show how granted the lemma, one can deduce our
Theorem 2.

Given our function f, we can perturb it slightly, keeping it fixed in a neigh-
borhood of S, into a new function g which has only Morse-type singularities.
Clearly:

Igradf)= Y I(gradg).

xeSingg

Also:
Y I (gradg)=m—s+M,

where m (respectively s, respectively M) is the number of minima of g (respectively
of saddle points, respectively of maxima). By using a bit of elementary Morse
theory (see for example [1] or [11]), one can see that the unit disk D* can be
reconstructed from (m+ p) handles of index 0, (s+ o) handles of index 1, and M
handles of index 2.

So, one finds that:

(m+p)—(s+o)+M=yD?=1,

where y denotes the Euler-Poincaré characteristic. Hence:

I(grad f)=1—(u—o0),

and by our lemma, either I(grad f)=1 or u—0 =0, so, anyway I(grad f)<1.

The only thing left is to prove the lemma itself. Let p be a point of type III. We
can assume without loss of generality that the level line L_ (Fig. 3) contains no
singularity and hence that it can be continued globally, as illustrated in Fig. 4a or
b.
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Fig. 4a and b al b)

Now, Fig. 4b can occur only if the singularity O is inside L_, and then,
automatically I(grad f)= + 1.

So, if I(grad f)=+ + 1, which we assume from now on, Fig. 4b is excluded.

Each L_-level divides D? into a B-region and two A-regions, as in Fig. 4a. One
can introduce the following order relation in between the various type III points:

Py <p,<={L_(p,)C(one of the A-regions of p,)}.

Let us call “free” an A-region not containing another L_(p) level, with p of type
I1L

The following facts are easily established:

1) Any free A-region not containing the origin, contains at least one point of
type 1L

2) The number of free A-regions is strictly larger than . This follows from the
fact that any tree has strictly more endpoints than branch points.

These two points imply our lemma.

3. On the Existence of Physical Defects
Which Homotopically Speaking Should not be There

We turn now to ordered media representable by foliations which are not
necessarily measured. We consider the case n=3, k=2. Such situations occur for
instance in [12, 13]. We will exhibit an example of a 2-dimensional foliation %
defined in R outside the region X = {x*+y?<1, —1<z<1}, and such that:

o) The field of 2-planes defined by # extends continuously throughout R>.

B) There is no 2-dimensional foliation defined in R? and extending Z.

Let us add right away that this example is completely standard in the theory of
foliations. We recall it here just to illustrate our point about defects.

We can start by considering a 1-dimensional foliation %,, defined on the
cylinder: I'={x*+y*=1, —1<z<1}, such that in the regions + 1 <z< —3and 1
<z<1, the leaves are horizontal circles, and in the region —3<z<1% they are
infinite lines, spiraling from the bottom circle (x* + y? =1, z= —J) to the top circle
(x*+y*+1, z=2), as in Fig. 5.

The foliation & will be defined outside the cylindrical box from Fig. 5 in such a
way that:

a) Forz=1orz< —1, the leaves of & are just the horizontal planes z=const.

b) In the intermediate region, the leaves of # touch the lateral surface of the
cylindrical box along the leaves of 7.
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Fig. 5

c) If L, is a leaf of #,, then the ruled surface defined by all the half lines (x =at,
y=bt, z=c¢), for (a,b,c)e L, and t =1, is a leaf of 7.

This foliation & clearly has property o).

On the other hand, by the so-called “Reeb stability theorem” [ 6], any foliation
of the cylindrical box, which is transversal to the lateral surface and such that the
lid and bottom of the box are leaves, is, after an appropriate change of coordinates,
just the standard foliation by horizontal planes.

Hence, since %, contains non-compact leaves, & also has property f).

4. Some Comments on Defects in Gauge Fields
and Crystalline Systems

We consider now the standard mathematical model for a gauge field. This consists
of the following ingredients:

a) A principal G-bundle E —2— X where X is the “physical space” and G a Lie

group. [At any point xeX, the fiber G, =p~'(x) is the space of some internal
parameters like “phase” (G=U(1)) or “isospin” (G=SU(2)) or “quark color”
(G=SUQ))]

We assume X to be an n-dimensional manifold.

b) A connection or “gauge potential”, which associates to every acE an n-
dimensional plane @(a), tangent to E at g, transversal to the fiber passing through
a, depending smoothly on a [and such that &(ga)=(R,),®P(a)]. Thus the con-
nection is an infinitesimal notion of horizontality on E, allowing us to compare
infinitesimally close fibers. More exactly, if x, yeX are joined by an infinitesimal
path ¢, one can drag G, along ¢, by “parallel transport” and identify it with G,.

¢) The curvature F of the connection @, or the “gauge field of the potential”.
This is an antisymmetric, covariant 2nd order tensor on X, with values in the Lie
algebra of G. If xeX and &, 5 are two infinitesimal vectors at x, then the value
F. ,(x) measures the infinitesimal distortion created by parallel displacement along
the infinitesimal parallelogram defined by &, #. All these things are explained in
detail in many places (see for example [2] or [14]).

The following facts are well-known:

1. The gauge field is identically zero (or in a “pure gauge” form) if and only if @
defines a foliation of E, which we will denote by Z,. Such a connection is called

flat.



134 V. Poénaru

2. If we consider G stripped of its topology, we have the discrete group G,
(with the same underlying set and algebraic structure as G) and the obvious
identity map G,— G is continuous. The existence of a flat connection gives rise to a
reduction of the structural group of E, from G to G, or in terms of classifying spaces
to a lift:

ABG,

/// l
X — BG,

where e is a map inducing our original bundle.

Conversely any such reduction gives rise to a flat connection.

3. Bundles with discrete structural group G, are completely characterized by
their “holonomy map” (parallel transport along the leaves of #g): 1, X —G,.

Of course, all these notions make sense for an open set U CX and the restriction
of E to U. In particular, our model for defects in a gauge field will be a closed “defect
set” X CX such that on the open set X — X, the connection @ is flat. The whole
energy of the field is concentrated on X which looks very much like a “soliton” (see
[81)

Let us also remark that the well-known Aharanov-Bohm effect (see for
instance [23, 24]) fits beautifully in this scheme. Namely X is space-time, E is the
trivial U(1)-bundle over X and X is the portion of space-time where a certain
magnetic field does not vanish, so that U=X — X is homotopically like a circle. In
our language, the phase shift in the Aharanov-Bohm experiment is just the
holonomy of the flat bundle E|U. This bundle is of course U(1)-trivial, but not
U(1),-trivial!

Our kind of defect is not to be mixed up with a Dirac monopole [23, 247, where
the bundle fails to be defined on the “defect set” XCX. From a topological
standpoint, such a Dirac-monopole-type of defect behaves very much like a
Toulouse-Kléman defect, if the manifold of internal states is replaced by the
classifying space BG and the order parameter map by some map X —X—BG,
inducing the given bundle.

The kind of defects for a gauge field we have described before, coming from the
nonflatness of the connection and not from such a simple “hole” in the bundle, are
more like a “t’'Hooft monopole” and are of a more subtle nature than the Dirac
monopoles.

So now we can start asking a Toulouse-Kléman type of question: if LCX is a
defect pellicule of dimension p<n, when can we “cut” it? In more precise terms,
when can we change @ in a neighborhood of L, so that it becomes flat in
X —(2—L)? The obvious thing to do is to surround L by a g-dimensional sphere
S4 (with p+q+1=n) and consider the (g+ 1)-dimensional disk 44" !, spanned by
S? and transversal to L (Fig. 6).

[t is convenient to thicken 447! to a very thin n-dimensional cylindrical box
B=4%"1 x[—¢,e]?CX and consider a very thin neighborhood of the boundary of
AT call it 1% [0,1], where S9x0 is S%

Then, the bundle E|f is endowed with a flat connection on
a=87%x[0,41] X[ —e,¢e]” and the problem is how to extend it. There are some
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obvious necessary conditions which are listed below:

Fig. 6

(i) If p=n—2 and g=1, then E|a possesses a holonomy map =, S* SLENYe

which is characterized by the image h(1)e G. In order to be able to cut L, one has to
have h(1)= {the unit element of G}.

(ii) If p<n—2 and g=2, the flat connection on E|x trivializes this bundle. The
obstruction to extend this trivialization is an element:

wen(BG,BG)=n,_,G

(we use the fact that g =?2).

In order to be able to cut L, one has to have w=0. This kind of obstruction has
also been described by Toulouse, from a different viewpoint [21].

All this is a local story “a la Toulouse-Kléman”, and by globalizing it, one
should be able to recapture a description of those characteristic classes which die
on a flat bundle, and nothing more (see also the last section of [17]). Which also
means that the complete story of how to cut defects in gauge fields has to be more
complicated, involving, possibly, the homotopy groups of the classifying spaces of
foliations (as defined in [4] and extensively studied in various papers of Mather
and Thurston).

To conclude this section, we come to the problem of defects of crystalline
systems. It is known that the standard homotopy approach can capture dislo-
cations (the Burgers vectors), but is somewhow inappropriate for other defects, like
disclinations, where rotational symmetry is also involved. We want to suggest that
the preceding approach could again be useful here.

Consider E = {the bundle of all orthogonal 3-frames in R3}. This is a principal
SO(3)-bundle. Notice that in the region of space UCR® where the crystal is
undistorted, it naturally defines a flat connection in this principal bundle. (The
crystalline system gives a precise rule of how to move a frame from x to y; it is easy
to see that this is a flat connection.) Disclinations clearly correspond to regions of
nonzero curvature, except that curvature here is more like a “Dirac function”.

But such Dirac-type curvatures, which are already familiar objects, occur in
other areas of research, too (see for instance [187]). We plan to come back to all
these things in a future paper.

Appendix: Foliations

To simplify matters, we consider only foliations of dimension n— 1 on n-manifolds.
Locally at least, a field of (n—1)-tangent planes to M", can be given by a
nonzero differential form: = Xa, (x)dx’, which vanishes exactly along the direc-
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tions contained in the field @. The field @ defines a foliation & if and only if the
following condition is fulfilled: w A daa=0.
This is a non-linear equation called the “Frobenius integrability condition”.
Moreover, @ defines a “measured foliation”, which means a foliation where
“leaves stay at equal distance” if and only if the following stronger linear condition
is fulfilled:

dw=0.

A good reference for the general theory of foliations is [6]. For measured
foliations in the two-dimensional case, one can consult [19].
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